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Abstract. We show the global-in-time well-posedness of the complex Ginzburg–Landau (CGL) equation with a space–time white
noise on the 3-dimensional torus. Our method is based on Mourrat and Weber (Global well-posedness of the dynamic �4

3 model

on the torus), where Mourrat and Weber showed the global well-posedness for the dynamical �4
3 model. We prove a priori L2p

estimate for the paracontrolled solution as in the deterministic case [Phys. D 71 (1994) 285–318].

Résumé. Nous montrons que l’équation de Ginzburg–Landau complexe (CGL) sur le tore de dimension 3 avec un bruit blanc
en espace-temps est bien posée et admet une solution globale en temps. Notre méthode prend son origine dans Mourrat et Weber
(Global well-posedness of the dynamic �4

3 model on the torus), où Mourrat et Weber montrent ce caractère bien posé global pour le

modèle �4
3 dynamique. Nous établissons une estimée L2p a priori pour la solution paracontrôlée, comme dans le cas déterministe

[Phys. D 71 (1994) 285–318].
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1. Introduction

In this paper, we consider the following stochastic complex Ginzburg–Landau (CGL) equation on the three-
dimensional torus T3 = (R/Z)3:

∂tu = (i + μ)�u − ν|u|2u + λu + ξ, t > 0, x ∈ T
3,

u(0, ·) = u0,
(1.1)

where μ > 0, ν ∈ {z ∈ C;�z > 0}, λ ∈ C, and ξ is a complex space–time white noise, which is a centered Gaussian
random field with covariance structure

E
[
ξ(t, x)ξ(s, y)

] = 0, E
[
ξ(t, x)ξ(s, y)

] = δ(t − s)δ(x − y).

The CGL equation appears as a generic amplitude equation near the threshold for an instability in fluid mechanics,
as well as in the theory of phase transition in superconductivity. Stochastic CGL equation has also been studied in
several settings. In [2,3], CGL equation on a bounded domain in R

d with a smeared noise in the spatial variable
x or a multiplicative noise was studied, where the global well-posedness of the Lp solutions and the existence and
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uniqueness of an invariant measure were shown, under some additional assumptions. In [6], CGL equation on the
one-dimensional torus with a space–time white noise was studied and similar results were shown. In [9], the authors
showed the inviscid limit of the CGL equation (1.1) with a noise

√
μξ , where ξ is a smeared noise in x, to the nonlinear

Schrödinger equation as μ ↓ 0. The solutions considered in these studies belong to the space of functions. However,
when d ≥ 2 and ξ is a space–time white noise, the solution is expected to have the negative regularity ( 2−d

2 )−, i.e.
2−d

2 − κ for every κ > 0, so that the nonlinear term −ν|u|2u of the CGL equation (1.1) is ill-defined.
Recent theories of regularity structures by Hairer [7] or paracontrolled calculus by Gubinelli, Imkeller and

Perkowski [5] made it possible to show the general local well-posedness results for several singular stochastic PDEs.
In particular, as well as the dynamical �4

d model, we can apply these theories to the stochastic CGL equation (1.1)
with a space–time white noise when d ≤ 3. For an application for d = 3, see [8].

The meaning of the local well-posedness for the equation (1.1) is as follows. Let η ∈ S(R3) satisfy
∫
R3 η(x) dx = 1

and set ηε(x) = ε−3η(ε−1x) for ε > 0. We consider the smeared noise ξε(t, x) = (ξ(t) ∗ ηε)(x) in x and the suitably
renormalized equation:

∂tu
ε = (i + μ)�uε − ν

∣∣uε
∣∣2

uε + Cεuε + ξε, t > 0, x ∈ T
3,

uε(0, ·) = u0,
(1.2)

where Cε is a constant depending only on ε,μ, ν,λ and η, which behaves as O( 1
ε
) as ε ↓ 0. For the precise definition

of Cε , see [8, Sections 3.4 and 5.4]. Since uε is a continuous function in (t, x), we can define the nonlinear term
−ν|uε|2uε in usual sense. In [8], by using the theory of regularity structures and paracontrolled calculus, the authors

showed that the sequence {uε}ε>0 converges as ε ↓ 0 in the space C− 2
3 +κ for every small κ > 0, where Cα = Bα∞,∞

is the complex-valued Besov space on T
3. However, they showed only the convergence up to some random time

T ∈ (0,∞] and did not study whether T = ∞ or not.
The aim of this paper is to show the global-in-time well-posedness for the equation (1.1) using the paracontrolled

calculus. We use similar arguments to [11] and its revised version [12], where Mourrat and Weber showed the global
well-posedness for the dynamical �4

3 model:

∂tX = �X − X3 + mX + ξ, t > 0, x ∈ T
3,

which is regarded as a real-valued version of the equation (1.1). However, in our setting we need to improve their
method as we will explain later. The main result of this paper is formulated as follows.

Theorem 1.1. Let μ > 1
2
√

2
. Choose sufficiently small κ > 0 depending on μ. For every initial value u0 ∈ C− 2

3 +κ , the

sequence {uε}ε>0 of the solution of (1.2) has a limit u ∈ C([0,∞),C− 2
3 +κ), that is, for every T > 0 we have

lim
ε↓0

∥∥uε − u
∥∥

C([0,T ],C− 2
3 +κ

)
= 0

in probability. The limit u is independent of the choice of the mollifier η.

We reformulate the above theorem more precisely in Theorem 3.6 below.
We briefly explain the outline of the proof of Theorem 1.1. If the noise ξ is a continuous function in (t, x), then the

solution u of the equation (1.1) would satisfy a priori L2p inequality:

sup
0≤t≤T

∥∥u(t)
∥∥

L2p ≤ ‖u0‖L2p + C

when the condition

1 < p < 1 + μ
(
μ +

√
1 + μ2

)
(1.3)
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holds. See Proposition 5.2 below or [4, Section 4]. However, since u is distribution-valued in the present case, the L2p

norm of u diverges. In order to overcome this difficulty, we use a similar method to [11]. Our method consists of the
following three steps.

(1) Following the general theory of the paracontrolled calculus, we divide the solution u into the sum

u = − ν + v + w,

where and are stochastic processes explicitly defined, v is the solution of the linear equation which contains w

as a coefficient, and w is the regular term and solves the nonlinear equation of the form

∂tw = (i + μ)w − ν|w|2w + · · · .

For the precise definition of (v,w), see the system (3.3) below.
(2) From the definition, a suitable norm of v is controlled by a suitable norm of w. Hence it is sufficient to control

only w in some suitable norms. Since w is sufficiently regular, we can apply the method of L2p inequality explained
above to w when the condition (1.3) holds. However, from the definition of the system (3.3), we also need the control
of w in the B1+2κ

2p+2
3 ,∞ norm. The second goal is to show a priori L1[0, T ] estimate

∫ T

0

(∥∥v(t)
∥∥2p+2

B
1
2 +κ

2p+2,∞
+ ∥∥w(t)

∥∥2p+2
L2p+2 + ∥∥w(t)

∥∥ 2p+2
3

B1+2κ
2p+2

3 ,∞

)
dt ≤ C′ (1.4)

for every p > 1 and every small κ > 0, see Theorem 7.1 below. Note that the similar estimate to above was obtained
in [11, Theorem 6.1] for p = 2, and in [12, Lemma 7.2] for sufficiently large p.

(3) The final step is to improve the above L1[0, T ] estimate into a priori L∞[0, T ] estimate

sup
0≤t≤T

(∥∥v(t)
∥∥
B

1
2 +κ

2p+2,∞
+ ∥∥w(t)

∥∥
B

3
2 −2κ

2p+2
3 ,∞

) ≤ C′′ (1.5)

for every p as close to 1 as possible. We will see that the above estimate holds for every p > 3
2 in Theorems 8.1 and

8.2 below. As a result, we will obtain the global well-posedness for the equation (1.1) for every μ > 1
2
√

2
, because the

condition (1.3) is assumed.
Now we point out two differences in the proof of Theorem 1.1 from the arguments of [11,12]. One difference is

in the step (2). Since the condition (1.3) requires μ to be large depending on the value of p, we need to prove the
L1[0, T ] estimate (1.4) for p as close to 1 as possible. For the dynamical �4

3 model, Mourrat and Weber [11] showed
the estimate (1.4) for p = 2, but it is not straightforward to rewrite their method for general p > 1, since the key
inequality (4.1) in [11] was rather complicated. Recently in the revised version [12], they changed their approach
somewhat and showed the estimate (1.4) for all p sufficiently large. However, we still need to modify their argument
for our problem, because now p has to be small. In this paper, we review their method and rewrite it into a simpler
form (Theorem 6.1), where the last two terms of the equality (4.1) in [11] disappear. As a result, we can show the
estimate (1.4) for every p > 1.

The other difference is in the step (3). In the revised version [12], instead of the estimate like (1.5), they showed
a priori estimates of ‖v(t)‖B−κ

4p+4
3

and ‖w(t)‖L2p which are independent of initial values. (The L2p estimate of w is

also obtained in this paper for p > 1, see Theorems 5.1 and 7.1.) These estimates are sufficient for the global well-

posedness if p is large, but not so if p is small. Indeed, we will solve w in the space C− 1
2 −κ for small κ > 0, but L2p

is contained in this space if p > 3. For that reason, we use the argument in the previous version [11], which allows us
to improve the L1[0, T ] estimate (1.4) into the L∞[0, T ] estimate (1.5) by using the Young’s inequality repeatedly,
see Section 8 for details. Although this iteration was done four times in [11, Table 2], we will see that we need more
iterations as p gets closer to 3

2 in our setting. Indeed, the number of the iterations diverges as p ↓ 3
2 . This argument

works due to the two estimates given in Lemma 8.4 below, which mean to what extent the cubic nonlinearity of the
equation (1.1) can be weakened. In the present case, the exponent of the nonlinearity is weakened from “3” to “ 12

7 ”.
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We do not know yet whether or not the condition μ > 1
2
√

2
is necessary for the global well-posedness. As long as

we use the above method, we cannot make p in the L∞[0, T ] estimate (1.5) close to 1 for now. We believe that the
requirement p > 3

2 for (1.5) is optimal in our method.
This paper is organized as follows. In Section 2, we recall some basic notions and results of the paracontrolled

calculus. In Section 3, we reformulate the equation (1.1) as a system of equations of (v,w) and give the local well-
posedness result. In the rest of this paper, we prove the global well-posedness by the method explained above. In
Section 4, we control a norm of v by a norm of w. In Section 5, we apply the method of the L2p inequality to w for
every p > 1, which is completed in Section 6. In Section 7, we prove a priori L1[0, T ] estimate (1.4). In Section 8,
we finally obtain a priori L∞[0, T ] estimate (1.5).

2. Paracontrolled calculus

We recall some basic notions and results from [5,12]. In what follows, for two functions A = A(λ) and B = B(λ) of
a variable λ, we write A � B if there exists a constant c > 0 independent of λ and one has A ≤ cB . We write A �μ B

if we want to emphasize that the constant c depends on another parameter μ.

2.1. Notations

First we recall the definition of the Besov spaces on T
3 from [1, Section 2]. For f,g ∈ L2 = L2(T3,C), we define the

bilinear functional

〈f,g〉 =
∫
T3

f (x)g(x) dx.

Note that we do not take the complex conjugate. We write ek(x) = e2πik·x ∈ L2 for k ∈ Z
3 and denote by

û(k) = 〈u, e−k〉 the Fourier transform of u ∈ L2. The Besov space Bα
p,q is defined via Littlewood–Paley theory. Let

{ρj }∞j=−1 ⊂ C∞
0 (R3) be a dyadic partition of unity, i.e.

(1) ρ−1 and ρ0 are radial smooth functions taking values in [0,1].
(2) supp(ρ−1) ⊂ B(0, 4

3 ) and supp(ρ0) ∈ B(0, 8
3 ) \ B(0, 3

4 ), where B(x, r) is the open ball in R
3 of center x and

radius r .
(3) ρj = ρ0(2−j ·) for every j ≥ 0.
(4)

∑∞
j=−1 ρj ≡ 1.

Let �j be the operator on L2 defined by �j u = ∑
k∈Z3 ρj (k)û(k)ek . For every α ∈ R and p,q ∈ [1,∞], we define

the Bα
p,q norm of u ∈ L2 by

‖u‖Bα
p,q

= ∥∥(
2jα‖�j u‖Lp(T3)

)∥∥
lq ({−1}∪N)

.

We define the space Bα
p,q as the completion of C∞(T3,C) under the Bα

p,q norm. This definition ensures that Bα
p,q

is separable and that the heat semigroup (et (i+μ)�)t≥0 is strongly continuous on Bα
p,q even if q = ∞, see [10, Re-

mark 3.13]. We use the brief notation Bα
p = Bα

p,∞ when q = ∞.
We formally define the Bony’s paraproduct

u � v = v � u =
∑

i≤j−2

�iu�j v

and the resonant

u � v =
∑

|i−j |≤1

�iu�j v.

Note that we have u � v = u � v and u � v = u � v since �j u = �j u. These operators are well-defined under the
assumptions of Proposition 2.6 below.

We define several classes of functions from the time interval to the Besov space. Let α ∈R and δ ∈ (0,1].
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• CT Bα∞ = C([0, T ],Bα∞), equipped with the supremum norm

‖u‖CT Bα∞ = sup
0≤t≤T

∥∥u(t)
∥∥
Bα∞ .

• Cδ
T Bα∞ = Cδ([0, T ],Bα∞), equipped with the seminorm

‖u‖Cδ
T Bα∞ = sup

0≤s<t≤T

‖u(t) − u(s)‖Bα∞
|t − s|δ .

• Lα,δ
T = CT Bα∞ ∩ Cδ

T Bα−2δ∞ with the norm ‖ · ‖Lα,δ
T

= ‖ · ‖CT Bα∞ + ‖ · ‖
Cδ

T B
α−2δ∞ .

It is useful to consider the norms which allow singularities at t = 0. Let η > 0.

• Eη
T Bα∞ = {u ∈ C((0, T ],Bα∞); ‖u‖Eη

T Bα∞ < ∞}, where

‖u‖Eη
T Bα∞ = sup

0<t≤T

tη
∥∥u(t)

∥∥
Bα∞ .

• Eη,δ
T Bα∞ = {u ∈ C((0, T ],Bα∞); ‖u‖Eη,δ

T Bα∞
< ∞}, where

‖u‖Eη,δ
T Bα∞

= sup
0<s<t≤T

sη ‖u(t) − u(s)‖Bα∞
|t − s|δ .

• Lη,α,δ
T = Eη

T Bα∞ ∩ CT Bα−2η∞ ∩ Eη,δ
T Bα−2δ∞ with the norm ‖ · ‖Lη,α,δ

T

= ‖ · ‖Eη
T Bα∞ + ‖ · ‖

CT Bα−2η∞
+ ‖ · ‖Eη,δ

T Bα−2δ∞
.

When we consider the functions on [0,∞), we denote by CBα∞ the Fréchet space defined by the norms {‖·‖CT Bα∞}T >0.
We define the spaces CδBα∞ and Lα,δ similarly.

2.2. Basic estimates

We give some basic results without proofs. They are used repeatedly in this paper.

Proposition 2.1. Let α,β ∈ R and p,p1,p2, q, q1, q2 ∈ [1,∞].
(1) If α < β , then ‖u‖Bα

p,q
≤ ‖u‖Bβ

p,q
. Furthermore, ‖u‖Bα

p,1
� ‖u‖Bβ

p,q
([10, Remark 3.4]).

(2) If p1 ≤ p2, then ‖u‖Bα
p1,q

≤ ‖u‖Bα
p2,q

.
(3) If q1 ≥ q2, then ‖u‖Bα

p,q1
≤ ‖u‖Bα

p,q2
.

(4) ‖u‖B0
p,∞ � ‖u‖Lp ≤ ‖u‖B0

p,1
([10, Remark 3.5]).

Proposition 2.2 ([1, Theorem 2.80]). For every α0, α1 ∈R, p0,p1, q0, q1 ∈ [1,∞] and ν ∈ [0,1], we have

‖u‖Bα
p,q

≤ ‖u‖1−ν

Bα0
p0,q0

‖u‖ν

Bα1
p1,q1

,

where α = (1 − ν)α0 + να1, 1
p

= 1−ν
p0

+ ν
p1

, and 1
q

= 1−ν
q0

+ ν
q1

.

Proposition 2.3 ([1, Proposition 2.76] and [10, Proposition 3.23]). For every α ∈ R and p,p′, q, q ′ ∈ [1,∞] such
that 1 = 1

p
+ 1

p′ = 1
q

+ 1
q ′ , we have

∣∣〈f,g〉∣∣ � ‖f ‖Bα
p,q

‖g‖B−α

p′,q′ .
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Proposition 2.4 ([1, Theorem 2.71]). For every α ∈R, 1 ≤ p1 ≤ p2 ≤ ∞ and q ∈ [1,∞], we have

‖u‖Bα
p2,q

� ‖u‖
B

α+3( 1
p1

− 1
p2

)

p1,q

.

Proposition 2.5 ([12, Proposition A.6]). For every α ∈ (0,1] and p ∈ [1,∞], we have

‖u‖Bα
p

� ‖u‖1−α
Lp ‖∇u‖α

Lp + ‖u‖Lp ,

where ∇u = (∂1u, ∂2u, ∂3u) is the gradient of u in the sense of distributions.

We summarize some important estimates of the paraproduct and the resonant.

Proposition 2.6 ([10, Theorem 3.17]). Let p,p1,p2, q, q1, q2 ∈ [1,∞] be such that 1
p

= 1
p1

+ 1
p2

and 1
q

= 1
q1

+ 1
q2

.

(1) For every α ∈R, ‖u � v‖Bα
p,q

� ‖u‖Lp1 ‖u‖Bα
p2,q

.

(2) For every α < 0 and β ∈R, ‖u � v‖Bα+β
p,q

� ‖u‖Bα
p1,q1

‖v‖Bβ
p2,q2

.

(3) If α + β > 0, then ‖u � v‖Bα+β
p,q

� ‖u‖Bα
p1,q1

‖v‖Bβ
p2,q2

.

Proposition 2.7 ([12, Proposition A.9]). Let α < 1, β,γ ∈ R and p,p1,p2,p3 ∈ [1,∞] be such that β + γ < 0,
α + β + γ > 0 and 1

p
= 1

p1
+ 1

p2
+ 1

p3
. Let R be the trilinear map

R(u, v,w) = (u � v) � w − u(v � w)

defined for u,v,w ∈ C∞(T3,C). Then R is uniquely extended to a continuous trilinear map from Bα
p1

× Bβ
p2 × Bγ

p3

to Bα+β+γ
p .

We summarize the regularizing effects of the heat semigroup (et (i+μ)�)t≥0 generated by the operator (i + μ)�.

Proposition 2.8 ([10, Propositions 3.11 and 3.12]). Let α ∈R, p,q ∈ [1,∞] and μ > 0.

(1) For every δ ≥ 0, ‖et(i+μ)�u‖Bα+2δ
p,q

� t−δ‖u‖Bα
p,q

uniformly over t > 0.

(2) For every δ ∈ [0,1], ‖(et (i+μ)� − 1)u‖Bα−2δ
p,q

� t δ‖u‖Bα
p,q

uniformly over t > 0.

Proposition 2.9 ([12, Proposition A.16]). Let α < 1, β ∈R, δ ≥ 0, and p,p1,p2 ∈ [1,∞] be such that 1
p

= 1
p1

+ 1
p2

.
Define

[
et(i+μ)�,u�

]
v = et(i+μ)�(u � v) − u � et(i+μ)�v.

Then we have

∥∥[
et(i+μ)�,u�

]
v
∥∥
Bα+β+2δ

p
� t−δ‖u‖Bα

p1
‖v‖Bβ

p2

uniformly over t > 0.

3. Paracontrolled CGL equation

We reformulate the stochastic CGL equation (1.1) based on the paracontrolled calculus approach and give the local
well-posedness result. For details, see [8, Section 4].
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3.1. Definition of the solution

We explain how to give a meaning to the equation (1.1) based on the method in [12]. If the regularity is written as α−
or α+, then it can be replaced by α − δ or α + δ for every small δ > 0.

Let Lμ = ∂t − {(i + μ)� − 1} and rewrite (1.1) as

Lμu = −νu2u + (λ + 1)u + ξ.

We think of the noise as the leading term and the nonlinear term as its perturbation. Let be the stationary solution of

Lμ = ξ,

then has regularity (− 1
2 )−. Let = . Since we cannot define the products

= ( )2, = , = ( )2

in usual sense, we now assume that the elements , with regularity (−1)− and with regularity (− 3
2 )− are given

a priori. If we set u = u1 + , then we have the equation

Lμu1 = −ν(u1 + )2(u1 + ) + (λ + 1)(u1 + )

= −ν
(
u2

1u1 + u2
1 + 2u1u1 + 2u1 + u1 + ) + (λ + 1)(u1 + )

= −ν(2u1 + u1 + ) + P(u1),

where

P(u1) = −ν
(
u2

1u1 + u2
1 + 2u1u1

) + (λ + 1)(u1 + ).

We continue the decomposition. Let be the stationary solution of

Lμ = ,

then has regularity 1
2
−

. Let = . If we set u1 = u2 − ν , then we have

Lμu2 = −ν
{
2(u2 − ν ) + (u2 − ν )

} + P(u2 − ν ).

Here we can write P(u2 − ν ) as

P(u2 − ν ) = P0 + P1(u2) + P2(u2) − νu2
2u2,

where

P0 = −ν
(−ν2ν( )2 + ν2( )2 + 2νν

) + (λ + 1)(−ν + ),

P1(u2) = −ν
{
u2(2νν − 2ν − 2ν ) + u2

(
ν2( )2 − 2ν

)} + (λ + 1)u2,

P2(u2) = −ν
{
u2

2(−ν + ) + 2u2u2(−ν + )
}
.

Although we have the ill-defined terms , , , ( )2 and , they are well-defined if we assume that the
elements

= � , = �

with regularity 0− are given a priori. For example, is defined by

= (� + �) + ,
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and so are and . For ( )2 , since it is formally decomposed as

( )2 = ( ) = ( � ) + ( + � )

= ( � ) � + ( � )(� + �) + ( + � )

= 2 + R( , , ) + ( � )(� + �) + ( � ),

we can regard the last expression as a definition of ( )2 . We define by a similar way.
For the terms (u2 − ν ) and (u2 − ν ) , however, since u2 is expected to have regularity 1−, they are still

ill-defined. In order to overcome this problem, we introduce the decomposition u2 = v + w, which solve

Lμv = −ν
{
2(v + w − ν ) � + (v + w − ν ) �

} − cv, (3.1)

Lμw = −ν
{
2(v + w − ν )(� + �) + (v + w − ν )(� + �)

} + P(v + w − ν ) + cv, (3.2)

where c > 0 is a sufficiently large constant defined below. Since w is expected to have regularity 3
2
−

, the resonant
terms w � and w � are well-defined. Although the resonant terms

= � , = �

cannot be defined in usual sense, we assume that they are given a priori as elements with regularity (− 1
2 )−. In order

to define the resonant terms v � and v � , we define and as the stationary solutions of

Lμ = , Lμ = ,

respectively. Then and have regularity 1−. Let = and = . The resonant terms v � and v � are
well-defined if the resonants

= � , = � , = � , = �

are given a priori as elements with regularity 0−. Indeed, since we can show that the solution v of (3.1) has the form

v = −ν
{
2(v + w − ν ) � + (v + w − ν ) �

} + com(v,w),

where com(v,w) has regularity 1+ (see Lemma 3.1), we can write the resonants v � and v � as

v � = −ν
{
2(v + w − ν ) + (v + w − ν )

+ 2R(v + w − ν , , ) + R(v + w − ν , , )
} + com(v,w) �

and

v � = −ν
{
2(v + w − ν ) + (v + w − ν )

+ 2R(v + w − ν , , ) + R(v + w − ν , , )
} + com(v,w) � .

We have completed the definitions of all terms appeared in the system (3.1)–(3.2).
Now we summarize the above argument. We have the well-defined system

Lμv = F(v,w) − cv,

Lμw = G(v,w) + cv
(3.3)

with initial values (v(0, ·),w(0, ·)) = (v0,w0), where

F(v,w) = −ν
{
2(v + w − ν ) � + (v + w − ν ) �

}
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and

G(v,w) =
8∑

i=1

G(i)(v,w),

G(1)(v,w) = −ν(v + w)2(v + w),

G(2)(v,w) = P2(v + w),

G(3)(v,w) = P1(v + w) − ν
{
(v + w)(−4ν − ν ) + (v + w)(−2ν − 2ν )

}
,

G(4) = P0 − ν
{
ν (4ν + ν ) + 2ν (ν + ν ) − 2ν (� + �)

− ν (� + �) + 4ν2R( , , ) + 2ννR( , , ) + 2ν2R( , , ) + ννR( , , )
}
,

G(5)(v,w) = ν2{4R(v + w, , ) + 2R(v + w, , )
} + νν

{
2R(v + w, , ) + R(v + w, , )

}
,

G(6)(v,w) = −ν
{
2com(v,w) � + com(v,w) �

}
,

G(7)(v,w) = −ν(2w � + w � ),

G(8)(v,w) = −ν
{
2(v + w) � + (v + w) �

}
.

We define the set of drivers which should be given a priori.

Definition 3.1. Let κ > 0. We call a vector of distribution-valued functions on [0,∞) of the form

X= ( , , , , , , , , , , , , , )

∈ CB− 1
2 −κ

∞ ×L 1
2 −κ, 1

4 − 1
2 κ × (

CB−κ∞
)2 × (

CB−1−κ∞
)2(

CB1−κ∞
)2 × (

CB−κ∞
)4 × (

CB− 1
2 −κ

∞
)2

, (3.4)

which satisfies Lμ = and Lμ = a driving vector of the system (3.3). Let X κ
CGL the set of all driving vectors.

For X ∈X κ
CGL and T > 0, we define

|||X|||κ,T = ‖ ‖
CT B

− 1
2 −κ

∞
+ ‖ ‖

L
1
2 −κ, 1

4 − 1
2 κ

T

+ ‖ ‖CT B−κ∞ + ‖ ‖CT B−κ∞ + ‖ ‖
CT B−1−κ∞ + ‖ ‖

CT B−1−κ∞

+ ‖ ‖
CT B1−κ∞ + ‖ ‖

CT B1−κ∞ + ‖ ‖CT B−κ∞ + ‖ ‖CT B−κ∞ + ‖ ‖CT B−κ∞ + ‖ ‖CT B−κ∞

+ ‖ ‖
CT B

− 1
2 −κ

∞
+ ‖ ‖

CT B
− 1

2 −κ

∞
.

We define the solutions of the system (3.3).

Definition 3.2. For T > 0, we call the pair (v,w) of distribution-valued functions on the time interval [0, T ] which
satisfies

v(t) = etLμv0 +
∫ t

0
e(t−s)Lμ

{
F(v,w) − cv

}
(s) ds,

w(t) = etLμw0 +
∫ t

0
e(t−s)Lμ

{
G(v,w) + cv

}
(s) ds,

(3.5)

where Lμ = (i + μ)� − 1, the solution of the system (3.3) on [0, T ] with initial values (v0,w0).

3.2. Local well-posedness

We give the local well-posedness result of the system (3.3) in the space

Dκ,κ ′
T = L

5
6 −κ ′,1−κ ′,1− κ′

2
T ×L1−κ ′+κ, 3

2 −2κ ′,1−κ ′
T ,
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where 0 < κ < κ ′ < 1
18 , for a short time T depending on (v0,w0) and X. We omit the proof here. For details, see [8,

Section 4].
First we give the estimate of the commutator com(v,w).

Lemma 3.1 ([8, Lemma 4.21]). Let v̂ be the mild solution of

Lμv̂ = F(v,w) − cv

with initial value v̂(0, ·) = v0. We define

com(v,w) := v̂ + ν
{
2(v + w − ν ) � + (v + w − ν ) �

}
.

For every T > 0, p ∈ [1,∞] and α < 1 + κ ′, we have the estimate

∥∥com(v,w)(t)
∥∥
B1+κ′

p
� 1 + t−

1+κ′−α
2 ‖v0‖Bα

p
+ t−κ ′(

1 + ∥∥v(t)
∥∥

Lp + ∥∥w(t)
∥∥

Lp

)
+

∫ t

0
(t − s)−

3+2κ
4

∥∥v(s)
∥∥
B

1
2 +κ′
p

ds +
∫ t

0
(t − s)−

1+2κ′
2

∥∥w(s)
∥∥
B1+2κ′

p
ds

+
∫ t

0
(t − s)−1− κ+κ′

2
(‖δstv‖Lp + ‖δstw‖Lp

)
ds,

uniformly over t ∈ [0, T ], where δst is the difference operator δstf := f (t) − f (s). Here the implicit proportionality
constant depends only on μ,ν, c, κ, κ ′,p,α,T and |||X|||κ,T .

We can obtain the local existence of the solution by a standard fixed point argument. The uniqueness and the
continuity on initial values and drivers are obtained by standard PDE arguments.

Theorem 3.2 ([8, Theorem 4.26]). For every (v0,w0) ∈ B− 2
3 +κ ′

∞ × B− 1
2 −2κ

∞ and X ∈ X κ
CGL, there exists T∗ ∈ (0,1]

continuously depending on (v0,w0,X) such that the system (3.3) has a unique solution (v,w) ∈Dκ,κ ′
T∗ and this solution

satisfies∥∥(v,w)
∥∥
Dκ,κ′

T∗
� 1 + ‖v0‖

B
− 2

3 +κ′
∞

+ ‖w0‖
B− 1

2 −2κ

∞
,

where the implicit constant depends only on μ,ν,λ, c, κ, κ ′ and |||X|||κ,1.

Let Tsur ∈ (0,∞] be the supremum of times T such that the system (3.3) has a unique solution (v,w) ∈ Dκ,κ ′
T . If

Tsur < ∞, then we have

lim
T ↑Tsur

(‖v‖
CT B

− 2
3 +κ′

∞
+ ‖w‖

CT B
− 1

2 −2κ

∞

) = ∞.

Furthermore, this survival time Tsur is lower semicontinuous with respect to (v0,w0,X), and if a sequence
(v

(ε)
0 ,w

(ε)
0 ,X(ε)) converge to (v0,w0,X) as ε ↓ 0, then for the corresponding solutions (v(ε),w(ε)) and (v,w), re-

spectively, we have

lim
ε↓0

∥∥(
v(ε),w(ε)

) − (v,w)
∥∥
Dκ,κ′

T

= 0

for every T < Tsur.

Remark 3.3. If (v0,w0) ∈ B1−κ ′
∞ × B

3
2 −2κ ′
∞ , then we can obtain the local well-posedness on the space L1−κ ′,1− κ′

2
T ×

L
3
2 −κ ′,1−κ ′
T without explosions at t = 0 by a similar argument.
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3.3. Renormalization of the stochastic CGL equation

We briefly explain the relation between the deterministic system (3.3) and the renormalized stochastic CGL equation
(1.2). For details, see [8, Section 4.5].

As stated in Section 1, we replace the space–time white noise ξ by a smeared noise ξε which is white in t but
smooth in x. Since the stationary solution ε of Lμ

ε = ξε is also smooth in x, we can define all products appeared
in Section 3.1 in usual sense. However, in order to define the convergent driving vectors X

ε as ε ↓ 0, we need to
introduce the renormalizations of the products.

Theorem 3.4 ([8, Theorem 5.9]). There exist constants Cε
i (i = 1,2,3) such that, if we define X

ε as in Section 3.1
with the additional conditions

ε = ε ε − Cε
1,

ε = (
ε
)2 ε − 2Cε

1
ε,

ε = ε
�

ε − 2Cε
2,

ε = ε
�

ε − Cε
3,

ε = ε
�

ε − 2Cε
2

ε,

ε = ε
�

ε − 2Cε
3

ε,

then there exists an X κ
CGL-valued random variable X which is independent of the choice of η, and such that

E
∣∣∣∣∣∣Xε −X

∣∣∣∣∣∣p
κ,T

= 0

for every T > 0 and p ∈ [1,∞). Furthermore, for the solution (vε,wε) of the system (3.3) with respect to the random
variable X

ε , the process uε = ε − ν
ε + vε + wε is a mild solution of the renormalized equation (1.2) with

Cε = 2Cε
1 − 2νCε

2 − 4νCε
3 .

Corollary 3.5. For every u0 ∈ B− 2
3 +κ ′

∞ , there exists a process u which is independent of the choice of η, and such that
the solution uε of the renormalized equation (1.2) with initial value u0 satisfies

lim
ε↓0

∥∥uε − u
∥∥

CT B
− 2

3 +κ′
∞

= 0

in probability for every T < Tsur, where Tsur is the survival time with respect to the driving vector Xε and initial values

vε
0 = uε

0 − ε(0) + ν
ε
(0), wε

0 = 0.

3.4. A priori estimate of (v,w)

From the above arguments, it is sufficient to show the following theorem in order to prove Theorem 1.1.

Theorem 3.6. Let μ > 1
2
√

2
. Choose sufficiently small 0 < κ < κ ′ depending on μ. For every T > 0 and X ∈ X κ

CGL,

there exists sufficiently large c > 0 depending only on μ,ν,λ, κ, κ ′, T and |||X|||κ,T , such that, any solution (v,w) of

the system (3.3) on [0, T ] with initial value (v0,w0) ∈ B− 2
3 +κ ′

∞ ×B− 1
2 −2κ

∞ satisfies

‖v‖
CT B

− 2
3 +κ′

∞
+ ‖w‖

CT B
− 1

2 −2κ

∞
≤ C (3.6)

for some finite constant C > 0 depending only on μ,ν,λ, c, κ, κ ′, T , |||X|||κ,T ,‖v0‖
B

− 2
3 +κ′

∞
and ‖w0‖

B− 1
2 −2κ

∞
.
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Although we consider the system (3.3) with different c > 0 for each fixed final time T > 0, the renormalized
equation (1.2) is irrelevant to the choice of c. Theorem 3.6 implies that the solution u = − ν + v + w does not

explode in the space B− 2
3 +κ ′

∞ until every fixed T > 0, so that the result of Corollary 3.5 holds for all T > 0.
We show Theorem 3.6 in the rest of this paper by the method explained in Section 1. Our goal is the a priori

L∞[0, T ] estimate

‖v‖
CT B

1
2 +κ′
2p+2

+ ‖w‖
CT B

3
2 −2κ′
2p+2

3

≤ C′ < ∞ (3.7)

for p > 3
2 , instead of the estimate (3.6). If the estimate (3.7) is true, then the Besov embeddings

B− 2
3 +κ ′

∞ ⊃ B
− 2

3 + 3
2p+2 +κ ′

2p+2 ⊃ B
1
2 +κ ′
2p+2,

B− 1
2 −2κ

∞ ⊃ B
− 1

2 + 9
2p+2 −2κ

2p+2
3

⊃ B
3
2 −2κ ′
2p+2

3

imply the a priori estimate (3.6). Additionally, since we already have∥∥v(T∗)
∥∥
B1−κ′

∞
+ ∥∥w(T∗)

∥∥
B

3
2 −2κ′
∞

� 1 + ‖v0‖
B

− 2
3 +κ′

∞
+ ‖w0‖

B− 1
2 −2κ

∞

from Theorem 3.2, we assume that the initial value (v0,w0) belongs to B1−κ ′
∞ × B

3
2 −2κ ′
∞ in what follows without loss

of generality, by starting the argument from the time T∗.
From now on, we fix T > 0 and X ∈X κ

CGL. In the inequalities shown below, we do not remark the dependences of
the proportionality constants on the parameters μ,ν,λ, κ, κ ′,p,T and |||X|||κ,T .

4. A priori estimate of v

In this section, we will show that the Besov norms of v and com(v,w) are controlled by the Lp norm of w. The
following theorem is obtained by the same arguments as [11, Theorem 3.1].

Theorem 4.1. Let p ∈ [1,∞) and c > 0. Then for every 0 ≤ s ≤ t ≤ T ,

∥∥v(t)
∥∥

Lp � e−ct‖v0‖Lp +
∫ t

0
e−c(t−s)(t − s)−

1+κ′
2

(
1 + ∥∥w(s)

∥∥
Lp

)
ds, (4.1)

∥∥v(t)
∥∥
B

1
2 +κ′
p

� ‖v0‖
B

1
2 +κ′
p

+
∫ t

0
(t − s)−

3
4 −κ ′(

1 + ∥∥w(s)
∥∥

Lp

)
ds, (4.2)

‖δst v‖Lp � (t − s)
1+2κ

4
∥∥v(s)

∥∥
B

1
2 +κ′
p

+
∫ t

s

(t − r)−
1+κ′

2
(
1 + ∥∥w(r)

∥∥
Lp

)
dr, (4.3)

where the implicit constants do not depend on c > 0.

Proof. The definition (3.5) of the solution v is equivalent to

v(t) = etLc
μv0 +

∫ t

0
e(t−s)Lc

μF (v,w)(s) ds,

where Lc
μ = (i + μ)� − (c + 1). For every α ∈ (0,1 − κ), we have

∥∥etLc
μv0

∥∥
Bα

p
� e−(c+1)t‖v0‖Bα

p
(4.4)
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and ∥∥∥∥
∫ t

0
e(t−s)Lc

μF (v,w)(s) ds

∥∥∥∥
Bα

p

�
∫ t

0
e−(c+1)(t−s)(t − s)−

α+1+κ
2

∥∥F(v,w)(s)
∥∥
B−1−κ

p
ds

�
∫ t

0
e−(c+1)(t−s)(t − s)−

α+1+κ
2

(
1 + ∥∥v(s)

∥∥
Bα

p
+ ∥∥w(s)

∥∥
Lp

)
ds.

Hence by [11, Lemma 3.4], we have

∥∥v(t)
∥∥
Bα

p
� e−ct‖v0‖Bα

p
+

∫ t

0
e−c(t−s)(t − s)−

α+1+κ
2

(
1 + ∥∥w(s)

∥∥
Lp

)
ds,

where c = c − [�( 1−κ−α
2 )] 2

1−κ−α . Here we can replace c by c again because we ignore the factor depending only on
κ,α and T . The second assertion (4.2) is obtained by setting α = 1

2 + κ ′ and using e−ct ≤ 1. The first assertion (4.1)
is obtained by setting α = κ ′ − κ and using∥∥etLc

μv0
∥∥

Lp � e−(c+1)t‖v0‖Lp

instead of (4.4).
In order to show the third assertion (4.3), we need to estimate

δst v = (
e(t−s)Lc

μ − 1
)
v(s) +

∫ t

s

e(t−r)Lc
μF (v,w)(r) dr.

For the first term, we have∥∥(
e(t−s)Lc

μ − 1
)
v(s)

∥∥
Lp �

∥∥(
e(t−s)Lc

μ − 1
)
v(s)

∥∥
Bκ′−κ

p
� (t − s)

1+2κ
4

∥∥v(s)
∥∥
B

1
2 +κ′
p

.

For the second term, we have∥∥∥∥
∫ t

s

e(t−r)Lc
μF (v,w)(r) dr

∥∥∥∥
Bκ′−κ

p

�
∫ t

s

(t − r)−
1+κ′

2
∥∥F(v,w)(r)

∥∥
B−1−κ

p
dr

�
∫ t

s

(t − r)−
1+κ′

2
(
1 + ∥∥v(r)

∥∥
B

1
2 +κ′
p

+ ∥∥w(r)
∥∥

Lp

)
dr.

We can bound the part involving ‖v(r)‖
B

1
2 +κ′
p

by

∫ t

s

(t − r)−
1+κ′

2
∥∥v(r)

∥∥
B

1
2 +κ′
p

dr

�
∫ t

s

(t − r)−
1+κ′

2
∥∥v(s)

∥∥
B

1
2 +κ′
p

dr +
∫ t

s

(t − r)−
1+κ′

2

∫ r

0
(r − τ)−

3
4 −κ ′(

1 + ∥∥w(τ)
∥∥

Lp

)
dτ

� (t − s)
1−κ′

2
∥∥v(s)

∥∥
B

1
2 +κ′
p

+
∫ t

s

(∫ t

τ

(t − r)−
1+κ′

2 (r − τ)−
3
4 −κ ′

dr

)(
1 + ∥∥w(τ)

∥∥
Lp

)
dτ

� (t − s)
1−κ′

2
∥∥v(s)

∥∥
B

1
2 +κ′
p

+
∫ t

s

(t − τ)−
1+6κ′

4
(
1 + ∥∥w(τ)

∥∥
Lp

)
dτ.
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In this paper, we repeatedly use the exchange of the order of integration like above. �

As an application, we can control com(v,w) by w.

Corollary 4.2. Let p ∈ [1,∞) and c > 0. Then for every t ∈ [0, T ],
∥∥com(v,w)(t)

∥∥
B1+κ′

p
� 1 + t−

1
4 ‖v0‖

B
1
2 +κ′
p

+ t−κ ′(
1 + ∥∥w(t)

∥∥
Lp

) + t−κ ′
∫ t

0
(t − s)−

1+κ′
2

(
1 + ∥∥w(s)

∥∥
Lp

)
ds

+
∫ t

0
(t − s)−

1+3κ′
2

∥∥w(s)
∥∥
B1+2κ′

p
ds +

∫ t

0
(t − s)−1− κ+κ′

2 ‖δstw‖Lp ds, (4.5)

where the implicit constant depends on c.

Proof. We use the estimate in Lemma 3.1, setting α = 1
2 + κ ′. We need to control the terms

t−κ ′∥∥v(t)
∥∥

Lp ,

∫ t

0
(t − s)−

3+2κ
4

∥∥v(s)
∥∥
B

1
2 +κ′
p

ds,

∫ t

0
(t − s)−1− κ+κ′

2 ‖δstv‖Lp ds

by w. For the first term, we use (4.1) and have

t−κ ′∥∥v(t)
∥∥

Lp � t−κ ′ ‖v0‖Lp + t−κ ′
∫ t

0
(t − s)−

1+κ′
2

(
1 + ∥∥w(s)

∥∥
Lp

)
ds.

For the second term, from (4.2)∫ t

0
(t − s)−

3+2κ
4

∥∥v(s)
∥∥
B

1
2 +κ′
p

ds

� ‖v0‖
B

1
2 +κ′
p

+
∫ t

0
(t − s)−

3+2κ
4

∫ s

0
(s − r)−

3
4 −κ ′(

1 + ∥∥w(r)
∥∥

Lp

)
dr ds

= ‖v0‖
B

1
2 +κ′
p

+
∫ t

0

(∫ t

r

(t − s)−
3+2κ′

4 (s − r)−
3+4κ′

4 ds

)(
1 + ∥∥w(r)

∥∥
Lp

)
dr

� ‖v0‖
B

1
2 +κ′
p

+
∫ t

0
(t − r)−

1+3κ′
2

(
1 + ∥∥w(r)

∥∥
Lp

)
dr. (4.6)

For the third term, from (4.3)∫ t

0
(t − s)−1− κ+κ′

2 ‖δst v‖Lp ds �
∫ t

0
(t − s)−

3+2κ′
4

∥∥v(s)
∥∥
B

1
2 +κ′
p

ds

+
∫ t

0
(t − s)−1−κ ′

∫ t

s

(t − r)−
1+κ′

2
(
1 + ∥∥w(r)

∥∥
Lp

)
dr ds.

Here the first integral is bounded by (4.6) again. The second integral is computed by∫ t

0

∫ r

0
(t − s)−1−κ ′

ds(t − r)−
1+κ′

2
(
1 + ∥∥w(r)

∥∥
Lp

)
dr

�
∫ t

0
(t − r)−

1+3κ′
2

(
1 + ∥∥w(r)

∥∥
Lp

)
dr.

These complete the proof. �
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5. A priori estimate of w

The goal of this section is to show the following theorem.

Theorem 5.1. Let p ∈ (1,5∧{1+μ(μ+√
1 + μ2)}) and assume 5

2κ ′ ≤ 3
4 − 3

2p+2 . For sufficiently large c depending

on μ,ν,λ, κ, κ ′,p,T and |||X|||κ,T , we have

∥∥w(t)
∥∥2p

L2p +
∫ t

0

∥∥w(s)
∥∥2p+2

L2p+2 ds � 1 + ‖v0‖2p+2

B
1
2 +κ′
2p+2

+ ‖w0‖2p

L2p +
∫ t

0

∥∥w(s)
∥∥ 2p+2

3

B1+2κ′
2p+2

3

ds,

where the implicit constant depends only on μ,ν,λ, c, κ, κ ′,p,T and |||X|||κ,T .

We start from the following L2p inequality. See also [4, Section 4].

Proposition 5.2. Let 1 < p < 1 + μ(μ + √
1 + μ2). For every δ > 0 such that

p − 1

μ(μ + √
1 + μ2)

≤ 1 − δ, (5.1)

we have the following inequality.

1

2p

(∥∥w(t)
∥∥2p

L2p − ‖w0‖2p

L2p

) + δμ

∫ t

0

∥∥|∇w|2|w|2p−2(s)
∥∥

L1 ds

+ �ν

∫ t

0

∥∥w(s)
∥∥2p+2

L2p+2 ≤
∫ t

0

〈|w|2p−2,�(
wG′

c

)〉
(s) ds. (5.2)

Here G′
c(v,w) = G(v,w) + cv + νw2w̄.

Proof. We compute the derivative of ‖w(t)‖2p

L2p at formal level. For every p > 1,

d

dt

∥∥w(t)
∥∥2p

L2p = d

dt

∫
T3

(ww)p dx = p

∫
T3

(ww)p−1(w∂tw + w∂tw)dx

= p

∫
T3

(ww)p−1{(−i + μ)w�w + (i + μ)w�w
}
dx + p

∫
T3

(ww)p−1(wGc + wGc)dx

=−p

[
(−i + μ)

∫
T3

∇{
(ww)p−1w

} · ∇w dx + (i + μ)

∫
T3

∇{
(ww)p−1w

} · ∇w dx

]

− 2p�ν
∥∥w(t)

∥∥2p+2
L2p+2 + p

∫
T3

|w|2p−2(wG′
c + wG′

c

)
dx, (5.3)

where Gc(v,w) = G(v,w) + cv.
We can justify the above computations as follows. First, since w(t) is not differentiable in t , we should interpret

(5.3) as the integration equality

∥∥w(t)
∥∥2p

L2p − ∥∥w(0)
∥∥2p

L2p =
∫ t

0
· · · ds.

Then ∂tw and ∂tw are defined by Young integrals:

p

∫ t

0

〈
(ww)p−1w,∂sw

〉 + p

∫ t

0

〈
(ww)p−1w,∂sw

〉
. (5.4)
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We can see that w ∈ Cδ
T L∞ for δ < 3

4 − κ ′ by the definition of the solution space Dκ,κ ′
T . (Since w0 ∈ B

3
2 −2κ ′
∞ now,

w belongs to L
3
2 −2κ ′,1−κ ′
T rather than L1−κ ′+κ, 3

2 −2κ ′,1−κ ′
T .) Since the function w �→ |w|2p−2w is locally Lipschitz

continuous because (2p − 2)+ 1 > 1, the above Young integrals are well-defined. The last equality in (5.3) is justified
by classical PDE theory. By a similar argument to [10, Proposition 6.7], the mild solution w is also a weak solution,
in the sense that for every ϕ ∈ B1∞,

〈
w(t), ϕ

〉 − 〈w0, ϕ〉 = −(i + μ)

∫ t

0

〈∇w(s),∇ϕ
〉
ds +

∫ t

0

〈
Gc(s),ϕ

〉
ds. (5.5)

Let ϕs = (w|w|2p−2)(s) for s ∈ [0, t]. Since ∇w ∈ CT L∞ and

∇{
w(ww)p−1} = p(ww)p−1∇w + (p − 1)(ww)p−2w2∇w ∈ CT L∞,

we have ϕs ∈ B1∞ by Proposition 2.5. Hence it is allowed to insert ϕ = ϕs into (5.5). We take a partition {0 = t0 <

· · · < tN = t} of [0, t] and consider the sum

N−1∑
i=0

〈wti+1 − wti , ϕti 〉

= −(i + μ)

N−1∑
i=0

∫ ti+1

ti

〈∇w(s),∇ϕti

〉
ds +

N−1∑
i=0

∫ ti+1

ti

〈
Gc(s),ϕti

〉
ds.

As supi |ti+1 − ti | → 0, the left-hand side becomes Young integral as (5.4). The right-hand side also converges to
Riemann integrals

−(i + μ)

∫ t

0

〈∇w,∇{
w(ww)p−1}〉(s) ds +

∫ t

0

〈
Gc,w(ww)p−1〉(s) ds.

Now we return to the first term of the last part of (5.3). Since

〈∇{
(ww)p−1w

}
,∇w

〉 = 〈
(ww)p−1, |∇w|2〉 + (p − 1)

〈
(ww)p−2,w∇w · ∇(ww)

〉
= p

〈|w|2p−2, |∇w|2〉 + (p − 1)
〈|w|2p−4,w2(∇w)2〉

we have

(−i + μ)
〈∇{

(ww)p−1w
}
,∇w

〉 + (i + μ)
〈∇{

(ww)p−1w
}
,∇w

〉
= 2pμ

〈|w|2p−2, |∇w|2〉 + (p − 1)
〈|w|2p−4, (−i + μ)w2(∇w)2 + (i + μ)w2(∇w)2〉

= 2pμ
〈|w|2p−2, |∇w|2〉 + (p − 1)μ

〈|w|2p−4, (w∇w − w∇w)2 + 2|w|2|∇w|2〉
− (p − 1)i

〈|w|2p−4, (w∇w − w∇w) · (w∇w + w∇w)
〉

= 2(2p − 1)μ
〈|w|2p−2, |∇w|2〉 − (p − 1)μ

〈|w|2p−4, |w∇w − w∇w|2〉
− (p − 1)

〈|w|2p−4, i(w∇w − w∇w) · ∇|w|2〉.
Let δ ∈ (0,1] and move the term −2pδμ〈|w|2p−2, |∇w|2〉 into the left-hand side. Then the quantity

−p
[
2(2p − 1 − δ)μ

〈|w|2p−2, |∇w|2〉 − (p − 1)μ
〈|w|2p−4, |w∇w − w∇w|2〉

− (p − 1)
〈|w|2p−4, i(w∇w − w∇w) · ∇|w|2〉]
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remains. By using the identity 4|w|2|∇w|2 = (∇|w|2)2 +|w∇w−w∇w|2, the above value turns into −p〈|w|2p−4, f 〉,
where

f =
(

p − 1

2
− δ

2

)
μ

(∇|w|2)2 − (p − 1)∇|w|2 · i(w∇w − w∇w) +
(

1

2
− δ

2

)
μ|w∇w − w∇w|2.

This quadratic form is nonnegative if the matrix(
(p − 1

2 − δ
2 )μ − 1

2 (p − 1)

− 1
2 (p − 1) ( 1

2 − δ
2 )μ

)

is nonnegative definite. Since this matrix has a nonnegative trace, it is sufficient to show that its determinant is non-
negative. By setting p̄ = p − 1, we have(

2p̄ + (1 − δ)
)
(1 − δ)μ2 − p̄2 ≥ 0.

By solving this inequality for p̄, we get the condition (5.1). �

The right-hand side of (5.2) is written as

∫ t

0

〈|w|2p−2,�(
wG′

c

)〉
(s) ds =

8∑
i=1

I(i)(t),

where

I(1)(t) = −ν

∫ t

0

〈|w|2p−2,�{
w

(
v2v + v2w + 2vvw + 2vww + vw2)}〉(s) ds,

I(3)(t) =
∫ t

0

〈|w|2p−2,�{
w(G(3) + cv)

}〉
(s) ds,

I(i)(t) =
∫ t

0

〈|w|2p−2,�(wG(i))
〉
(s) ds (i �= 1,3).

In Lemmas 5.3–5.6, we will show that each of I(i)s are controlled by the following integrals.

At =
∫ t

0
as ds, as = 1 + ∥∥w(s)

∥∥2p+2
L2p+2 ,

Bt =
∫ t

0
bs ds, bs = 1 + ∥∥|∇w|2|w|2p−2(s)

∥∥
L1,

Ct =
∫ t

0
cs ds, cs = ∥∥w(s)

∥∥ 2p+2
3

B1+2κ′
2p+2

3

.

Here we put the extra term 1 in the definitions of as and bs to ensure that aα
s ≤ a

β
s and bα

s ≤ b
β
s for α < β . Our main

tools are discrete Young’s inequality and Jensen’s inequality:

• For every α1, . . . , αN > 0 such that
∑

αi = 1 and ε > 0, there exists Cε such that

∏
i

x
αi

i ≤ Cεx1 + ε
∑
i �=1

xi

for every xi ≥ 0.
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• Let f (t) be a nonnegative and integrable function on [0, T ]. Then there exists a constant Cf such that, for every
p > 1 and nonnegative function g(t) on [0, T ], we have

(∫ T

0
f (t)g(t) dt

)p

≤ Cf

∫ T

0
f (t)g(t)p dt.

In the following lemmas, we always write Cε for a large constant depending only on ε,μ, ν,λ, c, κ, κ ′,p,T and
|||X|||κ,T .

Lemma 5.3. Let p > 1 and ε > 0. For sufficiently large c depending only on ε,μ, ν,λ, κ, κ ′,p,T and |||X|||κ,T , we
have

I(1)(t) ≤ ε
(‖v0‖2p+2

L2p+2 + At

)
.

Proof. By Young’s inequality, we easily have

I(1)(t) ≤ ε

∫ t

0

∥∥w(s)
∥∥2p+2

L2p+2 ds + Cε

∫ t

0

∥∥v(s)
∥∥2p+2

L2p+2 ds,

where the constant Cε depends only on ε and ν. From (4.1), we have∫ t

0

∥∥v(s)
∥∥2p+2

L2p+2 ds

�
∫ t

0

{
e−cs‖v0‖L2p+2 +

∫ s

0
e−c(s−r)(s − r)−

1+κ′
2 a

1
2p+2
r dr

}2p+2

ds

�
∫ t

0
e−(2p+2)cs‖v0‖2p+2

L2p+2 +
∫ t

0

∫ s

0
e−c(s−r)(s − r)−

1+κ′
2 ar dr ds

� 1

c
‖v0‖2p+2

L2p+2 + K(c)

∫ t

0
as ds, (5.6)

where K(c) = ∫ ∞
0 e−css− 1+κ′

2 ds. In the second inequality, we used Jensen’s inequality. Since 1
c
+K(c) ↓ 0 as c → ∞,

we have the required estimate by choosing sufficiently large c > 0. �

Lemma 5.4. For every p > 1 and ε > 0, we have

I(5)(t) ≤ Cε + ε
(‖v0‖2p+2

B
1
2 +κ′
2p+2

+ At + Ct

)
,

I(8)(t) ≤ Cε + ε
(‖v0‖2p+2

B
1
2 +κ′
2p+2

+ At + Bt + Ct

)
.

Proof. We focus on the second one since the first one is shown more easily. From Proposition 2.1, we have∣∣〈|w|2p−2,wG(8)

〉∣∣ �
∥∥w|w|2p−2

∥∥
B

1
2
p+1
p ,∞

‖G(8)‖
B− 1

2
p+1,1

�
∥∥w|w|2p−2

∥∥
B

1
2
p+1
p ,∞

‖G(8)‖
B− 1

2 +κ′−κ

p+1,∞

�
∥∥w|w|2p−2

∥∥
B

1
2
p+1
p

(
1 + ‖v‖

B
1
2 +κ′
p+1

+ ‖w‖
B

1
2 +κ′
p+1

)
. (5.7)
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We apply Proposition 2.5 to w|w|2p−2 = w(ww)p−1. Since

∇{
w(ww)p−1} = p(ww)p−1∇w + (p − 1)(ww)p−2w2∇w

= |w|p−1∇w · p|w|p−1 + |w|p−1∇w · (p − 1)|w|p−3w2,

by Hölder’s inequality we have∥∥∇(
w|w|2p−2)∥∥

L
p+1
p

�
∥∥|w|p−1∇w

∥∥
L2

∥∥|w|p−1
∥∥

L
2p+2
p−1

�
∥∥|w|2p−2|∇w|2∥∥ 1

2
L1‖w‖p−1

L2p+2 = a
p−1
2p+2 b

1
2 .

Combining this with ‖w|w|2p−2‖
L

p+1
p

� ‖w‖2p−1
L2p+2 = a

2p−1
2p+2 , we have

∥∥w|w|2p−2
∥∥
B

1
2
p+1
p

�
∥∥w|w|2p−2

∥∥ 1
2

L
p+1
p

∥∥∇(
w|w|2p−2)∥∥ 1

2

L
p+1
p

+ ∥∥w|w|2p−2
∥∥

L
p+1
p

� a
1
2

2p−1
2p+2 + 1

2
p−1
2p+2 b

1
4 + a

2p−1
2p+2 � aα + bα,

where α = 2p− 1
2

2p+2 .
We consider the time integral of (5.7). For the term involving v, by Young’s inequality we have∫ t

0

(
1 + ∥∥v(s)

∥∥
B

1
2 +κ′
p+1

)(
aα
s + bα

s

)
ds

� Cε + ε

∫ t

0

(
1 + ∥∥v(s)

∥∥2p+2

B
1
2 +κ′
2p+2

)
ds + ε

∫ t

0
(as + bs) ds,

since 1
2p+2 + α < 1. The second term is estimated by the similar computations to those in (5.6) as follows.

∫ t

0

∥∥v(s)
∥∥2p+2

B
1
2 +κ′
2p+2

ds �
∫ t

0

{
‖v0‖

B
1
2 +κ′
2p+2

+
∫ s

0
(s − r)−

3
4 −κ ′(

1 + ∥∥w(r)
∥∥

L2p+2

)
dr

}2p+2

ds

� ‖v0‖2p+2

B
1
2 +κ′
2p+2

+ At .

For the term involving w, we need the interpolation

‖w‖
B

1
2 +κ′
p+1

� ‖w‖
1
2

B1+2κ′
2p+2

3

‖w‖
1
2
L2p+2 ≤ a

1
2

1
2p+2 c

1
2

3
2p+2 � a

1
p+1 + c

1
p+1 .

Since 1
p+1 + α < 1, by Young’s inequality we have

∫ t

0

(
a

1
p+1
s + c

1
p+1
s

)(
aα
s + bα

s

)
ds � Cε + ε

∫ t

0
(as + bs + cs) ds.

These complete the proof. �

Lemma 5.5. Let p ∈ (1,5) and assume 5
2κ ′ ≤ 3

4 − 3
2p+2 . For every ε > 0, we have

I(6)(t) ≤ CεCt + ε
(‖v0‖2p+2

B
1
2 +κ′
2p+2

+ At

)
.
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Proof. Since∣∣〈|w|2p−2,wG(6)

〉∣∣ � ‖G(6)‖
L

2p+2
3

∥∥w|w|2p−2
∥∥

L
2p+2
2p−1

�
∥∥com(v,w)

∥∥
B1+κ′

2p+2
3

‖w‖2p−1
L2p+2,

we have

I(6)(t) �
(∫ t

0

∥∥com(v,w)(s)
∥∥ 2p+2

3

B1+κ′
2p+2

3

ds

) 3
2p+2

(∫ t

0
as ds

) 2p−1
2p+2

� Cε

∫ t

0

∥∥com(v,w)(s)
∥∥ 2p+2

3

B1+κ′
2p+2

3

ds + εAt .

We consider the time integral of each term in (4.5). The first term is trivial. Integrability of the second term

t− 1
4 ‖v0‖

B
1
2 +κ′
2p+2

3

is easy because 1
4

2p+2
3 < 1 by assumption. For the third and fourth terms, because κ ′(p +1) < 6κ ′ < 1

we have

∫ t

0

{
s−κ ′(

1 + ∥∥w(s)
∥∥

L
2p+2

3

)} 2p+2
3 ds �

(∫ t

0
s−κ ′(p+1) ds

) 2
3
(∫ t

0
as

) 1
3

� A
1
3
t ,

and

∫ t

0

{
s−κ ′

∫ s

0
(s − r)−

1+κ′
2

(
1 + ∥∥w(r)

∥∥
L

2p+2
3

)
dr

} 2p+2
3

ds

�
(∫ t

0
s−κ ′(p+1) ds

) 2
3
[∫ t

0

{∫ s

0
(s − r)−

1+κ′
2 a

1
2p+2
r dr

}2p+2

ds

] 1
3

� A
1
3
t .

For the fifth term, we have

∫ t

0

{∫ s

0
(s − r)−

1+3κ′
2

∥∥w(r)
∥∥
B1+2κ′

2p+2
3

dr

} 2p+2
3

ds �
∫ t

0

∥∥w(s)
∥∥ 2p+2

3

B1+2κ′
2p+2

3

ds = Ct .

For the last term, we need the following estimate.

‖δstw‖
L

2p+2
3

� (t − s)2κ ′(
1 + ‖v0‖2p+2

B
1
2 +κ′
2p+2

+ cs + At + Ct

) 3
2p+2 . (5.8)

Since the proof of this estimate requires many pages, we show it in the next section. Now we assume that (5.8) is true.
Let Nt = 1 + ‖v0‖2p+2

B
1
2 +κ′
2p+2

+ At + Ct . Then for small δ > 0, we have

∫ t

0

{∫ s

s−δ

(s − r)−1−κ ′ ‖δrsw‖
L

2p+2
3

dr

} 2p+2
3

ds

�
∫ t

0

{∫ s

s−δ

(s − r)−1+κ ′
(Ns + cr)

3
2p+2 dr

} 2p+2
3

ds

�
∫ t

0
Ns

{∫ s

s−δ

(s − r)−1+κ ′
dr

} 2p+2
3

ds +
∫ t

0
cs ds � δ

2p+2
3 κ ′

Nt + Ct .
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For the integral on [0, s − δ], we have

∫ t

0

{∫ s−δ

0
(s − r)−1−κ ′ ‖δrsw‖

L
2p+2

3
dr

} 2p+2
3

ds

�
∫ t

0
δ− 2p+2

3 (1+κ ′)
{∫ s

0

(∥∥w(s)
∥∥

L
2p+2

3
+ ∥∥w(r)

∥∥
L

2p+2
3

)
dr

} 2p+2
3

ds � δ− 2p+2
3 (1+κ ′)Ct .

To sum up, we have

∫ t

0

∥∥com(v,w)(s)
∥∥ 2p+2

3

B1+κ′
2p+2

3

ds � ‖v0‖
2p+2

3

B
1
2 +κ′
2p+2

+ A
1
3
t + δ

2p+2
3 κ ′

Nt + CδCt .

These complete the proof. �

The following lemma is obtained similarly to [11, Lemmas 5.6 and 5.7], so we omit the proof.

Lemma 5.6. For every p > 1 and ε > 0, we have

I(2)(t) ≤ Cε + ε
(‖v0‖2p+2

B
1
2 +κ′
2p+2

+ At + Bt

)
,

I(3)(t) ≤ Cε + ε
(‖v0‖2p+2

B
1
2 +κ′
2p+2

+ At + Bt

)
,

I(4)(t) ≤ Cε + ε(At + Bt),

I(7)(t) ≤ CεCt + εAt .

Now we can obtain Theorem 5.1 by combining these bounds and choosing small ε compared with δμ and �ν

in (5.2).

6. A priori estimate of δw

In this section, we show (5.8) and complete the proof of Theorem 5.1. We can obtain a simpler result than [11,
Theorem 4.1].

Theorem 6.1. Let p > 1 be such that 5
2κ ′ ≤ 3

4 − 3
2p+2 . For 0 ≤ s ≤ t ≤ T , we have

‖δstw‖
L

2p+2
3

� (t − s)2κ ′(
1 + ‖v0‖2p+2

B
1
2 +κ′
2p+2

+ ∥∥w(s)
∥∥ 2p+2

3

B1+2κ′
2p+2

3

+ At + Ct

) 3
2p+2 ,

where the implicit constant depends only on μ,ν,λ, c, κ, κ ′,p,T and |||X|||κ,T .

As discussed in [11, Section 4], since

∥∥(
e(t−s)Lμ − 1

)
w(s)

∥∥
L

2p+2
3

� (t − s)2κ ′
c

3
2p+2
s , (6.1)

it is sufficient to consider the estimate of

δ′
stw := δstw − (

e(t−s)Lμ − 1
)
w(s) = w(t) − e(t−s)Lμw(s).
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We can decompose it as

δ′
stw =

8∑
i=1

∫ t

s

e(t−r)(i+μ)�G(i)(v,w)(r) =:
8∑

i=1

W(i)(s, t). (6.2)

For simplicity, we write

q = 2p + 2

3

in what follows.

Lemma 6.2. For every q > 4
3 , we have

∥∥W(1)(s, t)
∥∥

Lq � (t − s)
q−1
q

(‖v0‖3q

L3q + At

) 1
q ,

∥∥W(5)(s, t)
∥∥

Lq � (t − s)
q−1
q

(‖v0‖q

B
1
2 +κ′
3q

+ Ct

) 1
q ,

∥∥W(7)(s, t)
∥∥

Lq � (t − s)
q−1
q C

1
q

t ,

∥∥W(8)(s, t)
∥∥

Lq � (t − s)
3
4 − 1

q
(‖v0‖q

B
1
2 +κ′
3q

+ Ct

) 1
q .

Proof. These are obtained by similar arguments to [11, Lemmas 4.2 and 4.6]. Here we prove only the last two
assertions. For W(7), we have

∥∥W(7)(s, t)
∥∥

Lq �
∫ t

s

∥∥e(t−r)LμG(7)(r)
∥∥

Lq dr �
∫ t

s

∥∥G(7)(r)
∥∥

Lq dr

�
(∫ t

s

dr

) q−1
q

(∫ t

0

∥∥w(r)
∥∥q

B1+2κ′
q

dr

) 1
q

� (t − s)
q−1
q C

1
q

t .

For W(8),

∥∥W(8)(s, t)
∥∥

Lq �
∫ t

s

∥∥e(t−r)LμG(8)(r)
∥∥
Bκ′−κ

q
dr �

∫ t

s

(t − r)−
1
4
∥∥G(8)(r)

∥∥
B− 1

2 +κ′−κ

q

dr

�
(∫ t

s

(t − r)
− 1

4
q

q−1 dr

) q−1
q

{∫ t

0

(∥∥v(r)
∥∥
B

1
2 +κ′
q

+ ∥∥w(r)
∥∥
B

1
2 +κ′
q

)q
dr

} 1
q

.

The first factor is bounded by (t − s)
3
4 − 1

q because q > 4
3 . We can show that the time integral of ‖v‖

B
1
2 +κ′
q

is bounded

by

‖v0‖q

B
1
2 +κ′
q

+ Ct ,

as already discussed above. �

Lemma 6.3. For every q > 4
3 such that 1

q
< 3

4 − 1
2κ ′, we have

∥∥W(2)(s, t)
∥∥

Lq � (t − s)
3
4 − 1

q
− 1

2 κ ′(‖v0‖3q

B
1
2 +κ′
3q

+ At + Ct

) 1
q ,
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∥∥W(3)(s, t)
∥∥

Lq � (t − s)
3
4 − 1

q
− 1

2 κ ′(‖v0‖q

B
1
2 +κ′
3q

+ Ct

) 1
q ,

∥∥W(4)(s, t)
∥∥

Lq � (t − s)
3
4 −κ ′

.

Proof. We now focus on the first one. The others are obtained by similar arguments. We start with the estimate

∥∥W(2)(s, t)
∥∥

Lq �
∫ t

s

∥∥e(t−r)LμG(2)(r)
∥∥
Bκ′−κ

q
dr �

∫ t

s

(t − r)−
1+2κ′

4
∥∥G(2)(r)

∥∥
B− 1

2 −κ

q

dr

�
(∫ t

s

(t − r)
− 1+2κ′

4
q

q−1 dr

) q−1
q

(∫ t

0

∥∥G(2)(r)
∥∥q

B− 1
2 −κ

q

dr

) 1
q

.

We will show the bound∥∥G(2)(r)
∥∥q

B− 1
2 −κ

q

�
∥∥(v + w)2(r)

∥∥q

B
1
2 +κ′
q

+ ∥∥(v + w)(v + w)(r)
∥∥q

B
1
2 +κ′
q

�
∥∥v(r)

∥∥3q

B
1
2 +κ′
3q

+ ar + cr (6.3)

by estimating the terms involving (1) v2, vv, (2) vw,vw,vw and (3) w2,ww separately. For (1), we have∥∥v2
∥∥
B

1
2 +κ′
q

+ ‖vv‖
B

1
2 +κ′
q

� ‖v‖2

B
1
2 +κ′
2q

� 1 + ‖v‖3

B
1
2 +κ′
3q

.

For (2), by Young’s inequality and the interpolation (Lemma 2.2) we have

‖vw‖
B

1
2 +κ′
q

+ ‖vw‖
B

1
2 +κ′
q

� ‖v‖
B

1
2 +κ′
3q

‖w‖
B

1
2 +κ′
3q
2

� ‖v‖
B

1
2 +κ′
3q

‖w‖
1
2
L3q ‖w‖

1
2

B1+2κ′
q

� ‖v‖3

B
1
2 +κ′
3q

+ ‖w‖3
L3q + ‖w‖B1+2κ′

q
.

We have to treat the terms involving (3) more carefully. In fact, we cannot obtain the required bound from the inequal-
ities ∥∥w2

∥∥
B

1
2 +κ′
q

� ‖w‖2

B
1
2 +κ′
2q

�
(‖w‖

3
4
L3q ‖w‖

1
4

B2+4κ′
q

)2
,

because the regularity “2 + 4κ ′” is too high. Instead, by using the Bony’s decomposition

w2 = w � w + 2w � w,

we have more strict bound∥∥w2
∥∥
B

1
2 +κ′
q

� ‖w � w‖
B

1
2 +κ′
q

+ ‖w � w‖
B

1
2 +κ′
q

� ‖w‖L3q ‖w‖
B

1
2 +κ′
3q
2

+ ‖w‖2

B
1
4 + 1

2 κ′
2q

� ‖w‖L3q

(‖w‖
1
2
L3q ‖w‖

1
2

B1+2κ′
q

) + (‖w‖
3
4
L3q ‖w‖

1
4

B1+2κ′
q

)2

� ‖w‖3
L3q + ‖w‖B1+2κ′

q
.

Now we get the required bounds because∫ t

0

∥∥v(r)
∥∥3q

B
1
2 +κ′
3q

dr � ‖v0‖3q

B
1
2 +κ′
3q

+ At

by (4.2). These complete the proof. �
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Lemma 6.4. For every q > 4
3 such that 1

q
< 1 − κ ′, we have

∥∥W(6)(s, t)
∥∥

Lq � (t − s)
1− 1

q
−κ ′(‖v0‖q

B
1
2 +κ′
q

+ Ct + |||w|||
q
2
q,κ ′;tC

1
2
t

) 1
q ,

where

|||w|||q,κ ′;t := sup
0≤u<r≤t

‖δ′
urw‖Lq

|r − u|2κ ′ .

Proof. Since

∥∥W(6)(s, t)
∥∥

Lq �
∫ t

s

∥∥G(6)(r)
∥∥
Bκ′−κ

q
dr �

∫ t

s

∥∥com(v,w)(r)
∥∥
B1+κ′

q
dr,

we consider the time integral of each term in (4.5). For the first two terms, we have

∫ t

s

(
1 + r− 1

4 ‖v0‖
B

1
2 +κ′
q

)
dr � (t − s)

3
4
(
1 + ‖v0‖

B
1
2 +κ′
q

)
.

For the next three terms, since κ ′ q
q−1 < 4κ ′ < 1 we have

∫ t

s

r−κ ′(
1 + ∥∥w(r)

∥∥
Lq

)
dr +

∫ t

s

r−κ ′
∫ r

0
(r − u)−

1+κ′
2

(
1 + ∥∥w(u)

∥∥
Lq

)
dudr

≤
(∫ t

s

r
−κ ′ q

q−1 dr

) q−1
q

[(∫ t

0
cr dr

) 1
q +

(∫ t

0

∫ r

0
(r − u)−

1+κ′
2 cu dudr

) 1
q
]

� (t − s)
1− 1

q
−κ ′

C
1
q

t

and ∫ t

s

∫ r

0
(r − u)−

1+3κ′
2

∥∥w(u)
∥∥
B1+2κ′

q
dudr

�
(∫ t

s

dr

) q−1
q

(∫ t

0

∫ r

0
(r − u)−

1+3κ′
2 cu dudr

) 1
q

� (t − s)
q−1
q C

1
q

t .

For the last term, we can replace δstw by δ′
stw since the difference is estimated by

∫ t

s

∫ r

0
(r − u)−1− κ+κ′

2
∣∣‖δurw‖Lq − ∥∥δ′

urw
∥∥

Lq

∣∣dudr

�
∫ t

s

∫ r

0
(r − u)−1−κ ′

(r − u)2κ ′
c

1
q
u dudr

�
(∫ t

s

dr

) q−1
q

(∫ t

s

∫ r

0
(r − u)−1+κ ′

cu dudr

) 1
q

� (t − s)
q−1
q C

1
q

t .

For the contribution of δ′
stw, since

∥∥δ′
urw

∥∥
Lq �

∥∥δ′
urw

∥∥ 1
2
Lq

(∥∥w(r)
∥∥ 1

2
Lq + ∥∥w(u)

∥∥ 1
2
Lq

)
≤ |||w|||

1
2
q,κ ′;t (r − u)κ

′(∥∥w(r)
∥∥ 1

2
Lq + ∥∥w(u)

∥∥ 1
2
Lq

)
,
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we have∫ t

s

∫ r

0
(r − u)−1− κ+κ′

2
∥∥δ′

urw
∥∥

Lq dudr

� |||w|||
1
2
q,κ ′;t

∫ t

s

∫ r

0
(r − u)−1+ κ′−κ

2
(∥∥w(r)

∥∥ 1
2
Lq + ∥∥w(u)

∥∥ 1
2
Lq

)
dudr

� |||w|||
1
2
q,κ ′;t

(∫ t

s

dr

) 2q−1
2q

(∫ t

0

∫ r

0
(r − u)−1+ κ′−κ

2 (cr + cu) dudr

) 1
2q

� |||w|||
1
2
q,κ ′;t (t − s)

2q−1
2q C

1
2q

t . �

Combining these estimates, we obtain the required result.

Proof of Theorem 6.1. By assumption of κ ′, all of the exponents of (t − s) appeared in the above estimates are
greater than 2κ ′. To sum them up, we have

∥∥δ′
stw

∥∥
Lq � (t − s)2κ ′(

1 + ‖v0‖3q

B
1
2 +κ′
3q

+ At + Ct + |||w|||
q
2
q,κ ′;tC

1
2
t

) 1
q ,

which yields

|||w|||q
q,κ ′;t � 1 + ‖v0‖3q

B
1
2 +κ′
3q

+ At + Ct + |||w|||
q
2
q,κ ′;tC

1
2
t .

From the fact that x ≤ a + √
bx ⇒ x � a + b, we have

|||w|||q,κ ′;t �
(
1 + ‖v0‖3q

B
1
2 +κ′
3q

+ At + Ct

) 1
q ,

which implies Theorem 6.1. �

7. A priori L1[0,T ] estimate of (v,w)

The goal of this section is the following theorem. From now on, we always assume

1 < p < 5 ∧ {
1 + μ

(
μ +

√
1 + μ2

)}
.

Theorem 7.1. Assume that κ ′ < 2
5 ( 3

4 − 1
q
) ∧ 1

18 . Let (v,w) be the solution of the system (3.3) with initial value

(v0,w0) ∈ B
1
2 +κ ′
3q × B

3
2 −2κ ′
q . Then there exists a constant C < ∞ depending only on μ,ν,λ, c, κ, κ ′,p,T , |||X|||κ,T

and ‖v0‖
B

1
2 +κ′
3q

+ ‖w0‖
B

3
2 −κ′
q

such that

∫ T

0

(∥∥w(t)
∥∥q

B1+2κ′
q

+ ∥∥v(t)
∥∥3q

B
1
2 +κ′
3q

+ ∥∥w(t)
∥∥3q

L3q

)
dt ≤ C.

First we will show the follwing result.
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Lemma 7.2. There exist T∗ > 0 and M < ∞ depending only on μ,ν,λ, c, κ, κ ′,p,T and |||X|||κ,T such that for every
0 ≤ s ≤ t ≤ T satisfying t − s ≤ 2T∗,∫ t

s

∥∥w(r)
∥∥q

B1+2κ′
q

dr ≤ M
(
1 + ∥∥w(s)

∥∥q

B1+2κ′
q

+ ∥∥v(s)
∥∥3q

B
1
2 +κ′
3q

+ ∥∥w(s)
∥∥3q

L3q

)
.

To prove the above lemma, we use the decomposition (6.2) and write

∫ t

s

∥∥w(r)
∥∥q

B1+2κ′
q

dr � (t − s)
∥∥w(s)

∥∥q

B1+2κ′
q

+
8∑

i=1

∫ t

s

∥∥W(i)(s, r)
∥∥q

B1+2κ′
q

dr.

In Lemmas 7.3–7.5, we will show that the last eight terms are bounded by the terms of the form:

(t − s)θ
(∥∥v(s)

∥∥3q

B
1
2 +κ′
3q

+ V (s, t) + A(s, t) + C(s, t)
)
, θ ∈ (0,1),

where

V (s, t) =
∫ t

s

(
1 + ∥∥v(r)

∥∥3q

B
1
2 +κ′
3q

)
dr,

A(s, t) =
∫ t

s

(
1 + ∥∥w(r)

∥∥3q

L3q

)
dr,

C(s, t) =
∫ t

s

∥∥w(r)
∥∥q

B1+2κ′
q

dr.

As discussed in [11, Section 6], our proof starts with Young’s convolution inequality. For i = 1, . . . ,8, we have∫ t

s

∥∥W(i)(s, r)
∥∥q

B1+2κ′
q

dr �
∫ t

s

(∫ r

s

(r − u)−
1+2κ′−αi

2
∥∥G(i)(u)

∥∥
Bαi

q
du

)q

dr

�
(∫ t

s

(t − r)−
1+2κ′−αi

2 dr

)q ∫ t

s

∥∥G(i)(r)
∥∥q

Bαi
q

dr

� (t − s)
1−2κ′+αi

2 q

∫ t

s

∥∥G(i)(r)
∥∥q

Bαi
q

dr,

where αi ∈ (−1 + 2κ ′,1 + 2κ ′). Thus we need to consider Lq [s, t] estimates of Gi in Bαi
q norm.

Lemma 7.3. For every 0 ≤ s ≤ t ≤ T , we have∫ t

s

∥∥W(1)(s, r)
∥∥q

B1+2κ′
q

dr � (t − s)
1−2κ′

2 q
(
V (s, t) + A(s, t)

)
,

∫ t

s

∥∥W(2)(s, r)
∥∥q

B1+2κ′
q

dr � (t − s)
1−6κ′

4 q
(
V (s, t) + A(s, t) + C(s, t)

)
,

∫ t

s

∥∥W(3)(s, r)
∥∥q

B1+2κ′
q

dr � (t − s)
1−6κ′

4 q
(
V (s, t) + C(s, t)

)
,

∫ t

s

∥∥W(4)(s, r)
∥∥q

B1+2κ′
q

dr � (t − s)
1−8κ′

4 q

∫ t

s

dr.

Proof. Let α1 = 0, α2 = α3 = − 1
2 − κ and α4 = − 1

2 − 2κ . The first one immediately follows from

∥∥G(1)(r)
∥∥q

Lq �
∥∥v(r)

∥∥3q

L3q + ∥∥w(r)
∥∥3q

L3q .
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The second one follows from the bound (6.3). The others are obtained more easily. �

Lemma 7.4. For every 0 ≤ s ≤ t ≤ T , we have

∫ t

s

∥∥W(6)(s, r)
∥∥q

B1+2κ′
q

dr � (t − s)
1−2κ′

2 q
(∥∥v(s)

∥∥3q

B
1
2 +κ′
3q

+ A(s, t) + C(s, t)
)
.

Proof. Let α6 = 0. By the same argument as in the proof of Lemma 5.5, we have

∫ t

s

∥∥G(6)(r)
∥∥q

Lq dr �
∫ t

s

∥∥com(v,w)(r)
∥∥q

B1+κ′
q

dr �
∥∥v(s)

∥∥3q

B
1
2 +κ′
3q

+ A(s, t) + C(s, t),

taking care that the initial time is s. �

Lemma 7.5. For every 0 ≤ s ≤ t ≤ T , we have

∫ t

s

∥∥W(5)(s, r)
∥∥q

B1+2κ′
q

dr � (t − s)
1−2κ′

2 q
(
V (s, t) + C(s, t)

)
,

∫ t

s

∥∥W(7)(s, r)
∥∥q

B1+2κ′
q

dr � (t − s)
1−2κ′

2 qC(s, t),

∫ t

s

∥∥W(8)(s, r)
∥∥q

B1+2κ′
q

dr � (t − s)
1−4κ′

4 q
(
V (s, t) + C(s, t)

)
.

Proof. Let α5 = α7 = 0 and α8 = − 1
2 + κ ′ − κ . The Lq estimates of G(5),G(7) and G(8) are easily obtained. �

To sum them up, we can show Lemma 7.2.

Proof of Lemma 7.2. Combining above estimates, we have

C(s, t) � (t − s)
∥∥w(s)

∥∥q

B1+2κ′
q

+ (t − s)
1−8κ′

4
(∥∥v(s)

∥∥3q

B
1
2 +κ′
3q

+ V (s, t) + A(s, t) + C(s, t)
)
.

For V , from (4.2) we have

V (s, t) � 1 + ∥∥v(s)
∥∥3q

B
1
2 +κ′
3q

+ A(s, t). (7.1)

For A, we already have

A(s, t) � 1 + ∥∥v(s)
∥∥3q

B
1
2 +κ′
3q

+ ∥∥w(s)
∥∥3q

L3q + C(s, t) (7.2)

from Theorem 5.1. Thus we have

C(s, t) ≤ M(t − s)
∥∥w(s)

∥∥q

B1+2κ′
q

+ M(t − s)
1−8κ′

4
(
1 + ∥∥v(s)

∥∥3q

B
1
2 +κ′
3q

+ ∥∥w(s)
∥∥3q

L3q + C(s, t)
)

for some constant M > 0. Therefore we obtain Lemma 7.2 by choosing T∗ such that M(2T∗)
1−8κ′

4 ≤ 1
2 . �

We return to the proof of Theorem 7.1.
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Proof of Theorem 7.1. Let

Is = ∥∥w(s)
∥∥q

B1+2κ′
q

+ ∥∥v(s)
∥∥3q

B
1
2 +κ′
3q

+ ∥∥w(s)
∥∥3q

L3q , I (s, t) =
∫ t

s

Ir dr.

By Combining Lemma 7.2 with the estimates (7.1) and (7.2), we have that for every 0 ≤ s ≤ t ≤ T satisfying t − s ≤
2T∗,

I (s, t) ≤ M∗(1 + Is),

where M∗ depends only on μ,ν,λ, c, κ, κ ′,p,T and |||X|||κ,T . Local well-posedness result (Theorem 3.2 and Re-
mark 3.3) shows that there exist suitable choices of smaller T∗ and larger M∗, which depend on the initial value
(v0,w0), and such that we have

I (0, T∗) ≤ M∗.

For every k ∈ N, because I ((k + 1)T∗, (k + 2)T∗) ≤ I (s, (k + 2)T∗) for s ∈ [kT∗, (k + 1)T∗], we have

I
(
(k + 1)T∗, (k + 2)T∗

) ≤ 1

T∗

∫ (k+1)T∗

kT∗
I
(
s, (k + 2)T∗

)
ds ≤ M∗

T∗

∫ (k+1)T∗

kT∗
(1 + Is) ds

≤ M∗ + M∗
T∗

I
(
kT∗, (k + 1)T∗

)
.

As a result, for k = 0,1, . . . we can prove that

I
(
kT∗, (k + 1)T∗

) ≤ M∗
k∑

i=0

(
M∗
T∗

)i

< ∞.

This completes the proof. �

8. A priori L∞[0,T ] estimate of (v,w)

Let (v,w) be the solution with initial value (v0,w0) ∈ B
1
2 +κ ′
3q × B

3
2 −2κ ′
q . In the settings of Theorem 7.1, we show the

following a priori L∞[0, T ] estimates of (v,w).

Theorem 8.1. Assume that 3κ ′ < 3
4 − 1

q
. There exists a constant C < ∞ depending only on μ,ν,λ, c, κ, κ ′,p,T ,

|||X|||κ,T ,‖v0‖
B

1
2 +κ′
3q

and ‖w0‖
B

3
2 −2κ′
q

such that

sup
0≤t≤T

∥∥v(t)
∥∥
B

1
2 +κ′
3q

≤ C.

Proof. Since we already have a priori estimate
∫ T

0 ‖w(s)‖3q

L3q � 1 in Theorem 7.1, from (4.2) we have

∥∥v(t)
∥∥
B

1
2 +κ′
3q

� ‖v0‖
B

1
2 +κ′
3q

+
(∫ t

0
(t − s)

−( 3
4 +κ ′) 3q

3q−1 ds

) 3q−1
3q

{∫ t

0

(
1 + ∥∥w(s)

∥∥
L3q

)3q
ds

} 1
3q

� 1.

since ( 3
4 + κ ′) 3q

3q−1 < 1. �
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It remains to control ‖w‖
B

3
2 −2κ′
q

. We decompose it as follows.

∥∥w(t)
∥∥
B

3
2 −2κ′
q

� ‖w0‖
B

3
2 −2κ′
q

+
8∑

i=1

∥∥W(i)(t)
∥∥
B

3
2 −2κ′
q

.

As discussed above, all of W(i) have the bound of the form

∥∥W(i)(t)
∥∥
B

3
2 −2κ′
q

�
∫ t

0
(t − s)−

3−4κ′−2αi
4

∥∥G(i)(s)
∥∥
Bαi

q
ds. (8.1)

By Young’s convolution inequality, we have

(∫ T

0

∥∥W(i)(t)
∥∥p2

B
3
2 −2κ′
q

dt

) 1
p2 ≤

(∫ T

0
(T − t)−

3−4κ′−2αi
4 qi dt

) 1
qi

(∫ T

0

∥∥G(i)(t)
∥∥p1

Bαi
q

dt

) 1
p1

,

where 1 + 1
p2

= 1
qi

+ 1
p1

. This implies that if ‖G(i)(t)‖Bαi
q

has the Lp1[0, T ] estimate, then we immediately have the

Lp2 estimate of ‖W(i)(t)‖
B

3
2 −2κ′
q

, where qi has to satisfy 3−4κ ′−2αi

4 qi < 1. We ultimately aim to get p2 = ∞, which

is interpreted as the L∞[0, T ] estimate: supt∈[0,T ] ‖w(t)‖
B

3
2 −2κ′
q

< ∞. Although this goal is not attained immediately,

we are able to get p2 = ∞ by iterating Young’s convolution inequality several times.

Theorem 8.2. Assume that q > 5
3 and κ ′ < 1

3 − 1
3q−2 . There exists a constant C < ∞ depending only on

μ,ν,λ, c, κ, κ ′,p,T , |||X|||κ,T ,‖v0‖
B

1
2 +κ′
3q

and ‖w0‖
B

3
2 −2κ′
q

such that

sup
0≤t≤T

∥∥w(t)
∥∥
B

3
2 −2κ′
q

≤ C.

We start the proof by estimating each W(i) using a priori estimates

sup
t∈[0,T ]

∥∥v(t)
∥∥
B

1
2 +κ′
3q

� 1,

sup
t∈[0,T ]

∥∥w(t)
∥∥

L3q−2 � 1,

∫ T

0

∥∥w(t)
∥∥q

B1+2κ′
q

dt � 1,

∫ T

0

∥∥w(t)
∥∥3q

L3q � 1.

We can improve the bounds of W(i) as follows. Note that the proportional constants appearing above and in the
following inequalities depend on initial values (v0,w0).

Lemma 8.3. Assume that 3κ ′ < 3
4 − 1

q
. For every t ∈ [0, T ],

∥∥W(1)(t)
∥∥
B

3
2 −2κ′
q

� 1 +
∫ t

0
(t − s)−

3−4κ′
4

∥∥w(s)
∥∥3

L3q ds, (8.2)

∥∥W(2)(t)
∥∥
B

3
2 −2κ′
q

� 1 +
∫ t

0
(t − s)−

2−κ′
2

(∥∥w(s)
∥∥3

L3q + ∥∥w(s)
∥∥
B1+2κ′

q

)
ds, (8.3)
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∥∥W(3)(t)
∥∥
B

3
2 −2κ′
q

� 1 +
∫ t

0
(t − s)−

2−κ′
2

∥∥w(s)
∥∥
B

1
2 +κ′
q

ds, (8.4)

∥∥W(4)(t)
∥∥
B

3
2 −2κ′
q

� 1, (8.5)

∥∥W(5)(t)
∥∥
B

3
2 −2κ′
q

� 1 +
∫ t

0
(t − s)−

3−4κ′
4

∥∥w(s)
∥∥
B

1
2 +κ′
q

ds, (8.6)

∥∥W(6)(t)
∥∥
B

3
2 −2κ′
q

� 1 +
∫ t

0
(t − s)−

3−4κ′
4

∥∥w(s)
∥∥
B1+2κ′

q
ds, (8.7)

∥∥W(7)(t)
∥∥
B

3
2 −2κ′
q

�
∫ t

0
(t − s)−

3−4κ′
4

∥∥w(s)
∥∥
B1+κ′

q
ds, (8.8)

∥∥W(8)(t)
∥∥
B

3
2 −2κ′
q

� 1 +
∫ t

0
(t − s)−

3−4κ′
4

∥∥w(s)
∥∥
B1+κ′

q
ds, (8.9)

where the implicit constants depend on ‖v0‖
B

1
2 +κ′
3q

+ ‖w0‖
B

3
2 −2κ′
q

. As a result, we have

∫ T

0

∥∥w(t)
∥∥q

B
3
2 −2κ′
q

dt � 1. (8.10)

Proof. These are obtained by estimating ‖G(i)‖Bαi
q

in (8.1) as before. (8.10) is obtained by applying Jensen’s inequal-

ity to (8.2)–(8.9). �

We proceed to iterate Young’s convolution inequality until we get L∞[0, T ] estimate. For simplicity, we write

W(−1)(t) =
8∑

i=2

W(i)(t).

Although G(1) and G(2) contain higher order terms of w, we can weaken their influence with the help of L∞[0, T ]
estimate of ‖w(t)‖L3q−2 .

Lemma 8.4. Assume that q > 5
3 and κ ′ < 1

3 − 1
3q−2 . For every t ∈ [0, T ],

∥∥W(1)(t)
∥∥
B

3
2 −2κ′
q

� 1 +
∫ t

0
(t − s)−

3−4κ′
4

∥∥w(s)
∥∥ 12

7

B
3
2 −2κ′
q

ds, (8.11)

∥∥W(−1)(t)
∥∥
B

3
2 −2κ′
q

� 1 +
∫ t

0
(t − s)−

2−κ′
2

∥∥w(s)
∥∥
B

3
2 −2κ′
q

ds. (8.12)

If we assume that
∫ T

0 ‖w(t)‖p1

B
3
2 −2κ′
q

ds � 1 for some p1 ∈ [1,∞), then we have

∫ T

0

∥∥W(1)(t)
∥∥p2

B
3
2 −2κ′
q

ds � 1 (8.13)

for p1 > 12
7 such that 1

p2
> 12

7p1
− 1

4 − κ ′, and we have

∫ T

0

∥∥W(−1)(t)
∥∥p3

B
3
2 −2κ′
q

ds � 1 (8.14)

for 1
p3

> 1
p1

− 1
2κ ′.
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Proof. For (8.11), we need to replace ‖w‖3q

L3q by ‖w‖
12
7

B
3
2 −2κ′
q

. Indeed, for sufficiently small ε > 0,

‖w‖L3q � ‖w‖Bε
3q

� ‖w‖
4
7

B
7
4 ε

r

‖w‖
3
7
L3q−2,

where r is determined by 1
3q

= 4
7

1
r

+ 3
7

1
3q−2 . ‖w‖L3q−2 is already bounded by 1. Besov embedding shows

B
7
4 ε+3( 1

q
− 1

r
)

q ⊂ B
7
4 ε
r , where by assumption

7

4
ε + 3

(
1

q
− 1

r

)
= 7

4
ε + 1

4

(
5

q
+ 9

3q − 2

)
<

7

4
ε + 5

4q
+ 3

4
− 9

4
κ ′ < 3

2
− 2κ ′

for every ε < 1
7κ ′. Hence we have

‖w‖L3q � ‖w‖
4
7

B
3
2 −2κ′
q

.

For (8.12), it is sufficient to consider the square terms of w. As in the proof of Lemma 6.3, by Bony’s decomposition∥∥w2
∥∥
B

1
2 +κ′
q

� ‖w � w‖
B

1
2 +κ′
q

+ ‖w � w‖
B

1
2 +κ′
q

� ‖w‖L3q−2‖w‖
B

1
2 +κ′
r

+ ‖w‖2

B
1
4 + 1

2 κ′
2q

� ‖w‖L3q−2‖w‖
B

1
2 +κ′
r

+ (‖w‖
1
2
L3q−2‖w‖

1
2

B
1
2 +κ′
r

)2 � ‖w‖L3q−2‖w‖
B

1
2 +κ′
r

,

where r is determined by 1
q

= 1
3q−2 + 1

r
. Boundedness of ‖w‖L3q−2 and Besov embedding

‖w‖
B

1
2 +κ′
r

� ‖w‖
B

3
3q−2 + 1

2 +κ′
q

� ‖w‖
B

3
2 −2κ′
q

show the required estimate.
The improvement results (8.13)–(8.14) are immediately obtained from Young’s inequality. If p1 > 12

7 , we have

(∫ T

0

∥∥W(1)(t)
∥∥p2

B
3
2 −2κ′
q

dt

) 1
p2 � 1 +

(∫ T

0
(T − t)−

3−4κ′
4 r dt

) 1
r
(∫ T

0

∥∥w(t)
∥∥p1

B
3
2 −2κ′
q

dt

) 12
7p1

,

where 1 + 1
p2

= 1
r

+ 12
7p1

. Then (8.13) follows if 3−4κ ′
4 r < 1, thus 1

p2
> 12

7p1
− 1

4 − κ ′. (8.14) is similar. �

By iterating this improvement result finite times (which depends on κ ′), we obtain the required a priori estimate.

Proof of Theorem 8.2. First we show that we can replace the exponent q in (8.10) by q1, which satisfies 1
q1

= 1
q

− 1
4 .

From (8.2), Young’s inequality yields

∫ T

0

∥∥W(1)(t)
∥∥q1

B
3
2 −2κ′
q

dt � 1

because 1 + 1
q1

= 3
4 + 1

q
. On the other hand, from Lemma 8.4 we have Lp1 [0, T ] estimate of ‖W(−1)(t)‖

B
3
2 −2κ′
q

with

1
p1

> 1
q

− 1
2κ ′. To sum them up, we obtain Lp1 [0, T ] boundedness of ‖w(t)‖

B
3
2 −2κ′
q

. Now by applying Lemma 8.4

again, we obtain Lp2 [0, T ] estimate of ‖W(−1)(t)‖
B

3
2 −2κ′
q

with 1
p2

> 1
p1

− 1
2κ ′ > 1

q
− κ ′, which implies Lp2 [0, T ]
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boundedness of ‖w(t)‖
B

3
2 −2κ′
q

. We can repeat this argument until pN1 which satisfies 1
pN1

< 1
q

− 1
4 . (N1 ∼ 1

2κ ′ .) Hence

we have∫ T

0

∥∥w(t)
∥∥q1

B
3
2 −2κ′
q

dt � 1.

Next we show that we can again replace the exponent q1 by q2, which satisfies 1
q2

= 12
7q1

− 1
4 . We note that 1

q2
< 1

q1

because 1
q1

< 3
5 − 1

4 = 7
20 . Lemma 8.4 implies

∫ T

0

∥∥W(1)(t)
∥∥q2

B
3
2 −2κ′
q

dt � 1.

Then by the same argument as above, we can conclude that W(−1) is Lq2 [0, T ] bounded after performing N2 (∼
2
κ ′ ( 1

q1
− 1

q2
)) times Young’s inequalities, so ‖w(t)‖

B
3
2 −2κ′
q

also.

We can replace the exponent q2 by q3 which satisfies 1
q3

= 12
7q2

− 1
4 by the same arguments. We can repeat this

argument until the sequence { 1
qn

} determined by

1

qn+1
= 12

7qn

− 1

4

achieves 1
qM

≤ 0. (M has the order O(| logκ ′|).) If 1
qM

< 0, then we should replace it by qM = ∞. In the end, after

performing M + N1 + · · · + NM =O((κ ′)−1) times improvements argument, we can complete the proof. �

Proof of Theorem 3.6. By Theorems 8.1 and 8.2, we have a priori L∞[0, T ] estimate of (v,w) if the conditions

3

2
< p < 5 ∧ {

1 + μ
(
μ +

√
1 + μ2

)}
, κ ′ < 1

3
− 1

2p

hold. Since

3

2
< 1 + μ

(
μ +

√
1 + μ2

) ⇔ μ >
1

2
√

2
,

the assumption μ > 1
2
√

2
is satisfied if p is sufficiently close to 3

2 , or equivalently κ ′ is sufficiently small. �
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