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Geographic patterns in stroke mortality have been studied as far back as
the 1960s when a region of the southeastern United States became known as
the “stroke belt” due to its unusually high rates. While stroke mortality rates
are known to increase exponentially with age, an investigation of spatiotem-
poral trends by age group at the county level is daunting due to the prepon-
derance of small population sizes and/or few stroke events by age group. In
this paper, we implement a multivariate space–time conditional autoregres-
sive model to investigate age-specific trends in county-level stroke mortality
rates from 1973 to 2013. In addition to reinforcing existing claims in the liter-
ature, this work reveals that geographic disparities in the reduction of stroke
mortality rates vary by age. More importantly, this work indicates that the
geographic disparity between the “stroke belt” and the rest of the nation is
not only persisting, but may in fact be worsening.

1. Introduction. Stroke (i.e., cerebrovascular disease) is the fourth leading
cause of death in the United States (US) and third—behind heart disease and
cancer—among those aged 85 and older, with rates increasing exponentially with
age [Xu et al. (2016)]. Geographic patterns of stroke mortality have been studied as
far back as the 1960s when Borhani (1965) identified a region of the southeastern
US stretching from Mississippi to North Carolina which had the highest rates of
stroke mortality—a region which would become known as the “stroke belt.” Later
work by Casper et al. (1995) noticed an apparent shift in the stroke belt, observing
that parts of the Mississippi River Valley appeared in the highest decile of mortal-
ity rates in the early 1990s where they had previously not. More recently, Schieb
et al. (2013) studied geographic trends in stroke hospitalizations from 1995 to 2006
and noted that this shift in the stroke belt had persisted among Medicare benefi-
ciaries ages 65 and older, stretching further into parts of Texas and Oklahoma.
In addition to changing geographic patterns, numerous studies have observed the
overall declines in stroke mortality [e.g., Gillum, Kwagyan and Obiesesan (2011),
Howard et al. (2001)]. While many of these studies have age-adjusted their data—
indirectly accounting for disparities in stroke mortality across age by accounting
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for the counties’ age distributions—this has precluded inference within individual
age groups.

There are multiple potential motivations for this aggregation and data standard-
ization step. For instance, the issue of small population sizes and/or low counts in
many US counties can lead to unreliable estimates of stroke mortality rates. This
(along with computational burden) is only exacerbated when the data are stratified
by a factor such as age group. Rather than aggregate data, however, we will in-
vestigate spatiotemporal trends in stroke mortality by jointly modeling data from
three age-based subpopulations, permitting inference at the county level for each
age group while preserving the ability to compute age-adjusted rates. In addition
to the challenges of small area estimation, the decision to use age-aggregated data
may also be due to the availability of public-use data. While we will revisit this
issue in Section 5, we will assume from this point forward that access to these data
is not an issue.

To analyze multivariate spatial data, it is common to look toward variations
of the conditional autoregressive (CAR) model [Besag (1974), Besag, York and
Mollié (1991)] or its multivariate generalization—the multivariate CAR (MCAR)
of Gelfand and Vounatsou (2003). In this paper, we will implement the multi-
variate space–time CAR (MSTCAR) model of Quick, Waller and Casper (2017a)
to investigate age-specific spatiotemporal trends in the stroke mortality data de-
scribed in Section 2. Details regarding the MSTCAR model and its extension to
the generalized linear model setting to analyze rare event count data are provided
in Section 3. In particular, the MSTCAR model allows for a nonseparable model
structure which permits a between-age covariance structure which evolves over
time and age-specific temporal correlation parameters. This is in contrast to sep-
arable models which prohibit temporal evolution in the between-age covariance
structure and require identical temporal correlation parameters among the various
age groups. Other nonseparable methods [e.g., Martinez-Beneito (2013)] allow
for varying spatial structures by utilizing proper MCAR models; while such ap-
proaches are feasible when the dimension of the spatial domain is small, the large
number of counties in the US prohibits the use of proper MCAR models. There-
fore, our approach strikes a necessary balance between computational burden and
model flexibility to provide a more accurate portrayal of the spatiotemporal trends
in stroke mortality by age group. Our analysis of the stroke mortality data is pre-
sented in Section 4, where we observe spatiotemporal trends which vary by age
group. In particular, we find that rates for those aged 65–74 exhibit a stronger de-
gree of spatial clustering with larger geographic disparities than rates for those 75
and older. Finally, we summarize our findings and offer some concluding remarks
in Section 5.

2. Data description. The study population for this analysis includes all US
residents aged 65 or older. In order to assess differences across the high-risk age
ranges, the data were separated into Ng = 3 groups: those aged 65–74, those
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75–84, and those 85+. The geographic unit used in this analysis was the county
(or county equivalent). Given changes in county definitions during the study pe-
riod affecting ten counties (e.g., the merging/splitting of counties), a single set of
Ns = 3099 regions (henceforth referred to simply as counties) from the contiguous
lower 48 states (including the District of Columbia) was used for the entire study
period. Annual counts of stroke-related deaths per county per age group were ob-
tained from the National Vital Statistics System (NVSS). Due to inconsistencies in
the manner in which death records were recorded prior to 1973, the analysis was
restricted to data from 1973–2013 (Nt = 41 years) to ensure valid comparisons
across time. Deaths from stroke were defined as those for which the underlying
cause of death was cerebrovascular disease according to the 8th, 9th and 10th
revisions of the International Classification of Diseases (ICD; ICD–8: 430–438;
ICD–9: 430–438; ICD-10: I60–69). Based on the comparability ratios reported by
Klebba and Scott (1980) and Anderson et al. (2001), which indicate a high degree
of similarity between the three revisions of the ICD, we assumed that this defini-
tion was consistent over the 41-year study period. Annual population counts were
based on the bridged-race intercensal estimates provided by NCHS (2013), and we
include the percentages of the population that are black and are men as covariates
in our analysis based on evidence of disparities in stroke mortality across both race
and gender [e.g., Schieb et al. (2013)].

3. Methods. The work of Besag, York and Mollié (1991) has sparked a wealth
of research in the disease mapping context for both spatial [e.g., Besag and Hig-
don (1999), Besag et al. (1995)] and spatiotemporal applications [e.g., Knorr-Held
(2000), Knorr-Held and Besag (1998), Waller et al. (1997)]. While these early ex-
amples were based on the standard univariate CAR model, Gelfand and Vounatsou
(2003) developed methods for general MCAR models, inspiring novel approaches
for both multiple and spatiotemporal disease mapping [e.g., Botella-Rocamora,
Martinez-Beneito and Banerjee (2015), Martinez-Beneito (2013), Quick, Carlin
and Banerjee (2015), Quick, Waller and Casper (2017a)].

3.1. Statistical model. Letting Yikt denote the number of deaths in county i

during year t for age group k from a population of size nikt , we model

(1) Yikt ∼ Pois
(
nikt exp

[
xT
iktβkt + Zikt + φikt

])
for i = 1, . . . ,Ns , k = 1, . . . ,Ng , and t = 1, . . . ,Nt , where xikt denotes a p-vector
of covariates with corresponding regression coefficients, βkt , Zikt is a spatiotem-
poral random effect that also accounts for between age-group correlation, and

φikt
ind∼ N(0, τ 2

k ). Ignoring the multivariate and temporal sources of correlation
momentarily, we could incorporate spatial dependence in our model by following
Besag, York and Mollié (1991) and letting

(2) Zikt |Z(i)kt , σ
2
kt ∼ N

(
Ns∑
j=1

wijZjkt

/ Ns∑
j=1

wij , σ
2
kt

/ Ns∑
j=1

wij

)
,
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where Z(i)kt denotes the vector Z·kt = (Z1kt , . . . ,ZNskt )
T with the ith element re-

moved and wij = 1 if i and j are neighbors (denoted i ∼ j ) and 0 otherwise. Rec-
ommendations for prior distributions for σ 2

kt and τ 2
k are offered by Bernardinelli,

Clayton and Montomoli (1995).
To account for the multivariate spatiotemporal association in the data, we fol-

low the MSTCAR model of Quick, Waller and Casper (2017a)—itself a spe-
cial case of the improper MCAR of Gelfand and Vounatsou (2003)—and let
Z = (ZT

1··, . . . ,ZT
Ns ··)

T ∼ MCAR(1,�Z), where Zi·· = (Zi·1, . . . ,Zi·Nt )
T , Zi·t =

(Zi1t , . . . ,ZiNgt )
T , mi = ∑Ns

j=1 wij , and �Z denotes the NtNg ×NtNg covariance
structure for our Nt years and Ng age groups. Full details for constructing �Z are
provided in Appendix A.1 [Quick, Waller and Casper (2017b)]. Briefly, we begin

by defining vι·t
i.i.d.∼ N(0,Gt ) to be a collection of independent Ng-dimensional

random variables with covariance Gt for ι = 1, . . . , (Ns − 1) and t = 1, . . . ,Nt .
Because the MSTCAR model of Quick, Waller and Casper (2017a) is based on an
improper MCAR model, its spatial domain has dimension Ns − 1, hence the range
of the subscript ι. To account for temporal correlation, we assume Rk ≡ R(·, · |ρk)

denotes the temporal correlation matrix based on an autoregressive order 1 [AR(1)]
model for age group k and let R̃k be the Cholesky decomposition of Rk such
that R̃kR̃T

k = Rk . We then define ηιk· = R̃kvιk·, where vιk· = (vιk1, . . . , vιkNt )
T .

Note that if Gt ≡ diag(σ 2
1 , . . . , σ 2

Ng
), then each ηιk· ∼ N(0, σ 2

k Rk) is simply an

independent AR(1) process with variance σ 2
k ; allowing these Gt to be unstruc-

tured permits the flexibility for between-group covariances that can evolve over
time. We then define �Z to be the NgNt × NgNt covariance matrix of ηι·· such
that ηι·· ∼ N(0,�Z). Finally, Z is constructed from the ηι·· using the eigenval-
ues and eigenvectors of the adjacency matrix, W = {wij } [see Rue and Held
(2005)]. Following the notation of Quick, Waller and Casper (2017a), we let
G = {G1, . . . ,GNt } and R = {R1, . . . ,RNg }, and let Z ∼ MSTCAR(G,R) denote
the model

(3) π(Z |G,R) ∝ |�Z|−(Ns−1)/2 exp
[
−1

2
ZT {

(D − W) ⊗ �−1
Z

}
Z

]
.

3.2. Hierarchical model and computational details. While the Poisson model
in (1) is a straightforward extension of the space-only model of Besag, York and
Mollié (1991), such models can also pose computational challenges, particularly
for large dimensions. For instance, the full conditional of Zi··, given by

π(Zi·· |Y,Z(i)··,β,φ,�Z)

∝ ∏
k,t

Pois
(
Yikt |nikt exp

[
xT
iktβkt + Zikt + φikt

]) × π(Zi·· |Z(i)··,�Z),

is not a known distribution; that is, if we use a Markov chain Monte Carlo
(MCMC) algorithm to estimate the posterior distribution of our model param-
eters, this model may require the use of large multivariate Metropolis updates
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within our Gibbs sampler. Besag et al. (1995) and Knorr-Held and Rue (2002) sug-
gest a reparameterization of (1) which involves integrating φikt out of the model,
yielding a Gaussian full conditional for Zi·· and requiring Metropolis updates for
θikt = xT

iktβkt + Zikt + φikt . Fortunately, the full conditional distribution of θikt—
as shown in Web Appendix A.3 [Quick, Waller and Casper (2017b)]—is free of the
elements of θ \θikt , thus these Metropolis updates can be conducted independently
and in parallel.

We complete our hierarchical model by specifying the following prior distri-
butions for the remaining model parameters: a vague N(0,100 × Ip) prior for
each βkt , a weakly informative inverse gamma prior for each τ 2

k , a beta prior for
each ρk , and an inverse Wishart prior for each Gt with hyperparameter G, itself
modeled using a vague Wishart prior with diagonal matrix G0. While this hierar-
chical structure on the covariance matrices is likely unnecessary given the number
of spatial regions in the data [see the discussion of prior sensitivity in spatial mod-
els by Bernardinelli, Clayton and Montomoli (1995)], this comes at little to no
computational cost (see Web Appendix A.2 [Quick, Waller and Casper (2017b)])
and offers a convenient means for specifying proper priors. Putting these pieces
together, our joint posterior distribution is as follows:

π
(
β,Z,G,G,R,

{
τ 2
k

}
, θ |Y

) ∝ ∏
i,k,t

Pois
(
Yikt |nikt exp[θikt ]) × N(θ |Xβ + Z,�θ )

× MSTCAR(Z |G,R) × N(β |0,�β)
(4)

×
Nt∏
t=1

InvWish(Gt |G, ν) × Wish(G |G0, ν0)

×
Ng∏
k=1

[
Beta(ρk |aρ, bρ) × IG

(
τ 2
k |aτ , bτ

)]
,

where �θ is a diagonal matrix of size NsNgNt with elements τ 2
k , �β = 100IpNgNt ,

and X is the (NsNgNt × p) matrix of covariates. Additional structure (e.g., tem-
poral correlation) may be considered for β as needed. Model comparison will be
measured via the deviance information criterion [DIC; Spiegelhalter et al. (2002)].
As a diagnostic, spatial autocorrelation in the posterior estimates of λ·kt is summa-
rized by Moran’s I index [Moran (1950)]:

I (λ·kt ) = Ns∑
i

∑
j wij

∑
i

∑
j wij (λikt − λ̄·kt )(λjkt − λ̄·kt )∑

i (λikt − λ̄·kt )2
,

where λ̄·kt = ∑
i λikt/Ns .

While full details for implementing this model in an MCMC framework are
provided in Web Appendix A [Quick, Waller and Casper (2017b)], we would be
remiss to not discuss the computational burden associated with fitting a nonsepa-
rable model as opposed to a separable model, that is, letting ρk = ρ for all k and
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Gt = G for all t corresponds to a model with �Z = R(·, · |ρ) ⊗ G. First note that
by using an AR(1) model for time, we can compute the R̃∗

t,t ′ elements of �Z in

closed form, reducing the burden of computing �−1
Z from an NtNg × NtNg ma-

trix inversion to a series of Ng × Ng matrix inversions, a property shared with the
separable formulation. Furthermore, while the nonseparable MSTCAR model con-
tains more parameters than its separable counterpart, the additional computational
burden associated with its implementation in an MCMC framework is negligible;
more specifically, the steps required to construct the full conditional distribution
of G in a separable model can each be applied to a specific Gt in (4).

4. Analysis of the stroke mortality data. We analyzed the stroke mortality
data described in Section 2 using the hierarchical model in (4) with the percent
nonwhite and percent male as covariates. Due to small population sizes in many
counties, the covariate information was smoothed prior to the analysis; see Web
Appendix A.5 [Quick, Waller and Casper (2017b)] for more details. The analy-
sis was conducted using three chains of 10,000 iterations, the first 5000 of which
were discarded as burn-in. When running the MCMC algorithm, we thinned our
posterior samples for θikt by removing 9 out of 10 samples—while this is not
theoretically necessary, it reduced the burden of storing excess samples for our
nearly 400,000 rate parameters. Estimates provided are based on posterior me-
dians, and 95% credible intervals (95% CI) were obtained by finding the 2.5- and
97.5-percentiles from the thinned post-burn-in samples. Additional figures, includ-
ing animations displaying temporal evolutions in the geographic trends, can be
found in Web Appendix B [Quick, Waller and Casper (2017b)].

To determine if the flexibility of the MSTCAR model is necessary for these
data, we compared the DIC from the MSTCAR to a collection of Ng independent
spatiotemporal processes (i.e., a model which restricts each Gt to be a diagonal
matrix) and a separable multivariate space–time CAR model (i.e., a model which
restricts Gt = G and ρk = ρ). As shown in Table 1, the MSTCAR model outper-
forms both the independent S-T model and the separable model. This is likely due

TABLE 1
DIC comparison between the MSTCAR model, a separable multivariate space–time CAR model and

a collection of Ng independent spatiotemporal processes. Smaller values indicate a better
compromise between model fit and model complexity. For convenience, differences between the

MSTCAR and the competing models are shown in parentheses

Age Group MSTCAR Separable Independent S-T

65–74 16,221,366 16,221,854 (+488) 16,222,781 (+1415)
75–84 26,917,887 26,918,207 (+320) 26,921,159 (+3272)
85+ 22,766,145 22,766,806 (+661) 22,768,093 (+1948)

Overall 65,905,398 65,906,867 (+1469) 65,912,033 (+6635)
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(a) Diagonal elements of �Z . (b) Reg. coeff. for % male. (c) Reg. coeff. for % non-white.

FIG. 1. Parameter estimates from the analysis of the stroke mortality data. Panel (a) compares the
diagonal elements of �Z from the MSTCAR model to those from the separable model. Panels (b)
and (c) display the temporal evolution of the regression coefficients for the percent of the population
that is male and nonwhite, respectively.

to its ability to both account for dependence between the age groups and allow for
temporal evolution in the covariance matrix, �Z . As demonstrated in Figure 1(a),
the diagonal elements of �Z vary substantially over time. One result of this is that
the separable model will tend to oversmooth estimates early in the study period
(i.e., where the separable model underestimates the elements of �Z) and under-
smooth estimates later in the study period (i.e., when the separable model overes-
timates the elements of �Z).

We now dig deeper into the results of the analysis of the stroke mortality data
using the MSTCAR model. Figure 1(b) and (c) display the regression coefficients
for percent male and percent nonwhite over time for each age group. While these
effects do not change substantially between 1973 and 2013, their effects do dimin-
ish as age increases. For instance, while there is a positive association between the
percent of the population that is nonwhite and increased stroke mortality rates for
the 65–74 age group throughout the time period, this trend is less apparent for the
75–84 age group and reversed for those aged 85 and older. This result coincides
with the existing literature which suggests that racial disparities in stroke mortality
rates are more prominent among younger populations [e.g., Howard (2013)].

Turning our attention to the geographic patterns in stroke death rates, we find
substantial differences between age groups (Figures 2–4). For the youngest sub-
population (ages 65–74), the clear geographic patterns shown in Figure 2 high-
light the so-called “stroke belt” in the rates from 1973 and the “shift” identified
by Casper et al. (1995) toward higher than average rates in parts of Texas and Ok-
lahoma. Similar patterns are also evident in the stroke death rates for those aged
75–84, though the spatial clustering here is less concentrated in the Deep South,
with elevated rates spreading into parts of Illinois, Indiana and Michigan. In con-
trast, the rates for those aged 85+ (Figure 4) exhibit far less spatial clustering with
slower rates of decline nationwide. More specifically, this work illustrates that the
changing geographic trends identified by Casper et al. (1995) do not apply uni-
formly to all US residents 65 and older, but rather appear most prominently in the
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(a) Ages 65–74: 1973. (b) Ages 65–74: 1993.

(c) Ages 65–74: 2013. (d) Ages 65–74: Declines.

FIG. 2. Maps of the stroke mortality rates and declines for those aged 65–74. Note that estimates
for counties with fewer than 100 people in an age bracket in 1973 are suppressed.

youngest age group of our study, and reinforces the need for spatiotemporal analy-
ses of such datasets. See Figures B.3–B.5 of Web Appendix B [Quick, Waller and
Casper (2017b)] for map animations for all three age groups and for all 41 years.

Reaffirming our earlier suspicions, Figure 5(a) displays the temporal evolution
of the Moran’s I for λikt for each age group. Here, we see that the Moran’s I cor-
responding to the death rates for those aged 65–74 is significantly higher than the
remaining age groups with progressively lower degrees of spatial autocorrelation
present for the older ages. One caveat to these results is that the 65–74 age group
historically has the lowest counts (see Figure B.1), and thus our posterior estimates
for λikt may have more reliance on the spatial structure in the model. Nonetheless,
while overall death counts have declined nearly 50% for both the 65–74 and 75–
84 age groups and remained relatively constant for those aged 85 and older, we
observe a 25% increase in the Moran’s I from 1973 to 2013 for those 75–84.

Figure 5(b) displays the temporal evolution in the ratios between the average
stroke mortality rate in the highest sextile (see Figures 2–4) and the average rate
in the lowest sextile by age group. While all three age groups begin the study with
ratios on the order of 2:1, the ratios for those aged 75–84 and those 85+ experience
significant declines during the 41-year study period. In contrast, the ratio for the
65–74 age group declines at a steady rate from 1973 to the late 1990s before a
sharp increase back to a 2.2:1 ratio. Because the highest rates among those aged
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(a) Ages 75–84: 1973. (b) Ages 75–84: 1993.

(c) Ages 75–84: 2013. (d) Ages 75–84: Declines.

FIG. 3. Maps of the stroke mortality rates and declines for those aged 75–84. Note that estimates
for counties with fewer than 100 people in an age bracket in 1973 are suppressed.

65–74 occur predominantly in the Deep South, this suggests that the geographic
disparity between this region and the rest of the country has yet to improve.

5. Discussion. By applying the MSTCAR model to these data, we have
greatly enhanced our knowledge of spatiotemporal trends in stroke mortality be-
yond that which existed in the literature. For instance, this work has revealed sub-
stantial geographic disparities in the reduction of stroke mortality rates by age
group, extending the work of Gillum, Kwagyan and Obiesesan (2011) and Schieb
et al. (2013). While Casper et al. (1995) first noted the western shift in the stroke
belt, analyses of geographic trends in rates of stroke mortality among subgroups
of the population have not been conducted before, due in part to a lack of meth-
ods equipped for multivariate spatiotemporal modeling. Through this work, we
have identified not only that the geographic shift in stroke mortality among those
aged 65 and older is largely attributable to those aged 65–74, but also that rates of
stroke mortality for those aged 65–74 exhibit more spatial clustering with larger
geographic disparities than rates for those 75 and older. In our future work, we
aim to further explore these patterns by including younger populations (e.g., adults
aged 35 and older) and stratifying our analysis by both race and gender. As this
will lead to much smaller counts (due to the reduction in population sizes and the
lower event rates among younger populations), we believe the flexibility of the
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(a) Ages 85+: 1973. (b) Ages 85+: 1993.

(c) Ages 85+: 2013. (d) Ages 85+: Declines.

FIG. 4. Maps of the stroke mortality rates and declines for those aged 85+. Note that estimates for
counties with fewer than 100 people in an age bracket in 1973 are suppressed.

(a) Moran’s I . (b) (Highest Sextile): (Lowest Sextile).

FIG. 5. Panel (a) displays the posterior estimates of the Moran’s I for each age group over time.
Panel (b) displays the ratio of the average mortality rate for the highest sextile of rates to the average
mortality rate for the lowest sextile for each age group.

MSTCAR model makes it a perfect candidate for this analysis and will provide
incredible insight into the race/gender disparities in public health.

Another area for future research is understanding the factors that contribute to
differential geographic patterns by age group in both the baseline 1973 stroke mor-
tality rates as well as the patterns of declining stroke mortality rates. While it is
well known that the risk for stroke increases with age, the spatiotemporal patterns
of stroke mortality by age group have not been documented previously. Hypothe-
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ses for understanding the observed differential spatiotemporal patterns in stroke
mortality by age group include, but are not limited to, the following categories:
(a) spatiotemporal differences in the relative contributions of decreasing case fa-
tality rates and incidence rates by age group [e.g., El-Saed et al. (2006), Ergin
et al. (2004)]; (b) differential influence of living conditions (e.g., socioeconomic
resources, access to quality health care, access to healthy food and recreational en-
vironments, etc.), or changes in those living conditions, on stroke mortality by age
group [e.g., Lisabeth et al. (2006), Tassone, Waller and Casper (2009)]; or (c) dif-
ferences in the accuracy of death certificate reporting by age group due to more
co-morbidities and competing conditions of death in the older ages.

While there has been and will continue to be a wealth of research related to
stroke mortality, the degree to which high quality data are available is an issue
which may impede this work. For instance, agencies such as the National Cen-
ter for Health Statistics (NCHS) within the Centers for Disease Control and Pre-
vention (CDC) are subject to data confidentiality restrictions which require the
suppression of small counts in public-use data sets [CDC (2003)]. To put such re-
strictions in context, over 80% of the counts for the 65–74 age group and nearly
70% of the more than 380,000 data points in this analysis are below the recom-
mended threshold of 10 events. Rather than release suppressed data, however, a po-
tential alternative is for agencies to release multiply imputed synthetic data [e.g.,
Raghunathan, Reiter and Rubin (2003)]. Based on the work here, the MSTCAR
model may show promise as a means of synthesizing data for such uses, thereby
facilitating future work in this and related areas of research.
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at the Centers for Disease Control and Prevention (CDC). The findings and con-
clusions in this report are those of the authors and do not necessarily represent the
official position of the CDC. The authors would like to thank Dr. Michael Kramer
and Dr. Adam Vaughan for their comments related to this work.

SUPPLEMENTARY MATERIAL

Supplement to “Multivariate spatiotemporal modeling of age-specific
stroke mortality” (DOI: 10.1214/17-AOAS1068SUPP; .pdf). Appendix A con-
tains the details of our Markov chain Monte Carlo (MCMC) algorithm and a de-
scription of the preprocessing smoothing approach used on our two covariates.
Appendix B contains a supplemental discussion (and additional figures) related to
the analysis of the stroke mortality data.
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