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Abstract. Sheffield (2011) introduced an inventory accumulation model which encodes a random planar map decorated by a
collection of loops sampled from the critical Fortuin–Kasteleyn (FK) model. He showed that a certain two-dimensional random
walk associated with the infinite-volume version of the model converges in the scaling limit to a correlated planar Brownian motion.
We improve on this scaling limit result by showing that the times corresponding to FK loops (or “flexible orders”) in the inventory
accumulation model converge in the scaling limit to the π/2-cone times of the correlated Brownian motion. This statement implies
a scaling limit result for the joint law of the areas and boundary lengths of the bounded complementary connected components of
the FK loops on the infinite-volume planar map. In light of the encoding of Duplantier, Miller, and Sheffield (2014), the limiting
object coincides with the joint law of the areas and boundary lengths of the bounded complementary connected components of a
collection of CLE loops on an independent Liouville quantum gravity surface.

Résumé. Sheffield a introduit en 2011 un modèle d’accumulation de stocks, qui code une carte planaire aléatoire décorée par
une collection de boucles, échantillonnée selon le modèle de percolation de Fortuin–Kasteleyn (FK) critique. Il a démontré que
certaines marches aléatoires planes associées au modèle en volume infini convergent dans la limite d’échelle vers un mouvement
brownien plan corrélé. Nous améliorons ce résultat de limite d’échelle en montrant que les temps correspondant aux boucles FK
(ou « commandes flexibles ») dans le modèle d’accumulation de stocks convergent dans la limite d’échelle vers les temps de cône
d’angle π/2 du mouvement brownien limite. Cet énoncé implique un résultat de limite d’échelle pour la loi jointe des aires et
des longueurs de bord des composantes connexes bornées du complémentaire des boucles FK sur la carte de volume infini. À la
lumière du codage de Duplantier, Miller et Sheffield (2014), l’objet limite coïncide avec la loi jointe des aires et des longueurs de
bords des composantes connexes bornées du complémentaire d’une collection de boucles CLE sur une surface indépendante dont
la loi est donnée par la gravité quantique de Liouville.
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1. Introduction

1.1. Overview

A critical Fortuin–Kasteleyn (FK) planar map of size n ∈ N and parameter q > 0 is a pair (M,S) consisting of a
planar map M with n edges and a subset S of the set of edges of M , sampled with weight qK(S)/2 where K(S) is the
number of connected components of S (including vertices of M which are not connected to any edge of S) plus the
number of complementary connected components of the union of the edges in S, with this union viewed as a subset
of the sphere. This model is critical in the sense that its partition function has power law decay as n → ∞ (this is
established in the sequel [23] to the present paper). We will often omit the adjective “critical” since we do not consider
non-critical FK planar maps.

If (M,S) is an FK planar map of size n and parameter q , then the conditional law of S given M is that of the
uniform measure on edge subsets of M weighted by qK(S)/2. This law is a special case of the FK cluster model on M

[14]. The FK model is closely related to the critical q-state Potts model [1] for general integer values of q; to critical
percolation for q = 1; and to the Ising model for q = 2. See e.g. [16,24] for more on the FK model and its relationship
to other statistical physics models.

The edge set S on M gives rise to a dual edge set S∗, consisting of those edges of the dual map M∗ which do not
cross edges of S; and a collection L of loops on M which form the interfaces between edges of S and S∗. Note that
#L+ 1 = K(S). The collection of loops L determines the same information as S, so one can equivalently view an FK
planar map as a random planar map decorated by a collection of loops.
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Our main tool for studying FK planar maps is a bijection with a certain inventory accumulation model due to
Sheffield [49]. This inventory accumulation model described by a word X consisting of five different symbols which
represent two types of burgers and three types of orders. There is a bijection between certain realizations of this model
and triples (M,e0, S) consisting of a planar map with n edges, an oriented root edge e0, and a set S of edges of M .
This bijection generalizes a bijection due to Mullin [43] (which is explained in more detail in [4]) and is equivalent
to the construction of [5, Section 4], although the latter is phrased in a different way (see [49, Footnote 1] for an
explanation of this equivalence).

There is a family of probability measures for the inventory accumulation model, indexed by a parameter p ∈
(0,1/2), with the property that the law of the triple (M,e0, S) when the inventory accumulation model is sampled
according to the probability measure with parameter p is given by the uniform measure on such triples weighted by
qK(S)/2, where q = 4p2/(1 − p)2. That is, the law of (M,e0, S) is that of an FK planar map with a uniformly chosen
oriented root edge. As alluded to in [49, Section 4.2] and explained in more detail in [3,7], there is also an infinite-
volume version of Sheffield’s bijection which encodes an infinite-volume limit (in the sense of [2]) of finite-volume
critical FK planar maps, which we henceforth refer to as an infinite-volume FK planar map.

The above inventory accumulation model is equivalent to a model on non-Markovian random walks on Z2 with
certain marked steps. In [49, Theorem 2.5], it is shown that the random walk corresponding to an infinite-volume
critical FK planar map converges in the scaling limit to a pair of Brownian motions with correlation depending on p.

The critical FK planar map is conjectured to converge in the scaling limit to a conformal loop ensemble (CLEκ )
with κ ∈ (4,8) satisfying q = 2 + 2 cos(8π/κ) on top of an independent Liouville quantum gravity (LQG) surface
with parameter γ = 4/

√
κ . See [24,49] and the references therein for more details regarding this conjecture. We will

not make explicit use of CLE or LQG in this paper, but we give a brief description of these objects (with references)
for the interested reader. A CLEκ is a countable collection of random fractal loops which locally look like Schramm’s
SLEκ curves [44,46], which was first introduced in [47]. Many of the basic properties of CLEκ for κ ∈ (4,8) are
proven in [32,36–38] by encoding CLEκ by means of a space-filling variant of SLEκ which traces all of the loops. For
γ ∈ (0,2), a γ -LQG surface is, heuristically speaking, the random surface parametrized by a domain D ⊂ C whose
Riemannian metric tensor is eγh dx ⊗ dy, where h is some variant of the Gaussian free field (GFF) on D and dx ⊗ dy

is the Euclidean metric tensor. This object is not defined rigorously since h is a distribution, not a function. However,
one can make rigorous sense of an LQG surface as a random measure space (equipped with the volume form induced
by eγh dx ⊗ dy), as is done in [11]. See also [10,35,48] for more on this interpretation of LQG surfaces.

In [10] (see also [32]), it is shown that for κ ∈ (4,8), a whole-plane CLEκ on top of an independent 4/
√

κ-LQG
cone (a type of quantum surface with the topology of C) can be encoded by a pair of correlated Brownian motions with
correlation − cos(4π/κ) = √

q/2 via a procedure which is directly analogous to the bijection of [49]. This procedure
is called the peanosphere (or mating of trees) construction. The correlation between this pair of Brownian motions is
the same as the correlation between the pair of limiting Brownian motions in [49, Theorem 2.5] provided

q = 4p2

(1 − p)2
= 2 + 2 cos(8π/κ), (1.1)

which is consistent with the conjectured relationship between the FK model and CLE described above. Thus [49,
Theorem 2.5] can be viewed as a scaling limit result for FK planar maps toward CLEκ on a quantum cone in a certain
topology, namely the one in which two loop-decorated surfaces are close if their corresponding encoding functions
are close. However, this topology does not encode all of the information about the FK planar map. Indeed, the non-
Markovian walk on Z2 does not encode the FK loops themselves but rather a pair of trees constructed from the loops.

In this paper, we will improve on the scaling limit result of [49] by showing that the times corresponding to FK
loops (or “flexible orders”) in the infinite-volume inventory accumulation model converge in the scaling limit to the
so-called π/2-cone times of the correlated Brownian motion, i.e., the times t ∈ R for which there exists t ′ < t such
that Ls ≥ Lt and Rs ≥ Rt for each s ∈ [t ′, t] (see Theorem 1.8 below for a precise statement and Definition 1.6 and
the discussion just after for more on π/2-cone times). This gives us convergence in a topology which encodes all of
the “macroscopic” information about the critical FK planar map.

From our cone time convergence result, we obtain the joint scaling limit of the boundary lengths and areas of all
of the macroscopic bounded complementary connected components of the FK loops surrounding the root edge in an
infinite-volume FK planar map. This statement partially answers [10, Question 13.3] in the infinite-volume setting.
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Fig. 1. A schematic illustration of the bijections and scaling limit results involved in this paper. The top arrow corresponds to Sheffield’s [49]
encoding of critical FK planar maps via the inventory accumulation model. The bottom arrow corresponds to the encoding of a CLE-decorated
LQG cone via correlated two-dimensional Brownian motion in [10]. The right arrow corresponds to the scaling limit result for the non-Markovian
random walk in [49] and our Theorem 1.8, which gives convergence of the flexible order times in the discrete model to the π/2-cone times of
the correlated Brownian motion. The left arrow corresponds to our Theorem 1.13, which is deduced from the right arrow and the bijections in the
figure.

The following is an informal statement of our main scaling limit result for FK loops; see Theorem 1.13 for a more
precise statement.

Theorem 1.1 (Informal version). Let (M,e0, S) be an infinite-volume critical FK planar map with parameter q ∈
(0,4) and let {�j }j∈N be the ordered (from inside to outside) sequence of FK loops surrounding the root edge e0. The
joint law of all of the areas (scaled by n−1) and boundary lengths (scaled by n−1/2) of the bounded complementary
connected components of the loops {�j }j∈N converges to the joint law of a countable collection of explicit quantities
defined in terms of the π/2-cone times of a pair of correlated Brownian motions, with correlation

√
q/2.

The π/2-cone times of the correlated Brownian motion in the setting of [10] encode the CLEκ loops in a manner
which is directly analogous to the encoding of the FK loops in Sheffield’s bijection. Hence the above theorem can also
be viewed as a scaling limit statement for FK loops toward CLEκ loops on a γ -LQG surface (c.f. Remark 1.14).

In the course of proving our main results, we will also prove several other results regarding the model of [49] which
are of independent interest. We prove tail estimates for the laws of various quantities associated with this model, and
in particular show that several such laws have regularly varying tails (see Sections 6.1 and A.2). We also obtain the
scaling limit of the discrete path conditioned on the event that the reduced word contains no burgers, or equivalently
the event that this path stays in the first quadrant until a certain time when run backward (Theorem 5.1) and the
analogous statement when we instead condition on no orders (Theorem A.1). Scaling limit results for random walks
with independent increments conditioned to stay in a cone are obtained in several places in the literature (see [9,15,51]
and the references therein). Our Theorems 5.1 and A.1 are analogues of these results for a certain random walk with
non-independent increments.

Although this paper is motivated by the relationship between the inventory accumulation model of [49], FK pla-
nar maps, and CLEκ on a Liouville quantum gravity surface, our proofs use only basic properties of the inventory
accumulation model, Sheffield’s bijection, and elementary facts from probability theory, so can be read without any
background on SLE or LQG.

1.2. Related works

This paper strengthens the topology of the scaling limit result of [49, Theorem 2.5]. Ideally, one would like to further
strengthen this topology by embedding an FK planar map into the Riemann sphere and showing that the conformal
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structure of the loops converges in an appropriate sense to that of CLE loops on an independent LQG surface. We
expect that proving this convergence is a substantially more difficult problem than proving the convergence statements
of this paper. However, our result might serve as an intermediate step in proving such a stronger convergence state-
ment. See [10, Section 10.5] or the introductory sections of [21] for some ideas regarding the relationship between
convergence of the conformal structure of FK loops and the convergence statements proven in [49] and the present
paper.

Another type of scaling limit results one expects to be true for FK planar maps is the convergence of the graph
metric toward a limiting γ -LQG metric. Currently, such scaling limit results are known only in the case of a uniformly
chosen random planar map (which corresponds to the special case p = 1/3 in the framework of [49]). In particular, it
is proven in [28,31] that a uniformly chosen random quadrangulation with 2n edges converges in law in the Gromov-
Hausdorff topology to a continuum random metric space called the Brownian map (actually, [28] treats the case of a
uniform k-angulation for k = 3 or k ≥ 4 even). See also [6] for a proof of this result for a uniform planar map with n

edges, with unconstrained face degree. This and similar scaling limit results are proven using a bijective encoding of
planar quadrangulations in terms of labelled trees due to Schaefer [45], and its generalization. Note that the Schaeffer
bijection differs significantly from the bijection of [49], in that the former encodes only a planar map (not a planar
map decorated by a collection of edges) and more explicitly describes distances in the map. We refer the reader to the
survey articles [29,30] and the references therein for more details on uniform random planar maps and their scaling
limits. It is shown in [33–35,39–41] that a

√
8/3-LQG cone can be equipped with a metric under which it is isometric

to the Brownian plane [8]. Hence the above scaling limit results can also be phrased in terms of LQG.
This paper is the first of a series of three papers; the other two are [22,23]. In [23], we prove estimates for the

probability that a reduced word in the inventory accumulation model of [49] contains a particular number of symbols
of a certain type, prove a related scaling limit result, and compute the exponent for the probability that a word sampled
from this model reduces to the empty word. The work [22] proves analogues of the scaling limit results of [49] and of
the present paper for the finite-volume version of the model of [49] (which encodes a finite-volume FK planar map).

Shortly before this paper was first posted to the ArXiv, we learned of an independent work [3] which calculates tail
exponents for several quantities related to a generic loop on an FK planar map, and which was posted to the ArXiv at
the same time as this work. In [52], the third author and D. B. Wilson study unicycle-decorated random planar maps
via the bijection of [49] and obtain the joint distribution of the length and area of the unicycle in the infinite volume
limit. The work [7] studies some properties of the infinite-volume FK planar map at the discrete level. The recent work
[17] uses a generalized version of Sheffield’s inventory accumulation model to prove a scaling limit result analogous
to that of [49] for a class of random planar map models which correspond to SLEκ -decorated γ -Liouville quantum
gravity surfaces for κ > 8 and γ = 4/

√
κ <

√
2.

The first author and J. Miller are currently preparing a series of papers which apply the results of the present paper
and its sequels. The papers [19,20] will use the scaling limit results of [22,23,49] and the present paper to prove a
scaling limit result which can be interpreted as the statement that FK planar maps converge to CLEκ on a Liouville
quantum surface viewed modulo an ambient homeomorphism of C. The paper [18] will use said scaling limit result
to prove conformal invariance of whole-plane CLEκ for κ ∈ (4,8) (see [25] for a proof of this statement in the case
κ ∈ (8/3,4]).
1.3. Inventory accumulation model

We will mainly study FK planar maps by means of the inventory accumulation model first introduced by Sheffield
[49], which we describe in this section. The notation introduced in this section will remain fixed throughout the
remainder of the paper.

Let � be the collection of symbols { H , C , H , C , F }. We can think of these symbols as representing, respec-
tively, a hamburger, a cheeseburger, a hamburger order, a cheeseburger order, and a flexible order. We view � as the
generating set of a semigroup, which consists of the set of all finite words consisting of elements of �, modulo the
relations

C C = H H = C F = H F =∅ (order fulfilment) (1.2)

and

C H = H C , H C = C H (commutativity). (1.3)
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Given a word x consisting of elements of �, we denote by R(x) the word reduced modulo the above relations, with
all burgers to the right of all orders. For example,

R( H C H F H C ) = C H .

In the burger interpretation, R(x) represents the burgers which remain after all orders have been fulfilled along with
the unfulfilled orders. We also write |x| for the number of symbols in x (regardless of whether or not x is reduced).

For p ∈ [0,1] (in this paper we will in fact typically take p ∈ (0,1/2), for reasons which will become apparent just
below), we define a probability measure on � by

P( H ) = P( C ) = 1

4
, P( H ) = P( C ) = 1 − p

4
, P( F ) = p

2
. (1.4)

Let X = · · ·X−1X0X1 . . . be an infinite word with each symbol sampled independently according to the probabilities
(1.4). For a ≤ b ∈ R, we set

X(a,b) := R(X�a
 . . .X�b
). (1.5)

Remark 1.2. There is an explicit bijection between words x consisting of elements of � with |x| = 2n and R(x) =∅;
and triples (M,e0, S), where M is a planar map with n edges, e0 is an oriented root edge, and S is a set of edges of
M [49, Section 4.1]. If Ẋ is a random word sampled according to the law of X1 . . .X2n (as above) with p ∈ (0,1/2),
conditioned on the event that X(1,2n) =∅, then the law of the corresponding triple (M,e0, S) is that of a rooted FK

planar map, as defined in Section 1.1, with parameter q = 4p2

(1−p)2 .
As alluded to in [49, Section 4.2] and explained more explicitly in [3,7], the unconditioned word X corresponds

to an infinite-volume limit of FK planar maps decorated by FK loops via an infinite-volume version of Sheffield’s
bijection. In this paper we focus on the infinite-volume case, and we will review the bijection in this case in Section 2.1.

By [49, Proposition 2.2], it is a.s. the case that each symbol Xi in the word X has a unique match which cancels it
out in the reduced word (i.e. burgers are matched to orders and orders matched to burgers). Heuristically, the reduced
word X(−∞,∞) is a.s. empty.

Definition 1.3. For i ∈ Z we write φ(i) for the index of the match of Xi . If Xi is an order, we also write φ∗(i) for the
index of the match of the rightmost order in X(φ(i), i), or φ∗(i) = φ(i) if X(φ(i), i) contains no orders.

The time φ∗(i) is of less importance than the time φ(i), but, as we will see in Section 2, this time is needed to fully
describe FK loops in terms of the word X.

Definition 1.4. For θ ∈ � and a word x consisting of elements of �, we write Nθ (x) for the number of θ -symbols
in x. We also let

d(x) := N
H

(x) −N H (x), d∗(x) := N
C

(x) −N
C

(x), D(x) := (
d(W), d∗(x)

)
.

The reason for the notation d and d∗ is that these functions (applied to segments of the word Y defined just below)
give the distances to the root edge in the tree and dual tree obtained from the primal and dual edge sets in Sheffield’s
bijection; see Section 2.1.

For i ∈ Z, we define Yi = Xi if Xi ∈ { H , C , H , C }; Yi = H if Xi = F and Xφ(i) = H ; and Yi = C if
Xi = F and Xφ(i) = C . For a ≤ b ∈ R, define Y(a, b) as in (1.5) with Y in place of X.

Let d(0) = 0 and define d(n) for n ∈ Z in such a way that d(n) − d(m) = d(Y (m + 1, n)) for m < n. Define d∗(n)

for n ∈ Z similarly and extend each of these functions from Z to R by linear interpolation.
For t ∈R, let

D(t) := (
d(t), d∗(t)

)
. (1.6)
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For n ∈N and t ∈R, let

Un(t) := n−1/2d(nt), V n(t) := n−1/2d∗(nt), Zn(t) := (
Un(t),V n(t)

)
. (1.7)

For p ∈ [0,1/2), we also let Z = (U,V ) be a two-sided two-dimensional Brownian motion with Z(0) = 0 and vari-
ances and covariances at each time t ∈ R given by

Var
(
U(t)

) = 1 − p

2
|t |, Var

(
V (t)

) = 1 − p

2
|t |, Cov

(
U(t),V (t)

) = p

2
|t |. (1.8)

It is shown in [49, Theorem 2.5] that as n → ∞, the random paths Un + V n and Un − V n converge in law in the
topology of uniform convergence on compacts to a pair of independent Brownian motions, with respective variances
1 and (1 − 2p) ∨ 0. The following result is an immediate consequence.

Theorem 1.5 ([49]). For p ∈ (0,1/2), the random paths Zn defined in (1.7) converge in law in the topology of uniform
convergence on compacts to the random path Z of (1.8).

Throughout the remainder of this paper, we fix p ∈ (0,1/2) and do not make dependence on p explicit.

1.4. Cone times

The first main result of this paper is Theorem 1.8 below, which says that the times for which Xi = F converge under
a suitable scaling limit to the π/2-cone times of Z, defined as follows.

Definition 1.6. A time t is called a (weak) π/2-cone time for a function Z = (U,V ) : R → R2 if there exists t ′ <

t such that U(s) ≥ U(t) and V (s) ≥ V (t) for s ∈ [t ′, t]. Equivalently, Z([t ′, t]) is contained in the closed cone
Z(t)+{z ∈C : arg z ∈ [0,π/2]}. We write vZ(t) for the infimum of the times t ′ for which this condition is satisfied, i.e.
vZ(t) is the last entrance time of the cone before t . We say that t is a left (resp. right) π/2-cone time if V (t) = V (vZ(t))

(resp. U(t) = U(vZ(t))). Two π/2-cone times for Z are said to be in the same direction if they are both left or both
right π/2-cone times, and in the opposite direction otherwise. For a π/2-cone time t , we write uZ(t) for the supremum
of the times t∗ < t such that

inf
s∈[t∗,t]U(s) < U(t) and inf

s∈[t∗,t]V (s) < V (t).

That is, uZ(t) is the last time before t that Z crosses the boundary line of the cone which it does not cross at time
vZ(t).

See the left panel of Figure 2 for an illustration of Definition 1.6. The reader may easily check that if i ∈ Z is such
that Xi = F and i − φ(i) ≥ 2, then i/n and (i − 1)/n are both (weak) π/2-cone times for the re-scaled walk Zn

of (1.7). Using Definition 1.3, vZn((i − 1)/n) = φ(i)/n and uZn((i − 1)/n) is equal to n−1 times the largest j < i

for which X(j, i) contains a burger of the type opposite Xφ(i). Equivalently, uZn((i − 1)/n) is n−1 times the largest
j < φ∗(i) for which X(j,φ∗(i)) contains a burger of the type opposite Xφ(i). If |X(φ(i), i)| ≥ 1, the direction of
these π/2-cone times are determined by what type of burger Xφ(i) is. These facts are illustrated in the right panel of
Figure 2.

We will often use “ F -time” or “flexible order time” to refer to a time i ∈ Z with Xi = F and “ F -interval” to
refer to an interval [φ(i), i] ∩Z with Xi = F .

A positively correlated Brownian motion a.s. has an uncountable fractal set of π/2-cone times [13,50]. There is a
substantial literature concerning cone times of Brownian motion; we refer the reader to [27, Sections 3 and 4], [42,
Section 10.4], and the references therein for more on this topic.

Our first main result states that the F -times for X, re-scaled by n−1, converge to the π/2-cone times of Z. One
needs to be careful about the precise sense in which this convergence occurs. Indeed, there are uncountably many
π/2-cone times for Z, but only countably many times for which Xi = F . To give a precise convergence statement,
we consider several countable sets of distinguished π/2-cone times which are dense enough to approximate most
interesting functionals of the set of π/2-cone times for Z. One such set is defined as follows.
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Fig. 2. Left panel: A left π/2-cone time t for a path Z = (U,V ). The set Z([uZ(t), vZ(t)]) is shown in red. The set Z([vZ(t), t]) is shown in
green. We note that we may have V (uZ(t)) < V (t) (as shown in the figure) or V (uZ(t)) ≥ V (t). Right panel: Illustration of a segment of the
re-scaled walk Zn = (Un,V n) of (1.7). The graphs of Un (red) and C − V n (blue) are shown, with C > 0 chosen large enough that the segments
of the graphs in the figure do not intersect. Here Xi is a flexible order and Xφ(i) is a hamburger. Both i and i − 1 are π/2-cone times for Zn since
we can draw horizontal line segments (weakly) under the graph of Un and (weakly) above the graph of C − V n as shown in the figure. The time
φ(i)/n = vZn((i − 1)/n) corresponds to the left endpoint of the line segment under the graph of Un whose right endpoint is at time i/n and the
time uZn((i − 1)/n) corresponds to the left endpoint of the segment above the graph of C −V n. As is the case in the figure, the time (φ∗(i)− 1)/n

is strictly larger than uZn((i − 1)/n) since C − V n only touches, but does not necessarily cross, the top horizontal line at this time.

Fig. 3. Illustration of the statement of Theorem 1.8. Here each flexible order time (resp. π/2-cone time) is connected to its match (resp. cone
entrance time) by a red arc. The first line corresponds to condition (2), which says that maximal flexible order times, scaled by n−1, converge
to maximal π/2-cone times. The second line corresponds to condition (3), which says that the first flexible order time after �an
 such that
ι
a,r
n −φ(ι

a,r
n ) ≥ rn converges to the analogous continuum object. The last line corresponds to condition (4), which says that subsequential limits of

sequences of flexible order times with n−1
k

(ink
− φnk (ink

)) bounded below are π/2-cone times for Z and the corresponding auxiliary times also
converge.

Definition 1.7. A π/2-cone time for a path Z is called a maximal π/2-cone time in an (open or closed) interval I ⊂R

if [vZ(t), t] ⊂ I and there is no π/2-cone time t ′ > t for Z such that [vZ(t ′), t ′] ⊂ I and [vZ(t), t] ⊂ (vZ(t ′), t ′).
An integer i ∈ Z is called a maximal F -time in an interval I ⊂ R if Xi = F , [φ(i), i] ⊂ I , and there is no i′ > i

with Xi′ = F , [φ(i′), i′] ⊂ I , and [φ(i), i] ⊂ (φ(i′), i′).

For a fixed deterministic interval I and time a ∈ I , there a.s. exists a maximal π/2-cone interval for Z in I which
contains a [50].

We now state our cone time convergence result, which asserts that various F -times for X converge to the anal-
ogous π/2-cone times for Z. See Figure 3 for an illustration of the convergence statements. Our theorem gives the
convergence of the joint laws of the re-scaled walk Zn and a certain countable collection of F -times toward the
Brownian motion Z and its corresponding collection of its π/2-cone times, but we state it in terms of the existence
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of a coupling in which this convergence occurs a.s. (which is equivalent to convergence in law by the Skorokhod
embedding theorem).

Theorem 1.8. Let Z be a correlated Brownian motion as in (1.8). There is a coupling of countably many instances
{Xn}n∈N of the infinite word X described in Section 1.3 with Z such that when the re-scaled walk Zn and the match
functions φn and φn∗ are defined as in (1.7) and Definition 1.3, respectively, with Xn in place of X, then Zn and the
F -times for Xn converge to Z and its π/2-cone times in the sense that the following statements hold a.s.

(1) Zn → Z uniformly on compact intervals.
(2) (Maximal F -times) Suppose we are given a bounded open interval I ⊂R with rational endpoints and a ∈ I ∩Q.

Let t be the maximal (Definition 1.7) π/2-cone time for Z in I with a ∈ [vZ(t), t]. For n ∈ N, let in be the
maximal F -time (with respect to Xn) in nI with an ∈ [φn(in), in] (or in = �an
 if no such F -time exists). Then
n−1in → t .

(3) (First F -interval with length ≥ rn) For r > 0 and a ∈R, let τ a,r be the smallest π/2-cone time t for Z such that
t ≥ a and t − vZ(t) ≥ r . For n ∈ N, let ι

a,r
n be the smallest F -time i ≥ �an
 for Xn such that i − φn(i) ≥ rn.

Then n−1ι
a,r
n → τa,r for each (a, r) ∈ Q× (Q∩ (0,∞)).

(4) (Auxiliary times) For each sequence of positive integers nk → ∞ and each sequence {ink
}k∈N such that X

nk

ink
= F

for each k ∈N, n−1
k ink

→ t ∈ R, and lim infk→∞ n−1
k (ink

−φnk (ink
)) > 0, it holds that t is a π/2-cone time for Z.

Moreover, t is in the same direction as the π/2-cone time n−1
k ink

for Znk for large enough k and in the notation
of Definitions 1.3 and 1.6,(

n−1
k φnk (ink

), n−1
k φnk∗ (ink

)
) → (

vZ(t), uZ(t)
)
.

We also prove a variant of Theorem 1.8 in which we condition on the event that X(−n,−1) contains no burgers;
see Corollary 6.8 below. Furthermore, we can choose the coupling of Theorem 1.8 in such a way that the statements of
the theorem also hold with a certain class of times i in place of F -times; and π/2-cone times for the time reversal of
Z in place of π/2-cone times for Z. See Theorem A.10. In the setting of [10, Theorem 1.13], π/2-cone times for the
time reversal of Z correspond to “local cut times” of the space-filling SLEκ curve (see the proof of [10, Lemma 12.4]).

The main difficulty in the proof of Theorem 1.8 is showing that there in fact exist “macroscopic F -intervals” in
the discrete model with high probability when n is large.

Proposition 1.9. For δ > 0 and n ∈N,

lim
δ→0

lim inf
n→∞ P

(∃i ∈ {�δn
, . . . , n}
such that Xi = F and φ(i) ≤ 0

) = 1.

We will prove Proposition 1.9 in Section 6.1, via an argument which requires most of the results of Sections
3, 4, and 5. Proposition 1.9 is not obvious from the results of [49]. At first glance, it may appear that one should
be able to obtain large F -excursions in the discrete model by applying [49, Theorem 2.5] and considering times
t which are “close” to being π/2-cone times for Zn. However, this line of reasoning only yields times t at which
Un(t) ≤ Un(s) + ε and V n(t) ≤ V n(s) + ε for each s ∈ [t ′, t] for some t ′ < t . One still needs Proposition 1.9 or
something similar to clear out the remaining εn1/2 burgers on the stack at time �tn
 and produce an actual F -
excursion. Said differently, the π/2-cone times of a path do not depend continuously on the path in the uniform
topology.

1.5. Scaling limit theorem for FK loops

Let (M,e0, S) be an infinite-volume critical FK planar map, i.e. the object encoded by the bi-infinite word X of
Section 1.3 via Sheffield’s bijection. Theorem 1.8 implies scaling limit statements for various quantities associated
with the FK loops on M (which we define precisely just below). The reason for this is that one can explicitly describe
many such quantities in terms of the F -times for the corresponding word X (see Section 2). Here we will obtain the
scaling limit of the areas and boundary lengths of the bounded complementary connected components of macroscopic
FK loops, i.e., we will give a rigorous version of the informal theorem statement from Section 1.1.
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Fig. 4. A subset of the quadrangulation Q (black) and the edge sets S and S∗ (red and blue) together with an FK loop (green) separating a primal
cluster and a dual cluster. Other FK loops are not shown. Primal (resp. dual) complementary connected components of the loop are the sets of
edges of Q contained in the pink (resp. light blue) regions. Here there are three primal components and two dual components. The largest primal
component B has Area(B) = 16 and Len(∂B) = 8.

1.5.1. Area, boundary length, and complementary connected components
To state our scaling limit result formally, we first need to introduce some terminology.

Let M∗ be the dual map of M and let Q = Q(M) be the graph whose vertex set is the union of the vertex sets
of M and M∗ (i.e. the set of vertices and faces of M), with two such vertices joined by an edge if and only if they
correspond to a face of M and a vertex incident to that face. Note that Q is a quadrangulation and that each face of Q

is bisected by an edge of M and an edge of M∗. We define the root edge of Q to be the edge e0 of Q with the same
initial vertex as e0 and which is the next edge clockwise (among all edges of Q incident to this initial vertex) after e0.
Let S∗ be the set of edges of M∗ which do not cross edges of S, so that each face of Q is bisected by either an edge
of S or an edge of S∗, but not both.

Each connected component of S (resp. S∗) and each vertex of M (resp. M∗) which is not an endpoint of an edge
in S (resp. S∗) is separated from S∗ (resp. S) by a unique FK loop, consisting of a cyclically ordered set of edges of
Q with the property that consecutive edges share an endpoint and which is not disconnected by any subset of S or S∗.
We define L to be the set of all such FK loops.

The following definitions give us a precise notion of the areas and boundary lengths of the complementary con-
nected components of the loops in L; see Figure 4 for an illustration.

Definition 1.10. For a set of edges B ⊂ Q, the discrete area of B , denoted by Area(B), is the number of edges in B .
For a set of edges A ⊂ S ∪ S∗, the discrete length of A, denoted by Len(A), is the number of edges in A.

Definition 1.11. A simple cycle in the primal edge set S (resp. the dual edge set S∗) is a non-empty subset of S (resp.
S∗) which is a cyclic graph with respect to the graph structure inherited from M (resp. M∗). Suppose C is a simple
cycle in S (resp. S∗) and B is the set of edges of Q disconnected from ∞ by C. We write C := ∂B .

In the above definition and elsewhere when we talk about sets being “disconnected from ∞” in the FK planar map,
we view M as a subset of C under some embedding, chosen in such a way that each compact set contains only finitely
many vertices and edges of M .

Definition 1.12. Let � ∈ L be an FK loop. Let A and A∗ be the clusters of edges in S and S∗ which are separated
by � (so that A and A∗ are connected). A primal (resp. dual) bounded complementary connected component of � is a
set of edges B ⊂ Q such that the following is true. There exists a simple cycle C of S (resp. S∗) which is contained
in A (resp. A∗) such that B is the set of edges of Q disconnected from � by C; and there is no set B ′ of edges of Q

satisfying the above property which properly contains B .
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1.5.2. Statement of the scaling limit result
Suppose we have coupled the sequence of random bi-infinite words {Xn}n∈N with the correlated two-dimensional
Brownian motion Z of (1.8) in such a way that the conclusion of Theorem 1.8 holds. For n ∈ N, let (Mn, en

0 , Sn)

be the infinite-volume critical FK planar map corresponding to Xn under Sheffield’s bijection. Also let Ln be the
corresponding set of FK loops.

Let {�n
j }j∈N be the sequence of loops in Ln which surround the root edge en

0 . For j ∈ N, let Bn
j,1, . . . ,B

n
j,Nj

be the
bounded complementary connected components of �n

j , in order of decreasing area (with ties broken in some arbitrary

manner). Let M
n,∞
j be the set of edges of the quadrangulation Qn corresponding to Mn which are disconnected from

∞ by �n
j , i.e., M

n,∞
j is the union of �n

j and all of its bounded complementary connected components (Definition 1.12).
The scaling limits of the areas and boundary lengths of the above objects are described in terms of special π/2-cone

times (Definition 1.6) for Z. Let {σj }j∈Z be the ordered sequence of π/2-cone times for Z such that vZ(σj ) < 0 < σj

and the largest π/2-cone time t for Z with t < σj and 0 ∈ [vZ(t), t] is in the opposite direction from σj . We note that
such times exist since there a.s. exist infinitely many left and infinitely many right π/2-cone intervals for Z containing
0; and the set {σj }j∈Z is discrete since Z is continuous and a.s. has no π/2-cone times t for which Zt = ZvZ(t).
The bi-infinite sequence {σj }j∈Z is only defined up to an index shift, which we (arbitrarily) fix by requiring that
1 ∈ [vZ(σ0), σ0] \ [vZ(σ−1), σ−1].

Let �j be the set of maximal (Definition 1.7) π/2-cone times t for Z in the interval (vZ(σj ), σj ) for which
uZ(t) ≥ vZ(σj ). Let {sj,k}k∈N be the elements of �j , ordered so that sj,k − vZ(sj,k) > sj,k+1 − vZ(sj,k+1) for each
k ∈N.

See Figure 5 for an illustration of the definitions of the above objects.
We want to describe the scaling limits of objects associated with the loop �n

j in terms of objects associated with the
π/2-cone time σj . However, the �j ’s are indexed by N (since there is a smallest loop) whereas the σj ’s are indexed
by Z (since a.s. there are infinitely many π/2-cone intervals for Z contained in every neighborhood of 0), so in order
to do this we need to introduce an index shift bn ∈ Z for the �n

j ’s which can be chosen explicitly in several equivalent

Fig. 5. Top: One of the loops �n
j

surrounding the root edge en
0 (green) and several of its bounded complementary connected components (primal

components in pink, dual components in light blue). Here we think of �n
j

as macroscopic, so we do not show the details of the graph. The

components Bn
j,1,Bn

j,2, . . . are listed in order of their area (i.e., the number of edges of Q which they contain). We have labeled the six largest

components here. The edge set M
n,∞
j

is the union of �n
j

and all of the edges of Q which it disconnects from ∞ (i.e., the union of the green, pink,
and blue regions). Bottom: The times associated with the Brownian motion Z which describe the scaling limits of the areas and boundary lengths
of complementary connected components of �j . Each π/2-cone time t is connected to the corresponding cone entrance time vZ(t) by an arc. Left
(resp. right) π/2-cone times are shown in red (resp. blue). The first six maximal π/2-cone times sj,k ∈ �j and their corresponding cone entrance
times are shown as squares. The left π/2-cone time σj−1 is also shown, in red.
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ways. For concreteness, we let jn∗ for n ∈N be the smallest j ∈N for which the complementary connected component
containing the root edge of the loop �n

j surrounding 0 has area at least n, let j∗ be the smallest j ∈ Z for which the
maximal π/2-cone interval for Z in (vZ(σj ), σj ) which contains 0 has length at least 1, and let bn = j∗ − jn∗ .

Theorem 1.13. In the setting described just above (for any choice of coupling as in Theorem 1.8), the following
scaling limit statements are true almost surely.

• (Areas and boundary lengths of components) In the notation of Definitions 1.10 and 1.11, for each j, k ∈ N, the
area and boundary length of the kth largest bounded complementary connected component of the loop �n

j+bn satisfy

n−1 Area
(
Bn

j+bn,k

) → sj,k − vZ(sj,k) and n−1/2 Len
(
∂Bn

j+bn,k

) → ∣∣Z(
vZ(sj,k)

) − Z(sj,k)
∣∣. (1.9)

• (Total disconnected areas) For each j ∈N, the area of the region disconnected from ∞ by �n
j+bn satisfies

n−1 Area
(
M

n,∞
j+bn

) →
∑
t∈�j

(
t − vZ(t)

)
. (1.10)

Theorem 1.13 will turn out to be a relatively straightforward consequence of Theorem 1.8 once we have written
down descriptions of the FK loops surrounding e0 and their complementary connected components in terms of the
word X (see Section 2).

One can obtain scaling limit results for many additional functionals of the FK loops beyond the ones listed in
Theorem 1.13 using Theorem 1.8 and arguments of the sort found in Section 2, which we refrain from stating formally
here to avoid introducing additional notation. For example, one also obtains the scaling limit of the area of the union
of the primal (resp. dual) complementary connected components of each of the loops �n

j+bn ; and (using the translation
invariance of the law of the word X) one obtains a joint scaling limit statement for the FK loops surrounding countably
many different edges of Mn simultaneously (the index shift bn will be different for each base edge).

Remark 1.14. In this remark we explain how Theorem 1.13 can be interpreted as a scaling limit result for FK loops
toward a conformal loop ensemble on an independent Liouville quantum gravity cone. It is not hard to see from the
peanosphere construction of [10] together with some basic properties of CLE [47] and the LQG measure [11] that
the following is true. Let κ be as in (1.1) and let γ = 4/

√
κ . Let (C,�) be the γ -LQG cone and independent CLEκ

encoded by Z as in [10, Theorems 1.13 and 1.14]. Then the times σj for j ∈ Z are in one-to-one correspondence with
the CLE loops in � surrounding the origin. Furthermore, for j ∈ Z the set �j is in one-to-one correspondence with the
set of bounded complementary connected components of the loop corresponding to σj . For t ∈ �j , the quantum area
and quantum boundary length of the corresponding complementary connected component are given by t − vZ(t) and
|Z(vZ(t)) − Z(t)|, respectively. The proofs of these statements are straightforward once one has the results of [10]
(essentially, these proofs are an exact continuum analogue of the descriptions of FK loops in terms of the inventory
accumulation model found in Section 2). However, since we do not work directly with CLE or LQG here, these proofs
are outside the scope of the present paper and will be given in [19].

1.6. Basic notation

Throughout the remainder of the paper, we will use the following notation.

Notation 1.15. For a < b ∈R, we define the discrete intervals [a, b]Z := [a, b] ∩Z and (a, b)Z := (a, b) ∩Z.

Notation 1.16. If a and b are two quantities, we write a � b (resp. a � b) if there is a constant C (independent of the
parameters of interest) such that a ≤ Cb (resp. a ≥ Cb). We write a � b if a � b and a � b.

Notation 1.17. If a and b are two quantities which depend on a parameter x, we write a = ox(b) (resp. a = Ox(b))
if a/b → 0 (resp. a/b remains bounded) as x → 0 (or as x → ∞, depending on context). We write a = o∞

x (b) if
a = ox(b

s) for each s ∈R.
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Unless otherwise stated, all implicit constants in �,�, and � and Ox(·) and ox(·) errors involved in the proof of a
result are required to satisfy the same dependencies as described in the statement of said result.

1.7. Outline

The remainder of this paper is structured as follows. In Section 2, we review the infinite-volume version of Sheffield’s
hamburger-cheeseburger bijection, then assume Theorem 1.8 and use it together with some elementary facts about
Sheffield’s bijection to deduce Theorem 1.13.

The remaining sections will be devoted to the proof of Theorem 1.8. These sections consider only the inventory
accumulation model and do not use anything about random planar maps – in particular, these sections can be read
without any knowledge of Section 2.

In Section 3, we prove a variety of probabilistic estimates related to this model. These include some estimates for
Brownian motion, lower bounds for the probabilities of several rare events associated with the word X, and an upper
bound for the number of flexible orders remaining on the stack at a given time which improves on [49, Lemma 3.7].
The main tools in these estimates are the scaling limit result for Zn [49, Theorem 2.5] and facts about cone times of
Brownian motion proven in [50].

In Section 4, we prove a result (Proposition 4.1) to the effect that if we condition on the event that the reduced word
X(−n,−1) contains no burgers, then with high probability X(−n,−1) will contain at least εn1/2 hamburgers orders
and at least εn1/2 cheeseburger orders for a small ε > 0 which does not depend on n. Said differently, the re-scaled
walk Zn|[−1,0] gets a macroscopic distance away from the boundary of the first quadrant when we condition it to stay
in the first quadrant. This is done via an induction argument.

In Section 5, we use the result of Section 4 to prove that the conditional law of Zn|[−1,0] given that X(−n,−1) con-
tains no burgers (equivalently that Zn|[−1,0] stays in the first quadrant) converges to the law of a correlated Brownian
motion conditioned to stay in the first quadrant. The basic idea of the proof is that a process with the conditional law
of Zn|[−1,0] given that X(−n,−1) contains no orders behaves like a process with the unconditional law of Zn when it
is away from the boundary of the first quadrant (which we know will be the case with high probability by Section 4),
and we know that the unconditional law of Zn converges to the law of a Brownian motion by [49, Theorem 2.5].

In Section 6, we use the scaling limit result of Section 5 to obtain that the law of a certain stopping time associated
with the word X has a regularly varying tail, deduce Proposition 1.9 from this fact, and then deduce Theorem 1.8 from
Proposition 1.9.

In Appendix A, we will record analogues of some of the results of the paper when we consider words with no
orders, rather than no burgers. These results are not needed for the proof of Theorems 1.8 or 1.13, but are included for
the sake of completeness and will be used in the subsequent papers [22,23].

For the convenience of the reader, we include an index of commonly used symbols in Appendix B, along with their
meanings and the locations in the paper where they are first defined.

2. Scaling limits for FK loops

In this section we will study the encoding of FK planar maps via Sheffield’s bijection and see how Theorem 1.8
implies Theorem 1.13. The rest of the paper will be devoted to the proof of Theorem 1.8 and uses only the inventory
accumulation model – not Sheffield’s bijection or any of the associated objects introduced in this section.

We start in Section 2.1 by reviewing the infinite-volume version of Sheffield’s bijection, which encodes an infinite-
volume FK planar map in terms of a bi-infinite word X consisting of elements of � (recall Section 1.3). In Sections
2.2 and 2.3, we will explain how this word X encodes the complementary connected components of FK loops. Finally,
in Section 2.4 we will explain how this encoding together with Theorem 1.8 implies Theorem 1.13.

2.1. Sheffield’s bijection

The primary reason for our interest in the inventory accumulation model of Section 1.3 is its relationship to FK planar
maps via the bijection [49, Section 4.1]. Since the results of this paper primarily concern infinite-volume FK planar
maps, in this subsection we will explain how to define an infinite-volume FK planar map and how to encode it by
means of a bi-infinite word consisting of elements of �.
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Fig. 6. Illustration of the loop-joining procedure in Sheffield’s bijection. Edges of Q (resp. S, S∗) are shown in black (resp. blue, red). Left panel:
the loop �0 (orange) containing the root edge e0 of Q (purple). The grey quadrilateral is the last quadrilateral crossed by �0 which is adjacent
to the single (unbounded) complementary connected component of the set of triangles crossed by �0. The edge a1 is the red edge contained in
this quadrilateral. Right panel: To join the orange loop and the big green loop into a single loop we replace the edge a1 by the edge of M which
crosses it (dashed blue). This gives us a new orange loop. We then iterate the procedure shown in the left panel with this new orange loop in place
of �0. There is one grey quadrilateral for each complementary connected component of the orange loop. The edges of S or S∗ which are contained
in these grey quadrilaterals are the ones which will be replaced by fictional edges at the next stage of the construction. Iterating this procedure
countably many times a.s. joins all of the loops together into a single path λ which hits each edge of Q exactly once.

Fix q ∈ (0,4). An infinite-volume (critical) FK planar map with parameter q is a random triple (M,e0, S) where
M is an infinite planar map, e0 is an oriented root edge for M , and S is a set of edges of M . This object is the limit
in the Benjamini-Schramm topology [2] of finite-volume FK planar maps of size n and parameter q as n → ∞. The
existence of this limit is alluded to in [49, Section 4.2] and is explained more precisely in [3,7].

Suppose now that (M,e0, S) is an infinite-volume FK planar map. We will describe how to associate a bi-infinite
word with (M,e0, S) which has the law of the word X of Section 1.3. The construction is essentially the same as the
finite-volume bijection in [49, Section 4.1] and is the inverse of the procedure described in [7, Proposition 9]. See
Figure 6 for an illustration of this construction.

Define the dual map M∗, the rooted quadrangulation (Q,e0), and the dual edge set S∗ as in Section 1.5.1. Also let
T be the graph whose edge set is the union of S, S∗, and the edge set of Q, and note that T is a triangulation.

Each connected component of the edge set S and each isolated vertex of M is surrounded by a loop � (described
by a cyclically ordered set of edges in Q) which does not cross any edge of S or S∗. Let L be the set of such loops and
let �0 be the loop in L which passes through the root edge e0. Let C1, . . . ,Ck be the connected components in the set
of triangles of T obtained by removing the triangles crossed by �0 from T . The boundary of each Cj shares an edge
with at least one triangle in �0. Let Aj be the last triangle sharing an edge with ∂Cj hit by �0 when it is traversed in
the counterclockwise (if �0 surrounds a cluster of S) or clockwise (if �0 surrounds a cluster of S∗) direction starting
from e0. Let aj denote the shared edge.

If aj ∈ S, we replace aj by the edge in M∗ which it crosses, and if aj ∈ S∗, we replace aj with the edge in M

which it crosses. Call the new edge a fictional edge. Making these replacements for each j ∈ [1, k]Z joins one loop in
each of C1, . . . ,Ck to the loop �0. Since (Q,S) is the local limit of finite-volume FK planar maps [49, Section 4.2], it
follows that we can a.s. iterate this procedure countably many times (each time starting with a larger initial loop �0)
to join all of the loops in L into a single bi-infinite path λ which hits every edge of Q exactly once and separates a
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spanning tree T of M from a dual spanning tree T ∗ of M∗. We view λ as a function from Z to the edge set of Q, with
λ(0) = e0.1

Each edge λ(i) for i ∈ Z connects a vertex in M to a vertex of M∗. For each i ∈ Z, write d(i) for the distance in
the primal tree T from the primal endpoint of λ(i) to the primal endpoint of e0 and d∗(i) for the distance in the dual
tree T ∗ from the dual endpoint of λ(i) to the dual endpoint of e0. We also write D(i) = (d(i), d∗(i)). We associate
to the loop λ a bi-infinite word Y = · · ·Y−1Y0Y1 · · · with symbols in { H , C , H , C } as follows. For i ∈ Z, we
set Yi = H , C , H , or C according to whether D(i) − D(i − 1) = (1,0), (0,1), (−1,0), or (0,−1). Then in the
terminology of Definition 1.4,

d(i) = d
(
Y(1, i)

)
and d∗(i) = d∗(Y(1, i)

)
, ∀i ∈N,

where Y(1, i) is as in (1.5) with Y in place of X.
Note that λ crosses each quadrilateral of Q twice. A burger in the word Y corresponds to the first time at which

λ crosses some quadrilateral, and the order matched to this burger corresponds to the second time at which λ crosses
this quadrilateral.

The bi-infinite word X corresponding to the triple (M,e0, S) is constructed from Y as follows. Whenever λ crosses
a quadrilateral bisected by a fictional edge for the second time at time i, we replace Yi by an F -symbol. As explained
in [49, Section 4.1], this does not change the match of any order in the word Y . Furthermore, passing to the infinite-
volume limit in the finite-volume version of Sheffield’s bijection shows that the symbols of X are iid samples from
the law (1.4) with p = √

q/(2 + √
q).

2.2. Cycles and discrete “bubbles”

Throughout the remainder of this section we continue to assume that (M,e0, S) is an infinite-volume FK planar map
and use the notation of Section 2.1. In the next two subsections, we will give explicit descriptions of the objects
involved in Theorem 1.13 in terms of the bi-infinite word X which encodes the infinite-volume FK planar map. We
note that although the description given here is in the context of the infinite-volume version of Sheffield’s bijection, a
completely analogous description holds in the finite-volume case, with the same proofs.

Our first task is to describe how cycles in S and S∗ are encoded by the word X. To this end, we recall from
Definition 1.3 the notations φ(i) for the match of i ∈ Z and φ∗(i) for the index of the match of the rightmost order
in X(φ(i), i) in the case when Xi is an order. For a F -time i (i.e., a time with Xi = F ), the match φ(i) of i

corresponds (modulo a constant-order error) to the time vZ(·) in Definition 1.6 and the time φ∗(i) corresponds (modulo
a constant order error) to the time uZ(·) in Definition 1.6 (c.f. Figure 2). The set of such times i with Xφ(i) = C (resp.
Xφ(i) = H ) correspond to the left and right π/2-cone times of Z, respectively.

Intervals [φ(i), i−1]Z with Xi = F are closely related to cycles in S and S∗, as the following lemma demonstrates.

Lemma 2.1. Let i be a F -time with Xi = H and let B = λ([φ(i), i − 1]Z), so that B is a set of edges of Q. There is
a simple cycle C ⊂ S such that B is the set of edges of Q disconnected from ∞ by C. In this case Area(B) = i − φ(i)

and Len(C) = |X(φ(i), i)| + 1 (recall Definition 1.10). Furthermore, φ∗(i) is the first time at which λ crosses a
quadrilateral of Q bisected by an edge of C. The same holds with C in place of H and and S∗ in place of S.

See Figure 7 for an illustration of the statement and proof of Lemma 2.1. Lemma 2.1 implies that one can interpret
Theorem 1.8 as a scaling limit result for the joint law of the areas and boundary lengths of certain macroscopic cycles
of S and S∗.

Proof of Lemma 2.1. Suppose i is a F -time with Xφ(i) = H . The construction of Sheffield’s bijection implies that
there is a quadrilateral q of Q bisected by an edge a of S such that λ crosses q for the first time at time φ(i) and for
the second time at time i. The set A of edges of T which bisect quadrilaterals of Q crossed (either once or twice) by
λ during the time interval [φ(i), i]Z is a connected graph. Since each edge of q is incident to an edge in A, the set

1λ is a path in the weak sense that successive edges share an endpoint, but not in the stronger sense that the edges can be oriented in such a way
that the terminal endpoint of λ(i − 1) is the initial endpoint of λ(i) for each i ∈ Z.
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Fig. 7. A subset of the graph Q ∪ S ∪ S∗ , with edges of Q in black, edges of S in red, and edges of S∗ in blue. A simple cycle C in the primal
edge set S is filled in pink. The edges in the set B ⊂ Q disconnected from ∞ by C are the black edges in the pink region. The order in which the
path λ hits edges of Q is indicated by a green line. Three special edges λ(i), λ(φ(i)), and λ(φ∗(i)) are indicated by orange dashes. The time i

immediately after λ finishes tracing every edge of B is a flexible order time (i is also the only time at which λ crosses an edge of C). Its match φ(i)

corresponds to the time when λ starts filling in B . The time φ∗(i) is the first time at which λ crosses a quadrilateral bisected by an edge of C (i.e.,
the time at which λ begins surrounding ∂B). In the notation of Definition 2.2, B = P(i) = λ([φ(i), i − 1]Z). We note that C is a maximal simple
cycle (Definition 2.3) but the two smaller cycles which share edges with C and also have edges in the pink region are not maximal.

A ∪ {a} disconnects λ([φ(i), i − 1]Z) from ∞, so contains a simple cycle C ⊂ S which disconnects λ([φ(i), i − 1]Z)

from ∞, none of whose edges are crossed by λ except for a. Since λ cannot cross itself or C \ {a} and hits every edge
of Q, it must be the case that B = λ([φ(i), i − 1]Z) is precisely the set of edges of Q disconnected from ∞ by C.

We now claim that C \ {a} is precisely the set of edges of A which bisect quadrilaterals crossed only once by λ

during [φ(i), i]Z. Indeed, if b ∈ A is such an edge, then part of the quadrilateral bisected by b is not disconnected
from ∞ by C, so b cannot be disconnected from ∞ by C, so b ∈ C \ {a}. Conversely, if b ∈ C \ {a}, then some edge
of the quadrilateral bisected by b lies outside C, and this edge is not hit by λ during [φ(i), i]Z. Since Xi = F and
Xφ(i) = C , the word X(φ(i), i) contains only hamburger orders, so the times during [φ(i), i]Z at which λ crosses a
quadrilateral bisected by an edge of C \ {a} correspond precisely to the symbols in X(φ(i), i).

It is immediate from the above descriptions of B and C that Area(B) = i − φ(i) and Len(C) = |X(φ(i), i)| + 1.
Furthermore, recalling Definition 1.3, we see that φ∗(i) is the first time at which λ crosses a quadrilateral of Q bisected
by an edge of S which is crossed for the second time during the time interval [φ(i)+1, i]Z, i.e. the first time λ crosses
a quadrilateral of Q bisected by an edge of C.

The last statement follows from symmetry. �

In light of Lemma 2.1, it will be convenient to have a notation for the discrete “bubble” corresponding to an
F -time i.

Definition 2.2. For a F -time i, we write P(i) := λ([φ(i), i − 1]Z).

We next state a partial converse to Lemma 2.1, giving conditions for a cycle in S or S∗ to correspond to a F -
interval.

Definition 2.3. A maximal simple cycle in the edge set S (resp. S∗) is a simple cycle C ⊂ S such that the following
is true. Whenever C′ ⊂ S (resp. C′ ⊂ S∗) is a simple cycle which shares an edge with C, it holds that each edge of Q

disconnected from ∞ by C′ is also disconnected from ∞ by C.



Scaling limits for the FK model I 17

See Figure 7 for an example of a maximal and a non-maximal simple cycle. Our main example of a maximal simple
cycle is the boundary of a complementary connected component of an FK loop (Definition 1.12).

Lemma 2.4. Suppose C ⊂ S ∪ S∗ is a maximal simple cycle. There exists a F -time i such that P(i) is the set of
edges of Q disconnected from ∞ by C.

Proof. By symmetry it suffices to treat the cases of cycles in S. Suppose C ⊂ S is a maximal simple cycle and let B be
the set of edges of Q disconnected from ∞ by C. Let i′B be the smallest i ∈ Z for which λ(i) ∈ B and let iB := φ(i′B).

By Sheffield’s bijection Xi′B = C and XiB = F . Let B ′ := P(iB). We will show that B ′ = B . By Lemma 2.1,
C′ := ∂B ′ is a simple cycle in S. Furthermore, C′ ∩ C contains the edge of S which bisects the quadrilateral of Q

crossed by λ at times iB and i′B . By maximality of C we must have B ′ ⊂ B . Now suppose by way of contradiction that
there is an edge e of B which is not contained in B ′. Then there is a quadrilateral q of Q with all of its edges contained
in B (bisected by an edge of C′) which is crossed by λ for the first time during the time interval [i′B, iB − 1]Z and for
the second time after time iB . This contradicts the fact that X(φ(iB), iB) contains no burgers. �

Our next lemma allows us to identify when two cycles in S or S∗ intersect in terms of the word X.

Lemma 2.5. Let i, i′ ∈ Z be F -times with the same match type Xφ(i) = Xφ(i′). Suppose P(i) ⊂ P(i′). Then ∂P (i) ∩
∂P (i′) �=∅ (Definition 1.11) if and only if φ∗(i) ≤ φ(i′) (Definition 1.3).

Proof. Assume without loss of generality that Xφ(i) = Xφ(i′) = C . First suppose ∂P (i)∩∂P (i′) =∅. Then the cycle
∂P (i) ⊂ S is disconnected from ∞ by ∂P (i′). Therefore each edge quadrilateral of Q which contains an edge of P(i)

has all of its edges contained in P(i′). Consequently, each k ∈ [φ(i), i]Z satisfies φ(k) ∈ (φ(i′), i′)Z. In particular,
φ∗(i) > φ(i′).

Conversely, suppose ∂P (i) ∩ ∂P (i′) �= ∅. Let k be the first time at which λ crosses a quadrilateral bisected by an
edge of ∂P (i) ∩ ∂P (i′). Then k ≤ φ(i′) and φ(k) ∈ [φ(i), i]Z. Therefore φ∗(i) ≤ k ≤ φ(i′). �

2.3. Complementary connected components of FK loops

In this subsection we will describe the complementary connected components of FK loops on the infinite-volume FK
planar map (M,e0, S) in terms of the word X (recall Definition 1.12).

Let {�j }j∈N be the sequence of loops in L which disconnect the root edge e0 from ∞, as in Section 1.5.2. Recall
that each loop �j is a cyclically ordered set of edges in Q. We note that the �j ’s alternate between surrounding clusters
in S and clusters in S∗. Also let M∞

j be the union of �j and the set of edges in Q which are disconnected from ∞ by
�j (i.e., the union of �j and its bounded complementary connected components).

For j ∈ N, let θj be the time immediately after λ finishes tracing �j . Let Ij (resp. �j ) be the set of maximal
F -times (Definition 1.7) i ∈ (φ(θj ), θj )Z such that the bubble P(i) of Definition 2.2 is not (resp. is) contained in
M∞

j .
In the remainder of this subsection, we will give descriptions of these objects in terms of the word X. See Figure 8

for an illustration.
We first describe the times θj in terms of X – it turns out that these times are precisely the discrete analogues of

the times σj of Section 1.5.

Lemma 2.6. If j ≥ 2, then the match time φ(θj ) is the smallest i ∈ Z with λ(i) ∈ �j ; and θj itself is the first F -time
time i > θj−1 for which 0 ∈ [φ(i), i]Z and Xφ(i) �= Xφ(θj−1).

Proof. It is clear from the loop-joining procedure in Sheffield’s bijection (recall Section 2.1) that Xθj
= F for each

j ∈ N, and that φ(θj ) is the smallest i ∈ Z with λ(i) ∈ �j . Furthermore, since λ(0) = e0 and λ cannot jump over edges
it has already traced we must have 0 ∈ [φ(θj ), θj ]Z.

It remains to establish the relationship between θj−1 and θj when j ≥ 2. We assume without loss of generality
that Xφ(θj ) = H , so that �j surrounds a cluster of S and Xφ(θj−1) = C . Since �j−1 is disconnected from ∞ by �j ,
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Fig. 8. Left: The component P(ij+1) of the loop �j+1 (not shown) which contains e0 and the loop �j (green) contained in it (other FK loops
are not shown). The set P(θj ) is the union of the edges of Q in lying in the light blue, grey, and pink regions. The light blue regions correspond
to sets of the form P(i) for i ∈ Ij . The set M∞

j
the union of the grey and pink regions and is not traced by λ in a single interval of time. The

component P(ij ) of �j , for ij ∈ �j chosen so that e0 ∈ P(ij ), is the set of black edges in the pink region. Right. The set P(θj )∪{θj } and the path
λ|[φ(θj ),θj ]Z] (yellow) for one possible choice of the edge where λ enters P(θj ) (we note that this edge depends on where λ enters P(ij+1), so

is not determined by the information shown in the figure). The edges λ(i) for i ∈ Ij are indicated by purple dashes. The edges in ∂M∞
j

∩ ∂P (θj )

(which are adjacent to edges of the form λ(i) for i ∈ �j ∪ {θj }; c.f. Lemma 2.9) are indicated by green dashes. Bottom. Number line showing the
flexible order times for X which correspond to the sets in the left panel; each flexible order time is linked to its match by an arc which is colored
blue (resp. red) if the match is a cheeseburger (resp. hamburger).

we must have [φ(θj−1), θj−1]Z ⊂ [φ(θj ), θj ]Z. Suppose now that i is a F -time with i > θj−1, 0 ∈ [φ(i), i]Z, and
Xφ(i) = H , equivalently Xφ(i) = Xφ(θj ). We must show that i ≥ θj .

By Lemma 2.1, the boundary of the bubble P(i) of Definition 2.2 is a cycle in S∗. Since [φ(θj−1), θj−1]Z ⊂
[φ(i), i]Z, the loop �j−1 is disconnected from ∞ by ∂P (i). The cycle ∂P (i) is a subset of some connected component
of S∗. Let �̃ be the innermost FK loop which surrounds this connected component. Then �̃ disconnects �j−1 from ∞,
so since �j is the next outermost loop after �j−1, either �̃ = �j or �̃ disconnects �j from ∞. Since λ cannot hit the
same edge twice it must finish tracing �̃ at or before the time it finishes tracing �j , i.e., i ≥ θj . �

We next describe the significance of the time set �j (which we recall is the same as the set of maximal F -times
in (φ(θj ), θj )Z such that P(i) ⊂ M∞

j ). We note that the description is a discrete analogue of the definition of the set
�j from Section 1.5.

Lemma 2.7. For j ∈ N, the bubble function P of Definition 2.2 maps �j to the set of bounded complementary
connected components of the loop �j (Definition 1.12). Time i ∈ �j with Xφ(i) �= Xφ(θj ) (resp. Xφ(i) = Xφ(θj ))
correspond to components which are surrounded (resp. not surrounded) by �j .

Proof. Let B be a bounded complementary connected component of Q \ �j . The set ∂B is a maximal simple cycle
(Definition 2.3). By Lemma 2.4, there exists a F -time i ∈ (φ(θj ), θj )Z such that P(i) = B . This i cannot belong to
Ij since B ⊂ M∞

j . To show that i ∈ �j it remains to check that i is maximal in (φ(θj ), θj )Z. If not, then there is a

F -time i′ ∈ (φ(θj ), θj )Z with [φ(i), i]Z ⊂ (φ(i′), i′)Z. By Lemma 2.1, ∂P (i′) is a cycle in either S or S∗. Such a
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cycle cannot cross the loop �j , so since it surrounds ∂P (i) it must in fact surround �j (recall Definition 1.12). But
then P(i′) �⊂ λ((φ(θj ), θj )Z), which contradicts our choice of i′.

Conversely, suppose i ∈ �j . Since i /∈ Ij , we have P(i) ⊂ M∞
j . Therefore P(i) ⊂ B for some bounded comple-

mentary connected component B of �j . By Lemma 2.4, B = P(i′) for some F -time i′ ∈ [φ(θj ), θj ]Z. By maximality
of i we have P(i) = B .

The distinction between elements of �j with Xφ(i) �= Xφ(θj ) and Xφ(i) = Xφ(θj ) comes from the fact that �j

surrounds a cluster of S or S∗ according to whether Xφ(θj ) = C or Xφ(θj ) = H . �

We will now describe the time set Ij defined as in the beginning of this subsection solely in terms of X.

Lemma 2.8. The set Ij is the same as the set of maximal F -times i ∈ (φ(θj ), θj ) such that Xφ(i) = Xφ(θj ) and
φ∗(i) < φ(θj ).

Proof. Assume without loss of generality that Xφ(θj ) = H . Suppose that i ∈ Ij . Since P(i) �⊂ M∞
j , it follows from

Sheffield’s bijection that λ must branch outward from the loop �j when it begins tracing P(i) and cross ∂M∞
j ⊂ S∗.

Therefore Xφ(i) = H . Since ∂P (i) is a simple cycle which is not disconnected from ∞ by ∂M∞
j , we can find an

edge a ∈ ∂P (i)\ ∂M∞
j . Let q be the quadrilateral of Q bisected by a. Note that the edge of ∂P (i) which is crossed by

λ belongs to ∂M∞
j , so a is not replaced by a fictional edge. Let k be the first time λ crosses the quadrilateral q . Then

we have Xk = C . We claim that k < θ̃j . If not, then k ∈ [φ(i′), i′]Z for some i′ ∈ Ij with i′ < i. But, X(φ(i′), i′)
contains only orders, so this is impossible. Hence φ∗(i) ≤ k < φ(θj ).

Conversely, it follows from Lemmas 2.1 and 2.5 that any i ∈ Z satisfying the conditions of the lemma is such that
∂P (i)∩ ∂P (θj ) �=∅ and P(i) is not properly contained in P(i′) for any F -time i′ ∈ (φ(θj ), θj )Z. Bounded comple-
mentary connected components of �j have boundaries disjoint from ∂P (θj ). Therefore P(i) cannot be contained in
such a component, so we must have i ∈ Ij . �

Finally, we describe the areas and boundary lengths of the regions disconnected from ∞ by �j in terms of X.

Lemma 2.9. For j ∈N with Xφ(θj ) = H (resp. Xφ(θj ) = C ),

Area
(
M∞

j

) = θj − φ(θj ) −
∑
i∈Ij

(
i − φ(i)

)
(2.1)

and

Len
(
∂M∞

j

) =
∑
i∈Ij

(∣∣X(
φ(i), i

)∣∣ + 1
) − ∣∣X(

φ(θj ), θj

)∣∣ + 2#�j + 1, (2.2)

where �j is the set of i ∈ [φ(θj ), θj ]Z with Xi = C (resp. Xi = H ) and φ(i) < φ(θj ) such that i /∈ [φ(i′), i′]Z for
any i′ ∈ Ij .

Proof. The reader may wish to consult Figure 8 for an illustration of the proof. By symmetry we can assume without
loss of generality that Xφ(θj ) = H .

To prove the formulas for Area(M∞
j ) and Len(∂M∞

j ), we observe that each element of P(Ij ) is contained in a
loop in L which lies outside M∞

j and every edge of P(θj ) \ M∞
j is contained in P(i) for some i ∈ P(Ij ). Therefore,

M∞
j = P(θj ) \

⋃
i∈Ij

P (i). (2.3)

This together with the maximality condition in the definition of Ij and the formula for area from Lemma 2.1 immedi-
ately implies the formula (2.1).
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To prove (2.2), we first claim that

Len
(
∂M∞

j

) =
∑
i∈Ij

Len
(
∂P (i)

) + #
(
∂M∞

j ∩ ∂P (θj )
) − (

Len
(
∂P (θj )

) − #
(
∂M∞

j ∩ ∂P (θj )
))

. (2.4)

Indeed, by (2.3) the sum of the first and second terms on the right side of (2.4) is equal to the total number of edges
in ∂M∞

j ∪ ∂P (θj ) and (Len(∂P (θj )) − #(∂M∞
j ∩ ∂P (θj ))) equals the total number of edges in ∂P (θj ) which do not

belong to ∂M∞
j .

Recalling the formula for boundary length from Lemma 2.1, we find that∑
i∈Ij

Len
(
∂P (i)

) =
∑
i∈Ij

(∣∣X(
φ(i), i

)∣∣ + 1
)

and Len
(
∂P (θj )

) = ∣∣X(
φ(θj ), θj

)∣∣ + 1. (2.5)

We now argue that

#
(
∂M∞

j ∩ ∂P (θj )
) = #�j + 1. (2.6)

Indeed, if i ∈ �j then at time i the path λ crosses a quadrilateral bisected by an edge of ∂P (θj ) which does not belong
to ∂P (i) for any i ∈ Ij . By (2.3), such an edge must belong to ∂M∞

j . On the other hand, each ∂P (i) for i ∈ Ij is
a simple cycle (Lemma 2.1) so no edge of ∂P (i) belongs to ∂M∞

j ∩ ∂P (θj ). Hence every edge in ∂M∞
j ∩ ∂P (θj )

except for the first edge of ∂P (θj ) (equivalently, of ∂M∞
j ) crossed by λ corresponds to a unique element of �j . We

thus obtain (2.6).
Combining (2.4), (2.5), and (2.6) yields (2.2). �

2.4. Proof of Theorem 1.13

In this subsection we will prove scaling limit statements for the objects studied in Sections 2.3 which will eventually
lead to a proof of Theorem 1.13.

Throughout this subsection, we fix a coupling of {Xn}n∈N with Z as in Theorem 1.8 and let {(Mn, en
0 , Sn)}n∈N be

the corresponding FK planar maps. We use the notation of Section 2.3 but we add an extra superscript n to each of the
objects involved to denote which of the FK planar maps {(Mn, en

0 , Sn)}n∈N it is associated with. We define σj > 0 and
�j ⊂ (vZ(σj ), σj ) for j ∈ Z as in Section 1.5.2. We also let Tj be the set of maximal π/2-cone times t for Z in the
interval (vZ(σj ), σj ) which satisfy uZ(t) < vZ(σj ), i.e. those which do not belong to �j . The set Tj is the continuum
analogue of the set of Ij from Lemma 2.8.

The proofs in this section will proceed by using the descriptions of the discrete objects in terms of F -times
in Section 2.3 together with the various conditions of Theorem 1.8 to argue that the discrete objects converge to the
desired continuum objects. The reader should note that the only inputs in the arguments of this section are Theorem 1.8
and the description of the FK loops in Section 2.3. In particular, if we had a finite-volume analogue of Theorem 1.8
(which will be proven in [22]) the argument of this subsection would immediately yield a finite-volume version of
Theorem 1.13.

Our first lemma gives convergence of the intervals of time during which λn is tracing each of the loops �n
j .

Lemma 2.10. For n ∈ N, let σn
j := n−1θn

j (in the notation of Section 2.3). Also let bn be the index shift defined just
above Theorem 1.13. Almost surely, for each j ∈ Z we have σn

j+bn → σj as n → ∞.

Proof. Recall that each σj is a π/2-cone time for Z with vZ(σj ) < 0 < σj such that the largest π/2-cone time t < σj

for Z with vZ(t) < 0 < t is in the opposite direction from σj . This implies the π/2-cone interval [vZ(σj ), σj ] cannot
be approximated arbitrarily closely from the inside by a smaller π/2-cone interval. Hence there exists rj ∈ Q∩ (0,∞)

and aj ∈Q such that σj = τaj ,rj is the smallest π/2-cone time t for Z with t > aj with t −vZ(t) ≥ rj , as in condition
(3) from Theorem 1.8.

For n ∈ N, let ιnj = ι
aj ,rj
n be the smallest F -time i for Xn with i ≥ an and i − φn(i) ≥ rn. By conditions (3) and

(4) from Theorem 1.8, we infer that a.s.

n−1ιnj → σj and n−1φn
(
ιnj

) → vZ(σj ), ∀j ∈N. (2.7)
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Furthermore, the π/2-cone times ιnj and σj are in the same direction for sufficiently large n. Note that (2.7) implies
that a.s. 0 ∈ (φn(ιnj ), ι

n
j ) for large enough n ∈ N.

For j ∈ Z, let ψn(j) be the smallest j ′ ∈ N for which θn
j ′ ≥ ιnj−1 and the matched burgers Xn

φn(θn
j ′ )

and Xn
φn(ιnj−1)

are of opposite types. By Lemma 2.6, θn
ψn(j) is the smallest F -time i ≥ θψn(j)−1 with φn(i) < 0 and Xn

φn(i) �=
Xn

φn(θn
ψn(j)−1)

. We will eventually show that ψn(j) = j + bn for large enough n ∈N.

We first claim that a.s.

lim
n→∞σn

ψn(j) = σj , ∀j ∈ Z. (2.8)

By the sentence just after (2.7), for large enough n ∈ N the π/2-cone times ιnj−1 and ιnj are in opposite directions, so
Xn

φn(ιnj−1)
�= Xn

φn(ιnj )
. By this and our above characterization of σn

ψn(j), we have σn
ψn(j) ≤ ιnj for sufficiently large n. By

(2.7) and compactness, for any sequence of positive integers tending to ∞ there is a subsequence nk → ∞ such that
σ

nk

ψnk (j)
→ t̃ ∈ [σj , σj+1]. By (2.7) and since any two intervals between a F -time and its match are either nested or

disjoint,

lim inf
n→∞

(
σ

nk

ψnk (j)
− φnk

(
σ

nk

ψnk (j)

)) ≥ σj−1 − vZ(σj−1) > 0.

Hence condition (4) in Theorem 1.8 implies that t̃ is a π/2-cone time for Z in the same direction as σj with vZ(̃t) ≤
vZ(σj−1) ≤ σj−1 ≤ t̃ . Therefore t̃ = σj .

Next we claim that for each j ∈N, there a.s. exists a (random) n∗ = n∗(j) ∈N such that for n ≥ n∗,

ψn(j) + 1 = ψn(j + 1) ∀n ≥ n∗. (2.9)

Suppose by way of contradiction that this is not the case, i.e. there exists j0 ∈ Z and a sequence nk → ∞ such that
ψnk (j0) < ψnk (j0 + 1) − 1 for each k. For k ∈N let jnk := ψnk (j0) + 1 and ĵ nk := ψnk (j0 + 1) − 1. Since

σ
nk

ψnk (j0)
< σn

jnk ≤ σn

ĵnk
< σ

nk

ψnk (j0+1)

and the two times on the left and right converge to σj0 and σj0+1, respectively, as k → ∞, we can (by possibly passing
to a further subsequence) arrange that σn

jnk
→ t and σn

ĵnk
→ t̂ for some t, t̂ ∈ [σj0, σj0+1] with t ≤ t̂ . By condition

(4) in Theorem 1.8, t (resp. t̂ ) is a π/2-cone time for Z with vZ(t) < 0 < t (resp. vZ(̂t) < 0 < t̂ ), in the opposite
direction from σj0 (resp. σj0+1). Since [vZ(σj0+1), σj0+1] is the innermost π/2-cone interval for Z which contains
[vZ(σj0), σj0] and is in the opposite direction from σj0 , we infer that t ≥ σj0+1. Since t ≤ t̂ ≤ σj0+1 we must have
t = σj0+1. But, t is in the opposite direction from σj0+1, so we obtain a contradiction and conclude that (2.9) holds.

To conclude the proof of the lemma, we observe that (2.8) implies that bn = ψn(0) for large enough n. By (2.9),
for each j ∈ Z, it holds for sufficiently large n ∈ N that j + bn = ψn(j). Therefore (2.8) implies σn

j+bn → σj as
n → ∞. �

Recall the set �n
j and In

j considered in Lemmas 2.7 and 2.8, respectively, which correspond to bounded comple-
mentary connected components of the loop �n

j and excursions of the path λn outside of �n
j , respectively. Our next

definition will be used to isolate the “macroscopic” F -times in In
j and �n

j .

Definition 2.11. For j ∈ Z, let Tj be defined as in the beginning of this subsection and for n ∈ N let In
j be as in

Section 2.3. For ζ > 0, let Tj (ζ ) (resp. In
j (ζ )) be the set of t ∈ Tj (resp. i ∈ Ij ) with t − vZ(t) ≥ ζ (resp. i − φn(i) ≥

ζn). Also let �j be as in Section 1.5.2 and for n ∈ N let �n
j be as in Section 2.3. For ζ > 0, let �j(ζ ) (resp. �n

j (ζ ))
be the set of t ∈ �j (resp. i ∈ �n

j ) with t − vZ(t) ≥ ζ (resp. i − φn(i) ≥ ζn).

Recall that Tj ∪ �j is the set of maximal π/2-cone times for Z in (vZ(σj ), σj ). In particular, Tj (ζ ) ∪ �j(ζ ) is a
finite set. By Lemmas 2.8 and 2.7, In

j ∪ �n
j is the set of maximal F -times for Xn in (φn(θn

j ), θn
j )Z.
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The following lemma tells us that for k ∈N, the F -time in In
j ∪ �n

j with the kth largest corresponding F -interval
converges to the π/2-cone time in Tj ∪�j with the kth largest corresponding π/2-cone interval. This will imply (1.9)
of Theorem 1.13.

Lemma 2.12. Fix ζ > 0 and j ∈ Z. Let t1, . . . , tm be the elements of Tj (ζ ) ∪ �j(ζ ), listed in chronological order.
For n ∈ N, let bn be the index shift from Section 1.5 and let in1 , . . . , inmn be the elements of In

j+bn(ζ )∪�n
j+bn(ζ ), listed

in chronological order. Almost surely, for sufficiently large n ∈ N we have mn = m. Furthermore, it is a.s. the case
that for each k ∈ [1,m]Z, it holds for sufficiently large n ∈ N that the π/2-cone times tk for Z and n−1ink for Zn are
in the same direction; ink ∈ In

j (ζ ) (resp. ink ∈ �n
j (ζ )) for large enough n if and only if tk ∈ Tj (ζ ) (resp. tk ∈ �j(ζ ));

and

n−1ink → tk, n−1φn
(
ink

) → vZ(tk), n−1φn∗
(
ink

) → uZ(tk). (2.10)

Proof. Let m∗ := �2ζ−1(σj − vZ(σj ))�. Since elements of Tj (ζ ) ∪ �j(ζ ) correspond to disjoint time intervals con-
tained in [vZ(σj ), σj ], we have m≤m∗. Using Lemma 2.10 and condition (4) in Theorem 1.8, we also have mn ≤m∗
for large enough n ∈N. For k ∈ [m+ 1,m∗]Z (resp. k ∈ [mn + 1,m∗]Z) let tk := tm (resp. ink := inmn ).

For each k ∈ [1,m∗]Z, we can a.s. find an open interval Ak ⊂ (vZ(σj ), σj ) with rational endpoints and a rational
ak ∈ Ak such that tk is the maximal π/2-cone time t for Z in Ak with ak ∈ [vZ(t), t]. For k ∈ [1,m]Z, let ĩnk be the
maximal F -time for Xn in nAk with φn(i) ≤ nak ≤ i. By conditions (2) and (4) in Theorem 1.8, a.s.

n−1̃ink → tk and n−1φn
(̃
ink

) → vZ(tk).

On the other hand, from any sequence of integers tending to ∞ we can extract a subsequence nl → ∞ such that
n−1

l i
nl

k converges to some t̂k ∈ [vZ(σj ), σj ] for each k ∈ [1,m∗]Z. By condition (4) in Theorem 1.8, t̂k is a π/2-cone
time for Z with t̂k − vZ(̂tk) ≥ ζ and a.s. vZ(̂tk) = liml→∞ n−1

l φnl (̂i
nl

k ).
We claim that t̂k �= σj . Indeed, if this is not the case then by the preceding paragraph a.s. liml→∞ n−1

l φnl (̂i
nl

k ) =
vZ(σj ) so in particular the endpoints of the maximal- F interval in (φnl (θ

nl

j ), θ
nl

j )Z which contains 0, re-scaled by
1/n, converge a.s. to vZ(σj ) and σj . This contradicts condition (2) of Theorem 1.8 since the endpoints of the maximal
π/2-cone interval in (vZ(σj ), σj ) containing 0 a.s. lie at positive distance from vZ(σj ) and σj , respectively (this
follows since the set of π/2-cone times t for Z with 0 ∈ [vZ(t), t] a.s. has no isolated points, which can be seen from
the fact that this set equals the set of simultaneous running infima of the coordinates of Z relative to time 0, hence is
a regenerative set).

It follows that for each k ∈ [1,m]Z, there is some k̂ ∈ [1,m]Z such that [vZ(̂tk), t̂k] ⊂ [vZ(t̂k), t̂k]. Hence for each
given ε > 0, it holds for sufficiently large l ∈ N that n−1

l i
nl

k ∈ [n−1
l φnl (̃i

nl

k ) − ε,n−1
l ĩ

nl

k + ε]. By maximality of i
nl

k , it
is necessarily the case that for sufficiently large l, we have n−1

l i
nl

k ∈ [n−1
l ĩ

nl

k̂
, n−1

l ĩ
nl

k̂
+ ε]. Hence n−1

l i
nl

k → t̂k .

The times i
nl

k and i
nl

k+1 differ by at least ζnl for k ∈ [1,mn − 1]Z. Hence the mapping k �→ k̂ is increasing on
[1,m]Z. In particular this mapping is injective and mnl ≤m for sufficiently large l.

We next argue that for each k∗ ∈ [1,m]Z, there is some k ∈ [1,m∗]Z for which k̂ = k∗. To see this, first observe that
a.s. tk∗ − vZ(tk∗) > ζ , so it is a.s. the case that for each sufficiently large l ∈ N we have n−1

l (̃i
nl

k∗ − φnl (̃i
nl

k∗)) > ζ and

[φnl (̃i
nl

k∗), ĩ
nl

k∗ ]Z ⊂ (θ̃
nl

j+bnl
, θ

nl

j+bnl
)Z. For such an l we have [φnl (̃i

nl

k∗), ĩ
nl

k∗ ]Z ⊂ [φnl (i
nl

kl
), i

nl

kl
]Z for some kl ∈ [1,mnl ]Z.

Upon passing to the scaling limit, we find that there is some k ∈ [1,m∗]Z for which [vZ(tk∗), tk∗ ] ⊂ [vZ(t̂k), t̂k] which
(by the argument above) implies k̂ = k∗.

It follows that the mapping k �→ k̂ is an increasing bijection from [1,mnl ]Z to [1,m]Z for sufficiently large l, which
implies that in fact mnl = m for sufficiently large l and n−1

l i
nl

k → tk for each k ∈ [1,m]Z. Since our initial choice of
sequence was arbitrary, we infer that mn =m for sufficiently large n and n−1ink → tk for each k ∈ [1,m]Z.

By condition (4) in Theorem 1.8, it is a.s. the case that for each k ∈ [1,m]Z, it holds for sufficiently large n ∈ N

that the π/2-cone times tk for Z and n−1ink for Zn are in the same direction. Furthermore, n−1φn(ink ) → vZ(t) and
n−1φn∗ (ink ) → uZ(t). Hence (2.10) holds.

By definition, we have tk ∈ Tj (ζ ) if and only if uZ(tk) < σ̃j . By Lemma 2.8, we have ink ∈ In
j+bn(ζ ) if and only

if φn∗ (ink ) < φnl (θ
nl

j ). Hence (2.10) implies that ink ∈ In
j+bn(ζ ) (resp. ink ∈ �n

j+bn(ζ )) for large enough n if and only if
tk ∈ Tj (ζ ) (resp. tk ∈ �j(ζ )) �
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Our next lemma will be used for the proof of (1.10) of Theorem 1.13. Note that (1.10) is not immediate from (1.9)
since the number of complementary connected components of each loop �n

j+bn tends to ∞ as n → ∞.

Lemma 2.13. For n ∈ N, let bn be the index shift as in Section 1.5.2. Also fix j ∈ N. The following is true almost
surely. Let ã, a ∈ [vZ(σj ), σj ] be two times with ã < a. Then

n−1
∑

i∈In
j+bn∩(̃an,an)Z

(
i − φn(i)

) →
∑

t∈Tj ∩(̃a,a)

(
t − vZ(t)

)
and

n−1
∑

i∈�n
j+bn∩(̃an,an)Z

(
i − φn(i)

) →
∑

t∈�j ∩(̃a,a)

(
t − vZ(t)

)
.

(2.11)

Proof. By [50, Lemma 1], a.s. Lebesgue-a.e. s ∈ [vZ(σj ), σj ] belongs to (vZ(t), t) for some t ∈ Tj ∪ �j . Hence for
each ε > 0, there a.s. exists ζ > 0 such that∑

t∈Tj (ζ )∪�j (ζ )

(
t − vZ(t)

) ≥ σj − vZ(σj ) − ε,

so since intervals [vZ(t), t] for distinct t ∈ Tj ∪ �j are disjoint,∑
t∈(Tj ∪�j )\(Tj (ζ )∪�j (ζ ))

(
t − vZ(t)

) ≤ ε. (2.12)

By Lemma 2.12, it is a.s. the case that for large enough n ∈N, we have

n−1
∑

i∈(In
j+bn (ζ )∪�n

j+bn (ζ ))

(
i − φn(i)

) ≥ n−1θn
j+bn − n−1φn

(
θn
j+bn

) − 2ε,

so since intervals [φn(i), i]Z for distinct i ∈ In
j+bn ∪ �n

j+bn are disjoint,

n−1
∑

i∈(In
j+bn∪�n

j+bn )\(In
j+bn (ζ )∪�n

j+bn (ζ ))

(
i − φn(i)

) ≤ 2ε. (2.13)

By Lemmas 2.10 and 2.12, it is a.s. the case that for each ã, a as in the statement of the lemma,

n−1
∑

i∈In
j+bn (ζ )∩(̃an,an)Z

(
i − φn(i)

) →
∑

t∈Tj (ζ )∩(̃a,a)

(
t − vZ(t)

)
and

n−1
∑

i∈�n
j+bn (ζ )∩(̃an,an)Z

(
i − φn(i)

) →
∑

t∈�j (ζ )∩(̃a,a)

(
t − vZ(t)

)
.

(2.14)

Since ε > 0 is arbitrary, we can now conclude by combining (2.12), (2.13), and (2.14). �

Proof of Theorem 1.13. For n ∈ N, let (Mn, en
0 , Sn) be the infinite-volume FK planar map corresponding to Xn

under Sheffield’s bijection. The convergence (1.9) follows from Lemmas 2.7 and 2.12.
To obtain (1.10), recall the formula for Area(Mn,∞

j+bn) from Lemma 2.6. By Lemma 2.10 we a.s. have n−1(θn
j+bn −

θ̃ n
j+bn) → σj − vZ(σj ). By Lemma 2.13 we a.s. have n−1 ∑

i∈In
j+bn

(i − φn(i)) → ∑
t∈Tj

(t − vZ(t)). By [50,

Lemma 1], a.s. Lebesgue-a.e. point of [vZ(σj ), σj ] is contained in (vZ(t), t) for some t ∈ Tj ∪ �j , so since these
intervals are disjoint for different values of t ,

σj − vZ(σj ) −
∑
t∈Tj

(
t − vZ(t)

) =
∑
t∈�j

(
t − vZ(t)

)
.

Thus (1.10) holds a.s. �
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3. Probabilistic estimates

Now that we have seen why Theorem 1.8 implies our scaling limit result for FK loops (Theorem 1.13), we turn our
attention to the proof of Theorem 1.8.

Throughout the rest of the paper, we consider only the inventory accumulation model described in Section 1.3, not
the associated FK planar map. In particular, we do not use any of the notation introduced in Section 2.

In this section we will prove a variety of probabilistic estimates for the inventory accumulation model of [49].
In Section 3.1, we use the results of [50] to describe how to make sense of a correlated two-dimensional Brownian
motion conditioned to stay in the first quadrant and prove some estimates for Brownian motion. In Section 3.2, we will
use these estimates and [49, Theorem 2.5] to prove lower bounds for various rare events associated with the bi-infinite
word X. In Section 3.3, we will prove an upper bound for the number of F -symbols in the reduced word X(1, n),
which is a sharper version of [49, Lemma 3.7].

Throughout this section, we let p ∈ (0,1/2) and κ ∈ (4,8) be related as in (1.1). Many of the estimates in this and
later sections will involve the exponents

μ := π

2(π − arctan
√

1−2p
p

)
= κ

8
and μ′ := π

2(π + arctan
√

1−2p
p

)
= κ

4(κ − 2)
. (3.1)

3.1. Brownian motion in a cone

In [50, Theorem 2], the author constructs for each θ ∈ (0,2π) a probability measure on the space of continuous
functions [0,1] →R2 which can be viewed as the law of a standard two-dimensional Brownian motion started from 0
conditioned to stay in the cone {z ∈ C : 0 ≤ arg z ≤ θ} until time 1. We want to define a Brownian motion started from
0 with variances and covariances as in (1.8), conditioned to stay in the first quadrant. To this end, we define

A :=
√

2(1 − p)

1 − 2p

(
1 − p

1−p

0
√

1−2p
1−p

)
, (3.2)

so that if Z is as in (1.8), then AZ is a standard planar Brownian motion. A Brownian motion with variances and
covariances as in (1.8) conditioned to stay in the first quadrant until time 1 is the process Ẑ := A−1Ẑ′, where Ẑ′ is a
standard linear Brownian motion conditioned to stay in the cone

Fp :=
{
w ∈C : 0 < argw < π − arctan

√
1 − 2p

p

}
(3.3)

for one unit of time. By [50, Equation 3.2] and Brownian scaling, the law of Ẑ(t) for t ∈ (0,1] is absolutely continuous
with respect to Lebesgue measure on (0,∞)2 and its density is given by

detA

2μ�(μ)t1/2+2μ
|Az|2μe−|Az|2/2t sin

(
2μ arg(Az)

)
Pz(T > 1 − t) dz, (3.4)

where here Pz denotes the law of Z started from z and T is the first exit time of Z from the first quadrant. Note that
our μ is equal to 1/2 times the exponent μ of [50].

The law of the process Ẑ is uniquely characterized as follows lemma, which is an analogue of [35, Theorem 3.1].

Lemma 3.1. Let Ẑ = (Û , V̂ ) : [0,1] → R2 be as above. Then Ẑ is a.s. continuous and satisfies the following condi-
tions.

(1) For each t ∈ (0,1], a.s. Û (t) > 0 and V̂ (t) > 0.
(2) For each ζ ∈ (0,1), the regular conditional law of Ẑ|[ζ,1] given Ẑ|[0,ζ ] is that of a Brownian motion with covari-

ances as in (1.8), starting from Ẑ(ζ ), parametrized by [ζ,1], and conditioned on the (a.s. positive probability)
event that it stays in the first quadrant.

If Z̃ = (Ũ , Ṽ ) : [0,1] →R2 is another random a.s. continuous path satisfying the above two conditions, then Z̃
d= Ẑ.
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Proof. First we verify that Ẑ satisfies the above two conditions. It is clear from the form of the density (3.4) that
condition (1) holds. To verify condition (2), fix ζ > 0. By [50, Theorem 2], Ẑ is the limit in law in the uniform
topology as δ → 0 of the law of Z|[0,1] conditioned on the event Eδ that U(t) ≥ −δ and V (t) ≥ −δ for each t ∈ [0,1].
By the Markov property, for each ζ > 0, the conditional law of Z|[ζ,1] given Z|[0,ζ ] and Eδ is that of a Brownian
motion with covariances as in (1.8), starting from Z(ζ ), parametrized by [ζ,1], and conditioned to stay in the δ-
neighborhood of the first quadrant. As δ → 0, this law converges to the law described in condition (2).

Now suppose that Z̃ = (Ũ , Ṽ ) : [0,1] →R2 is another random continuous path satisfying the above two conditions.
For ζ > 0, let Z̃ζ : [0,1] → R2 be the random continuous path such that Z̃ζ (t) = Z̃(t + ζ ) for t ∈ [0,1 − ζ ]; and
conditioned on Z̃|[0,1], Z̃ζ evolves as a Brownian motion with variances and covariances as in (1.8) started from Z̃(1)

and conditioned to stay in the first quadrant for t ∈ [1 − ζ,1]. By condition (2) for Ẑ and [50, Theorem 2], we can find
ε ∈ (0, α/2) such that the Prokhorov distance (in the uniform topology) between the conditional law of Z̃ζ given any
realization of Z̃|[0,ζ ] for which |Z̃(ζ )| ≤ ε is at most α/2. By continuity, we can find ζ0 > 0 such that for ζ ∈ (0, ζ0],
we have P(supt∈[0,ζ ] |Z̃(t)| ≥ α/2) ≤ α/2. Hence for ζ ∈ (0, ζ0] the Prokhorov distance between the law of Z̃ζ and
the law of Ẑ is at most α. Since α is arbitrary we obtain Z̃ζ → Ẑ in law. By continuity, Z̃ζ converges to Z̃ in law as

ζ → 0. Hence Z̃
d= Ẑ. �

We record an estimate for the probability that Z has an approximate π/2-cone time or an approximate 3π/2-cone
time, which is essentially a consequence of the results of [50].

Lemma 3.2. Let Z = (U,V ) be as in (1.8) and let μ and μ′ be as in (3.1). For δ > 0 and C > 1, let

Eδ :=
{

inf
t∈[0,1]U(t) ≥ −δ1/2 and inf

t∈[0,1]V (t) ≥ −δ1/2
}
,

E′
δ := {

U(t) ≥ −δ1/2 or V (t) ≥ −δ1/2 for each t ∈ [0,1] }
,

G(C) :=
{

sup
t∈[0,1]

∣∣Z(t)
∣∣ ≤ C

}
∩ {

U(1) ≥ C−1 and V (1) ≥ C−1}.
For each C > 1 we have

P
(
Eδ ∩ G(C)

) � P(Eδ) � δμ (3.5)

and

P
(
E′

δ ∩ G(C)
) � P

(
E′

δ

) � δμ′
(3.6)

with the implicit constants independent of δ.

Proof. Let A be as in (3.2), so that Z̃ = (Ũ , Ṽ ) := AZ is a standard two-dimensional Brownian motion. Note that A

maps the first quadrant to the cone Fp defined in (3.3) and the complement of the third quadrant to the cone

F ′
p :=

{
w ∈ C : argw /∈

[
π,2π − arctan

√
1 − 2p

p

]}
. (3.7)

Let Fδ
p be the δ1/2-neighborhood of Fp and let z := exp( i

2 (π − arctan
√

1−2p
p

)) be the unit vector pointing into Fp .
We have{

Z̃
([0,1]) ⊂ Fc1δ

p

} ⊂ Eδ ⊂ {
Z̃

([0,1]) ⊂ Fc2δ
p

}
for positive constants c1 and c2 depending only on A. By Brownian scaling,

P
(
Z̃

([0,1]) ⊂ Fδ
p

) = P
(
Z̃

([
0, δ−1]) + z ⊂ Fp

)
.
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By [50, Equation 4.3], δμ times this quantity converges to a finite positive constant as δ → 0. We therefore obtain
P(Eδ) � δμ. Similarly, P(E′

δ) � δμ′
. This proves the second proportions in (3.5) and (3.6). By [50, Theorem 2], the

conditional law of Z̃|[0,1] given {Z̃([0,1]) ⊂ Fδ
p} converges in the uniform topology as δ → 0 to the law P̂ of a

continuous path Ẑ : [0,1] → C satisfying (with G(C) as in the statement of the lemma)

P̂
(
G(C)

)
> 0 ∀C > 1, and lim

C→∞ P̂
(
G(C)

) = 1.

By combining this observation with our argument above, we obtain the first proportionality in (3.5). We similarly
obtain the first proportionality in (3.6). �

3.2. Lower bounds for various probabilities

In this section we will prove lower bounds for the probabilities of various rare events associated with the word X. This
will be accomplished by breaking up a segment of the word X of length n into sub-words of length approximately
δkn for δ small but independent from n; then estimating the probabilities of events for each sub-word using [49,
Theorem 2.5] and Lemma 3.2. We start with a lower bound for the probability that a word of length n contains either
no burgers or no orders (plus some regularity conditions).

Lemma 3.3. For n ∈ N and C > 1, let Rn(C) be the event that the following is true.

(1) X(−n,−1) contains no burgers.
(2) X(−n,−1) contains at least C−1n1/2 hamburger orders, at least C−1n1/2 cheeseburger orders, and at most

Cn1/2 total orders.

Also let R∗
n(C) be the event that the following is true.

(1) X(1, n) contains no orders.
(2) X(1, n) contains at least C−1n1/2 burgers of each type and at most Cn1/2 total burgers.

If C > 4, then with μ as in (3.1),

P
(
Rn(C)

) ≥ n−μ+on(1) (3.8)

and

P
(
R∗

n(C)
) ≥ n−μ+on(1). (3.9)

In terms of the walk D = (d, d∗) defined in Section 1.3, the event Rn(C) of Proposition 3.3 is the same as the event
that the time reversal of (D − D(−1))|[−n,−1]Z stays in the first quadrant for n units of time and ends up at distance
of order n1/2 away from the boundary of the first quadrant. The event R∗

n(C) is equivalent to a similar condition for
the walk D|[1,n]Z . Hence the estimates of Lemma 3.3 are natural in light of Lemma 3.2 and the scaling limit result for
D (Theorem 1.5).

Remark 3.4. We will prove a sharper version of the estimate (3.8) later, which also includes an upper bound (see
Proposition 6.1 below).

Proof of Lemma 3.3. We will prove (3.8). The estimate (3.9) is proven similarly, but with the word X read in the
forward rather than the reverse direction.

Fix C > 4. Also fix δ < 1/4C2 to be chosen later independently of n. Let

kn :=
⌈

logn

log δ−1

⌉
(3.10)

be the smallest integer k such that δkn ≤ 1. Also fix a deterministic sequence ξ = (ξj )j∈N with ξj = oj (
√

j) and
ξj ≤ j1/2 (to be chosen later, independently of n) and for k ∈ [1,kn]Z let En,k be the event that the following is true.
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(1) X(−�δk−1n
,−�δkn
 − 1) has at most 0 ∨ (C−1(δkn)1/2 − 1) burgers of each type.
(2) C−1(δk−1n)1/2 ≤ Nθ (X(−�δk−1n
,−�δkn
 − 1)) ≤ C(δk−1n)1/2 for θ ∈ { H , C }.
(3) N F (X(−�δk−1n
,−�δkn
 − 1)) ≤ ξ�δk−1n
.

On
⋂kn

k=1 En,k , the word X(−n,−1) contains no burgers (since each burger in X(−�δk−1n
,−�δkn
−1) is cancelled
by an order in X(−�δkn
,−�δk+1n
 − 1)) and at most

2(C + 1)n1/2
∞∑

k=1

δ
k−1

2 ≤ (4C + 4)n1/2

total orders. Furthermore, since X(−n,−�δn
) contains at least C−1n1/2 hamburger orders and at least the same
number of cheeseburger orders, so does X(−n,−1). Consequently,

kn⋂
k=1

En,k ⊂ Rn(4C + 4). (3.11)

The events En,k for k ∈ [1,kn]Z are independent, so to obtain (3.8) (with 4C in place of C) we just need to prove
a suitable lower bound for P(En,k). We will do this using Lemma 3.2 and the scaling limit result for the walk D =
(d, d∗) from Definition 1.4.

We first define an event in terms of this walk which is contained in En,k . In particular, we let Ẽn,k be the event that
the following is true.

(1) minj∈[�δkn
+1,�δk−1n
]Z(d(−j)− d(−�δkn
− 1)) ≥ −(0 ∨ (C−1(δkn)1/2 − 1 − ξ�δk−1n
)) and similarly with d∗ in
place of d .

(2) C−1(δk−1n)1/2 + ξ�δk−1n
 ≤ d(−�δk−1n
) − d(−�δkn
 − 1) ≤ C(δk−1n)1/2 − ξ�δk−1n
 and similarly with d∗ in
place of d .

(3) N F (X(−�δk−1n
,−�δkn
 − 1)) ≤ ξ�δk−1n
.

The running infimum of j �→ d(X(−j,−1)) up to time m ∈ N is equal to −N
H

(X(−m,−1)). A similar statement

holds for d∗. From this, we infer that Ẽn,k ⊂ En,k .
We now establish a lower bound for P(Ẽn,k). By [49, Theorem 2.5], the total number of orders in the reduced word

X(1, n) is typically of order n1/2, and every order in X(1, n) also appears in the infinite reduced word X(1,∞). By
[49, Lemma 3.7], the fraction of F -symbols in the leftmost r orders of X(1,∞) a.s. tends to 0 as r → ∞. From this,
we infer that we can choose the sequence ξ in such a way that it holds with probability tending to 1 as m → ∞ that
X(1,m) has at most ξm flexible orders. By [49, Theorem 2.5], as n → ∞ (k and δ fixed), the probability of the event
Ẽn,k converges to the probability of the event that Z stays within the C−1δ1/2-neighborhood of the first quadrant in
the time interval [0,1 − δ] and satisfies C−1 ≤ −U(1) ≤ C and C−1 ≤ −V (1) ≤ C. By (3.5) of Lemma 3.2 this latter
event has probability � δμ with the implicit constant independent of δ. Hence we can find b ∈ (0,1), independent of
δ, and m∗ = m∗(δ,C, ξ) such that whenever �δkn
 ≥ m∗, we have P(Ẽn,k) ≥ bδμ.

Let k∗ be the largest k ∈ [1,kn]Z for which �δkn
 ≥ m∗. Then

P

(
k∗⋂

k=1

En,k

)
≥ bk∗δk∗μ ≥ bknδknμ ≥ n−μ+oδ(1),

with the oδ(1) independent of n. Since �δk∗+1n
 ≤ m∗, the event
⋂kn

k=k∗+1 En,k is determined by the word

X−m∗ . . .X−1, P(
⋂kn

k=k∗+1 En,k) is at least a positive constant which does not depend on n. We infer from (3.11)
that

P
(
Rn(4C)

) � n−μ+oδ(1),

with the implicit constant depending on δ, but not n. Since δ is arbitrary, this implies (3.8). �
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From Lemma 3.3, we obtain the following.

Proposition 3.5. Almost surely, there are infinitely many i ∈N for which X(1, i) contains no burgers; infinitely many
j ∈ N for which X(−j,−1) contains no orders; and infinitely many F -symbols in X(1,∞).

Proof. For m ∈ N, let Km be the mth smallest i ∈ N for which X(1, i) contains no burgers (or Km = ∞ if there
are fewer than m such i). Observe that Km can equivalently be described as the smallest i ≥ Km−1 + 1 for which
X(Km−1 + 1, i) contains no burgers. Hence the words XKm−1+1 . . .XKm are iid. It follows that {Km}m∈N is a renewal
process. Note that i ∈ N is equal to one of the times Km if and only if the word X(1, i) contains no burgers. By
Lemma 3.3, we thus have

∞∑
i=1

P(i = Km for some m ∈ N) ≥
∞∑
i=1

i−μ+oi (1) = ∞

since μ < 1. By elementary renewal theory, K1 is a.s. finite, whence there are a.s. infinitely many i ∈ N for which
X(1, i) contains no burgers. We similarly deduce from (3.9) that there are a.s. infinitely many j ∈ N for which
X(−j,−1) contains no orders. To obtain the last statement, we note that for each m ∈ N, we have P(XKm+1 =
F ) = p/2, so there are a.s. infinitely many m ∈ N for which XKm+1 = F . For each such m, an F symbol is added

to the order stack at time Km + 1. �

Next we consider an analogue of Lemma 3.3 for the event that the word X(1, i) (resp. X(−i,−1)) always contains
at least one burger (resp. order) for i ∈ [1, n]Z, instead of the event that this word contains no orders (resp. burgers).

Lemma 3.6. For n ∈ N and C > 4, let R′
n(C) be the event that the following is true.

(1) X(1, i) contains a burger for each i ∈ [1, n]Z.
(2) X(1, n) contains at least C−1n1/2 hamburger orders and at least C−1n1/2 cheeseburger orders.
(3) |X(1, n)| ≤ Cn1/2.

Also let (R′
n)

∗(C) be the event that the following is true.

(1) X(−j,−1) contains either a hamburger order or a cheeseburger order for each j ∈ [1, n]Z.
(2) X(−n,−1) contains at least C−1n1/2 burgers of each type and at most Cn1/2 total burgers.
(3) |X(−n,−1)| ≤ Cn1/2.

If C > 4 then with μ′ as in (3.1),

P
(
R′

n(C)
) ≥ n−μ′+on(1) (3.12)

and

P
((

R′
n

)∗
(C)

) ≥ n−μ′+on(1) (3.13)

In terms of the walk D = (d, d∗), the event R′
n(C) of Lemma 3.6 says that the coordinates d and d∗ do not attain

a simultaneous running infimum on the time interval [1, n]Z and that D does not come close to staying in the first
quadrant during this time interval or get too far away from 0 during this time interval. The event (R′

n)
∗(C) has a

similar interpretation in terms of the time reversal of D|[−n,−1]Z .

Proof of Lemma 3.6. We will prove (3.12). The estimate (3.13) is proven similarly, but with the word X read in
the reverse, rather than the forward, direction. The proof is similar to that of Lemma 3.3: we break the word X into
increments of length approximately δkn and estimate the probability of an event corresponding to each segment using
[49, Theorem 2.5] and Lemma 3.2.

Fix C > 4, δ ∈ (0, (8C)−2], and a deterministic sequence ξ = (ξj )j∈N with ξj = oj (
√

j) to be chosen later inde-
pendently of n. We assume ξj ≤ δj1/2 for each j ∈ N. Let kn be as in (3.10). For k ∈ [1,kn]Z, let E′

n,k be the event
that the following is true.
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(1) For each i ∈ [�δkn
+1, �δk−1n
]Z, at least one of the following three conditions holds: N H (X(�δkn
+1, i)) ≤
0∨ (C−1(δkn)1/2 − ξ�δk−1n
); N C

(X(�δkn
+1, i)) ≤ 0∨ (C−1(δkn)1/2 − ξ�δk−1n
); or X(�δkn
+1, i) contains

a burger.
(2) Nθ (X(�δkn
 + 1, �δk−1n
)) ≥ C−1(δk−1n)1/2 for θ ∈ { H , C }.
(3) Nθ (X(�δkn
 + 1, �δk−1n
)) ≥ C−1(δk−1n)1/2 − ξ�δk−1n
 for θ ∈ { H , C }.
(4) |X(�δkn
 + 1, �δk−1n
)| ≤ C(δk−1n)1/2.
(5) N F (X(�δkn
 + 1, �δk−1n
)) ≤ ξ�δkn
.

We claim that

kn⋂
k=1

E′
n,k ⊂ R′

n(8C). (3.14)

First we observe that conditions (1), (2), and (5) in the definition of E′
n,k imply that condition (1) in the definition of

R′
n(8C) holds on

⋂kn

k=1 E′
n,k . From condition (3) and (4) in the definition of E′

n,k , we infer that on
⋂kn

k=1 E′
n,k , we

have for θ ∈ { H , C } that

Nθ

(
X(1, n)

) ≥ C−1n1/2 − ξn − Cn1/2
kn∑
k=2

δ(k−1)/2

≥ 1

2
C−1n1/2 − 2δ1/2Cn1/2 ≥ 1

8
C−1n1/2,

where the last inequality is by our choice of δ. Thus condition (2) in the definition of R′
n(8C) holds. Finally, it is clear

from condition (4) in the definition of E′
n,k that condition (3) in the definition of R′

n(8C) holds on
⋂kn

k=1 E′
n,k . This

completes the proof of (3.14).
The events E′

n,k for k ∈ [1,kn]Z are independent, so in light of (3.14), to obtain (3.12) (with 8C in place of C)

we just need to prove a suitable lower bound for P(E′
n,k). To this end, for k ∈ [1,kn]Z let Ẽ′

n,k be the event that the
following is true.

(1) For each i ∈ [�δkn
 + 1, �δk−1n
]Z, either d(i) − d(�δkn
 + 1) ≥ 0 ∧ (−C−1(δkn)1/2 + ξ�δk−1n
) or d∗(i) −
d∗(�δkn
 + 1) ≥ 0 ∧ (−C−1(δkn)1/2 + ξ�δk−1n
).

(2) d(�δk−1n
) − d(�δkn
 + 1) and d∗(�δk−1n
) − d(�δkn
 + 1) are each at least C−1(δk−1n)1/2.
(3) mini∈[�δkn
+1,�δk−1n
]Z(d(i) − d(�δkn
 + 1)) ≤ −C−1(δk−1n)1/2 − ξ�δk−1n
 and similarly with d∗ in place of d .
(4) maxi∈[�δkn
+1,�δk−1n
]Z |D(i)| ≤ (C/2)(δk−1n)1/2 − ξ�δk−1n
.
(5) N F (X(�δkn
 + 1, �δk−1n
)) ≤ ξ�δk−1n
.

We claim that Ẽ′
n,k ⊂ E′

n,k . It is clear that conditions (2), and (5) in the definition of Ẽ′
n,k imply the corresponding

conditions in the definition of E′
n,k . Since the running infima of i �→ d(X(1, i)) and i �→ d∗(X(1, i)) up to time m

differ from N H (X(1,m)) and N
C

(X(1,m)), respectively, by at most N F (X(1, n)), we find that conditions (3)

and (4) imply the corresponding conditions in the definition of E′
n,k .

Suppose condition (1) in the definition of Ẽ′
n,k holds. If i ∈ [�δkn
 + 1, �δk−1n
]Z and X(�δkn
 + 1, i) contains

no burgers, then the condition d(i) − d(�δkn
 + 1) ≥ 0 ∧ (−C−1(δkn)1/2 + ξ�δk−1n
) together with condition (5) in
the definition of Ẽ′

n,k implies N H (X(�δkn
 + 1, i)) ≤ 0 ∨ (C−1(δkn)1/2 − ξ�δk−1n
). A similar statement holds if

d∗(i) − d∗(�δkn
 + 1) ≥ 0 ∧ (−C−1(δkn)1/2 + ξ�δk−1n
). This proves our claim.
It now follows from [49, Theorem 2.5 and Lemma 3.7] together with (3.6) of Lemma 3.2 (c.f. the proof of

Lemma 3.3) that if ξ is chosen appropriately (independently of n) then there is a constant b ∈ (0,1), independent
of n and δ, and a constant m∗ = m∗(δ,C, ξ) such that whenever �δkn
 ≥ m∗, we have P(E′

n,k) ≥ bδμ′
. We conclude

exactly as in the proof of Lemma 3.3. �
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3.3. Estimate for the number of flexible orders

The main goal of this section is to prove the following more quantitative variant of [49, Lemma 3.7] (which, as we
explained in the proof of Lemma 3.3, implies that the number of F ’s in X(1, n) is on(n

1/2) with high probability),
which will follow from Lemma 3.6.

Lemma 3.7. Let μ′ be as in (3.1). For each n ∈N and each ν > μ′,

P
(∃i ≥ n with N F

(
X(1, i)

) ≥ iν
) = o∞

n (n) (3.15)

(recall Notation 1.17). The same holds if we fix C > 1, let n′ ∈ [n,Cn]Z, and condition on the event {X(1, n′) has no
burgers}, in which case the o∞

n (n) depends on C but not the particular choice of n′.

Since μ′ ∈ (1/3,1/2) for each p ∈ (0,1/2), we have in particular that (3.15) holds for some ν < 1/2. In other
words, with high probability the number of flexible orders in X(1, i) is of strictly smaller polynomial order than the
length of X(1, i), for each i ≥ n.

Remark 3.8. The exponent μ′ in Lemma 3.7 is not optimal. We will show in Corollary 6.2 below that μ′ can be
replaced by 1 − μ ≤ μ′. However, the proof of Corollary 6.2 indirectly uses Lemma 3.7.

We will extract Lemma 3.7 from the following general fact about renewal processes, which will also be used in the
proof of the stronger version of Lemma 3.7 mentioned in Remark 3.8.

Lemma 3.9. Let (Yj ) be a sequence of iid positive integer valued random variables and for m ∈ N let Sm := ∑m
j=1 Yj .

For i ∈N, let Ei be the event that i = Sm for some m ∈N and for n ∈N, let Mn := sup{m ∈N : Sm ≤ n} be the number
of i ≤ n for which Ei occurs. Suppose that for some α > 0, either

P(Ei) ≤ i−α+oi (1), ∀i ∈N (3.16)

or

P(Y1 ≥ n) ≥ n−(1−α)+on(1), ∀n ∈N. (3.17)

Then for each ν > 1 − α,

P
(∃i ≥ n with Mi ≥ iν

) = o∞
n (n). (3.18)

We will prove Lemma 3.9 by obtaining a moment bound for the quantities Mn. This, in turn, will be proven using
the following recursive relation between the probabilities of the events Ei .

Lemma 3.10. Suppose we are in the setting of Lemma 3.9. Suppose given integers 0 = i0 < i1 < · · · < in. Then

P

(
n⋂

k=1

Eik

)
=

n∏
k=1

P(Eik−ik−1). (3.19)

Proof. Let i′ > i and let Ki be the smallest m ∈ N for which Sm ≥ i. Then Ei = {SKi
= i} so by the strong Markov

property,

P(Ei′ | Y1, . . . , YKi
)1Ei

= P
(
i′ − i = Sm − SMn for some m > Mn

)
1Ei

= P(Ei′−i )1Ei
.

Hence, in the setting of (3.19) we have

P

(
n⋂

k=1

Eik |
n−1⋂
k=1

Eik

)
= P(Ein−in−1),
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so

P

(
n⋂

k=1

Eik

)
= P(Ein−in−1)P

(
n−1⋂
k=1

Eik

)
.

We can now obtain (3.19) by induction on n. �

Now we can prove a kth moment bound for Mn by induction on k.

Lemma 3.11. Suppose we are in the setting of Lemma 3.9. Then for k ∈ N we have

E
(
Mk

n

) ≤ nk(1−α)+on(1). (3.20)

Proof. First consider the case k = 1. If the hypothesis (3.16) holds, then

E(Mn) =
n∑

i=1

P(Ei) ≤
n∑

i=1

i−α+oi (1) = n1−α+on(1).

Alternatively, if (3.17) holds, then for m ∈ N,

P(Mn ≥ m) = P(Sm ≤ n) ≤ P

(
max

j∈[1,m]Z
Yj ≤ n

)
= P(Y1 ≤ n)m.

By (3.17) we have

P(Y1 ≤ n)m ≤ (
1 − n−(1−α)+on(1)

)m
.

Hence

E(Mn) =
n∑

m=1

P(Mn ≥ m) ≤
n∑

m=1

(
1 − n−(1−α)+on(1)

)m ≤ n1−α+on(1).

This proves (3.20) for k = 1.
Now consider the case k > 1. By Lemma 3.10,

E
(
Mk

n

) �
n∑

i=1

∑
i≤j1,...,jk−1≤n

P(Ei ∩ Ej1 ∩ · · · ∩ Ejk−1)

�
n∑

i=1

P(Ei) +
n∑

i=1

k−1∑
m=1

∑
i<j1<···<jm≤n

P(Ei ∩ Ej1 ∩ · · · ∩ Ejm)

=
n∑

i=1

P(Ei) +
n∑

i=1

P(Ei)

k−1∑
m=1

∑
i<j1<···<jm≤n

P(Ej1−i ∩ · · · ∩ Ejm−i )

≤
n∑

i=1

P(Ei) +
n∑

i=1

P(Ei)

k−1∑
m=1

∑
1≤j1<···<jm≤n

P(Ej1 ∩ · · · ∩ Ejm)

≤ E(Mn)

k−1∑
m=0

E
(
Mm

n

)
, (3.21)

with implicit constants depending on k, but not n. We can now obtain (3.20) by induction on k. �
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Proof of Lemma 3.9. By Lemma 3.11 and the Chebyshev inequality, for ν > 1 − α and k ∈N, we have

P
(
Mi ≥ iν

) ≤ ik(1−α−ν)+oi (1).

We conclude by applying the union bound. �

Proof of Lemma 3.7. Let S0 = 0 and for m ∈ N, let Sm be the mth smallest i ∈ N such that X(1, i) contains no
burgers. The times Sm −Sm−1 are iid and each has the same law as S1. If X(1, i) contains a burger for each i ∈ [1, n]Z,
then S1 > n. By Lemma 3.6, we therefore have

P(S1 > n) ≥ n−μ′+on(1).

Each time i at which N F (X(1, i)) increases is necessarily one of the times Sm. Thus (3.15) follows from Lemma 3.9.

The conditional version of the lemma follows by combining the unconditional version with Lemma 3.3. �

4. Regularity conditioned on no burgers

4.1. Statement and overview of the proof

The goal of this section is to prove a regularity statement for the conditional law of the word X(1, n) given the event
that it contains no burgers. It will be convenient to read the word backwards, rather than forward, so we will mostly
work with X(−n,−1) instead of X(1, n).

We will use the following notation. Let J be the smallest j ∈ N for which X(−j,−1) contains a burger. Note that
{J > n} is the same as the event that X(−n,−1) contains no burgers, or the event that the walk D, run backward from
time 0, stays in the first quadrant for n units of time. Let μ′ be as in (3.1) and fix ν ∈ (μ′,1/2). Let Fn be the event
that N F (X(−n,−1)) ≤ nν , so that by Lemma 3.7 we have P(Fn) ≥ 1 − o∞

n (n). For ε > 0 and n ∈ N, let En(ε) be

the event that J > n and X(−n,−1) contains at least εn1/2 hamburger orders and at least εn1/2 cheeseburger orders.
Let

an(ε) := P
(
En(ε) | J > n

)
. (4.1)

The main result of this section is the following.

Proposition 4.1. In the above setting,

lim
ε→0

lim inf
n→∞ an(ε) = 1. (4.2)

Proposition 4.1 is the key input in the proof of Theorem 5.1 below, which gives a scaling limit for the path Zn

conditioned on the event {J > n}. This theorem, in turn, is the key input in the proof of Theorem 1.8.
We now give a brief overview of the proof of Proposition 4.1. We will start by reading the word X forward.

For n ∈ N, let Kn be the last time i ≤ n for which Xi = F and φ(i) ≤ 0. We will argue (via an argument based
on translation invariance of the word X) that X(1,Kn) has uniformly positive probability to contain at least εn1/2

hamburger orders and at least εn1/2 cheeseburger orders if ε is chosen sufficiently small. For m ∈ N, the conditional
law of X1 . . .Xm given {Kn = m+ 1} is the same as its conditional law given that X(1,m) contains no burgers, which
by translation invariance is the same as the law of X(−m,−1) given {J > m}. This will allow us to extract a (possibly
very sparse) sequence mj → ∞ for which lim infj→∞ amj

(ε) > 0. This is accomplished in Section 4.2.
In Section 4.3, we will show that if am(ε) is bounded below for some small ε > 0 and m is very large, then an(ε) is

close to 1 for n ≥ m such that m/n is of constant order. The intuitive reason why this is the case is that if ε is very small
and Em(ε) fails to occur, then it is unlikely that J > n; and if Em(ε) ∩ {J > n} occurs, then (by [49, Theorem 2.5])
En(ε) is likely to occur for small ε. We will then complete the proof of Proposition 4.1 using an induction argument
and the results of Section 4.2. See Figure 9 for an illustration of the basic idea of this argument.
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Fig. 9. An illustration of the main ideas of the proof of Proposition 4.1. Fix δ > 0 and suppose m < n ∈ N with m ≥ δn. Left figure: suppose the
event Em(ε) occurs, i.e. the path D (defined as in (1.6)) is at uniformly positive distance from the boundary of the first quadrant at time m. By
[49, Theorem 2.5], if m is very large then it holds with uniformly positive conditional probability given Em(ε) that J > n and En(ε) occurs, i.e.
D stays in the first quadrant until time n and ends up at uniformly positive distance away from the boundary. Right figure: if Em(ε) fails to occur
and n is very large, then it is unlikely that J > n. Hence if we are given an m-independent lower bound for am(ε) for some m ∈ N and ε > 0, then
Bayes’ rule and an induction argument imply that an(ε) is close to 1 for n > 2m, say. We prove the existence of arbitrarily large values of m for
which am(ε) is uniformly positive in Section 4.2.

4.2. Regularity along a subsequence

In this section we will prove the following result, which is a much weaker version of Proposition 4.1.

Lemma 4.2. In the notation of (4.1), there is an ε0 > 0 and a q0 ∈ (0,1) such that for ε ∈ (0, ε0] there exists a
sequence of positive integers mj → ∞ (depending on ε) such that for each j ∈N,

amj
(ε) ≥ q0. (4.3)

For the proof of Lemma 4.2, we first need that the F -excursions around 0, i.e. the discrete interval [φ(i), i]Z
containing 0 with Xi = F , have uniformly positive probability to have a positive fraction of their length on the left
side of 0. Intuitively, this follows from a translation invariance argument, but there are some subtleties involved which
make it the most technical part of the proof of Proposition 4.1.

Lemma 4.3. For n ∈ N, let Kn be the largest i ∈ [1, n]Z for which Xi = F and φ(i) ≤ 0 (or Kn = 0 if no such k

exists). For ε ≥ 0, let An(ε) be the event that Kn �= 0 and Kn ≤ (1 − ε)(Kn − φ(Kn)). There exists ε0 > 0, n0 ∈ N,
and q0 ∈ (0,1/3) such that for each ε ∈ (0, ε0] and n ≥ n0,

P
(
An(ε)

) ≥ 3q0.

Proof. The idea of the proof is as follows. We look at a carefully chosen collection of disjoint discrete intervals
I = [φ(j), j ]Z with Xj = F . We will choose these intervals in such a way that for each such interval I , the event
An(ε) occurs (with i rather than 0 playing the role of the starting point of the word X) whenever i ∈ I with i ≥
ε(j − φ(j)) + φ(j) (i.e., for “most” points of I ). We then use translation invariance to conclude the statement of the
lemma. See Figure 10 for an illustration.

For n ∈ N and i ∈ Z, let Kn
i be the largest j ∈ [i + 1, i + n]Z for which Xj = F and φ(j) ≤ i (if such a j exists)

and otherwise let Kn
i = i. For ε ≥ 0, let An

i (ε) be the event that Kn
i �= i and Kn

i − i ≤ (1 − ε)(Kn
i − φ(Kn

i )), so in
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Fig. 10. An illustration of the proof of Lemma 4.3 in the case when the event Bn occurs and Kn
0 < φ(Kn�n/2
). Each pair of times corresponding

to a flexible order and its match are joined by an arc. Endpoints of discrete intervals belonging to In are shown as blue squares. Points shown in
red are those for which we know An

i
(ε) occurs. If we make ε > 0 small enough, the red points occupy a uniformly positive fraction of [0, n] with

uniformly positive probability. Note that if Kn
0 > φ(Kn�n/2
), then In is empty but the red interval immediately to the left of Kn

0 has length at least

a constant times n. Since P(An
i
(ε)) does not depend on i, this yields a lower bound for P(An

i
(ε)) and hence also for P(An(ε)) = P(An

0(ε)).

particular An
i (0) = {Kn

i �= i}. Note that An
0(ε) = An(ε), and on the event An(0) we have Kn = Kn

0 . By translation
invariance,

P
(
An

i (ε)
) = P

(
An(ε)

)
, ∀i ∈ Z,∀ε ≥ 0. (4.4)

Let Bn be the event that the following is true (using the re-scaled discrete paths from (1.7)).

(1) For each t ∈ [1,2] we have (in the notation (1.7)) either Un(t) ≥ Un(1/2) + 1 or V n(t) ≥ V n(1/2) + 1.
(2) For each t ∈ [1/2,1], either Un(t) ≥ Un(0) + 1 or V n(t) ≥ V n(0) + 1.
(3) The events An

0(0) and An
�n/2
(0) both occur.

By [49, Theorem 2.5] (to deal with the first two conditions) and Proposition 3.5 (to deal with condition (3)), there
exists q̃0 ∈ (0,1) and ñ0 ∈N such that for n ≥ ñ0, we have P(Bn) ≥ q̃0. We observe that for each i ∈ Z, n−1(Kn

i −1) is
a π/2-cone time for Zn (Definition 1.6) with vZn(n−1(Kn

i − 1)) ≤ n−1i. Consequently, condition (1) in the definition
of Bn implies Kn

i ≤ n for each i ∈ [1, n/2]Z. Similarly, condition (2) in the definition of Bn implies Kn
0 < �n/2
.

We claim that on Bn, each i ∈ [1,Kn
0 ]Z satisfies Kn

i = Kn
0 . Since Kn

i ≤ n, it follows from maximality of Kn
i that

either Kn
i = Kn

0 or φ(Kn
i ) > 0. Since two distinct discrete intervals between a F and its match are either nested or

disjoint, if φ(Kn
i ) > 0, then [φ(Kn

i ),Kn
i ]Z ⊂ (φ(Kn

0 ),Kn
0 )Z, which contradicts maximality of Kn

i . Therefore we in
fact have Kn

i = Kn
0 .

We next claim that on Bn, we have [φ(Kn
i ),Kn

i ]Z ⊂ [Kn
0 + 1, φ(Kn

�n/2
) − 1]Z for each i ∈ [Kn
0 + 1, φ(Kn

�n/2
) −
1]Z (note that this interval might be empty, in which case the claim is true vacuously). Indeed, on Bn both Kn

i

and Kn
�n/2
 are at most n, so if Kn

i > Kn
�n/2
 then since φ(Kn

i ) ≤ i < �n/2
, we contradict maximality of Kn
�n/2
.

Hence either Kn
i ∈ [φ(Kn

�n/2
),K
n
�n/2
]Z or Kn

i ∈ [i, φ(Kn
�n/2
)−1]Z. The former case is impossible since two distinct

discrete intervals between a F and its match are either nested or disjoint, so Kn
i ∈ [i, φ(Kn

�n/2
) − 1]Z. If φ(Kn
i ) < 0,

then since Kn
0 + 1 ≤ Kn

i ≤ n we contradict maximality of Kn
0 . Hence we must have φ(Kn

i ) ≥ 0 so since distinct
discrete intervals between a F and its match are either nested or disjoint, we have φ(Kn

i ) ≥ Kn
0 + 1.

Let In be the set of maximal F -intervals in [Kn
0 + 1, φ(Kn

�n/2
) − 1]Z, i.e. the set of discrete intervals I =
[φ(j), j ]Z ⊂ [Kn

0 +1, φ(Kn
�n/2
)−1]Z with Xj = F which are not contained in any larger such discrete interval. Note

that we might have φ(Kn
�n/2
) < Kn

0 , in which case In is empty. For I = [φ(j), j ]Z ∈ In, we write |I | = j − φ(j).
We claim that if Bn occurs and i ∈ [φ(j), j − 1]Z for some I = [φ(j), j ]Z ∈ In, then Kn

i = j (so in particular
An

i (0) occurs). Indeed, we have [φ(Kn
i ),Kn

i ]Z ⊂ [Kn
0 +1, φ(Kn

�n/2
)−1]Z (by the argument above) and i ∈ [φ(j), j −
1]Z, so the claim follows from maximality of I and of Kn

i .
Conversely, if i ∈ [Kn

0 + 1, φ(Kn
�n/2
) − 1]Z and An

i (0) occurs, then [φ(Kn
i ),Kn

i ]Z ∈ In. Thus In can alternatively
be described as the set of discrete intervals [φ(Kn

i ),Kn
i ]Z for i ∈ [Kn

0 + 1, φ(Kn
�n/2
)]Z. Consequently, if i ∈ [Kn

0 +
1, φ(Kn

�n/2
) − 1]Z and An
i (0) occurs, then i ∈ [φ(j), j − 1]Z for some I = [φ(j), j ]Z ∈ In. By splitting [1, n/2]Z

into the three intervals [0,Kn
0 ]Z, [Kn

0 + 1, φ(Kn
�n/2
) − 1]Z, and [φ(Kn

�n/2
), n/2]Z, we obtain

�n/2
∑
i=1

1An
i (0) ≤

∑
I∈In

|I | + Kn
0 + �n/2
 − (

φ
(
Kn

�n/2

) ∨ 0

)
. (4.5)

On the other hand, if i ∈ [φ(j), j − 1]Z for some I = [φ(j), j ]Z ∈ In and i ≥ ε(j − φ(j)) + φ(j), then since
Kn

i = j , the event An
i (ε) occurs. As argued above, on Bn we have Kn

i = Kn
0 for each i ∈ [1,Kn

0 ]Z so if i ∈ [εKn
0 ,Kn

0 ]Z
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then An
i (ε) occurs. Therefore, on Bn,

�n/2
∑
i=1

1An
i (ε) ≥ (1 − ε)

∑
I∈In

|I | + (1 − ε)Kn
0 . (4.6)

By Proposition 3.5, P(An
i (0)) → 1 as n → ∞ (uniformly in i by translation invariance) so for sufficiently large n

(depending only on q̃0),

E

(
1Bn

�n/2
∑
i=1

1An
i (0)

)
=

�n/2
∑
i=1

P
(
An

i (0) ∩ Bn
) ≥ (

P
(
Bn

) − on(1)
)�n/2
 ≥ q̃0

2
�n/2
.

By (4.5),

E

(
1Bn

∑
I∈In

|I |
)

+E
(
1BnKn

0

) +E
(
1Bn

(�n/2
 − (
φ
(
Kn

�n/2

) ∨ 0

))) ≥ q̃0

2
�n/2
.

By (4.6),

E

(
1Bn

�n/2
∑
i=1

1An
i (ε)

)
≥ (1 − ε)

q̃0

2
�n/2
 −E

(
1Bn

(�n/2
 − (
φ
(
Kn

�n/2

) ∨ 0

))) − εE
(
1BnKn

0

)
. (4.7)

On the event An
�n/2
(ε)c , we have �n/2
 − φ(Kn

�n/2
) ≤ εn. Therefore,

E
(
1Bn

(�n/2
 − (
φ
(
Kn

�n/2

) ∨ 0

))) ≤ �n/2
P(
An

�n/2
(ε) ∩ Bn
) + εnP

(
An

�n/2
(ε)
c ∩ Bn

)
≤ �n/2
P(

An
�n/2
(ε)

) + εn.

By definition of Kn
0 , E(1BnKn

0 ) ≤ n, so (4.7) implies that for sufficiently large n,

E

(
1Bn

�n/2
∑
i=1

1An
i (ε)

)
+ �n/2
P(

An
�n/2
(ε)

) ≥ (1 − ε)
q̃0

2
�n/2
 − 2εn.

By (4.4),

(1 + ε)�n/2
P(
An(ε)

) ≥ (1 − ε)
q̃0

2
�n/2
 − 2εn.

Re-arranging this inequality implies the statement of the lemma for appropriate ε0 > 0, q0 ∈ (0,1/3), and n0 ∈ N. �

From Lemma 4.3, we can extract a lower bound for the number of leftover hamburger orders and cheeseburger
orders in the word X(1,Kn).

Lemma 4.4. Let Kn be defined as in the statement of Lemma 4.3. For ε > 0, let Gn(ε) be the event that X(1,Kn)

contains at least ε
√

Kn hamburger orders and at least ε
√

Kn cheeseburger orders. Let q0 be as in Lemma 4.3. There
exists ε0 > 0 and n0 ∈N (depending only on q0) such that for ε ∈ (0, ε0] and n ≥ n0,

P
(
Gn(ε)

) ≥ 2q0.

Proof. The rough idea of the proof is as follows. By Lemma 4.3, we know that for small enough ε̃ > 0 we have
φ(Kn) ≤ −ε̃Kn with uniformly positive probability. By [49, Theorem 2.5] (and since X1 . . .XKn is independent from

. . .X−2X−1), the word X(−ε̃Kn,−1) is likely to contain at least of order K
1/2
n burgers of each type. If this is the
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case and X(1,Kn) contains too few burgers of either type, then φ(Kn) would have to be larger than −ε̃Kn. We now
proceed with the details.

Let ε̃0 > 0 and ñ0 ∈ N be chosen so that the conclusion of Lemma 4.3 holds (with ε̃0 in place of ε0 and ñ0 in place
of n0). For n ∈N let An(̃ε0) be the event of that lemma (with ε = ε̃0). Then for n ≥ ñ0, we have P(An(̃ε0)) ≥ 3q0.

Fix α ∈ (0,1). Let FKn be defined as in Section 4.1 with Kn in place of n and X(1,Kn) in place of X(−Kn,−1).
By Lemma 3.7, we can find m ∈ N such that the probability that there is even one k ≥ m such that X(1, k) contains
more than kν F -symbols is at most α/2. By Proposition 3.5, we can find n′

0 ≥ ñ0 such that for n ≥ n′
0, we have

P(Kn ≥ m) ≥ 1 − α/2. For n ≥ n′
0, we therefore have

P(FKn) ≥ 1 − α. (4.8)

For ε > 0 and k ∈ N, let JH
k (ε) (resp. JC

k (ε)) be the smallest j ∈ N for which the word X(−j,0) contains at least
εk1/2 + kν + 1 hamburgers (resp. cheeseburgers). By [49, Theorem 2.5], the times JH

k (ε) and JC
k (ε) are typically of

order ε2k. More precisely, we can find ε0 ∈ (0, ε̃0] and k0 ∈N such that for k ≥ k0 and ε ∈ (0, ε0],
P
(
JH

k (ε) ∨ JC
k (ε) ≥ ε̃2

0k
) ≤ α.

By Proposition 3.5, we can find n0 ≥ n′
0 such that for n ≥ n0, we have P(Kn ≤ k0) ≤ α.

On the event Gn(ε)
c ∩ FKn , we have −φ(Kn) ≤ JH

Kn
(ε) ∨ JC

Kn
(ε). Since Gn(ε)

c ∩ Fn ∩ {Kn ≥ k0} is independent
from . . .X−2X−1, it follows that for n ≥ n′

0 we have

P
(
Gn(ε)

c ∩ FKn ∩ {−φ(Kn) ≥ ε̃2
0Kn

})
≤ P(Kn ≤ k0) +E

(
P
(
Gn(ε)

c ∩ FKn ∩ {−φ(Kn) ≥ ε̃2
0Kn

} | X1X2 . . .
)
1(Kn≥k0)

)
≤ α +E

(
P
(
JH

Kn
(ε) ∨ JC

Kn
(ε) ≥ ε̃2

0Kn | Kn

)
1(Kn≥k0)

) ≤ 2α.

By definition, on the event An(̃ε0) we have −φ(Kn) ≥ ε̃2
0Kn, so

P
(−φ(Kn) ≥ ε̃2

0Kn

) ≥ 3q0.

Therefore,

P
(
Gn(ε)

c ∩ FKn

) ≤ 1 − 3q0 + 2α.

By combining this with (4.8) we obtain

P
(
Gn(ε)

) ≥ 3q0 − 3α.

Since α is arbitrary this implies the statement of the lemma. �

Proof of Lemma 4.2. Let q0 be as in Lemma 4.3. For n ∈N, define the time Kn as in Lemma 4.3. Choose ε0 > 0 and
n0 ∈ N such that the conclusion of Lemma 4.4 holds, and fix ε ∈ (0, ε0]. By Proposition 3.5, if we are given j ∈ N,
we can choose n ≥ n0 such that P(j + 1 ≤ Kn ≤ n) ≥ 1 − q0/2. Henceforth fix such an n. Then with Gn(ε) as in the
statement of Lemma 4.4, we have

P
(
Gn(ε) ∩ {j + 1 ≤ Kn ≤ n}) ≥ 3

2
q0.

We therefore have

3

2
q0 ≤

n∑
k=j+1

P
(
Gn(ε) | Kn = k

)
P(Kn = k).
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Hence we can find some mj ∈ [j, n − 1]Z for which

P
(
Gn(ε) | Kn = mj + 1

) ≥ 3

2
q0.

We can write {Kn = mj + 1} as the intersection of the event that X(1,mj ) contains no burgers; and the event that
Xmj +1 = F and N F (X(mj + 2, n)) = 0. The latter event is independent of X1 . . .Xmj

, so the conditional law of

X1 . . .Xmj
given {Kn = mj + 1} is the same as its conditional law given that X(1,mj ) contains no burgers. The

event Gn(ε) ∩ {Kn = mj + 1} is the same as the event that Kn = mj + 1 and X(1,mj ) contains at least ε(mj + 1)1/2

hamburger orders and at least ε(mj +1)1/2 cheeseburger orders. By Lemma 3.7 and translation invariance, (4.3) holds
for this choice of mj (with a slightly smaller choice of ε) provided j is chosen sufficiently large. Since mj ≥ j and
j ∈ N was arbitrary, we conclude. �

4.3. Regularity at all sufficiently large times

In this section we will deduce Proposition 4.1 from Lemma 4.2 and an induction argument. See Figure 9 for an
illustration of the argument. Our first lemma tells us that if n > m with n � m and we condition on Em(ε)∩Fm ∩{J >

n}, then it is likely that En(δ0) occurs for some δ0 > 0 which does not depend on ε.

Lemma 4.5. Let q ∈ (0,1) and λ ∈ (0,1/2). There is a δ0 > 0 (depending only on q and λ) such that for each ε > 0,
there exists n∗ = n∗(λ, δ, ε) ∈ N such that for n ≥ n∗ and m ∈ N with λ ≤ m/n ≤ 1 − λ,

P
(
En(δ0) | Em(ε) ∩ Fm,J > n

) ≥ 1 − q.

The main point of Lemma 4.5 is that δ0 does not depend on ε (indeed, the lemma is a trivial consequence of [49,
Theorem 2.5] without this requirement). Intuitively, the reason why Lemma 4.5 holds is that the conditional law of
Zn|[−1,−m/n] given Em(ε) ∩ Fm ∩ {J > n} looks like a Brownian motion started at a point in the interior of the first
quadrant and conditioned to stay in the first quadrant until time −1, and the law of such a conditioned Brownian
motion converges to the law of a process which does not hit the boundary of the first quadrant as the starting point
tends to 0 (see the discussion just above Lemma 3.1).

Proof of Lemma 4.5. For z ∈ (0,∞)2, let Pz,s denote the law of a correlated two-dimensional Brownian motion
Z = (U,V ) as in (1.8) started from Z(0) = z and conditioned to stay in (0,∞)2 for s units of time. We first argue that
there is a δ0 = δ0(q,λ) > 0 such that

inf
z∈(0,∞)2

s∈[λ,1−λ]
Pz,s

(
U(s) ∧ V (s) ≥ δ0

) ≥ 1 − q

2
. (4.9)

By Brownian scaling, if Z ∼ Pz,s then s−1/2Z(s·) ∼ Ps−1/2z,1. Hence it suffices to show that there is a δ1 = δ1(q,λ) >

0 such that

inf
z∈(0,∞)2

Pz,1
(
U(1) ∧ V (1) ≥ δ1

) ≥ 1 − q

2
. (4.10)

By [50, Theorem 2] (c.f. the proof of Lemma (3.2)) the laws Pz,1 converge weakly as z → 0 to a non-degenerate
limiting distribution. Hence we can find δ̃1 > 0 and ε̃ > 0 depending only on q and λ such that Pz,1(U(1) ∧ V (1) ≥
δ̃1) ≥ 1 − q/2 whenever z ∈ (0, ε̃]2.

Moreover, by taking the opening angle of the cone in [50, Theorem 2] to be π and apply a linear transformation,
we find that if y > 0, then as z → (0, y) the law Pz,1 converges to the law of a Brownian motion in the right half-plane
started from (0, y) and conditioned on the event that its second coordinate stays positive. The rate of convergence is
uniform over all y ≥ ε̃ and each of the two coordinate of the limiting distribution is uniformly unlikely to be close to
0 at time 1 for y ≥ ε̃: this can be seen by subtracting (0, y) to get a Brownian motion in the right half-plane started
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from (0,0) and conditioned on the uniformly positive event that it stays above −y. Similar considerations hold with
the two coordinates of Z interchanged.

Hence we can find δ1 ∈ (0, δ̃1] depending only on q , λ, and ε̃ such that Pz,1(U(1)∧V (1) ≥ δ1) ≥ 1−q/2 whenever
at least one coordinate of z is at least ε̃. Thus (4.10) holds.

We now use the scaling limit result [49, Theorem 2.5] to transfer from (4.9) to a statement about the re-scaled
discrete walks Zn = (Un,V n). A little care is needed to deal with the F ’s. For m,n ∈ N, let

hm,n := n−1/2N H
(
X(−m,−1)

)
, cm,n := n−1/2N

C
(
X(−m,−1)

)
, and zm,n := (hn,m, cn,m).

By the definition of Fm = {N F (X(−m,−1) ≤ mν}, if m ≤ n then

Em(ε) ∩ Fm ∩
{

inf
t∈[−1,−m/n]U

n(t) ≥ −hm,n, inf
t∈[−1,−m/n]V

n(t) ≥ −cm,n

}
⊂ Em(ε) ∩ Fm ∩ {J > n}

⊂ Em(ε) ∩ Fm ∩
{

inf
t∈[−1,−m/n]U

n(t) ≥ −hm,n − nν−1/2, inf
t∈[−1,−m/n]V

n(t) ≥ −cm,n − nν−1/2
}
.

Furthermore, zm,n = Zn(−m/n) + On(n
ν−1/2) on the event Fm ∩ {J > m}. By [49, Theorem 2.5] and the Markov

property, for each fixed ε > 0 the Prokhorov distance between the conditional law of Zn(−m/n − ·)|[0,1−m/n] given
{J > n} and X−m . . .X−1 on the event Em(ε) ∩ Fm and the Brownian law Pzm,n,m/n defined above tends to 0 as
n → ∞ uniformly over all m ∈ [λn, (1 − λ)n] (the rate of convergence does, however, depend on ε). The statement
of the lemma follows by combining this convergence with (4.9). �

Our next lemma tells us that if n > m, then it is more likely for {J > n} to occur if Em(ζ ) occurs than if Em(ζ )c

occurs. Intuitively, the reason why this is the case is that if Em(ζ )c occurs, then at time −m the walk D is close to the
boundary of the first quadrant, so it is likely to exit the first quadrant between times −m and −n.

Lemma 4.6. Fix λ ∈ (0,1/2), q0 ∈ (0,1), and ε > 0. Suppose we are given m0 ∈ N such that am0(ε) ≥ q0. Then for
m ∈N with λ ≤ m0/m ≤ 1 − λ, n ∈ N with λ ≤ m/n ≤ 1 − λ, and ζ ∈ (0,1) we have

P(J > n | Em(ζ ))

P(J > n | Em(ζ )c, J > m)
� 1

ζ + om0(1)
, (4.11)

where the implicit constant depends only on q0, λ, and ε; and the rate of the om0(1) depends only on q0, λ, ε, and ζ .

Proof. The proof is an elementary (but slightly tricky) calculation using Bayes’ rule. Let δ0 > 0 be chosen so that the
conclusion of Lemma 4.5 holds with given λ and q = 1/2. Let n∗ = n∗(λ, δ0, ε) ∈N be as in that lemma. The relation
(4.11) is obvious for ζ ≥ δ0, so it suffices to prove (4.11) for ζ ∈ (0, δ0). For m0 ≥ n∗ and m as in the statement of the
lemma,

P
(
Em(δ0) | Em0(ε), J > m

) ≥ 1

2
.

Hence if m0 ≥ n∗ and ζ ∈ (0, δ0), then

P
(
Em(δ0) | Em(ζ )

) ≥ P
(
Em(δ0) | J > m

)
≥ P

(
Em(δ0) | Em0(ε), J > m

)
P
(
Em0(ε) | J > m

)
≥ 1

2
P
(
Em0(ε) | J > m

)
. (4.12)

By Bayes’ rule (applied to the conditional law given {J > m0}),

P
(
Em0(ε) | J > m

) = P(J > m | Em0(ε))P(Em0(ε) | J > m0)

P(J > m | J > m0)
≥ P

(
J > m | Em0(ε)

)
am0(ε). (4.13)
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By [49, Theorem 2.5] and our hypothesis on am0(ε), this quantity is bounded below by a constant depending only on
q0, λ, and ε (not on ζ ). By (4.12), we arrive at

P
(
Em(δ0) | Em(ζ )

) � 1.

By combining this with [49, Theorem 2.5] we obtain

P
(
J > n | Em(ζ )

) ≥ P
(
J > n | Em(δ0)

)
P
(
Em(δ0) | Em(ζ )

) � 1. (4.14)

Next we consider the denominator in (4.11). By Lemma 3.7,

P
(
J > n | Em(ζ )c, J > m

) = P(J > n,Em(ζ )c | J > m)

P(Em(ζ )c | J > m)

≤ P(J > n,Fm,Em(ζ )c | J > m) + o∞
m0

(m0)

P(Em(ζ )c ∩ Fm | J > m)
. (4.15)

We have

P
(
Em(ζ )c ∩ Fm | J > m

) ≥ P
(
Em(ζ )c ∩ Fm | Em0(ε), J > m

)
P
(
Em0(ε) | J > m

)
≥ P

(
Em(ζ )c ∩ Fm | Em0(ε), J > m

)P(Em0(ε))

P(J > m)
.

By [49, Theorem 2.5] and Lemma 3.7, P(Em(ζ )c ∩ Fm | Em0(ε), J > m) is at least a positive constant depending on

ε, λ, and ζ but not on m0 (provided m0 is sufficiently large). By Lemma 3.3,
P(Em0 (ε))

P(J>m)
is bounded below by a constant

(depending only on ε and λ) times a power of m0. Hence (4.15) implies

P
(
J > n | Em(ζ )c, J > m

) ≤ P
(
J > n | Em(ζ )c,Fm,J > m

) + o∞
m0

(m0).

If Em(ζ )c ∩ Fm occurs and J > n, then X(−n,−m − 1) contains either at most ζm1/2 + On(n
ν) hamburgers or at

most ζm1/2 + On(n
ν) cheeseburgers. By [49, Theorem 2.5], we therefore have

P
(
J > n | Em(ζ )c, J > m

) � ζ + om0(1). (4.16)

We conclude by combining (4.14) and (4.16). �

The following lemma is the main input in the induction argument used to prove Proposition 4.1.

Lemma 4.7. Let q, q0 ∈ (0,1) and λ ∈ (0,1/2). There is a ε0 > 0 (depending only on q, q0, and λ) such that for each
ε ∈ (0, ε0] we can find m∗ = m∗(q, q0, λ, ε) ∈ N with the following property. Suppose m,n ∈N with m ≥ m∗ and

λ ≤ m/n ≤ 1 − λ. (4.17)

Suppose further that am(ε) ≥ q0. Then an(ε) ≥ 1 − q .

Proof. Fix q ∈ (0,1). Let m̃ := m+n
2 . By Lemma 4.5 we can find ε0 > 0 (depending only on q and λ) such that for

ε ∈ (0, ε0] and ζ ∈ (0, ε], there exists m̃∗ = m̃∗(ζ, ε, q,λ) ∈N such that if m ≥ m̃∗ and (4.17) holds, then

P
(
En(ε) | Em̃(ζ ), J > n

) ≥ 1 − q and P
(
Em̃(ζ ) | Em(ε), J > m̃

) ≥ 1 − q. (4.18)

Henceforth fix ε ∈ (0, ε0].
Fix α ∈ (0,1) to be chosen later (depending on q, q0, λ, and ε). By Lemma 4.6, we can find ζ ∈ (0, ε] (depending

on λ, α, q0, and ε) and m∗ ≥ m̃∗ (depending on λ, α, q0, ε, and ζ ) for which the following holds. If m ≥ m∗, (4.17)
holds, and am(ε) ≥ q0, then

P
(
J > n | Em̃(ζ )c, J > m̃

) ≤ αP
(
J > n | Em̃(ζ )

)
. (4.19)
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Hence if m ≥ m∗, (4.17) holds, and am(ε) ≥ q0 then

an(ε) = P(En(ε))

P(J > n)
≥ P(En(ε) | Em̃(ζ ))am̃(ζ )

P(J > n | Em̃(ζ ))am̃(ζ ) + P(J > n | Em̃(ζ )c, J > m̃)(1 − am̃(ζ ))

≥ P(En(ε) | Em̃(ζ ))

P(J > n | Em̃(ζ ))
× am̃(ζ )

am̃(ζ ) + α(1 − am̃(ζ ))
. (4.20)

By (4.18),

P(En(ε) | Em̃(ζ ))

P(J > n | Em̃(ζ ))
= P

(
En(ε) | Em̃(ζ ), J > n

) ≥ 1 − q.

Furthermore,

am̃(ζ ) ≥ P
(
Em̃(ζ ) | Em(ε), J > m̃

)
P
(
Em(ε) | J > m̃

) ≥ (1 − q)P
(
Em(ε) | J > m̃

)
. (4.21)

By Bayes’ rule,

P
(
Em(ε) | J > m̃

) = P(J > m̃ | Em(ε))P(Em(ε) | J > m)

P(J > m̃ | J > m)

≥ P(J > m̃ | Em(ε))am(ε)

P(J > m̃ | Em(ε))am(ε) + P(J > m̃,Em(ε)c | J > m)
. (4.22)

By [49, Theorem 2.5] and our assumption on am(ε), this quantity is at least a positive constant c depending on q0, λ

and ε (but not on ζ ). Therefore, (4.21) implies am̃(ζ ) ≥ (1 − q)c, so (4.20) implies

an(ε) ≥ (1 − q)2c

(1 − q)c + α
.

If we choose α sufficiently small relative to c (and hence ζ sufficiently small and m sufficiently large), we can make
this quantity as close to 1 − q as we like. Since q ∈ (0,1) is arbitrary we obtain the statement of the lemma. �

Proof of Proposition 4.1. Let q0 be as in the conclusion of Lemma 4.2. Also fix q ∈ (0,1 − q0] and λ ∈ (0,1/2).
Let ε0 > 0 and m∗ = m∗(q, q0, λ, ε0) ∈ N be chosen so that the conclusion of Lemma 4.7 holds with this
choice of q0. By Lemma 4.2 we can find m ≥ m∗ such that am(ε0) ≥ q0. It therefore follows from Lemma 4.7
that an(ε0) ≥ 1 − q for each n ∈ N with (1 − λ)−1m ≤ n ≤ λ−1m. By induction, for each k ∈ N and each
n ∈ N with (1 − λ)−km ≤ n ≤ λ−km, we have an(ε0) ≥ 1 − q ≥ q0. For sufficiently large k ∈ N, the intervals
[(1 − λ)−km,λ−km] and [(1 − λ)−k−1m,λ−k−1m] overlap, so it follows that for sufficiently large n ∈ N, we have
[n,∞) ⊂ ⋃

k∈N[(1 − λ)−km,λ−km]. Hence an(ε0) ≥ 1 − q for each such n. Thus (4.2) holds. �

5. Convergence conditioned on no burgers

5.1. Statement and overview of the proof

In this section we will prove the following theorem, which is of independent interest and is also needed for the proof
of Theorem 1.8.

Theorem 5.1. As n → ∞, the conditional law of Zn|[−1,0] given the event that X(−n,−1) contains no burgers
converges to the law of Ẑ(−·), where Ẑ has the law of a Brownian motion as in (1.8) started from 0 and conditioned
to stay in the first quadrant until time 1 (as defined just above Lemma 3.1).
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Remark 5.2. There is an analogue of Theorem 5.1 when we condition on the event that X(1, n) contains no orders,
rather than the event that X(−n,−1) contains no orders, which is proven in a similar manner as Theorem 5.1. See
Appendix A.1.

Throughout this section, we continue to use the notation of Section 4.1, so in particular J is the smallest j ∈N for
which X(−j,−1) contains a burger.

The basic outline of the proof of Theorem 5.1 is as follows. First, in Section 5.2, we will prove that when N ∈N is
large, it holds with uniformly positive probability that there is an i ∈ [n,Nn]Z such that X(1, i) contains no burgers
(Lemma 5.3). Using this and [49, Lemma 3.13], in Section 5.3 we will prove that X(−mn,−1) is unlikely to have too
many orders when we condition on {J > n}, for mn ≤ n with mn � n (this complements Proposition 4.1, which says
that X(−n,−1) is unlikely to have too few orders under this conditioning). In Section 5.4, we will deduce tightness of
the conditional laws of Zn|[−1,0] given {J > n}. In Section 5.5, we will complete the proof of Theorem 5.1 by using
Lemma 3.1 to identify a subsequential limiting law.

5.2. Times with empty burger stack

In this section, we will prove the following consequence of Proposition 4.1, which is a weaker version of Proposi-
tion 1.9 (but which is indirectly needed for the proof of Proposition 1.9).

Lemma 5.3. Recall the exponent μ from (3.1). There is a constant b > 0 and an N∗ ∈ N (depending only on p) such
that for N ≥ N∗,

P
(∃i ∈ [n,Nn]Z s.t. X(1, i) contains no burgers

) ≥ bN−μ, ∀n ∈ N. (5.1)

For the proof of Lemma 5.3, we first need the following lemma.

Lemma 5.4. Let J be as in Section 4.1. For each N ∈N,

P(J > Nn | J > n) � N−μ + on(1),

with the implicit constant depending only on p.

Proof. By Proposition 4.1, we can find ε > 0, independent of n, such that (with En(ε) as in Section 4) P(En(ε) | J >

n) ≥ 1
2 +on(1). By [49, Theorem 2.5] and Lemma 3.2, P(J > Nn | En(ε)) � N−μ +on(1), with the implicit constant

depending on ε but not on n. Therefore,

P(J > Nn | J > n) ≥ P
(
J > Nn | En(ε)

)
P
(
En(ε) | J > n

) � N−μ + on(1). �

Proof of Lemma 5.3. For i ∈ N, let Ei be the event that X(1, i) contains no burgers. For j1 ≤ j2 ∈N, let B(j1, j2) be
the number of i ∈ [j1 +1, j2]Z such that Ei occurs. Set Bn := B(n,Nn), so that the probability we seek to lower bound
in (5.1) is P(Bn > 0). We will prove an upper bound for E(B2

n) in terms of E(Bn) then apply the Payley-Zygmund
inequality.

By Lemma 3.10 (applied with Sm equal to the mth time i for which X(1, i) contains no burgers),

E
(
B2

n

) =
Nn∑
i=n

P(Ei) + 2
Nn∑
i=n

Nn∑
j=i+1

P(Ei ∩ Ej)

= E(Bn) + 2
Nn∑
i=n

Nn∑
j=i+1

P(Ei)P(Ej−i )

= E(Bn) + 2
Nn∑
i=n

P(Ei)

Nn−i∑
j=1

P(Ej )
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= E(Bn) + 2
Nn∑
i=n

P(Ei)E
(
B(1,Nn − i)

)
≤ E(Bn) + 2E(Bn)E

(
B(1,Nn)

)
. (5.2)

We are therefore lead to bound E(B(1,Nn)).
By Lemma 5.4, we can find a constant c > 0, independent from N and n, such that for sufficiently large i ∈ N we

have (with J as in that lemma)

P(ENi) = P(J > Ni) ≥ cN−μP(J > i) = cN−μP(Ei).

Therefore,

E
(
B(1,Nn)

) =
Nn∑
i=1

P(Ei) ≤ c−1Nμ

Nn∑
i=1

P(ENi) + On(1). (5.3)

Since P(Ei) = P(J > i) is decreasing in i, the right side of (5.3) is at most c−1Nμ−1E(B(1,N2n)) + On(1). On the
other hand,

E
(
B

(
1,N2n

)) = E
(
B(1,Nn)

) +
N∑

k=2

E
(
B

(
(k − 1)Nn + 1, kNn

))
. (5.4)

Again using that P(Ei) is decreasing in i, we find that each term in the big sum in (5.4) is at most E(Bn). By this and
(5.3),

cN1−μE
(
B(1,Nn)

) ≤ E
(
B(1,Nn)

) + (N − 1)E(Bn) + On(1).

Upon re-arranging we get that for N sufficiently large,

E
(
B(1,Nn)

) ≤ N − 1

cN1−μ − 1
E(Bn) + On(1) � NμE(Bn) + On(1).

By combining this with (5.2), we obtain

E
(
B2

n

) � E(Bn) + NμE(Bn)
2.

Since E(Bn) � 1, the Payley-Zygmund inequality now implies that

P
(∃i ∈ [n,Nn]Z s.t. X(1, i) contains no burgers

) = P(Bn > 0) � N−μ. �

5.3. Upper bound on the number of orders

Proposition 4.1 tells us that it is unlikely that there are fewer than On(n
1/2) hamburger orders or cheeseburgers orders

in X(−n,−1) when we condition on {J > n}. In this section, we will prove some results to the effect that it is unlikely
that there are more than On(n

1/2) orders in X(−n,−1) under this conditioning. These results are needed to prove
tightness of the conditional law of Zn|[−1,0] given {J > n}.

We first need an elementary lemma which allows us to compare the lengths of the reduced words which we get
when we read a given word forward to the lengths when we read the same word backward.

Lemma 5.5. For n ∈ N and j ∈ [2, n]Z,∣∣X(j,n)
∣∣ ≤ ∣∣X(1, n)

∣∣ + ∣∣X(1, j − 1)
∣∣.
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Proof. For j ∈ [1, n]Z, let Aj denote the set of k ∈ [j, n]Z with φ(k) ∈ [1, j − 1]Z and let Bj denote the set of
k ∈ [j, n]Z with φ(k) ≤ 0 or φ(k) ≥ n + 1. Since every symbol in X a.s. has a match, it follows that |X(j,n)| =
|Aj | + |Bj |. On the other hand, for k ∈ Aj we have that Xφ(k) appears in X(1, j − 1) and for k ∈ Bj we have that Xk

appears in X(1, n). The statement of the lemma follows. �

We next prove a regularity result for the length of the reduced words conditioned on {J > m} which holds for
a set of times m ∈ N which is at most exponentially sparse. We emphasize that the lemma says that in some sense
m−1/2 maxj∈[1,m]Z |X(−j,−1)| has an exponential tail. This will be important in the proof of Lemma 5.7 below
because it means that the probability that this maximum word length is unusually large is of smaller order than the
probability that a subsequent word has an unusually small number of burgers (i.e., J is larger than some constant
times m).

Lemma 5.6. There is an N∗ ∈ N such that for each N ≥ N∗, there is a constant c∗(N) > 1 (depending only on N )
such that the following is true. For each q ∈ (0,1/2), there exists k∗ = k∗(q,N) ∈ N such that for k ≥ k∗, we can find
m ∈ [Nk−1 + 1,Nk]Z satisfying

P

(
max

j∈[1,m]Z
∣∣X(−j,−1)

∣∣ ≤ c∗(N) log(1/q)m1/2 | J > m
)

≥ 1 − q. (5.5)

Proof. The proof is similar to that of Lemma 4.2. For k ∈ N, let KNk be the largest i ∈ [1,Nk]Z such that Xi = F
and φ(i) ≤ 0, as in Lemma 4.3. By Lemma 5.3, there is an N∗ ∈ N, a k∗ ∈ N, and a constant c0 > 0 such that for
N ≥ N∗ and k ≥ k∗,

P
(
KNk ∈ [

Nk−1 + 1,Nk
]
Z

) ≥ c0N
−μ. (5.6)

By [49, Lemma 3.13], there are constants c1 > 0 and c2 > 0 (depending only on p) such that for each C > 1,

P

(
max

i∈[1,...,Nk]Z

∣∣X(1, i)
∣∣ ≥ CNk/2

)
≤ c1e

−c2C.

Hence

P

(
max

i∈[1,K
Nk ]Z

∣∣X(1, i)
∣∣ > CK

1/2
Nk ,KNk ∈ [

Nk−1 + 1,Nk
]
Z

)
≤ c1e

−c2N
−1/2C.

For q ∈ (0,1/2), the right side of this inequality is at most qc0N
−μ provided we take

C = C(q,N) = c∗(N) log(1/q), (5.7)

for an appropriate choice of c∗(N) > 1 depending only on N . By (5.6), for this value of c∗(N) and this choice of C,
we therefore have

P

(
max

i∈[1,K
Nk ]Z

∣∣X(1, i)
∣∣ ≤ CK

1/2
Nk ,KNk ∈ [

Nk−1 + 1,Nk
]
Z

)
≥ (1 − q)P

(
KNk ∈ [

Nk−1 + 1,Nk
]
Z

)
.

That is,

Nk∑
n=Nk−1+1

P

(
max

i∈[1,K
Nk ]Z

∣∣X(1, i)
∣∣ ≤ Cn1/2 | KNk = n

)
P(KNk = n) ≥ (1 − q)

Nk∑
n=Nk−1+1

P(KNk = n).

Hence we can find some m ∈ [Nk−1,Nk − 1]Z for which

P

(
max

i∈[1,m]Z
∣∣X(1, i)

∣∣ ≤ Cm1/2 | KNk = m + 1
)

≥ 1 − q.
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By taking the maximum over all j in the inequality of Lemma 5.5, we also have

P

(
max

j∈[1,m]Z
∣∣X(j,m)

∣∣ ≤ 2Cm1/2 | KNk = m + 1
)

≥ 1 − q. (5.8)

Since the conditional law of X1 . . .Xm given {KNk = m + 1} is the same as its conditional law given that X(1,m)

contains no burgers and by translation invariance, we deduce (5.5) from (5.7) and (5.8). �

In order to prove tightness of the conditional law of Zn|[−1,0] given {J > n}, we only need to prove a regularity
condition for an initial segment of the word X−n . . .X−1 with length proportional to n. The reason why this is sufficient
is that once we condition on such a segment and the event {J > n}, we can estimate the rest of the word using
comparison to Brownian motion [49, Theorem 2.5]. In the following lemma, we use Lemma 5.6 to obtain a regularity
statement for such an initial segment.

Lemma 5.7. Let q ∈ (0,1) and ζ > 0. There exists λ0, λ1 ∈ (0,1) and n∗ ∈ N (depending on ζ and q) such that for
each n ≥ n∗, we can find a deterministic mn = mn(ζ, q) ∈ [λ0n,λ1n]Z such that

P

(
max

j∈[1,mn]Z
∣∣X(−j,−1)

∣∣ ≤ ζn1/2 | J > n
)

≥ 1 − q. (5.9)

Proof. Let N∗ ∈ N be chosen sufficiently large that the conclusion of Lemma 5.6 holds. Also fix N ≥ N∗ (chosen in
a universal manner) and let c∗(N) be as in that lemma.

Let α ∈ (0,1/4) to be chosen later (depending on ζ and q) and let

ρ(α) := (
c∗(N) log(1/α)

)−1
. (5.10)

Given ζ > 0, let kn be the largest k ∈N for which ρ(α)−1Nk/2 ≤ ζn1/2. We assume that α is chosen sufficiently small
that ρ(α)ζNk/2 ≤ n, so that Nk ≤ n. If n is chosen sufficiently large (depending on α and ζ ), then by Lemma 5.6 we
can find mn ∈ [Nkn−1,Nkn ]Z such that (5.5) holds with α in place of q . For such an mn,

mn ∈ [
λ0(α)n,λ1(α)n

]
Z

for λ0(α) = N−2ζ 2ρ(α)2 and λ1(α) = ζ 2ρ(α)2. (5.11)

Hence to prove the statement of the lemma it suffices to show that for a small enough value of α (depending only on
ζ and q), the relation (5.9) holds with this choice of mn.

To lighten notation, let

Gmn :=
{

max
j∈[1,mn]Z

∣∣X(−j,−1)
∣∣ ≤ ζn1/2, J > mn

}
.

be the event appearing in (5.9). By (5.5) and our choice of mn,

P(Gmn | J > mn) ≥ 1 − α. (5.12)

We need to show that if α is chosen sufficiently small and n is chosen sufficiently large (depending on ζ and q), then
we can transfer this to a lower bound when we further condition on {J > n}.

We will do this via the following Bayes’ rule calculation. By (5.12) and Bayes rule applied to the conditional
probability given {J > mn},

P(Gmn | J > n) ≥ P(J > n | Gmn)P(Gmn | J > mn)

P(J > n | Gmn)P(Gmn | J > mn) + P(Gc
mn

| J > mn)

≥ (1 − α)P(J > n | Gmn)

(1 − α)P(J > n | Gmn) + α
= (1 − α)

(1 − α) + αP(J > n | Gmn)
−1

. (5.13)

We want to show that this last quantity is at least 1 − q if α is chosen sufficiently small (depending only on ζ and q)
so we need a lower bound for P(J > n | Gmn) which tends to zero slower than α as α → 0. The reason we will be
able to obtain such a bound is that λ0(α) from (5.11) decays only logarithmically in α.
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By Proposition 4.1, we can find ε > 0 (depending only on p) and ñ∗ ∈ N (depending on ε, α, and ζ ) such that with
Emn(ε) as in Section 4.1, we have P(Emn(ε) | J > mn) ≥ 1/2 for each n ≥ ñ∗. By (5.12) and since α ∈ (0,1/4), for
this choice of ε, it holds for n ≥ ñ∗ that

P(J > n | Gmn) = P
(
J > n | Emn(ε) ∩ Gmn

)
P
(
Emn(ε) | Gmn

)
≥ P

(
J > n | Emn(ε) ∩ Gmn

)
P
(
Emn(ε) ∩ Gmn | J > mn

)
≥ 1

4
P
(
J > n | Emn(ε) ∩ Gmn

)
. (5.14)

The event {J > n} is the same as the event that the number of orders matched to H ’s (resp. C ’s) in X(mn,n)

is at most the number of H ’s (resp. C ’s) in X(1,mn). The latter two quantities are bounded below by εm
1/2
n on

Emn(ε). It therefore follows from [49, Theorem 2.5] and (5.11) that there is an n∗ ≥ ñ∗ (depending on α, ζ , and
p) such that the conditional probability that {J > n} given any realization of X1 . . .Xmn for which Emn(ε) occurs is
bounded below by 1/2 (say) times the probability that Z stays in the λ0(α)1/2ε-neighborhood of the first quadrant for
one unit of time, where here λ0 is as in (5.11). By Lemma 3.2, we find that constant c0 > 0 (depending only on p)
such that for n ≥ n∗,

P
(
J > n | Emn(ε) ∩ Gmn

) ≥ c0
(
λ0(α)1/2ε

)μ ≥ 4c1
(
log(1/α)

)−μ
, (5.15)

where c1 = 1
4ζμc∗(N)μN−μεμ is a constant which depends on ζ and p, but not on α.

By (5.14) and (5.15), for n ≥ n∗,

P(J > n | Gmn) ≥ c1
(
log(1/α)

)−μ
.

Plugging this bound into (5.13) shows that the right side of the latter inequality tends to 1 as α → 0. Consequently, if
α is chosen sufficiently small (depending on ζ and q), and hence n∗ is chosen sufficiently large (depending on ζ and
q) then this quantity is at least 1 − q . �

5.4. Proof of tightness

In this section we will prove tightness of the conditional laws of Zn|[−1,0] given {J > n}.

Lemma 5.8. The conditional laws of Zn|[−1,0] given {J > n} for n ∈ N are a tight family of probability measures on
the set of continuous functions on [−1,0] in the topology of uniform convergence.

We first need the following basic consequence of the results of Section 4.

Lemma 5.9. Suppose we are in the setting of Section 4.1. Let λ ∈ (0,1/2) and q ∈ (0,1). There exists ε > 0 and
n∗ ∈N, depending only on q and λ, such that for each n ≥ n∗ and m ∈N with λ ≤ m/n ≤ 1 − λ,

P
(
Em(ε) | J > n

) ≥ 1 − q.

Proof. Fix α ∈ (0,1) to be determined later, depending only on q . By Proposition 4.1, we can find ε0 > 0 and m∗ ∈N

such that (in the notation of Section 4.1) it holds for each m ≥ m∗ and ε ∈ (0, ε0] that am(ε) ≥ 1 − α. By Lemma 4.6,
we can find ε ∈ (0, ε0] and n∗ ∈ N with n∗ ≥ λ−2m∗ such that for n ≥ n∗ and m as in the statement of the lemma, we
have

P
(
J > n | Em(ε)c, J > m

) ≤ αP
(
J > n | Em(ε)

)
.
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By Bayes’ rule,

P
(
Em(ε) | J > n

) = P(J > n | Em(ε))am(ε)

P(J > n | Em(ε))am(ε) + P(J > n | Em(ε)c, J > m)(1 − am(ε))

≥ 1 − α

1 − α + α2
.

By choosing α sufficiently small, in a manner which depends only on q , we can make this last quantity greater than
or equal to 1 − q . �

Proof of Lemma 5.8. By the Arzéla–Ascoli theorem, we need to show that for each ζ ∈ (0,1), there exists δ > 0 and
n∗ ∈ N such that for n ≥ n∗, it holds with conditional probability at least 1 − ζ given {J > n} that the following is
true: whenever t1, t2 ∈ [−1,0] with |t1 − t2| ≤ δ, we have |Zn(t1) − Zn(t2)| ≤ ζ . Let G̃n(ζ, δ) be the event that this is
the case.

Suppose we are given ζ, q ∈ (0,1). By Lemma 5.7, we can find n1 ∈ N and λ0, λ1 ∈ (0,1) (depending on ζ and
q) such that for each n ≥ n1 there exists mn ∈ [λ0n,λ1n]Z such that (5.9) holds. By Lemma 5.9, we can find ε > 0
and n2 ≥ n1 (depending on ζ and q) such that for n ≥ n2, we have P(Emn(ε) | J > n) ≥ 1 − q , with Emn(ε) as in
Section 4.1. By [49, Theorem 2.5] and the Markov property, we can find n∗ ≥ n2 and δ = δ(q, ζ ) > 0 such that if
n ≥ n∗, then with conditional probability at least 1 − q given

Emn(ε) ∩
{

max
j∈[1,mn]Z

∣∣X(−j,−1)
∣∣ ≤ ζn1/2

}
∩ {J > n}

it holds that whenever t1, t2 ∈ [−1,−mn/n] with |t1 − t2| ≤ δ, we have |Zn(t1) − Zn(t2)| ≤ ζ . If this is the case and
maxj∈[1,mn]Z |X(−j,−1)| ≤ ζn1/2, then G̃n(2ζ, δ) occurs.

Combining the estimates in the preceding paragraph shows that for n ≥ n∗,

P
(
G̃n(2ζ, δ) | J > n

) ≥ (1 − 2q)(1 − q).

Since q can be made arbitrarily small (depending on ζ ) and ζ ∈ (0,1) is arbitrary, we obtain the desired tightness. �

5.5. Identifying the limiting law

To identify the law of a subsequential limit of the laws of Zn|[−1,0] given {J > n}, we need the following fact from
elementary probability theory.

Lemma 5.10. Let (Xn,Yn) be a sequence of pairs of random variables taking values in a product of separable metric
spaces �X ×�Y and let (X,Y ) be another such pair of random variables. Suppose (Xn,Yn) → (X,Y ) in law. Suppose
further that there is a family of probability measures {Py : y ∈ �Y } on �X , indexed by �Y , such that for each bounded
continuous function f : �X → R,

E
(
f (Xn) | Yn

) → EPY
(f ) in law.

Then PY is the regular conditional law of X given Y .

Proof. Let g : �Y → R be a bounded continuous function. Then for each bounded continuous function f : �X →R,

E
(
f (X)g(Y )

) = lim
n→∞E

(
f (Xn)g(Yn)

) = lim
n→∞E

(
E

(
f (Xn) | Yn

)
g(Yn)

) = E
(
EPY

(f )g(Y )
)
.

By the functional monotone class theorem, we have E(F (X,Y )) = E(EPY
(F (·, Y ))) for every bounded Borel-

measurable function F on �X × �Y . This implies the statement of the lemma. �

Proof of Theorem 5.1. By Lemma 5.8 and the Prokhorov theorem, from any sequence of integers tending to ∞, we
can extract a subsequence N along which the conditional laws of Zn given J > n converge to the law of some random
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continuous function Z̃ = (Ũ , Ṽ ) : [−1,0] → R2. We must show that Z̃
d= Ẑ(−·), with Ẑ as defined in the statement

of the theorem.
By Lemma 5.9, we a.s. have Ũ (s) > 0 and Ṽ (s) > 0 for each s ∈ (0,1). By Lemma 3.1, it therefore suffices to show

that for each ζ ∈ (0,1), the conditional law of Z̃|[−1,−ζ ] given Z̃|[−ζ,0] is that of a Brownian motion with covariances
as in (1.8), starting from Z̃(−ζ ), parametrized by [−1,−ζ ], and conditioned to stay in the first quadrant.

Fix ζ ∈ (0,1). Also let Dζ be the path defined in the same manner as the path D of (1.6) in Section 1.3 but with

the following modification: if j ∈ [−ζn,−1]Z, Xj = F , and −φ(−j) > ζn, then Dζ (−j) − Dζ (−j + 1) is equal
to zero rather than (1,0) or (0,1). Extend Dζ to [−ζn,0] by linear interpolation (we require it to be constant on
[−ζn,−�ζn
]). For t ∈ [−ζ,0], let Zn

ζ (t) := n−1/2Dζ (nt). The reason for introducing Zn
ζ is that this path determines

and is determined by X−�ζn
 . . .X−1, so is independent from . . .X−�ζn
−2X−�ζn
−1 and hence also from (Zn −
Zn(−ζ ))|(−∞,−ζ ].

It follows from Lemma 3.7 that supt∈[−ζ,0] |Zn
ζ (t) − Zn(t)| → 0 in law, even if we condition on {J > n}, whence

Zn
ζ → Z̃|[−ζ,0] in law as N � n → ∞.

Let (X̂n) be a sequence of random words distributed according to the conditional law of X−n . . .X−1 given {J > n}.
Let (Ẑn) be the corresponding paths, so that each Ẑn has the conditional law of Zn given {J > n}. Let Ẑ

n
ζ be the

corresponding random paths Zn
ζ . By the Skorokhod theorem, we can couple (X̂n)n∈N with Z̃ in such a way that a.s.

Ẑ
n
ζ → Z̃|[−ζ,0] uniformly as N � n → ∞.
We will now apply Lemma 5.10. For z ∈ (0,∞)2, let Pz be the regular conditional law of Ẑ|[−1,−ζ ] given {Ẑ(−ζ ) =

z}, i.e., the law of a correlated two-dimensional Brownian motion as in (1.8) started from z, parametrized by [−1,−ζ ],
and conditioned to stay in the first quadrant. We first note that taking a limit as N � n → ∞ in the estimates of Lemmas
3.7 and 5.9 shows that a.s. each coordinate of Z̃(−ζ ) is positive, so a.s. there exists a random ε > 0 for which the
event E�ζn
(ε) ∩ F�ζn
 (defined as in Section 4.1) occurs for each large enough n ∈ N . By [49, Theorem 2.5], the
Markov property, and the uniform convergence Zn

ζ → Z̃|[−ζ,0], for each fixed ε > 0 the conditional law of Zn|[−1,−ζ ]
given J > n and any realization of Ẑn

ζ for which E�ζn
(ε)∩F�ζn
 occurs converges a.s. to the law PZ̃(−ζ ). Combining
the previous two sentences shows that for any bounded continuous function f from the space of continuous functions
[−1,−ζ ] → R2 (in the uniform topology) to R, a.s.

E
(
f

(
Zn

[−1,−ζ ]
) | J > n,Zn

ζ

) → EPZ̃(−ζ )

(
f (Ẑ|[−1,−ζ ])

)
, (5.16)

where EPZ̃(−ζ )
denotes expectation with respect to the law PZ̃(−ζ ). We now conclude by applying Lemma 5.10 with

Xn = Ẑn|[−1,−ζ ], Yn = Zn
ζ , X = Z̃|[−1,−ζ ], and Y = Z̃|[−ζ,0]. �

6. Convergence of the cone times

In this section we will conclude the proof of Theorem 1.8. We start in Section 6.1 by proving that the law of the
random variable J studied in Section 4 is regularly varying (Proposition 6.1). This will be accomplished by means
of Theorem 5.1. We will deduce several consequences from this regular variation, including Proposition 1.9, which
gives the existence of macroscopic F -intervals. In Section 6, we will deduce Theorem 1.8 from Proposition 1.9. In
Section 6.3, we record an analogue of Theorem 1.8 in the setting of Theorem 5.1, i.e. when we condition on the event
that the reduced word contains no burgers.

6.1. Regular variation

We say that the law of a random variable A is regularly varying with exponent α if for each c > 1,

lim
a→∞

P(A > ca)

P(A > a)
= c−α.

In this subsection we will prove that the laws of several quantities associated with the word X are regularly varying.
In doing so, we will obtain Proposition 1.9. See Appendix A for analogues of the results of this subsection when we
read X forward and condition on no orders.
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Proposition 6.1. Let J be the smallest j ∈ N for which X(−j,−1) contains a burger. The law of J is regularly
varying with exponent μ, as defined in (3.1). If J̃ denotes the smallest j ∈ N for which X(−j,−1) contains no
F -symbols, then J̃ is also regularly varying with exponent μ.

We note that Proposition 6.1 can be viewed as an analogue for the random path D = (d, d∗) studied in this paper
of the tail asymptotics for the exit time from a cone of a random walk with independent increments obtained in [9,
Theorem 1]. However, unlike the estimate which is implicit in Proposition 6.1, the estimate of [9] does not involve a
slowly varying correction.

Proof of Proposition 6.1. For c > 1 and z ∈ (0,∞)2, write �c(z) for the probability that a two-dimensional Brownian
motion with covariances (1.8) started from z stays in the first quadrant until time c − 1. Note that �c is a bounded
continuous function of z. Also let Ẑ = (Û , V̂ ) have the law of Z|[−1,0] conditioned to stay in the first quadrant.

Since the conditional law of Zn|[−1,0] given J > n converges to the law of Ẑ (Theorem 5.1) and the unconditional
law of (Zn − Zn

−1)|[−c,−1] converges to the law of (Z − Z−1)|[−c,−1], we infer that

P(J > cn | J > n) = P(J > cn)

P(J > n)
→ f (c) as n → ∞,

where f (c) := E(�c(Ẑ(1))).
We have f (1) = 1, f (c) ∈ (0,1) for each c > 1, and

f (c)f
(
c′) = lim

n→∞
P(J > cn)

P(J > n)
× P(J > cc′n)

P(J > cn)
= f

(
cc′).

We infer that f (c) = c−α for some α > 0.
To identify α, we need only consider the asymptotics of E(�c(Ẑ(1))) as c → ∞. To this end, we apply [50,

Equation 4.3] (c.f. the proof of Lemma 3.2) to get that for fixed z ∈ (0,∞)2,

lim
c→∞ cμ�c(z) = �(z)

for some positive continuous function � on (0,∞)2 which is bounded in every neighborhood of the origin. By
the formula [50, Equation 3.2] for the density of the law of Ẑ(1), it follows that P(|Ẑ(1)| > A) decays quadratic-
exponentially in A. By Brownian scaling and [50, Equation 4.2],

sup
z∈BA(0)∩(0,∞)2

∣∣�c(z)
∣∣ � c−μA2μ

with the implicit constant depending only on p. Hence

E
(∣∣cμ�c

(
Ẑ(1)

)∣∣1{|cμ�c(Ẑ(1))|≥A}
) → 0

as A → ∞, uniformly in c. By the Vitalli convergence theorem, cμf (c) = E(cμ�c(Ẑ(1))) converges to a finite
constant as c → ∞, whence we must have α = μ.

For the last statement, we note that with probability 1 − p/2 we have Ĵ = 1, and with probability p/2, Ĵ is equal
to the smallest j ∈ N for which X(−j,−2) contains a burger. It follows that for n ≥ 2 we have P(Ĵ > n) = p

2 P(J >

n − 1). Hence

lim
n→∞

P(J > cn)

P(J > n)
= lim

n→∞
P(Ĵ > cn)

P(Ĵ > n)
. �

From Proposition 6.1, we can deduce that there a.s. exist macroscopic F -intervals, which is the key input in our
proof of Theorem 1.8 in the next section.
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Proof of Proposition 1.9. For m ∈N, let J̃m be the mth smallest j ∈ N for which X(−j,−1) contains no F symbols.
Then the increments J̃m − J̃m−1 are i.i.d. By Corollary 6.1, the law of J̃1 is regularly varying with exponent μ ∈ (0,1).
For n ∈ N let Mn be the largest m ∈ N for which J̃m ≤ n. By the Dynkin–Lamperti theorem [12,26], n−1(n − JMn)

converges in law to a generalized arcsine distribution with parameter μ. Since this distribution does not have a point
mass at the origin, the probability that n − JMn ≤ δn, which is greater than or equal to the probability that X(−(1 −
δ)n,−1) contains no F ’s, tends to 0 as n → ∞ and then δ → 0. By the translation invariance of the law of X, this
implies the proposition statement. �

We end by recording some consequences of Proposition 6.1 which are of independent interest, but are not needed
for the proof of Theorem 1.8.

Corollary 6.2. The statement of Lemma 3.7 holds, exactly as stated, with 1 − μ in place of μ′.

Proof. By Proposition 6.1 and translation invariance,

P
(
X(1, i) contains no burgers

) = P(J > i) = i−μ+oi (1), ∀i ∈N.

The corollary now follows from Lemma 3.9 (c.f. the proof of Lemma 3.7). �

Corollary 6.3. Let KF be the smallest i ∈ N for which X(1, i) contains a flexible order. The law of KF is regularly
varying with exponent 1 − μ.

Proof. For m ∈ N, let KF
m be the smallest i ∈ N for which X(1, i) contains at least m flexible orders. The words

XKF
m−1+1 . . .XKF

m
are iid. For n ∈N, let M∗

n be the largest m ∈N for which KF
m ≤ n. Equivalently, KF

M∗
n

is the greatest

integer i ∈ [1, n]Z such that Xi = F and φ(i) ≤ 0. By translation invariance, we have KF
M∗

n

d= n− J̃Mn , with the latter

defined in the proof of Proposition 1.9. Hence the law of n−1KF
M∗

n
converges to the generalized arcsine distribution

with parameter μ. Therefore n−1(n − KF
M∗

n
) converges in law to a generalized arcsine distribution with parameter

1 − μ. By the converse to the Dynkin–Lamperti theorem, KF
M∗

n
is regularly varying with exponent 1 − μ. �

Remark 6.4. In the terminology of [3], Corollary 6.3 states that the law of the area of the part traced after time 0 of
the “envelope” of the smallest loop surrounding the root vertex in the infinite-volume model is regularly varying with
exponent 1 − μ. In [3, Section 1.2], the authors conjecture that the tail exponent for the law of the area of this loop
itself is 1 − μ. We expect that this conjecture (plus a regular variation statement for the tail) can be deduced from
Proposition 6.1 and Corollary 6.3 via arguments which are very similar to some of those given in Sections 4 and 5 of
the present paper, but we do not carry this out here.

6.2. Proof of Theorem 1.8

In this section, we will complete the proof of Theorem 1.8. We first need a general deterministic statement about the
convergence of π/2-cone times which in particular will allow us to deduce condition (4) in the theorem statement
from the other conditions. To state this result, we need to introduce the notion of a strict π/2-cone time, which is
defined in the same manner as a weak π/2-cone time (Definition 1.6) but with weak inequalities replaced by strict
inequalities.

Definition 6.5. A time t is called a strict π/2-cone time for a function Z = (U,V ) : R → R2 if there exists t ′ < t

such that U(t) > U(t) and V (s) > V (t) for each s ∈ (t ′, t). Equivalently, Z((t ′, t)) is contained in the open cone
Z(t) + {z ∈C : arg z ∈ (0,π/2)}. We write ṽZ(t) for the infimum of the times t ′ for which this condition is satisfied.

If t is a strict π/2-cone time for Z, then t is also a weak π/2-cone time for Z and we have ṽZ(t) ≤ vZ(t). The
reverse inequality need not hold. For example, Z might enter the closed cone at time ṽZ(t), hit the boundary of the
closed cone at time vZ(t) ∈ (̃vZ(t), t), then stay in the open cone until time t .
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Lemma 6.6. Let Z = (U,V ) :R→ R2 be a continuous path with the following properties.

(1) Each weak π/2-cone time t for Z is a strict π/2-cone time for Z and satisfies ṽZ(t) = vZ(t).
(2) Z has no weak π/2-cone times t with Z(vZ(t)) = Z(t).
(3) lim inft→−∞ U(t) = lim inft→−∞ V (t) = −∞.

Let Zn = (Un,V n) be a sequence of continuous paths R → R2 such that Zn → Z uniformly on compacts. Suppose
that for each n ∈N, tn is a weak π/2-cone time for Zn. Suppose further that almost surely lim infn→∞(tn −vZn(tn)) >

0. If tn → t for some t ∈ R, then t is a strict π/2-cone time for Z. Furthermore, limn→∞ vZn(tn) = vZ(t),
limn→∞ uZn(tn) = uZ(t), and the direction of the π/2-cone time tn for Zn is the same as the direction of the π/2-cone
time t for Z for sufficiently large n.

Note that the conditions on Z of Proposition 6.6 are a.s. satisfied for the correlated Brownian motion of (1.8).

Proof of Lemma 6.6. We can choose a compact interval [a0, b] ⊂ R such that tn ∈ [a0, b] for each n ∈ N. By
our assumption (3) on Z, we can find a1 < a0 such that infs∈[a1,a0] U(s) < infs∈[a0,b] U(s) and infs∈[a1,a0] V (s) <

infs∈[a0,b] V (s). For sufficiently large n, the same is true with (Un,V n) in place of (U,V ). Therefore, we can find
a ∈ (−∞, a1] such that tn, vZn(tn), and uZn(tn) belong to [a, b] for each n ∈ N.

By local uniform convergence of Zn to Z, we can find δ > 0 such that U(s) ≥ U(t) and V (s) ≥ V (t) for each
s ∈ [t − δ, t], so t is a weak π/2-cone time for Z. By assumption (1), t is in fact a strict π/2-cone time for Z.

Suppose without loss of generality that t is a left π/2-cone time for Z, i.e. V (vZ(t)) = V (t). Let v be any sub-
sequential limit of the times vZn(tn). Then with n restricted to our subsequence we have limn→∞ Un(vZn(tn)) =
U(v) and limn→∞ V n(vZn(tn)) = V (v). Furthermore, U(s) ≥ U(t) and V (s) ≥ V (t) for each s ∈ [v, t]. There-
fore v ≥ vZ(t). We clearly have v < t , so since t is not a right π/2-cone time for Z (assumption (2)) we have
U(v) > U(t). Hence Un(vZn(tn)) > U(t) for sufficiently large n in our subsequence. Since Un(tn) → U(t), we have
Un(vZn(tn)) > Un(tn) for sufficiently large n in our subsequence. Hence V n(vZn(tn)) = V n(tn) for sufficiently large
n in our subsequence. Since this holds for every choice of subsequence we infer V n(vZn(tn)) = V n(tn) for sufficiently
large n. Moreover, for every choice of subsequence we have V (v) = limn→∞ V n(tn) = V (t), whence v = vZ(t) and
vZn(tn) → vZ(t).

Finally, let u be any subsequential limit of the times uZn(tn). Then along our subsequence we have U(u) =
limn→∞ Un(uZn(tn)) = limn→∞ Un(tn) = U(t). Furthermore, U(s) ≥ U(t) for each s ∈ [u, t]. Therefore u = uZ(t).
Since this holds for every such subsequential limit we obtain limn→∞ uZn(tn) = uZ(t). �

The following lemma is the main ingredient in the proof of Theorem 1.8.

Lemma 6.7. Fix a ∈ R and r > 0. Define the times τa,r and ι
a,r
n as in the statement of Theorem 1.8. Suppose we

have (using [49, Theorem 2.5] and the Skorokhod representation theorem) coupled countably many instances Xn of
the infinite word X with the Brownian motion Z = (U,V ) in such a way that Zn → Z uniformly on compacts a.s.,
with Zn = (Un,V n) constructed from the word Xn. Then n−1ι

a,r
n → τa,r in probability.

Proof. By translation invariance we can assume without loss of generality that a = 0. To lighten notation, in what
follows we fix r and omit both a and r from the notation. To prove the lemma, we will define random times ι̃n, ι

′
n ∈N

and an event Gn (depending on Xn and Z) such that P(Gn) → 1 and on Gn, ι̃n ≤ ιn ≤ ι′n and n−1̃ιn and n−1ι′n are
each close to τ . See Figure 11 for an illustration of the proof.

Let ε > 0 be arbitrary. We observe the following.

(1) By Proposition 1.9, we can find ζ1 ∈ (0, ε) (depending only on ε) and an Ñ ∈ N such that for each n ≥ Ñ , it
holds with probability at least 1 − ε/2 that there is an i ∈ [ζ1n, εn]Z such that Xi = F and φ(i) ≤ 0. Note that
for such an i, X(1, i) has no burgers. By [49, Theorem 2.5], after possibly increasing Ñ we can find δ1 > 0
(depending only on ζ1) such that for n ≥ Ñ , it holds with probability at least 1 − ε that X(1, ζ1n) contains at least
δ1n

1/2 hamburger orders and at least δ1n
1/2 cheeseburger orders. Hence with probability at least 1 − ε, there is

an i ∈ [ζ1n, εn]Z such that Xi = F , φ(i) ≤ 0, and X(1, i) contains at least δ1n
1/2 hamburger orders and at least

δ1n
1/2 cheeseburger orders.
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Fig. 11. An illustration of the proof of Lemma 6.7. By uniform convergence, we can find an “approximate” π/2 cone time n−1̃ιn for Zn which
is close to τ , and which is defined in such a way that ι̃n is a stopping time for the filtration generated by the word X. By the Markov property
and Proposition 1.9, it holds with high probability that when we grow a little bit more of the path Zn (shown in green), then we arrive at a true
π/2-cone time n−1ιn for Zn shortly after time n−1̃ιn which corresponds to a flexible order. This time n−1ι′n is close to the time n−1ιn which we
are trying to show converges to τ .

(2) Since τ is a.s. finite, there is some deterministic b > 1 such that P(τ < b − 1) ≥ 1 − ε.
(3) For t ≥ 0 let

V (t) := V (t) − inf
s∈[t−r,t]V (s), U(t) := U(t) − inf

s∈[t−r,t]U(s), Z(t) = (
U(t),V (t)

)
. (6.1)

Note that zeros of Z are precisely the π/2-cone times of Z in [0,∞) with t − vZ(t) ≥ r . For δ2 > 0, the sets

Z
−1

(Bδ2(0)) ∩ [0, b] are compact, and their intersection is Z
−1

(0) ∩ [0, b]. Therefore there a.s. exists a random

δ2 ∈ (0,1) such that Z
−1

(Bδ2(0)) ∩ [0, b] ⊂ Bζ1(Z
−1

(0)) ∩ [0, b], i.e. whenever t ∈ [0, b] with |Z(t)| ≤ δ2, we
have Z(s) = 0 for some s ∈ [0, b] with |s − t | ≤ ζ . We can find a deterministic δ2 ∈ (0,1) such that this condition
holds with probability at least 1 − ε.

(4) Set δ = 1
4 (δ1 ∧ δ2). By equicontinuity we can find a deterministic ζ2 ∈ (0, ζ1] such that with probability at least

1−ε, we have |Zn(t)−Zn(s)| ≤ δ/2 and |Z(t)−Z(s)| ≤ δ/2 whenever t, s ∈ [−vZ(τ)−1, τ +1] and |t −s| ≤ ζ2.

(5) By uniform convergence, we can find a deterministic N ∈ N such that N ≥ ζ−1
2 ∨ Ñ and with probability at least

1 − ε, we have for each n ≥ N that supt∈[−r−1,b] |Z(t) − Zn(t)| ≤ δ/4.

Let E be the event that the events described in observations (2) through (5) above hold simultaneously. Then P(E) ≥
1 − 4ε.

For n ∈ N let ι̃n be the smallest i ∈ N such that V n(n−1i) ≤ V n(s) + δ and Un(n−1i) ≤ Un(s) + δ for each
s ∈ [n−1i − r, n−1i]. Since δ is deterministic, ι̃n is a stopping time for Xn, read forward. We note that the defining
condition for ι̃n is satisfied with i = ιn, so we necessarily have ιn ≥ ι̃n.

We claim that if n ≥ N , then on E we have

τ − ζ1 ≤ n−1̃ιn ≤ τ. (6.2)

Since τ is a π/2-cone time for Z with τ − vZ(τ) ≥ r , it follows from our choice of ζ2 in observation (4) and our
choice of N in observation (5) that the condition in the definition of ι̃n is satisfied provided i is chosen such that
n−1i ∈ [τ − ζ2, τ ] (such an i must exist since N ≥ ζ−1

2 ). Therefore n−1̃ιn ≤ τ . By our choice of δ in observation (4)
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and our choice of N in observation (5) we have on E (in the notation of (6.1))

V
(
n−1̃ιn

) ≤ V n
(
n−1̃ιn

) − inf
s∈[n−1̃ιn−r,n−1̃ιn]

V n(s) + 2δ ≤ δ2,

and similarly with U in place of V . By observation (3) there exists s ∈ [0, τ + 1] such that |s − n−1̃ιn| ≤ ζ1 and
Z(s) = 0. This s is a π/2-cone time for Z with s − vZ(s) ≥ r . By definition, s ≥ τ , so n−1̃ιn ≥ s − ζ1 ≥ τ − ζ1. This
proves (6.2).

Since ι̃n is a stopping time for Xn, the strong Markov property and observation (1) together imply that it holds
with probability at least 1 − ε that there exists i ∈ [̃ιn + ζ1n,̃ ιn + εn]Z such that Xi = F , φ(i) ≤ ι̃n, and X(̃ιn + 1, i)

contains at least δ1n
1/2 hamburger orders and at least δ1n

1/2 cheeseburger orders. Let ι′n denote the smallest such i

(if such an i exists) and otherwise let ι′n = ι̃n. For n ∈ N let Gn be the event that ι′n > ι̃n. Then for n ≥ N we have
P(Gn ∩ E) ≥ 1 − 5ε.

By (6.2), on the event Gn ∩ E we have n−1ι′n ≥ n−1̃ιn + ζ1 ≥ τ and 0 ≤ n−1ι′n − τ ≤ |n−1̃ιn − τ | + ε ≤ 2ε. By
combining this with (6.2) we obtain that if E occurs (even if Gn does not occur) then∣∣n−1ι′n − τ

∣∣ ≤ 2ε and
∣∣n−1̃ιn − τ

∣∣ ≤ ε. (6.3)

Since V n(n−1̃ιn) ≤ V n(s) + δ and Un(n−1̃ιn) ≤ Un(s) + δ for each s ∈ [n−1̃ιn − r, n−1̃ιn] on the event E ∩ Gn, the
word X(̃ιn − rn,̃ ιn) contains at most δn1/2 ≤ δ1n

1/2 burgers of each type. On Gn, the word X(̃ιn + 1, ι′n) contains
at least δ1n

1/2 hamburger orders and at least δ1n
1/2 cheeseburger orders, so on Gn ∩ E we necessarily have φ(ι′n) ≤

ι̃n − rn ≤ ι′n − rn. We showed above (just after the definition of ι̃n) that ι̃n ≤ ιn on E, so on Gn ∩ E, ι̃n ≤ ιn ≤ ι′n.
By (6.3), on Gn ∩ E we have |n−1ιn − τ | ≤ 2ε. Since P(Gn ∩ E) ≥ 1 − 5ε, we obtain the desired convergence in
probability. �

Proof of Theorem 1.8. By [49, Theorem 2.5] and the Skorokhod representation theorem we can couple countably
many instances of X with Z in such a way that a.s. Zn → Z uniformly on compacts. Define the times τa,r and ι

a,r
n as

in condition (3) of the theorem statement. By Lemma 6.7, the finite-dimensional marginals of the law of{
Zn

} ∪ {
n−1ιa,r

n : (a, r) ∈ Q× (
Q∩ (0,∞)

)}
converge to those of

{Z} ∪ {
τ a,r : (a, r) ∈ Q× (

Q∩ (0,∞)
)}

as n → ∞. By the Skorokhod representation theorem, we can re-couple in such a way that Zn → Z uniformly on
compacts and n−1ι

a,r
n → τa,r a.s. as n → ∞ for each a, r ∈ Q × (Q ∩ (0,∞)). Henceforth fix such a coupling. By

definition, in any such coupling conditions (1) and (3) in the theorem statement are satisfied. We must verify conditions
(2) and (4) for this coupling.

We start with condition (4). Suppose given sequences nk → ∞ and {ink
}k∈N with n−1

k ink
→ t as in condition

(4). By Lemma 6.6 (applied to the converging sequence of π/2-cone times n−1
k (ink

− 1)) it is a.s. the case that t

is a π/2-cone time for Z and we a.s. have vZnk (n
−1
k (ink

− 1)) → vZ(t) and uZnk (n
−1
k (ink

− 1)) → uZ(t). Since
vZn(n−1

k (ink
− 1)) = n−1

k φnk (ink
) (recall the discussion just after Definition 1.6), we infer that n−1

k φnk (ink
) → vZ(t).

The time nkuZnk (n
−1
k (ink

− 1)) coincides with the largest j < φ
nk∗ (ink

) for which the reduced word Xnk (j,φ
nk∗ (ink

))

contains a burger of the type opposite X
nk

φnk (ink
)

(recall the discussion just after Definition 1.6). For each ε > 0, if t is

a right π/2-cone time then there exists δ > 0 for which V (s) ≥ V (uZ(t)) + δ for each s ∈ [uZ(t) + ε, t − ε] and if t

is a left π/2-cone time the same holds with U in place of V . Since Znk → Z uniformly on compacts, we infer that
limk→∞ n−1

k (uZnk (n
−1
k (ink

− 1)) − φ
nk∗ (ink

)) = 0 so n−1
k φ

nk∗ (ink
) → uZ(t).

Now we turn our attention to condition (2). Fix a bounded open interval I ⊂R with rational endpoints, a ∈ I ∩Q,
and ε > 0. Let t and in be as in condition (2). Since t �= a a.s., we can a.s. find r ∈Q∩ (0,∞) (random and depending
on ε) such that t ∈ [τ a,r , τ a,r + ε] and vZ(t) ∈ [vZ(τa,r ) − ε, vZ(τa,r )] (in particular, we choose r slightly smaller
than t −vZ(t)). By condition (3), we a.s. have n−1ι

a,r
n → τa,r as n → ∞. By condition (4), we a.s. have n−1φ(ι

a,r
n ) →

vZ(τa,r ) as n → ∞. Since I is open and a.s. neither t nor vZ(t) is equal to a, if we choose ε sufficiently small (random
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and depending on a and I ) then it is a.s. the case that for sufficiently large n ∈N, an ∈ [φ(ι
a,r
n ), ι

a,r
n ] ⊂ nI . Hence for

sufficiently large n ∈ N, we have n−1in ≥ n−1ι
a,r
n ≥ t − 2ε. Since ε is arbitrary, a.s. lim infn→∞ n−1in ≥ t . Similarly

lim supn→∞ n−1φn(in) ≤ vZ(t).
To show that limn→∞ n−1in = t , we observe that from any sequence of integers tending to ∞, we can extract a

subsequence nj → ∞ and a t ′ ∈ I such that n−1
j inj

→ t ′. Our result above implies that [vZ(t), t] ⊂ [vZ(t ′), t ′]. Since

lim infj→∞ n−1
j (inj

−φnj (inj
)) ≥ t −vZ(t), condition (4) implies that t ′ is a π/2-cone time for Z with [vZ(t ′), t ′] ⊂ I .

Since I has endpoints in Q it is a.s. the case that neither of these endpoints is a π/2-cone time for Z or vZ of a
π/2-cone time for Z, simultaneously for all choices of I . Hence in fact [vZ(t ′), t ′] ⊂ I for every such choice of
subsequence. By maximality t ′ = t . Thus n−1in → t . �

6.3. Convergence of the cone times conditioned on no burgers

For the sake of completeness, in this subsection we will state and prove a corollary to the effect that Theorem 1.8
remains true if we condition on {J > n}, where as per usual J is the smallest j ∈ N for which X(−j,−1) contains a
burger. This corollary will be used in the subsequent paper [22].

Corollary 6.8. Let Ẑ = (Û , V̂ ) be a correlated two-dimensional Brownian motion as in (1.8), defined on (−∞,0] and
conditioned to stay in the first quadrant until time −1 when run backward. For n ∈ N, let X̂n be sampled according
to the conditional law of the word . . .X−1X0 given {J > n} and let Ẑn : (−∞,0] be the path (1.7) corresponding to
X̂n. There is a coupling of {X̂n}n∈N with Z such that when Zn, φn, and φn∗ are defined as in (1.7) and Definition 1.3,
respectively, with X̂n in place of X, the following holds a.s.

(1) Ẑn → Ẑ uniformly on compact subsets of (−∞,0].
(2) (Maximal F -times) Suppose given a bounded open interval I ⊂ (−∞,0) with rational endpoints and a ∈ I ∩Q.

Let t be the maximal (Definition 1.7) π/2-cone time for Ẑ in I with a ∈ [vẐ(t), t]. For n ∈ N, let in be the
maximal F -time (with respect to Xn) in nI with an ∈ [φn(in), in] (or in = �an
 if no such F -time exists). Then
n−1in → t .

(3) (First F -interval with length ≥ rn) For r > 0 and a ∈ (−∞,0), let τ̂ a,r be the minimum of 0 and the smallest
π/2-cone time t for Ẑ such that t ≥ a and t − vẐ(t) ≥ r . For n ∈N, let ι̂

a,r
n be the minimum of 0 and the smallest

F -time i for X̂n with i ≥ an, and i − φn(i) ≥ rn. Then n−1̂ι
a,r
n → τ̂ a,r for each (a, r) ∈ (Q∩ (−∞,0)) × (Q∩

(0,∞)).
(4) (Auxiliary times) For each sequence of positive integers nk → ∞ and each sequence {ink

}k∈N such that X̂
nk

ink
= F

for each k ∈ N, n−1
k ink

→ t ∈ R, and lim infk→∞(ink
− φnk (ink

)) > 0, it holds that t is a π/2-cone time for Z

which is in the same direction as the π/2-cone time n−1
k ink

for Znk for large enough k and in the notation of
Definition 1.6,(

n−1
k φnk (ink

), n−1
k φnk∗ (ink

)
) → (

vZ(t), uZ(t)
)
.

Proof. We will prove that we can choose a coupling such that a.s. Ẑn → Ẑ and n−1ι
a,r
n → τa,r for each (a, r) ∈

(Q∩ (−∞,0)) × (Q∩ (0,∞)). It follows as in the proof of Theorem 1.8 that such a coupling also satisfies the other
conditions in the statement of the corollary.

Fix ζ ∈ (0,1). For n ∈ N, define

X
n,ζ := · · · X̂n

−2−�ζn
X̂
n
−1−�ζn
, Xn,ζ := X̂n−�ζn
 . . . X̂n

0 ,

Zζ = (Uζ ,V ζ ) := (
Ẑ − Ẑ(−ζ )

)|(−∞,−ζ ], Zζ = (Uζ ,V ζ ) := Ẑ|[−ζ,0], and

Z
n

ζ = (
U

n

ζ ,V
n

ζ

) := (
Ẑn − Ẑn(−ζ )

)|(−∞,−ζ ].

Also let Dn
ζ be as in the proof of Theorem 5.1, i.e. Dn

ζ is the path defined in the same manner as the path D of (1.6)

in Section 1.3 but with the following modification: if j ∈ [−ζn,−1]Z, X̂n
j = F , and −j does not have a match in

R(Xn,ζ ), then Dn
ζ (−j) − Dn

ζ (−j + 1) is equal to zero rather than (1,0) or (0,1). Extend Dn
ζ to [−ζn,0] by linear
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interpolation. For t ∈ [−ζ,0], let Zn
ζ (t) := n−1/2Dζ (nt). Then Zn,ζ is determined by Xn,ζ and is independent from

X
n,ζ

and hence also from Z
n,ζ

.
By Theorem 5.1 and the Skorokhod representation theorem, we can find a coupling of the sequence of words

{Xn,ζ }n∈N with Zζ such that Zn
ζ → Zζ a.s. By [49, Theorem 2.5], Lemma 3.7, and our choice of coupling, the condi-

tional law of Z
n

ζ given the word Xn,ζ converges a.s. to the conditional law of Z given the event Gζ (Uζ (−ζ ),V ζ (−ζ )),
where for u,v > 0,

Gζ (u, v) = {
Z(t) − Z(−ζ ) ∈ (−u,∞) × (−v,∞),∀t ∈ [−1,−ζ ]}.

By Lemma 5.10, this latter conditional law is the conditional law of Zζ given Zζ . The forward stopping time

(n−1̂ι
a,r
n ) ∧ (−ζ ) (resp. τ̂ a,r ∧ (−ζ )) is determined by X

n,ζ
(resp. Zζ ) so it follows from Theorem 1.8 that in fact the

finite dimensional marginals of the joint conditional law given Xn,ζ of{
Z

n

ζ

} ∪ {(
n−1̂ιa,r

n

) ∧ (−ζ ) : (a, r) ∈ (
Q∩ (−∞,0)

) × (
Q∩ (0,∞)

)}
converge a.s. to the finite dimensional marginals of the joint conditional law given Zζ of

{Zζ } ∪ {
τ̂ a,r ∧ (−ζ ) : (a, r) ∈ (

Q∩ (−∞,0)
) × (

Q∩ (0,∞)
)}

.

Therefore, finite dimensional marginals of the joint law of{
Ẑn

} ∪ {(
n−1̂ιa,r

n

) ∧ (−ζ ) : (a, r) ∈ (
Q∩ (−∞,0)

) × (
Q∩ (0,∞)

)}
converge to finite dimensional marginals of the joint law of

{Ẑ} ∪ {
τ̂ a,r ∧ (−ζ ) : (a, r) ∈ (

Q∩ (−∞,0)
) × (

Q∩ (0,∞)
)}

.

Since ζ is arbitrary and |(n−1̂ι
a,r
n ) ∧ (−ζ ) − n−1̂ι

a,r
n | and |̂τa,r ∧ (−ζ ) − τ̂ a,r | are each at most ζ , the same holds if

we don’t truncate at −ζ .
We now obtain a coupling such that a.s. Ẑn → Ẑ and n−1̂ι

a,r
n → τ̂ a,r for each (a, r) ∈ (Q ∩ (−∞,0)) × (Q ∩

(0,∞)) by means of the Skorokhod theorem, and conclude as in the proof of Theorem 1.8. �

Appendix A: Results for times with no orders

In this appendix, we will explain how to adapt the proofs found in Sections 4, 5, and 6 to obtain analogues of the results
of those sections when we consider the event that X(1, n) contains no orders, rather than the event that X(−n,−1)

contains no burgers. Although the results of this appendix are not needed for the proof of Theorem 1.8, they are of
independent interest and will be needed in the sequels to this work [22,23].

In Section A.1 we will consider an analogue of Theorem 5.1 with no orders rather than no burgers and in Sec-
tion A.2 we will prove some regular variation estimates. In Section A.3, we will consider a generalization of Theo-
rem 1.8.

Throughout this section, we let I denote the smallest i ∈N for which X(1, i) contains an order.

A.1. Convergence conditioned on no orders

In this subsection we will explain how to adapt the arguments of Sections 4 and 5 to obtain the following result.

Theorem A.1. As n → ∞, the conditional law of the path Zn|[0,1] defined in (1.7) given {I > n} (i.e. the event that
X(1, n) contains no orders) converges to the law of a correlated Brownian motion as in (1.8) conditioned to stay in
the first quadrant until time 1.
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The first step in the proof of Theorem A.1 is to establish an exact analogue of Proposition 4.1, which reads as
follows.

Proposition A.2. For ε > 0, let En(ε) be the event that X(1, n) contains at least εn1/2 burgers of each type. Then we
have

lim
ε→0

lim inf
n→∞ P

(
En(ε) | I > n

) = 1.

To adapt the proof of Proposition 4.1 in order to obtain Proposition A.2, one needs an appropriate analogue of the
times i ∈ Z with Xi = F .

Definition A.3. Say that i ∈ Z is a pre-burger time if Xi+1 is a burger. For a pre-burger time i, we write φ(i) for the
smallest j ≥ i + 1 for which X(i + 1, j) contains an order.

Suppose i is a pre-burger time. We observe the following

(1) The word X(i + 1, φ(i)) contains a single order and some number of burgers, all of the same type. If the single
order is a F , there are no burgers. Otherwise, the burgers are of the type opposite the order.

(2) We need not have φ(i) ∈ {φ(i),φ(i + 1)}. To see this consider the word X1 . . .X5 = C H C C C . Here 1 is a
pre-burger time and φ(1) = 5.

(3) If i′ is another pre-burger time with i′ ∈ (i, φ(i))Z, then φ(i′) ∈ [i + 1, φ(i)]Z. To see this, we observe that Xφ(i)

is an order whose match is at a time before i + 1 (and hence also before i′ + 1), whence X(i′ + 1, φ(i)) contains
an order. Note, however, that we can have φ(i′) = φ(i), which does not happen for nested F -intervals.

(4) The time n−1i is a weak forward π/2-cone time for Zn, as defined just below, and vZn(n−1i) = n−1(φ(i) − 1).

Definition A.4. A time t is called a (weak) forward π/2-cone time for a function Z = (U,V ) : R → R2 if there
exists t ′ > t such that U(s) ≥ U(t) and V (s) ≥ V (t) for s ∈ [t, t ′]. Equivalently, Z([t, t ′]) is contained in the cone
Z(t)+{z ∈ C : arg z ∈ [0,π/2]}. We write vZ(t) for the supremum of the times t ′ for which this condition is satisfied,
i.e. vZ(t) is the exit time from the cone. We write uZ(t) for the infimum of the times t∗ > t for which infs∈[t,t∗] U(s) <

U(t) and infs∈[t,t∗] V (s) < V (t).

Note that a forward π/2-cone time for Z is a π/2-cone time in the sense of Definition 1.6 for the time reversal
of Z.

The following is the analogue of Lemma 4.3 for the case of no orders, rather than no burgers.

Lemma A.5. For n ∈ N, let Pn be the largest k ∈ [1, n]Z for which X(−k,−1) contains no orders (or Pn = n + 1
if no such j exists). For ε ≥ 0, let An(ε) be the event that Pn < n + 1 and Pn ≤ (1 − ε)(φ(−Pn) + Pn). There exists
ε0 > 0, n0 ∈N, and q0 ∈ (0,1/3) such that for each ε ∈ (0, ε0] and n ≥ n0,

P
(
An(ε)

) ≥ 3q0.

In light of observations (1) through (4) above, Lemma A.5 can be proven via an argument which is nearly identical
to the proof of Lemma 4.3, except that one reads the word X backward and considers maximal discrete intervals of the
form [k,φ(k)]Z with k a pre-burger time instead of maximal F -excursions. Note that there are a.s. infinitely many
such intervals containing any fixed i ∈ Z by Proposition 3.5.

Using Lemma A.5 and almost exactly the same argument which appears in Section 4.2 one obtains the existence
of a sequence of positive integers mj → ∞ and an ε > 0 such that (in the notation of Proposition A.2)

lim inf
j→∞ P

(
Emj

(ε) | I > mj

)
> 0.

This, in turn, leads to a proof of Proposition A.2 by means of the inductive argument of Section 4.3, but with the word
X read forward rather than backward.
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With Proposition A.2 established, the argument of Section 5 carries over more or less verbatim to yield Theo-
rem A.1. The only difference is that the word is read in the opposite direction and times j for which X(−j,−1)

contains no orders are used in place of times i for which X(1, i) contains no burgers.

A.2. Regular variation for times with no orders

In this subsection we will prove analogues of some of the results of Section 6.1 for times when the word has no orders,
rather than no burgers. Recall the definition of regular variation from Section 6.1.

Lemma A.6. Let I be defined as in the beginning of this appendix. Then the law of I is regularly varying with
exponent μ (defined as in (3.1)).

Proof. This follows from Theorem A.1 and the results of [50] via exactly the same argument used in the proof of
Proposition 6.1. �

Borrowing some terminology from [10], we say that i ∈N is ancestor free if there is no k ∈ [1, i]Z such that X(k, i)

contains no orders. Equivalently, X(i − j, i) contains an order for every j ∈ [0, i − 1]Z; or there is no pre-burger time
(Definition A.3) k ≤ i − 1 such that i ∈ [k + 1, φ(k)]Z. The ancestor free times can be described as follows.

Lemma A.7. Let I1 = I be the smallest i ∈ N for which X(1, i) contains an order. Inductively, for m ≥ 2 let Im be
the smallest i ≥ Im−1 + 1 for which X(Im−1 + 1, i) contains an order. Then Im is precisely the mth smallest ancestor
free time in N.

Proof. Let I0 = Ĩ0 = 0. For m ∈ N, let Ĩm denote the mth smallest ancestor free time. We must show Ĩm = Im for
each m ≥ 0. We prove this by induction, starting with the trivial base case m = 0. Now suppose m ≥ 1 and we have
shown Ĩm−1 = Im−1. By definition, XIm is an order whose match is ≤ Im−1. Hence this order appears in X(j, Im)

for each j ∈ [Im−1 + 1, Im]Z. By the inductive hypothesis, Im−1 is ancestor free, so X(j, Im−1) contains an order for
each j ∈ [1, Im−1]Z. Therefore X(j, Im) contains an order for each j ∈ [1, Im]Z, so Im is ancestor free and Im ≥ Ĩm.

Conversely, since Ĩm is ancestor free, the word X(Ĩm−1 + 1, Ĩm) contains an order. Since Ĩm−1 = Im−1 (by the
inductive hypothesis) it follows that Ĩm ≥ Im. �

The following is the analogue of Corollary 6.3 for times with no orders.

Lemma A.8. Let P be the smallest j ∈ N for which X(−j,−1) contains no orders. Then the law of P is regularly
varying with exponent 1 − μ, with μ as in (3.1).

Proof. Define the times Im for m ∈ N as in Lemma A.7. For n ∈ N, let Mn be the largest m ∈ N for which Im ≤ n.
For l ∈ N, let Pl be the lth smallest j ∈N for which X(−j,−1) contains no orders and let Ln be the largest l ∈N for
which Pl ≤ n.

By Lemma A.7, for k ∈ N the event {IMn = k} is the same as the event that k is ancestor free, i.e. X(j, k) contains
an order for each j ∈ [1, k]Z; and IMn+1 > n, i.e. X(k + 1, n) contains no orders. The event {PLn = k′} is the same
as the event that X(−k′,−1) contains no orders; and X(−j,−k′) contains an order for each j ∈ [k′ + 1, n]Z. By
translation invariance,

PLn

d= n − IMn.

By Lemma A.6 and the Dynkin–Lamperti theorem [12,26], it follows that n−1(n − IMn) converges in law to
the generalized arcsine distribution with parameter μ as n → ∞. Therefore n−1(n − PLn) converges in law to a
generalized arcsine distribution with parameter 1 − μ. By the converse to the Dynkin–Lamperti theorem, we obtain
the statement of the lemma. �
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A.3. Convergence of the forward cone times

In this subsection we record a generalization of Theorem 1.8 which includes convergence of the times of this sub-
section to the forward π/2-cone times of the correlated Brownian motion Z. We first need the following analogue of
Definition 1.7.

Definition A.9. A forward π/2-cone time for a path Z is called a maximal forward π/2-cone time in an (open or
closed) interval I ⊂ R if [t, vZ(t)] ⊂ I and there is no forward π/2-cone time t ′ for Z such that [t ′, vZ(t ′)] ⊂ I and
[t, vZ(t)] ⊂ (t ′, vZ(t ′)). Equivalently, −t is a maximal π/2-cone time for Z(−·) (Definition 1.7). An integer i ∈ Z is
called a maximal pre-burger time in an interval I ⊂ R if i is a pre-burger time (Definition A.3), [i, φ(i)]Z ⊂ I , and
there is no pre-burger time i′ ∈ Z with [i, φ(i)]Z ⊂ (i′, φ(i′))Z and [i′, φ(i′)]Z ⊂ I .

Theorem A.10. Let Z be a correlated Brownian motion as in (1.8). There is a coupling of countably many instances
{Xn}n∈N of the bi-infinite word X described in Section 1.3 with Z such that the conditions of Theorem 1.8 are satisfied
and the following additional conditions hold a.s.

(5) (Maximal pre-burger times) Suppose we are given a bounded open interval I ⊂ R with endpoints in Q and
a ∈ I ∩ Q. Let t be the maximal forward π/2-cone time for Z in I with a ∈ [t, vZ(t)]. For n ∈ N, let in be the
maximal pre-burger time (with respect to Xn) in nI with an ∈ [in, φ(in)] (or in = �an
 if no such pre-burger time
exists). Then n−1in → uZ(t).

(6) (First pre-burger interval with length ≥ rn) For r > 0 and a ∈ R, let τa,r be the greatest forward π/2-cone time t

for Z such that t ≤ a and vZ(t) − t ≥ r . For n ∈ N, let ιa,r
n be the greatest pre-burger time i ∈ Z such that i ≤ an

and φ(i) − i ≥ rn (or ιa,r
n = −∞ if no such i exists). Then n−1ιa,r

n → τa,r for each (a, r) ∈Q× (Q∩ (0,∞)).
(7) (Auxiliary times) For each sequence of positive integers nk → ∞ and each sequence {ink

}k∈N such that X
nk

ink
+1

is a burger for each k ∈ N, n−1
k ink

→ t ∈ R, and lim infk→∞(vZnk (n
−1
k ink

) − n−1
k ink

) > 0, it holds that t is a
forward π/2-cone time for Z and in the notation of Definition A.4,(

vZnk

(
n−1

k ink

)
, uZnk

(
n−1

k ink

)) → (
vZ(t), uZ(t)

)
.

Proof. From Lemma A.6, the Dynkin–Lamperti theorem, and the same argument used in the proof of Lemma 6.7,
one obtains an analogue of the latter lemma with the times τa,r and ιa,r

n in place of the times τa,r and ι
a,r
n . From

this, Lemma 6.6, Lemma 6.7, and the Skorokhod theorem, we infer that we can find a coupling of the sequence
(Xn) with the path Z such that conditions (1) and (3) of Theorem 1.8 and condition (6) of the present theorem
hold simultaneously a.s. The rest of the theorem now follows from exactly the same argument given in the proof of
Theorem 1.8. �

Remark A.11. One can also obtain versions of Corollary 6.8 in the setting of this appendix, i.e. the natural analogues
of Theorem A.10 hold when we condition on the event that X(−n,−1) contains no burgers (resp. X(1, n) contains
no orders) and consider only negative (resp. positive) time.

Appendix B: Index of symbols

Here we record some commonly used symbols in the paper, along with their meaning and the location where they are
first defined.

• (M,e0, S): critical FK planar map; Section 1.1.
• R(x): reduced word; Section 1.3.
• |x|: length of a word; Section 1.3.
• p: fraction of orders which are F ’s; Section 1.3.
• X: bi-infinite word with iid symbols; Section 1.3.
• X(a,b) =R(X�a
 . . .X�b
); (1.5).
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• φ(i): match of i; Definition 1.3.
• φ∗(i): match of rightmost order in X(φ(i), i); Notation 1.3.
• N F (x), etc.: number of F ’s, etc., in x; Definition 1.4.

• D = (d, d∗): encoding walk; Definition 1.4.
• Zn = (Un,V n): re-scaled encoding walk; (1.7).
• Z = (U,V ): correlated 2d Brownian motion; (1.8).
• vZ(t) and uZ(t): times associated with a π/2-cone time; Definition 1.6.
• Maximal π/2-cone time/flexible order time; Definition 1.7.
• (Q,e0): quadrangulation constructed from M and M∗; Section 1.5.1.
• L: set of FK loops on M ; Section 1.5.1.
• �n

j : j th innermost loop surrounding en
0 ; Section 1.5.2.

• M
n,∞
j : set of edges of Q disconnected from ∞ by �n

j ; Section 1.5.2.
• σj : π/2-cone time for Z where direction changes; Section 1.5.2.
• �j : set of maximal π/2-cone times in (vZ(σj ), σj ) with uZ(t) ≥ vZ(σj ); Section 1.5.2.
• bn: index shift for loops �n

j ; Section 1.5.2.
• Tj : set of maximal π/2-cone times in (vZ(σj ), σj ) with uZ(t) < vZ(σj ); Section 2.4.
• o∞

x (x): a quantity decaying faster than any power of x; Notation 1.17.
• λ: path in the Hamburger-Cheeseburger bijection; Section 2.1.
• P(i) := λ([φ(i), i − 1]Z) for F -time i; Definition 2.2.
• θj : time just after λ finishes tracing �j ; Section 2.3.
• �j : set of maximal F -times i ∈ (φ(θj ), θj )Z with φ∗(i) ≥ φ(θj ); Section 2.3.
• Ij : set of maximal F -times i ∈ (φ(θj ), θj )Z with φ∗(i) < φ(θj ); Section 2.3.
• μ: exponent associated with π/2-cone times; (3.1).
• μ′: exponent associated with 3π/2-cone times; (3.1).
• ν: exponent in (μ′,1/2); Lemma 3.7.
• J : smallest integer such that X(−J,−1) contains a burger; Section 4.1.
• En(ε): event that J > n and X(−n,−1) contains at least εn1/2 H ’s and C ’s; Section 4.1.
• Fn: event that N F (X(−n,−1)) ≤ nν ; Section 4.1.

• an(ε) = P(En(ε)|J > n); Section 4.1.
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