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LIMIT THEOREMS FOR BETTI NUMBERS OF EXTREME
SAMPLE CLOUDS WITH APPLICATION TO

PERSISTENCE BARCODES1

BY TAKASHI OWADA

Purdue University

We investigate the topological dynamics of extreme sample clouds gener-
ated by a heavy tail distribution on R

d by establishing various limit theorems
for Betti numbers, a basic quantifier of algebraic topology. It then turns out
that the growth rate of the Betti numbers and the properties of the limiting
processes all depend on the distance of the region of interest from the weak
core, that is, the area in which random points are placed sufficiently densely
to connect with one another. If the region of interest becomes sufficiently
close to the weak core, the limiting process involves a new class of Gaussian
processes. We also derive the limit theorems for the sum of bar lengths in the
persistence barcode plot, a graphical descriptor of persistent homology.

1. Introduction. The main focus of this paper lies in two areas, random topol-
ogy and extreme value theory with the aim of revealing topological dynamics of
extreme sample clouds far away from the origin, which are generated by heavy
tailed distributions on R

d .
For the construction of topological objects of our interest, we start with a point

cloud X = {x1, . . . , xn} of points in R
d , from which more complex sets are con-

structed. Two such examples are the union of balls
⋃n

i=1 B(xi; t), where B(x; t)
is a closed ball of radius t about the point x, and the Čech complex, Č(X , t) (see
Figure 1).

DEFINITION 1.1. Let X be a collection of points in R
d and t be a positive

number. Then the Čech complex Č(X , t) is defined as follows:

1. The 0-simplices are the points in X .
2. A p-simplex σ = [xi0, . . . , xip ] belongs to Č(X , t) whenever a family of closed

balls {B(xij ; t/2), j = 0, . . . , p} has a nonempty intersection.

In addition to the Čech complex, there are many other geometric simplicial com-
plexes, such as the Vietoris–Rips and alpha complexes (see, e.g., [28]). However,
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FIG. 1. Take X = {x1, . . . , x7} ⊂ R
2. Since three balls with radius t/2 centered at x3, x4, x5 have

a common intersection, the 2-simplex [x3, x4, x5] belongs to Č(X ; t). There also exists a 3-simplex
[x4, x5, x6, x7], which adds a tetrahedron on the right figure.

throughout the current paper, we concentrate on the Čech complex. One reason
for doing so is its topological equivalence to the union of balls. An important re-
sult, known as the Nerve theorem (see, e.g., Theorem 10.7 of [9]), states that the
Čech complex and the union of balls are homotopy equivalent. Furthermore, Čech
complexes are regarded as higher-dimensional analogues of geometric graphs and,
therefore, many of the techniques developed thus far in random geometric graph
theory (see, e.g., [41]) are also applicable to random Čech complexes.

Given a topological space X, the 0th homology group H0(X) is an Abelian
group and is a topological invariant generated by elements representing connected
components in X. For k ≥ 1, the kth homology group Hk(X) is a topological in-
variant as well, which is generated by elements representing k-dimensional “holes”
or “cycles” in X. For k ≥ 0, the kth Betti number βk(X) is a basic quantifier of
topology that is central to the study in this paper. Intuitively, β0(X) counts the
number of connected components in X, while βk(X), k ≥ 1, counts the number
of k-dimensional holes or cycles in X. For example, as seen in Figure 2, a one-
dimensional sphere, that is, a circle, has β0 = 1, β1 = 1, and βk = 0 for all k ≥ 2.
A two-dimensional sphere has β0 = 1, β1 = 0 and β2 = 1, and all others zero. In
the case of a two-dimensional torus, the nonzero Betti numbers are β0 = 1, β1 = 2,
and β2 = 1. At a more formal level, the kth Betti number βk(X) is defined as the di-
mension of the kth homology group Hk(X). More rigorous coverage of homology
theory can be found in, for example, [29, 46] and [37]. An excellent review [14]
contains a gentle introduction of the topological concepts needed in the current
paper.

The study of the geometric and topological properties of extreme sample clouds
in a high-dimensional space belongs to Extreme Value Theory (EVT). EVT stud-
ies, as its name implies, the extremal behavior of stochastic processes. It is a highly
active research area at the intersection of probability theory and statistics; an ex-
cellent treatment of the field is in [43] and a more recent exposition is in [18], with
other key publications over the years including [15, 24, 26, 35] and [44]. Indeed,
over the last decade or so, many studies have provided geometric descriptions of
multivariate extremes in view of point process theory, among them [4, 5] and [6].
In particular, Poisson limits of point processes with a U-statistic structure were
discussed in [17, 45] and [20], the last two also including a number of stochastic
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FIG. 2. (a) One-dimensional sphere. (b) One-dimensional disk. (c) Two-dimensional sphere. (d)
Two-dimensional torus. The Betti number β1 of a two-dimensional sphere is zero; even if one winds
a closed loop around the sphere, the loop ultimately vanishes as it moves upward (or downward)
along the sphere until the pole. The Betti number β1 of a two-dimensional torus is 2 because of two
independent closed loops (one is red and the other is blue).

geometry examples. Furthermore, in [40] a recent extensive study of the general
point process convergence of extreme sample clouds, leading to limit theorems for
Betti numbers of extremes, is reported. The main contribution in [40] is a proba-
bilistic investigation into a layered structure consisting of a collection of “rings”
around the origin, with each ring containing extreme random points that exhibit
different topological behaviors in terms of the Betti numbers. More formally, this
ring-like structure is referred to as topological crackle, which was originally re-
ported in [2].

We remark also that there has been increasing interest in the limiting behaviors
of random geometric complexes, which are not necessarily related to extremes;
see [31, 32, 47, 48] and [12]. In particular, [32] and [48] derived various central
and Poisson limit theorems for the Betti numbers of the random Čech complexes
Č(Xn, rn), with Xn a random point set in R

d and rn a threshold radius. The re-
sulting limit theorems depend heavily on the asymptotics of nrd

n , as n → ∞. For
example, [32] investigated the sparse regime (i.e., nrd

n → 0) so that the spatial
distribution of complexes is sparse, and they are observed mostly as isolated com-
ponents. In contrast, the main focus of [48] was the thermodynamic regime [i.e.,
nrd

n → ξ ∈ (0,∞)] in which complexes are large and highly connected. A nice
survey on topology of random geometric complexes is provided by [10]. However,
with a few exceptions of [2] and [40], already discussed above, none of these pa-
pers has results related to extreme sample clouds. The contribution of the present
paper is to develop a fuller description of the ring-like structure and the crackle
phenomena by establishing a variety of limit theorems, not only Poissonian-type
but also central limit type, for Betti numbers of extremes.

One motivation for studying random geometric complexes comes from topolog-
ical data analysis (TDA). TDA is a growing research area that broadly refers to the
analysis of high-dimensional datasets, the main goal of which is to extract robust
topological information from datasets. One of the most typical approaches to TDA
is persistent homology, which originated in computational topology and appears in
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a wide range of applications, including sensor networks [19], bioinformatics [16],
computational chemistry [36], manifold learning [38] and linguistics [42].

Persistent homology keeps track of how topological features dynamically
evolve in a filtered topological space. We do not give a formal description of persis-
tent homology, but, alternatively, we present an illustrative example, which helps
capture its essence. Readers interested in a more rigorous description of persistent
homology may refer to [23, 49] and [22], while [1] and [27] provide an elegant re-
view of the topics in an accessible way for nontopologists. Let Xn = {X1, . . . ,Xn}
be a set of random points on R

d , drawn from an unknown manifold M ⊂ R
d .

First, we construct a union of balls

U(t) :=
n⋃

i=1

B(Xi; t), t ≥ 0,

which defines a random filtration generated by balls with increasing radii t → ∞,
that is, U(s) ⊂ U(t) holds for all 0 ≤ s ≤ t . By virtue of the Nerve theorem, the
filtration {U(t), t ≥ 0} conveys the same homological information as a collection
of Čech complexes {Č(Xn; t), t ≥ 0}. Utilizing {U(t), t ≥ 0} or {Č(Xn; t), t ≥ 0},
we wish to recover the homology of M. We expect that, provided that t is suitably
chosen, the union of balls U(t) is homotopy equivalent to M, and hence its ho-
mology is the same as M. In general, however, selecting such an appropriate t is
not easy at all. To make this more transparent, we consider an example for which
M represents an annulus (Figure 3). In this case, if t is chosen to be too small
as in (a), U(t) is homotopy equivalent to many distinct points, implying that we
fail to recover the homology of an annulus. On the other hand, if t is extremely
large as in (c), then U(t) becomes contractible (i.e., can deform into a single point
continuously) and, once again, U(t) does not recover the homology of an annulus.

Persistent homology can extract more robust information of M by treating a
possible range of t simultaneously. Typically, persistent homology can be visual-
ized by two equivalent graphical descriptors known as the persistence diagram and

FIG. 3. Many random points are scattered over an annulus. We increase the radius t/2 of the balls
about these random points.
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FIG. 4. (a) Persistence diagram for the first homology group H1 represented by one-dimensional
holes. In Figure 3, there exist two small holes c1 and c2 when t = t2. The lifetimes of these holes
are so short that they are represented by the points a1 and a2 near the diagonal line. On the other
hand, c3 is a robust hole, and thus, the corresponding point a3 is placed far from the diagonal line.
(b) Persistence barcode plot for H1. The vertical line at level t2 intersects horizontal bars three times,
meaning that there are three holes when t = t2. Although two of these quickly vanish, the remaining
one has the largest persistence and generates the longest bar.

persistence barcode plot. The persistence diagram consists of a multiset of points
in the plane {(bi, di) : i = 1, . . . ,m,0 ≤ bi < di ≤ ∞}, where each pair (bi, di)

describes the birth time and death time of each hole (or connected component).
Alternatively, if we represent the pair (bi, di) as an interval [bi, di], we obtain a set
of horizontal bars, called the persistence barcode plot.

For the annulus example in Figure 3, as we increase t , many small one-
dimensional holes appear and quickly disappear (e.g., the holes c1 and c2). Since
the birth time and death time of these nonrobust holes are close to each other, they
are expressed in the persistence diagram as the points near the diagonal line [see
the points a1 and a2 in Figure 4(a)]. The points near the diagonal line are usually
viewed as “topological noise.” In contrast, a robust hole for the annulus denoted by
c3 in Figure 3 has a much longer lifetime than any other small hole and, therefore,
it can be represented by the point a3 placed far above the diagonal line. From the
viewpoint of the persistence barcode plot in Figure 4(b), the hole c3 generates the
longest bar, whereas other small holes generate only much shorter bars.

In the spirit of EVT, the main focus of the present paper is the topological fea-
tures related to heavy-tailed distributions. We define Betti numbers as follows.
Given a nonrandom sequence (Rn,n ≥ 1) growing to infinity and a nonnegative
number t , we denote by Č(Xn ∩ B(0;Rn)

c, t) a Čech complex built over heavy-
tailed random points Xn = {X1, . . . ,Xn} lying outside a growing ball B(0;Rn).
We then denote the corresponding kth Betti number by

βk,n(t) := βk

(
Č

(
Xn ∩ B(0;Rn)

c, t
)) = βk

( ⋃
X∈Xn∩B(0;Rn)c

B(X; t/2)

)
,
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where the second equality holds by homotopy equivalence between the Čech com-
plex and the union of balls. Clearly, βk,n(t) is viewed as a stochastic process (in the
parameter t) possessing right-continuous sample paths with left limits. The main
benefit of this scheme is functional level information obtainable about the birth and
death of holes of various dimensions. This can be revealed, at least asymptotically,
via the limiting process of βk,n(t), which will turn out to be certain functionals of
Poisson or Gaussian processes.

Once we establish the limit theorems for βk,n(t), one fascinating direction
would be connecting the asymptotics of Betti numbers to those of statistics con-
cerned with persistent homology. For example, the current paper derives the limit
theorems for

Lk,n(t) =
∫ t

0
βk,n(s) ds, t ≥ 0.

In the context of persistence barcode plot, Lk,n(t) can be regarded as the lifetime
sum up to parameter t , because, in the kth persistence barcode plot, the Betti num-
ber βk,n(s) equals the number of times the vertical line at level s intersects the
horizontal bars (Figure 5).

The persistent homology originated in algebraic topology, and thus, there are
only a limited number of probabilistic and statistical studies that have treated it.
The present paper contains some of the earliest results from a pure probabilistic
viewpoint, other papers being [11, 30] and [21]. In particular, [11] investigated
probabilistic features of bars of the maximum size, from which they tried to capture
“extremal” behavior of bars. On the contrary, the present paper tries to uncover the
“average” behavior of bars by establishing the limit theorems for the sum of bars,
while assuming inhomogeneous Poisson point process and paying more attention
on distributional tails. Other references on the interdisciplinary studies between
statistics and persistent homology include, for example, [13, 25] and [34].

Before commencing the main body of the paper, we remark that we consider
only spherically symmetric distributions. Although the spherical symmetry as-
sumption is far from being crucial, we adopt it to avoid unnecessary technical-
ities. Furthermore, this paper only treats the case in which the common density

FIG. 5. kth persistence barcode plot. The lifetime sum up to parameter t is Lk,n(t) = ∑5
i=1 ei .

The vertical line at level s intersects the horizontal bars three times, implying that βk,n(s) = 3. The

integration of βk,n(s) from 0 to t coincides with
∑5

i=1 ei .
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of random points has a regularly varying tail. As is well known in EVT, in the
one-dimensional case, regular variation of the tail in the density suffices for the
distribution to be in the max-domain of attraction of the Fréchet law. However,
results on [39] and [40] indicate that, under proper normalizing constants, all the
limit theorems in the present paper can be carried over to the case in which the den-
sity has a subexponentially decaying tail. In particular, weak limits will coincide
with each other up to constant multiplication.

2. Limit theorems for Betti numbers and the sum of bar lengths. Let
(Xi, i ≥ 1) be an i.i.d. sequence of R

d -valued random variables with common
spherically symmetric density f of a regularly varying tail. Let Sd−1 be the
(d − 1)-dimensional unit sphere in R

d . Assume that for any θ ∈ Sd−1 (equiva-
lently for some θ ∈ Sd−1) and for some α > d ,

(2.1) lim
r→∞f (rtθ)/f (rθ) = t−α for every t > 0.

Denoting by RVγ the family of regularly varying functions (at infinity) with expo-
nent γ ∈ R, this can be written as f ∈ RV−α . Let Nn be a Poisson random variable
with mean n, independent of (Xi), and Pn = {X1, . . . ,XNn} denote an inhomoge-
neous Poisson point process on R

d with intensity nf .
Given a sequence (Rn,n ≥ 1) growing to infinity and a nonnegative number

t ≥ 0, we denote by Č(Pn∩B(0;Rn)
c; t) a Čech complex built over random points

in Pn lying outside a growing ball B(0;Rn). Then a family of Čech complexes{
Č

(
Pn ∩ B(0;Rn)

c; t), t ≥ 0
}

constitutes a “random filtration” parametrized by t ≥ 0. That is, we have for all
0 ≤ s ≤ t ,

Č
(
Pn ∩ B(0;Rn)

c; s) ⊂ Č
(
Pn ∩ B(0;Rn)

c; t).
Choosing a positive integer k ≥ 1, which remains fixed hereafter, we denote the

kth Betti number of the Čech complex by

(2.2) βk,n(t) := βk

(
Č

(
Pn ∩ B(0;Rn)

c; t)) = βk

( ⋃
X∈Pn∩B(0;Rn)c

B(X; t/2)

)
;

see Figure 6. We also denote the lifetime sum in the kth persistence barcode plot
up to parameter t by

(2.3) Lk,n(t) =
∫ t

0
βk,n(s) ds, t ≥ 0.

The behavior of (2.2) and (2.3) splits into three different regimes, each of which
is characterized by the growth rate of Rn:

(i) nk+2Rd
nf (Rne1)

k+2 → 1, n → ∞,

(ii) nk+2Rd
nf (Rne1)

k+2 → ∞, nf (Rne1) → 0, n → ∞,

(iii) nf (Rne1) → λ, n → ∞, for some λ ∈ (0,∞)
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FIG. 6. For k = 1, d = 2. The Betti number β1,n(t) counts one-dimensional holes outside B(0;Rn),
while ignoring holes inside the ball [e.g., (a), (b) and (c)].

with e1 = (1,0, . . . ,0) ∈ R
d . Since (Rn) in case (i) grows fastest, the occurrence

of k-dimensional holes outside B(0;Rn) is the least likely of the three regimes.
In other words, the Čech complex is so sparse that the appearance of holes is
a rare event and we only observe “finitely” many holes. Hence, Betti numbers
and related lifetime sums are both controlled by a Poisson limit theorem. In con-
trast, the Rn determined by (ii) grows more slowly than that in (i), so there ap-
pear “infinitely” many k-dimensional holes outside B(0;Rn). In this case, the
Betti number and its lifetime sum obey a central limit theorem. However, even
in case (ii), all k-dimensional holes remaining in the limit will be the simplest one
formed by k + 2 vertices. The Rn determined by (iii) grows most slowly, implying
that the occurrence of k-dimensional holes outside B(0;Rn) is the most likely of
the three regimes. Unlike the previous regimes, the resulting Čech complex be-
comes highly connected and all of the connected components on i vertices for
i = k + 2, k + 3, . . . remain in the limit.

Before proceeding to specific subsections, we need to introduce one important
notion.

DEFINITION 2.1. Let f be a spherically symmetric density on R
d . A weak

core is a centered ball B(0;R(w)
n ) such that nf (R

(w)
n e1) → 1 as n → ∞.

Weak cores are balls, centered at the origin with growing radii as n increases,
in which random points are placed so densely that the balls with fixed (e.g., unit)
radius about these random points become highly connected with one another and
form a giant component of a geometric graph. For example, if f has a power-law
tail

f (x) = C/
(
1 + ‖x‖α)

, x ∈R
d
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for some α > d and normalizing constant C (‖ · ‖ denotes a Euclidean norm), then
the radius of a weak core is given by R

(w)
n = (Cn)1/α . The properties of a weak

core, together with those of the related notion of a core, were carefully explored
in [39] for a wide class of distributions; see also [40] and [2]. Note that the Rn

determined in (iii) coincides with the radius of a weak core up to multiplicative
factors. Since there are essentially no holes inside the weak core, the case in which
(Rn) satisfies nf (Rne1) → ∞, n → ∞ is expected to lead to the same asymptotic
result as that in regime (iii). Moreover, as we can see below, regime (i) generates
the same limit up to multiplicative factors, as long as the left-hand side in (i) con-
verges to a positive and finite constant. Therefore, all nontrivial results regarding
asymptotics of βk,n(t) and Lk,n(t) can be completely covered by regimes (i)–(iii).

2.1. Poissonian limit theorem in the first regime. First, we assume that (Rn)

satisfies condition (i), that is,

(2.4) nk+2Rd
nf (Rne1)

k+2 → 1, n → ∞.

It is then elementary to check that (Rn) is a regularly varying sequence (at infinity)
with exponent

Rn ∈ RV1/(α−d/(k+2)).

Since this exponent depends on k, we write Rn = Rk,n whenever it is an asymp-
totic solution to (2.4). Then the resulting Čech complex lying outside B(0;Rn)

is so sparse that there appear at most finitely many k-dimensional holes outside
B(0;Rn). Hence, the occurrence of k-dimensional holes outside B(0;Rn) is seen
to be “rare,” and, consequently, the limiting processes for βk,n(t) and Lk,n(t) are
expressed as a natural functional of a certain Poisson random measure.

To define the limiting process more rigorously, we need some preparation. Let

(2.5) ht (x1, . . . , xk+2) := 1
{
βk

(
Č(x1, . . . , xk+2; t)) = 1

}
, xi ∈ R

d .

This indicator function can be expressed as the difference between two other indi-
cators:

ht (x1, . . . , xk+2) = 1

{
k+2⋂

j=1,j 
=j0

B(xj ; t) 
= ∅ for all j0 ∈ {1, . . . , k + 2}
}

− 1

{
k+2⋂
j=1

B(xj ; t) 
= ∅

}
(2.6)

:= h+
t (x1, . . . , xk+2) − h−

t (x1, . . . , xk+2).

This decomposition comes from the fact that ht (x1, . . . , xk+2) = 1 if and only
if {x1, . . . , xk+2} forms an empty (k + 1)-simplex with respect to t , that is, for
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each j0 ∈ {1, . . . , k + 2}, the intersection
⋂k+2

j=1,j 
=j0
B(xj ; t) is nonempty, while⋂k+2

j=1 B(xj ; t) is empty. Note that h+
t and h−

t are nondecreasing functions in t :

(2.7) h±
s (x1, . . . , xk+2) ≤ h±

t (x1, . . . , xk+2)

for all x1, . . . , xk+2 ∈ R
d and 0 ≤ s ≤ t . Hereafter, we denote h(x1, . . . , xk+2) :=

h1(x1, . . . , xk+2) and h±(x1, . . . , xk+2) := h±
1 (x1, . . . , xk+2).

Next, we give a Poissonian structure to the limiting process. Let

(2.8) Ck = sd−1

(k + 2)!(α(k + 2) − d)
,

where sd−1 is a surface area of the (d − 1)-dimensional unit sphere in R
d . Writing

Leb for the Lebesgue measure on (Rd)k+1, the Poisson random measure Mk with
intensity measure Ck Leb is defined by the finite-dimensional distributions

P
{
Mk(A) = m

} = e−Ck Leb(A)(Ck Leb(A)
)m

/m!, m = 0,1,2, . . .

for all measurable A ⊂ (Rd)k+1 with Leb(A) < ∞. Furthermore, if A1, . . . ,Am

are disjoint subsets in (Rd)k+1, then Mk(A1), . . . ,Mk(Am) are independent.
We now state the main result of this subsection, the proof of which is, however,

deferred to the Appendix. In the following, ⇒ denotes weak convergence in the
space considered, for example, D[0,∞) of right-continuous functions with left

limits or C[0,∞) of continuous functions. In particular, fidi⇒ means weak conver-
gence in a finite-dimensional sense.

THEOREM 2.2. Suppose that Rn = Rk,n satisfies (2.4). Then

(2.9) βk,n(t) ⇒ Vk(t) :=
∫
(Rd )k+1

ht (0,y)Mk(dy) in D[0,∞).

Furthermore,

(2.10) Lk,n(t) ⇒
∫ t

0
Vk(s) ds in C[0,∞).

Recalling the definition of ht , one may state that the k-dimensional holes con-
tributing to the limit are always formed by connected components on k+2 vertices,
while other components on more than k+2 vertices never appear in the limit. Since
there need to be at least k + 2 vertices to form a single k-dimensional hole, all the
k-dimensional holes remaining in the limit are necessarily formed by components
of the smallest size.

Because of the decomposition (2.6), we can denote Vk = (Vk(t), t ≥ 0) as

Vk(t) =
∫
(Rd )k+1

h+
t (0,y)Mk(dy) −

∫
(Rd )k+1

h−
t (0,y)Mk(dy)

:= V +
k (t) − V −

k (t).

The following proposition shows that V+
k and V−

k can be represented as a time-
changed Poisson process.
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PROPOSITION 2.3. The process V±
k is represented in law as(

V ±
k (t), t ≥ 0

) d= (
N±

k

(
td(k+1)), t ≥ 0

)
,

where N±
k is a Poisson process with intensity Ck

∫
(Rd )k+1 h±(0,y) dy.

PROOF. It is straightforward to calculate the moment generating function of
(V ±

k (t1), . . . , V
±
k (tm)) for 0 ≤ t1 < · · · < tm < ∞. For λ1, . . . , λm ≥ 0, we have

(2.11)

E

{
exp

{
−

m∑
j=1

λjV
±
k (tj )

}}
= exp

{
−Ck

∫
(Rd )k+1

(
1 − e

−∑m
j=1 λjh±

tj
(0,y))

dy
}
.

Exploiting this result, one can easily see that V±
k has independent increments,

while for 0 ≤ s ≤ t , V ±
k (t)−V ±

k (s) has a Poisson law with mean Ck

∫
(Rd )k+1 h±(0,

y) dy(td(k+1) − sd(k+1)). Now, the claim follows. �

REMARK 2.4. By the moment generating function (2.11), it is easy to see
that for each t ≥ 0, Vk(t) has a Poisson distribution with mean Ck

∫
(Rd )k+1 h(0,

y) dytd(k+1). Nevertheless, the process Vk cannot be represented as a (time-
changed) Poisson process, since the sample paths of Vk allow for both upward
and downward jumps.

2.2. Central limit theorem in the second regime. In this subsection, we turn to
the second regime, which is characterized by

(2.12) nk+2Rd
nf (Rne1)

k+2 → ∞, nf (Rne1) → 0, n → ∞,

for which (Rn) exhibits a slower divergence rate than that in the previous regime.
Thus, we expect that, in an asymptotic sense, there appear infinitely many k-
dimensional holes outside B(0;Rn), and accordingly, instead of a Poissonian limit
theorem, some sort of central limit theorem (CLT) governs the behavior of βk,n(t)

and Lk,n(t).
To formulate the limiting processes, we need some preliminary work. As before,

let Leb denote the Lebesgue measure on (Rd)k+1 and Ck a positive constant given
in (2.8). Denote by Gk a Gaussian Ck Leb-noise, such that

Gk(A) ∼ N
(
0,Ck Leb(A)

)
for measurable sets A ⊂ (Rd)k+1 with Leb(A) < ∞; if A ∩ B = ∅, then Gk(A)

and Gk(B) are independent.
We define a Gaussian process Yk = (Yk(t), t ≥ 0) by

Yk(t) =
∫
(Rd )k+1

ht (0,y)Gk(dy), t ≥ 0,
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where ht is given in (2.5). This process involves the same indicator function as
Vk , which implies that, similar to the last regime, the k-dimensional holes affect-
ing Yk must be always formed by connected components on k + 2 vertices (i.e.,
components of the smallest size).

We now state the main limit theorem. The proof is presented in the Appendix.

THEOREM 2.5. Suppose that (Rn) satisfies (2.12). Then(
nk+2Rd

nf (Rne1)
k+2)−1/2(

βk,n(t) −E
{
βk,n(t)

}) fidi⇒ Yk(t),

and(
nk+2Rd

nf (Rne1)
k+2)−1/2(

Lk,n(t) −E
{
Lk,n(t)

}) ⇒
∫ t

0
Yk(s) ds in C[0,∞).

REMARK 2.6. Unlike Theorem 2.2, the weak convergence for βk,n(t) is de-
scribed only in a finite-dimensional sense. We believe that this holds even in the
space D[0,∞); however, since the required tightness will need huge amount of
calculation, we have decided not to pursuit that direction.

For further clarification of the structure of Yk , we express the process as

Yk(t) =
∫
(Rd )k+1

h+
t (0,y)Gk(dy) −

∫
(Rd )k+1

h−
t (0,y)Gk(dy)

:= Y+
k (t) − Y−

k (t).

We claim that Y+
k and Y−

k are represented as a time-changed Brownian motion.
Note, however, that, although Yk is a Gaussian process, it cannot be denoted as a
(time-changed) Brownian motion.

PROPOSITION 2.7. The process Y±
k can be represented in law as(

Y±
k (t), t ≥ 0

) d= (
B±(

D±
k td(k+1)), t ≥ 0

)
,

where B± denotes the standard Brownian motion, and

D±
k := Ck

∫
(Rd )k+1

h±(0,y) dy.

PROOF. It suffices to prove that the covariance functions on both sides coin-
cide. It follows from (2.7) that for 0 ≤ s ≤ t ,

E
{
Y±

k (t)Y±
k (s)

} = Ck

∫
(Rd )k+1

h±
t (0,y)h±

s (0,y) dy

= sd(k+1)D±
k

= E
{
B±(

D±
k td(k+1))B±(

D±
k sd(k+1))}. �
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2.3. Central limit theorem in the third regime. Finally, we turn to the third
regime in which (Rn) is determined by

(2.13) nf (Rne1) → λ as n → ∞
for some λ > 0. In this case, the formation of k-dimensional holes drastically varies
as compared to the previous regimes. If (Rn) satisfies (2.13), then by definition,
B(0;Rn) coincides with the weak core (up to multiplicative factors). Therefore,
many random points become highly connected to one another in the area suffi-
ciently close to the weak core. As a result, connected components on i vertices for
i = k + 2, k + 3, . . . can all contribute to the limit in the CLT. This phenomenon
was never observed in the previous regimes.

In order to make the notation for defining the limiting process significantly
lighter, we introduce several shorthand notation. First, for xi ∈ R

d , i = 1, . . . ,m,
and r > 0,

B(x1, . . . , xm; r) :=
m⋃

i=1

B(xi; r).

For i ≥ k + 2, j ≥ 1, and t ≥ 0, we define an indicator h
(i,j)
t : (Rd)i → {0,1} by

(2.14) h
(i,j)
t (Y) := 1

{
βk

(
Č(Y; t)) = j, Č(Y; t) is connected

}
for Y = (y1, . . . , yi) ∈ (Rd)i . Clearly, h

(k+2,1)
t coincides with the ht defined in

(2.5). In particular, we write h(i,j)(Y) := h
(i,j)
1 (Y).

Furthermore, for i, i′ ≥ k + 2, j, j ′ ≥ 1, and t, s ≥ 0, define an indicator

h
(i,j,i′,j ′)
t,s : (Rd)i+i′ → {0,1} by

h
(i,j,i′,j ′)
t,s

(
Y,Y ′) = h

(i,j)
t (Y)h(i′,j ′)

s

(
Y ′), Y ∈ (

R
d)i

,Y ′ ∈ (
R

d)i′
,

and, we set, for i, i′ ≥ k + 2, t, s ≥ 0,

D(i,i′)(t, s) := {
(x1, . . . , xi+i′) ∈ (

R
d)i+i′ :

B(x1, . . . , xi; t) ∩B(xi+1, . . . , xi+i′ ; s) 
= ∅
}
.

In the special case t = s, we denote D(i,i′)(t) := D(i,i′)(t, t).
Now, we define stochastic processes Z(i,j)

k = (Z
(i,j)
k (t), t ≥ 0) for i ≥ k + 2 and

j ≥ 1, which function as the building blocks for the limiting process in the CLT.
First, define, for i, i ′ ≥ k + 2, j, j ′ ≥ 1, t, s ≥ 0 and λ > 0,

μ
(i,j,j ′)
k (t, s, λ) := sd−1

∫ ∞
1

ρd−1−αi
∫
(Rd )i−1

h
(i,j)
t (0,y)h(i,j ′)

s (0,y)

(2.15)
× e−λρ−α(s∨t)d vol(B(0,y;1)) dydρ,
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and

ξ
(i,j,i′,j ′)
k (t, s, λ)

:= sd−1

∫ ∞
1

ρd−1−α(i+i′)
∫
(Rd )i+i′−1

h
(i,j,i′,j ′)
t,s (0,y)

× [(
1
D(i,i′)(t,s)(0,y) − 1

D(i,i′)((t∨s)/2)
(0,y)

)
(2.16)

× e−λρ−α vol(B(0,y1,...yi−1;t)∪B(yi ,...,yi+i′−1;s)) − 1
D(i,i′)(t,s)(0,y)

× e−λρ−α[vol(B(0,y1,...yi−1;t))+vol(B(yi ,...yi+i′−1;s))]]dydρ,

where a ∨ b = max{a, b} for a, b ∈ R, and h
(i,j)
t (0,y) = h

(i,j)
t (0, y1, . . . , yi−1)

with 0, y1, . . . , yi−1 ∈ R
d , etc. These functions are used to formulate the covari-

ance functions of Z(i,j)
k ’s. More specifically, for i ≥ k + 2 and j ≥ 1, we define

Z(i,j)
k as a zero-mean Gaussian process with the covariance function given by

Cov
(
Z

(i,j)
k (t),Z

(i,j)
k (s)

) = λi

i! μ
(i,j,j)
k (t, s, λ)

(2.17)

+ λ2i

(i!)2 ξ
(i,j,i,j)
k (t, s, λ), t, s ≥ 0.

For every i ≥ k+2, there exists j0 ≥ 1, which depends on i, such that for all j ≥ j0

and t ≥ 0, h
(i,j)
t is identically zero, in which case, (2.17) allows us to take Z(i,j)

k

as a zero process, that is, Z
(i,j)
k (t) ≡ 0 for all t ≥ 0. For example, Z(k+2,j)

k is a
zero process for all j ≥ 2, because it is impossible to form multiple holes by k + 2
vertices.

In addition, we assume that the processes (Z(i,j)
k , i ≥ k + 2, j ≥ 1) are depen-

dent on each other in such a way that for i, i ′ ≥ k + 2, j, j ′ ≥ 1, and t, s ≥ 0,

Cov
(
Z

(i,j)
k (t),Z

(i′,j ′)
k (s)

) = λi

i! μ
(i,j,j ′)
k (t, s, λ)δi,i′ + λi+i′

i!i′! ξ
(i,j,i′,j ′)
k (t, s, λ),

where δi,i′ is the Kronecker delta.
We now define a zero-mean Gaussian process by

(2.18) Zk(t) :=
∞∑

i=k+2

∑
j≥1

jZ
(i,j)
k (t), t ≥ 0,

which appears in the limiting process in the CLT. As shown in the proof of The-
orem 2.8 below, the right-hand side of (2.18) almost surely converges for each
t ≥ 0.

We can rewrite Zk(t) as

Zk(t) = Z
(k+2,1)
k (t) +

∞∑
i=k+3

∑
j≥1

jZ
(i,j)
k (t).



2828 T. OWADA

Since the covariance function of Z(i,j)
k involves the indicator function h

(i,j)· , we

can consider the process Z(i,j)
k as representing the connected components that are

on i vertices and possess j holes. In particular, the process Z(k+2,1)
k represents the

connected components on k + 2 vertices with a single k-dimensional hole. This
implies that Z(k+2,1)

k may share the same property as Yk in the last regime in the
sense that both processes represent connected components only of the smallest
size. In the present regime, however, we cannot ignore the effect of larger compo-
nents emerging near the weak core and, therefore, many other Gaussian processes,
except for Z(k+2,1)

k , will contribute to the limit in the CLT.
Before presenting the main limit theorem, we add a technical assumption that

a constant λ in (2.13) is less than (eωd)−1, where ωd is the volume of a unit ball
in R

d . The CLT below might hold without any upper bound condition for λ, but
this is needed for technical reasons during the proof. Accordingly, the domain of
functions in the space C must be restricted to the unit interval [0,1]. The proof of
the theorem is deferred to the Appendix.

THEOREM 2.8. Suppose that (Rn) satisfies

(2.19) nf (Rne1) → λ ∈ (
0, (eωd)−1)

as n → ∞.

Then

(2.20) R−d/2
n

(
βk,n(t) −E

{
βk,n(t)

}) fidi⇒ Zk(t),

holds in a finite-dimensional sense for t ∈ [0,1], and

(2.21) R−d/2
n

(
Lk,n(t) −E

{
Lk,n(t)

}) ⇒
∫ t

0
Zk(s) ds in C[0,1].

APPENDIX

In the Appendix, we provide the proofs of Theorems 2.2, 2.5 and 2.8. We first
introduce the results known as the “Mecke formula” in order to compute the ex-
pectations related to Poisson point processes. Indeed, the Mecke formula applies
many times hereafter in the Appendix. In Section A.2, we prove Theorem 2.2,
and, subsequently, in Section A.3 we verify Theorem 2.8. We give the proof of
Theorem 2.5 in Section A.4, while exploiting many of the results established in
the former Section A.3.

Before proceeding to specific subsections, we introduce some useful short-
hand notation to save space. For x = (x1, . . . , xm) ∈ (Rd)m, x ∈ R

d , and y =
(y1, . . . , yi−1) ∈ (Rd)i−1,

f (x) := f (x1) · · ·f (xm),

f (x + y) := f (x + y1) · · ·f (x + ym−1),

h(i,j)(0,y) := h(i,j)(0, y1, . . . , yi−1) etc.



LIMIT THEOREMS FOR BETTI NUMBERS 2829

Denote also by C∗ a generic positive constant, which can vary between lines and
is independent of n.

A.1. Mecke formula for Poisson point processes.

LEMMA A.1 (Mecke formula for Poisson point processes, [3], see also Sec-
tion 1.7 in [41]). Let (Xi) be i.i.d. R

d -valued random variables with com-
mon density f . Let Pn be a Poisson point process on R

d with intensity nf . Let
u(Y,X ) and v(Y ′,X ) be measurable bounded functions defined for Y ∈ (Rd)�,
Y ′ ∈ (Rd)m, and a finite subset X ⊃ Y,Y ′ of d-dimensional real vectors. Then

E

{ ∑
Y⊂Pn

u(Y,Pn)

}
= n�

�! E
{
u
(
Y ′,Y ′ ∪Pn

)}
,

where Y ′ is a set of � i.i.d. points in R
d with density f , independent of Pn. Fur-

thermore,

E

{ ∑
Y⊂Pn

∑
Y ′⊂Pn,|Y∩Y ′|=0

u(Y,Pn)v
(
Y ′,Pn

)}

= n�+m

�!m! E
{
u(Y1,Y12 ∪Pn)v(Y2,Y12 ∪Pn)

}
,

where Y1 is a set of � i.i.d. points in R
d and Y2 is a set of m i.i.d. points in R

d ,
such that Y1 and Y2 are independent, and Y12 := Y1 ∪ Y2 is independent of Pn,
and |Y1 ∩Y2| = 0, that is, there are no common points between Y1 and Y2.

Moreover, let wi(Y), i = 1,2 be measurable bounded functions defined for Y ∈
(Rd)p . Then, for every q ∈ {0, . . . , p},

E

{ ∑
Y⊂Pn

∑
Y ′⊂Pn,|Y∩Y ′|=q

w1(Y)w2
(
Y ′)} = n2p−q

q!((p − q)!)2E
{
w1(Y1)w2(Y2)

}
,

where Y1 and Y2 are sets of p i.i.d. points in R
d with |Y1 ∩Y2| = q .

A.2. Proof of Theorem 2.2. Since (2.10) immediately follows from (2.9) by
the continuous mapping theorem, we may prove only (2.9). The proof of (2.9) is
divided into two parts. In the first, we show that

Gk,n(t) := ∑
Y⊂Pn

ht (Y)1
{
m(Y) ≥ Rn

} ⇒ Vk(t) in D[0,∞),(A.1)

where m(x1, . . . , xk+2) = min1≤i≤k+2 ‖xi‖, xi ∈ R
d , and, in the second, we prove

that the difference between Gk,n(t) and βk,n(t) vanishes in probability in the space
D[0,∞).
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PROOF. Part I We begin with the finite-dimensional weak convergence of
(A.1), for which we need to verify

(A.2)
m∑

j=1

ajGk,n(tj ) ⇒
m∑

j=1

ajVk(tj )

for every a1, . . . , am ∈ R, t1, . . . , tm ≥ 0, m ≥ 1.
Let

∑
� εv�

denote a Poisson random measure on R with finite mean measure

Ck

∫
(Rd )k+1

1

{
m∑

j=1

ajhtj (0,y) ∈ · \ {0}
}

dy

(“ε” represents the usual Dirac measure). It is then elementary to verify that

∑
�

v�
d=

m∑
j=1

ajVk(tj ).

Writing Mp(R) for the space of point measures on R, (A.2) will be complete,
provided that we can show the point process convergence

ξn := ∑
Y⊂Pn

1

{
m∑

j=1

ajhtj (Y) 
= 0,m(Y) ≥ Rn

}
ε(

∑m
j=1 aj htj

(Y))(A.3)

⇒ ∑
�

εv�
in Mp(R).

Indeed, since the functional T̂ : Mp(R) → R defined by T̂ (
∑

� εz�
) = ∑

� z� is
continuous on a set of finite point measures, (A.3) implies (A.2) by the continuous
mapping theorem.

According to [20] (or use Theorem 2.1 in [40]), in order to establish (A.3), it
suffices to prove the following results: as n → ∞,

(A.4) E
{
ξn(A)

} → E

{∑
�

εv�
(A)

}
for every measurable A ⊂ (

R
d)k+1

,

and

rn := max
1≤�≤k+1

n2k+4−�
P

{
m∑

j=1

ajhtj (X1, . . . ,Xk+2) 
= 0,

m∑
j=1

ajhtj (X1, . . . ,X�,Xk+3, . . . ,X2k+4−�) 
= 0,(A.5)

‖Xi‖ ≥ Rn, i = 1, . . . ,2k + 4 − �

}
→ 0.
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For the proof of (A.4), it follows from the Mecke formula in Lemma A.1 that

E
{
ξn(A)

} = nk+2

(k + 2)!
∫
(Rd )k+2

f (x)1
{
m(x) ≥ Rn

}
× 1

{
m∑

j=1

ajhtj (x) ∈ A \ {0}
}

dx.

Changing the variables x1 ↔ x, x� ↔ x +y�−1, � = 2, . . . , k +2, together with the
translation invariance of htj ’s,

E
{
ξn(A)

} = nk+2

(k + 2)!
∫
Rd

∫
(Rd )k+1

f (x)f (x + y)1
{
m(x, x + y) ≥ Rn

}
(A.6)

× 1

{
m∑

j=1

ajhtj (0,y) ∈ A \ {0}
}

dydx.

The polar coordinate transform x ↔ (r, θ), followed by an additional change of
variable r ↔ Rnρ, yields

E
{
ξn(A)

} = nk+2Rd
k,nf (Rk,ne1)

k+2

(k + 2)!
∫
Sd−1

J (θ) dθ

∫ ∞
1

dρ

∫
(Rd )k+1

dy

× ρd−1 f (Rnρe1)

f (Rne1)

k+1∏
�=1

f (Rn‖ρθ + y�/Rn‖e1)

f (Rne1)
1
{‖ρθ + y�/Rn‖ ≥ 1

}
(A.7)

× 1

{
m∑

j=1

ajhtj (0,y) ∈ A \ {0}
}
,

where Sd−1 is the (d − 1)-dimensional unit sphere in R
d and J (θ) is the usual

Jacobian, that is,

J (θ) = sink−2(θ1) sink−3(θ2) · · · sin(θk−2).

By the regular variation assumption (2.1) of f , we have that for every ρ ≥ 1,
θ ∈ Sd−1, and y1, . . . , yk+1 ∈ R

d ,

f (Rnρe1)

f (Rne1)

k+1∏
�=1

f (Rn‖ρθ + y�/Rn‖e1)

f (Rne1)
→ ρ−α(k+2), n → ∞.

Therefore, supposing the dominated convergence theorem is applicable, we can
obtain

E
{
ξn(A)

} → Ck

∫
(Rd )k+1

1

{
m∑

j=1

ajhtj (0,y) ∈ A \ {0}
}

dy

= E

{∑
�

εv�
(A)

}
, n → ∞.
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To establish an integrable upper bound, we use the so-called Potter’s bound
(e.g., Proposition 2.6(ii) in [44]); for every 0 < ξ < α − d , we have

f (Rnρe1)

f (Rne1)
1{ρ ≥ 1} ≤ (1 + ξ)ρ−α+ξ 1{ρ ≥ 1},(A.8)

k+1∏
�=1

f (Rn‖ρθ + y�/Rn‖e1)

f (Rne1)
1
{‖ρθ + y�/Rn‖ ≥ 1

} ≤ (1 + ξ)k+1(A.9)

for sufficiently large n. Since
∫ ∞

1 ρd−1−α+ξ dρ < ∞, the dominated convergence
theorem applies as required.

As for the proof of (A.5), proceeding by changing the variables in the same way
as the previous argument, we see that as n → ∞,

rn = max
1≤�≤k+1

O
(
n2k+4−�Rd

k,nf (Rk,ne1)
2k+4−�)

= max
1≤�≤k+1

O
((

nf (Rk,ne1)
)k+2−�) → 0.

Now, the claim is proved.
Next, we show the tightness of (Gk,n(t), t ≥ 0) in the space D[0,∞) equipped

with the Skorohod J1-topology. By Theorem 13.4 in [8], it suffices to show that
for every L > 0, there exists B > 0 such that

P
{
min

{∣∣Gk,n(t) − Gk,n(s)
∣∣, ∣∣Gk,n(s) − Gk,n(r)

∣∣} ≥ λ
} ≤ Bλ−2(t − r)2

for all 0 ≤ r ≤ s ≤ t ≤ L, n ≥ 1, and λ > 0. For typographical ease, define for
n ≥ 1 and 0 ≤ s ≤ t ,

hn,t (Y) := ht (Y)1
{
m(Y) ≥ Rk,n

}
, Y ∈ (

R
d)k+2

,

ht,s(Y) := ht (Y) − hs(Y), Y ∈ (
R

d)k+2
,(A.10)

h±
t,s(Y) := h±

t (Y) − h±
s (Y), Y ∈ (

R
d)k+2

.

By Markov’s inequality, we only have to show that

(A.11) E

{ ∑
Y⊂Pn

∑
Y ′⊂Pn

∣∣hn,t (Y) − hn,s(Y)
∣∣∣∣hn,s

(
Y ′) − hn,r

(
Y ′)∣∣} ≤ B(t − r)2

for all 0 ≤ r ≤ s ≤ t ≤ L and n ≥ 1. The left-hand side above is clearly equal to

k+2∑
�=0

E

{ ∑
Y⊂Pn

∑
Y ′⊂Pn,|Y∩Y ′|=�

∣∣hn,t (Y) − hn,s(Y)
∣∣∣∣hn,s

(
Y ′) − hn,r

(
Y ′)∣∣}

:=
k+2∑
�=0

E{In,�}.
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For � = 1, . . . , k + 2, the Mecke formula yields

E{In,�} = n2k+4−�

�!((k + 2 − �)!)2E
{∣∣hn,t (Y1) − hn,s(Y1)

∣∣∣∣hn,s(Y2) − hn,r (Y2)
∣∣},

where Y1 and Y2 are sets of (k + 2) i.i.d. points in R
d sharing � common points,

that is, |Y1 ∩ Y2| = �. By the same change of variables as in (A.6) and (A.7),
together with (2.4) and Potter’s bound, we eventually have

E{In,�} ≤ C∗
∫
(Rd )�−1

dy
∫
(Rd )k+2−�

dz2

∫
(Rd )k+2−�

dz1
∣∣ht,s(0,y, z1)

∣∣∣∣hs,r (0,y, z2)
∣∣

≤ C∗
∫
(Rd )�−1

dy
∫
(Rd )k+2−�

dz2

∫
(Rd )k+2−�

dz1(
h+

t,s(0,y, z1)h
+
s,r (0,y, z2) + h−

t,s(0,y, z1)h
−
s,r (0,y, z2)

+ h+
t,s(0,y, z1)h

−
s,r (0,y, z2) + h−

t,s(0,y, z1)h
+
s,r (0,y, z2)

)
.

Applying Lemma A.2 below, the rightmost term is bounded by C∗(t − r)2, as
required.

We need to establish a suitable upper bound for E{In,0} as well. By the Mecke
formula,

E{In,0} = n2k+4

((k + 2)!)2E
{∣∣hn,t (Y) − hn,s(Y)

∣∣}E{∣∣hn,s(Y) − hn,r (Y)
∣∣},

and the same argument as above can provide an upper bound of the form C∗(t −
r)2. Now, we can conclude (A.11).

Part II To complete the proof, one needs to show that

(A.12) βk

(
Č

(
Pn ∩ B(0;Rk,n)

c; t)) − Gk,n(t)
p→ 0 in D[0,∞).

To this end, we use obvious inequalities

Gk,n(t) ≤ βk

(
Č

(
Pn ∩ B(0;Rk,n)

c; t)) ≤ Gk,n(t) + Lk,n(t),

where

Lk,n(t) = ∑
Y⊂Pn

1
{|Y| = k + 3, Č(Y; t) is connected

} × 1
{
m(Y) ≥ Rk,n

}
with m(x1, . . . , xk+3) = min1≤i≤k+3 ‖xi‖, xi ∈ R

d .
We have, for every T > 0,

E

{
sup

0≤t≤T

[
βk

(
Č

(
Pn ∩ B(0;Rk,n)

c; t)) − Gk,n(t)
]}

≤ E

{
sup

0≤t≤T

Lk,n(t)
}
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≤ nk+3

(k + 3)!P
{
Č(X1, . . . ,Xk+3;T ) is connected,

‖Xi‖ ≥ Rk,n, i = 1, . . . , k + 3
}
.

The same change of variables as in (A.6) and (A.7), together with Potter’s bound,
concludes that the rightmost term above turns out to be

O
(
nk+3Rd

k,nf (Rk,ne1)
k+3) = O

(
nf (Rk,ne1)

) → 0 as n → ∞,

thus, (A.12) follows. �

LEMMA A.2. Let ht , h
±
t : (Rd)k+2 → {0,1} be indicator functions given

in (2.5) and (2.6), and recall notation (A.10). Fix L > 0. Then we have, for
� ∈ {1, . . . , k + 2},∫

(Rd )�−1
dy

∫
(Rd )k+2−�

dz2

∫
(Rd )k+2−�

dz1
(
h+

t,s(0,y, z1)h
+
s,r (0,y, z2)

+ h−
t,s(0,y, z1)h

−
s,r (0,y, z2) + h+

t,s(0,y, z1)h
−
s,r (0,y, z2)

+ h−
t,s(0,y, z1)h

+
s,r (0,y, z2)

) ≤ C∗(t − r)2

for all 0 ≤ r ≤ s ≤ t ≤ L.

PROOF. Let I1 + I2 + I3 + I4 denote the triple integral on the left-hand side.
It follows from Lemma 7.1 in [39] that Ii ≤ C∗(t − r)2 for i = 1,2. The same
argument can yield Ii ≤ C∗(t − r)2 for i = 3,4 as well. �

A.3. Proof of Theorem 2.8. The goal of this subsection is to complete the
proof of Theorem 2.8. The proof is, however, rather long and, therefore, it is di-
vided into several parts.

First, we define for i ≥ k + 2, j ≥ 1, t ≥ 0, and n ≥ 1,

h
(i,j)
n,t (Y) := h

(i,j)
t (Y)1

{
m(Y) ≥ Rn

}
, Y ∈ (

R
d)i

,

where h
(i,j)
t is given in (2.14), and

m(x1, . . . , xm) = min
1≤�≤m

‖x�‖, x1, . . . , xm ∈ R
d,m ≥ 1.

Next, define for i ≥ k + 2, j ≥ 1, t ≥ 0, Y ∈ (Rd)i , and a finite subset of d-
dimensional real vectors Z ⊃ Y

g
(i,j)
t (Y,Z) := h

(i,j)
t (Y)1

{
Č(Y; t) is an isolated component of Č(Z; t)}

and

g
(i,j)
n,t (Y,Z) := g

(i,j)
t (Y,Z)1

{
m(Y) ≥ Rn

}
.
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Throughout the proof, we rely on a useful representation for the kth Betti number
adopted in [33]

βk,n(t) =
∞∑

i=k+2

∑
j≥1

j
∑

Y⊂Pn

g
(i,j)
n,t (Y,Pn).

Let Ann(K1,K2) be an annulus of inner radius K1 and outer radius K2. For
x1, . . . , xm ∈ R

d , m ≥ 1, define Max(x1, . . . , xm) as the function selecting an
element with largest distance from the origin; that is, Max(x1, . . . , xm) = x� if
‖x�‖ = max1≤j≤m ‖xj‖. If multiple xj ’s achieve the maximum, we choose an ele-
ment with the smallest subscript. The following quantity is associated with the kth
Betti number and plays an important role in our proof. For 1 ≤ K ≤ ∞,

βk,n(t;K) :=
∞∑

i=k+2

∑
j≥1

j
∑

Y⊂Pn

g
(i,j)
n,t (Y,Pn)1

{
Max(Y) ∈ Ann(Rn,KRn)

}
.

Clearly, βk,n(t;∞) = βk,n(t). Furthermore, we occasionally need a truncated Betti
number

(A.13) β
(M)
k,n (t) :=

M∑
i=k+2

∑
j≥1

j
∑

Y⊂Pn

g
(i,j)
n,t (Y,Pn).

Analogously, we can also define β
(M)
k,n (t;K) by the truncation.

We start with revealing the asymptotics of the mean and the covariance of the
Betti numbers.

LEMMA A.3. Suppose that

nf (Rne1) → λ ∈ (
0, (eωd)−1)

as n → ∞.

For every 0 ≤ t, s ≤ 1 and 1 ≤ K ≤ ∞, we have, as n → ∞,

R−d
n E

{
βk,n(t;K)

} →
∞∑

i=k+2

∑
j≥1

j
λi

i! μ
(i,j,j)
k (t, t, λ;K) ∈ (0,∞),

R−d
n Cov

{
βk,n(t;K),βk,n(s;K)

}
→ Ck(t, s;K) :=

∞∑
i=k+2

∑
j,j ′≥1

jj ′ λi

i! μ
(i,j,j ′)
k (t, s, λ;K)

+
∞∑

i,i′=k+2

∑
j,j ′≥1

jj ′ λi+i′

i!i′! ξ
(i,j,i′,j ′)
k (t, s, λ;K) ∈ (−∞,∞)
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with

μ
(i,j,j ′)
k (t, s, λ;K) := sd−1

∫ K

1
ρd−1−αi

∫
(Rd )i−1

h
(i,j)
t (0,y)h(i,j ′)

s (0,y)

(A.14)
× e−λρ−α(s∨t)d vol(B(0,y;1)) dydρ,

ξ
(i,j,i′,j ′)
k (t, s, λ;K)

:= sd−1

∫ K

1
ρd−1−α(i+i′)

∫
(Rd )i+i′−1

h
(i,j,i′,j ′)
t,s (0,y)

× [(
1
D(i,i′)(t,s)(0,y) − 1

D(i,i′)((t∨s)/2)
(0,y)

)
× e−λρ−α vol(B(0,y1,...yi−1;t)∪B(yi ,...,yi+i′−1;s)) − 1

D(i,i′)(t,s)(0,y)

× e−λρ−α[vol(B(0,y1,...yi−1;t))+vol(B(yi ,...yi+i′−1;s))]]dydρ.

In terms of notation (2.15) and (2.16), we have

μ
(i,j,j ′)
k (t, s, λ) = μ

(i,j,j ′)
k (t, s, λ;∞),

ξ
(i,j,i′,j ′)
k (t, s, λ) = ξ

(i,j,i′,j ′)
k (t, s, λ;∞).

To prove Lemma A.3, we require the results in Lemmas A.4 and A.5 below, for
which we refine the ideas and techniques used in [33] and [32]. Without any loss
of generality, we may prove only the case K = ∞.

PROOF. By the monotone convergence theorem, together with the Mecke for-
mula in Lemma A.1, we have

R−d
n E

{
βk,n(t)

} =
∞∑

i=k+2

∑
j≥1

jR−d
n

ni

i! E
{
g

(i,j)
n,t

(
Y ′,Y ′ ∪Pn

)}
,

where Y ′ is a set of i.i.d. points in R
d with density f , independent of Pn.

It follows from Lemma A.4(i) that

R−d
n ni

E
{
g

(i,j)
n,t

(
Y ′,Y ′ ∪Pn

)} → λiμ
(i,j,j)
k (t, t, λ).

We need to justify the application of the dominated convergence theorem, for
which we apply Lemma A.4(ii), stating that there exists a positive integer N ∈ N+
so that for all i ≥ k + 2, j ≥ 1, and t ≥ 0,

R−d
n ni

E
{
g

(i,j)
n,t

(
Y ′,Y ′ ∪Pn

)} ≤ C∗(
λ(1 + δ)

)i ∫
(Rd )i−1

h
(i,j)
t (0,y) dy

for all n ≥ N , where δ is a positive constant satisfying λ(1 + δ)eωd < 1.
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Appealing to Lemma A.5(i), together with Stirling’s formula i! ≥ (i/e)i for
sufficiently large i, we have

∞∑
i=k+2

∑
j≥1

j
(λ(1 + δ))i

i!
∫
(Rd )i−1

h
(i,j)
t (0,y) dy

≤
∞∑

i=k+2

(λ(1 + δ))i

i!
(

i

k + 2

)
ii−2(ωd)i−1

≤ C∗
∞∑

i=k+2

ik
(
λ(1 + δ)eωd

)i
< ∞.

Thus, we can apply the dominated convergence theorem.
Next, we address the computation of the covariance. By the monotone conver-

gence theorem,

R−d
n E

{
βk,n(t)βk,n(s)

}
= R−d

n

∞∑
i=k+2

∑
j,j ′≥1

jj ′
E

{ ∑
Y⊂Pn

g
(i,j)
n,t (Y,Pn)g

(i,j ′)
n,s (Y,Pn)

}

+ R−d
n

∞∑
i,i′=k+2

∑
j,j ′≥1

jj ′
E

{ ∑
Y⊂Pn

∑
Y ′⊂Pn,Y ′ 
=Y

g
(i,j)
n,t (Y,Pn)g

(i′,j ′)
n,s

(
Y ′,Pn

)}
:= An + Bn.

The argument similar to that for deriving the limit of R−d
n E{βk,n(t)} yields

An →
∞∑

i=k+2

∑
j,j ′≥1

jj ′ λi

i! μ
(i,j,j ′)
k (t, s, λ) as n → ∞.

As for Bn, note first that if Y and Y ′ share at least one point,

g
(i,j)
n,t (Y,Pn)g

(i′,j ′)
n,s

(
Y ′,Pn

) = 0.

Therefore, it must be that |Y ∩ Y ′| = 0 (i.e., no common points exist between Y
and Y ′) whenever Y 
= Y ′. It then follows from the Mecke formula that
(A.15)

Bn =
∞∑

i,i′=k+2

∑
j,j ′≥1

jj ′R−d
n

ni+i′

i!i′! E
{
g

(i,j)
n,t (Y1,Y12 ∪Pn)g

(i′,j ′)
n,s (Y2,Y12 ∪Pn)

}
,

where Y1 and Y2 are sets of i.i.d. points in R
d with density f , such that |Y1 ∩Y2| =

0, and Y12 := Y1 ∪ Y2 is independent of Pn. Let P ′
n be an independent copy of
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Pn, which itself is independent of Y12. Then one more application of the Mecke
formula yields

R−d
n E

{
βk,n(t)

}
E

{
βk,n(s)

}
=

∞∑
i,i′=k+2

∑
j,j ′≥1

jj ′R−d
n

ni+i′

i!i′! E
{
g

(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

)}
.

Combining this with (A.15),

Bn − R−d
n E

{
βk,n(t)

}
E

{
βk,n(s)

}
=

∞∑
i,i′=k+2

∑
j,j ′≥1

jj ′R−d
n

ni+i′

i!i′! E
{
g

(i,j)
n,t (Y1,Y12 ∪Pn)g

(i′,j ′)
n,s (Y2,Y12 ∪Pn)

− g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

)}
.

By virtue of Lemma A.4(iii), while supposing temporarily that the dominated con-
vergence theorem is applicable, the expression on the right-hand side converges
to

∞∑
i,i′=k+2

∑
j,j ′≥1

jj ′ λi+i′

i!i′! ξ
(i,j,i′,j ′)
k (t, s, λ),

and thus, R−d
n Cov{βk,n(t), βk,n(s)} → Ck(t, s;∞), n → ∞ follows, as required.

To establish a summable upper bound, we use Lemma A.4(iv) and Lemma
A.5(ii). We have that

∞∑
i,i′=k+2

∑
j,j ′≥1

jj ′R−d
n

ni+i′

i!i′!
∣∣E{

g
(i,j)
n,t (Y1,Y12 ∪Pn)g

(i′,j ′)
n,s (Y2,Y12 ∪Pn)

− g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

)}∣∣
≤ C∗

∞∑
i,i′=k+2

(λ(1 + δ))i+i′

i!i′!
(

i

k + 2

)(
i ′

k + 2

)
ii−1(i ′)i′−1

(ωd)i+i′−1

≤ C∗
( ∞∑

i=k+2

ik+1(λ(1 + δ)eωd

)i)2

< ∞.

At the last inequality, we used Stirling’s formula, that is, i! ≥ (i/e)i for sufficiently
large i. �

LEMMA A.4. Throughout the statements (i) and (ii) below, Y ′ denotes a set
of i.i.d. points in R

d with density f , independent of Pn:
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(i) For i ≥ k + 2, j, j ′ ≥ 1, and t, s ≥ 0,

R−d
n ni

E
{
g

(i,j)
n,t

(
Y ′,Y ′ ∪Pn

)
g(i,j ′)

n,s

(
Y ′,Y ′ ∪Pn

)} → λiμ
(i,j,j ′)
k (t, s, λ),

n → ∞.

(ii) There exists a positive integer N ∈ N+ such that for all i ≥ k + 2, j, j ′ ≥ 1
and t, s ≥ 0,

R−d
n ni

E
{
g

(i,j)
n,t

(
Y ′,Y ′ ∪Pn

)
g(i,j ′)

n,s

(
Y ′,Y ′ ∪Pn

)}
≤ C∗(

λ(1 + δ)
)i ∫

(Rd )i−1
h

(i,j)
t (0,y)h(i,j ′)

s (0,y) dy for all n ≥ N,

where δ > 0 satisfies λ(1 + δ)eωd < 1.
Moreover, throughout (iii) and (iv) below, Y1 and Y2 denote sets of i.i.d. points

in R
d , independent of each other, with density f such that |Y1 ∩ Y2| = 0 and

Y12 := Y1 ∪Y2 is independent of Pn. Let P ′
n be an independent copy of Pn, which

is independent of Y12.
(iii) For i, i′ ≥ k + 2, j, j ′ ≥ 1, and t, s ≥ 0,

R−d
n ni+i′

E
{
g

(i,j)
n,t (Y1,Y12 ∪Pn)g

(i′,j ′)
n,s (Y2,Y12 ∪Pn)

− g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

)} → λi+i′ξ (i,j,i′,j ′)
k (t, s, λ)

as n → ∞.
(iv) There exists a positive integer N ∈ N+ such that for all i, i ′ ≥ k+2, j, j ′ ≥

1 and t, s ≥ 0,∣∣R−d
n ni+i′

E
{
g

(i,j)
n,t (Y1,Y12 ∪Pn)g

(i′,j ′)
n,s (Y2,Y12 ∪Pn)

− g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

)}∣∣
≤ C∗(

λ(1 + δ)
)i+i′

∫
(Rd )i+i′−1

h
(i,j,i′,j ′)
t,s (0,y)1

D(i,i′)(t∨s)
(0,y) dy

for all n ≥ N , where δ is the same positive constant as in (ii).

PROOF. We start with proving (i). Conditioning on Y ′, we have that

R−d
n ni

E
{
g

(i,j)
n,t

(
Y ′,Y ′ ∪Pn

)
g(i,j ′)

n,s

(
Y ′,Y ′ ∪Pn

)}
= R−d

n ni
E

{
h

(i,j)
n,t

(
Y ′)h(i,j ′)

n,s

(
Y ′)

P
{
Pn

(
B

(
Y ′; s ∨ t

)) = ∅|Y ′}}
= R−d

n ni
∫
(Rd )i

f (x)1
{
m(x) ≥ Rn

}
h

(i,j)
t (x)h(i,j ′)

s (x)

× exp
{
−n

∫
B(x;s∨t)

f (z) dz

}
dx.
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Let Jn denote the last integral. Changing the variables in the same way as in (A.6)
and (A.7) yields

Jn = (
nf (Rne1)

)i ∫
Sd−1

J (θ) dθ

∫ ∞
1

dρ

∫
(Rd )i−1

dyρd−1 f (Rnρe1)

f (Rne1)

×
i−1∏
�=1

f (Rn‖ρθ + y�/Rn‖e1)

f (Rne1)
1
{‖ρθ + y�/Rn‖ ≥ 1

}
(A.16)

× h
(i,j)
t (0,y)h(i,j ′)

s (0,y) exp
{
−n

∫
B(Rnρθ,Rnρθ+y;s∨t)

f (z) dz

}
,

where Sd−1 is the (d − 1)-dimensional unit sphere in R
d and J (θ) is the Jacobian.

By the regular variation assumption (2.1) of f , we have that for every ρ ≥ 1,
θ ∈ Sd−1, and y1, . . . , yi−1 ∈ R

d ,

f (Rnρe1)

f (Rne1)

i−1∏
�=1

f (Rn‖ρθ + y�/Rn‖e1)

f (Rne1)
→ ρ−αi, n → ∞.

Appealing to Potter’s bound as in (A.8) and (A.9), for every ρ ≥ 1, θ ∈ Sd−1, and
y1, . . . , yi−1 ∈ R

d ,

n

∫
B(Rnρθ,Rnρθ+y;s∨t)

f (z) dz

= nf (Rne1)

∫
B(0,y;s∨t)

f
(
Rn‖ρθ + z/Rn‖e1

)
/f (Rne1) dz

→ λρ−α(s ∨ t)d vol
(
B(0,y;1)

)
, n → ∞.

For an application of the dominated convergence theorem, we employ Potter’s
bound once again. First, we choose δ, as in the statement of the lemma, so that
λ(1 + δ)eωd < 1, and then, fix ξ ∈ (0,min{α − d, δ}). Then there exists a positive
integer N1 ∈ N+, which is independent of i, such that

(A.17)
f (Rnρe1)

f (Rne1)
1{ρ ≥ 1} ≤ (1 + ξ)ρ−α+ξ 1{ρ ≥ 1}

and

(A.18)
i−1∏
�=1

f (Rn‖ρθ + y�/Rn‖e1)

f (Rne1)
1
{‖ρθ + y�/Rn‖ ≥ 1

} ≤ (1 + ξ)i−1

for all n ≥ N1. The integrand in (A.16) is now bounded above by C∗(1 +
ξ)iρd−1−α+ξh

(i,j)
t (0,y)h

(i,j ′)
s (0,y), and∫ ∞

1

∫
(Rd )i−1

ρd−1−α+ξh
(i,j)
t (0,y)h(i,j ′)

s (0,y) dydρ < ∞.
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Therefore, the dominated convergence theorem concludes that Jn → λiμ(i,j,j ′) ×
(t, s, λ), n → ∞, as required.

Proof of (ii): Note first that there exists a positive integer N2 ∈ N+ so that

(A.19) (1 + ξ)nf (Rne1) ≤ λ(1 + δ) for all n ≥ N2.

Because of (A.17) and (A.18), we have, for all n ≥ N := N1 ∨ N2,

Jn ≤ (
(1 + ξ)nf (Rne1)

)i
sd−1

∫ ∞
1

ρd−1−α+ξ dρ

×
∫
(Rd )i−1

h
(i,j)
t (0,y)h(i,j ′)

s (0,y) dy

≤ C∗(
λ(1 + δ)

)i ∫
(Rd )i−1

h
(i,j)
t (0,y)h(i,j ′)

s (0,y) dy.

Proof of (iii): First, we write

E
{
g

(i,j)
n,t (Y1,Y12 ∪Pn)g

(i′,j ′)
n,s (Y2,Y12 ∪Pn)

− g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

)}
= E

{
g

(i,j)
n,t (Y1,Y12 ∪Pn)g

(i′,j ′)
n,s (Y2,Y12 ∪Pn)

− g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s (Y2,Y2 ∪Pn)

}
+E

{
g

(i,j)
n,t (Y1,Y1 ∪Pn)

(
g(i′,j ′)

n,s (Y2,Y2 ∪Pn) − g(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

))}
:= E{An} +E{Bn}.

Observing that

g
(i,j)
n,t (Y1,Y12 ∪Pn) = g

(i,j)
n,t (Y1,Y1 ∪Pn)1

{
B(Y1; t/2) ∩B(Y2; t/2) = ∅

}
,

g(i′,j ′)
n,s (Y2,Y12 ∪Pn) = g(i′,j ′)

n,s (Y2,Y2 ∪Pn)1
{
B(Y1; s/2) ∩B(Y2; s/2) = ∅

}
,

one can rewrite E{An} as

E{An} = −E
{
g

(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s (Y2,Y2 ∪Pn)1D(i,i′)((t∨s)/2)

(Y1,Y2)
}
.

Next, we split E{Bn} into two parts:

(A.20)
E{Bn} = E

{
�n1

{
B(Y1; t) ∩B(Y2; s) = ∅

}}
+E

{
�n1

D(i,i′)(t,s)(Y1,Y2)
}
,

where

�n = g
(i,j)
n,t (Y1,Y1 ∪Pn)

(
g(i′,j ′)

n,s (Y2,Y2 ∪Pn) − g(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

))
.
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By the spacial independence of the Poisson point process, the first term on the
right-hand side of (A.20) equals zero. Rearranging the terms in E{An} and E{Bn},
we obtain

E
{
g

(i,j)
n,t (Y1,Y12 ∪Pn)g

(i′,j ′)
n,s (Y2,Y12 ∪Pn)

− g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

)}
= E{Cn} −E{Dn},

where

Cn = g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s (Y2,Y2 ∪Pn)

× (
1
D(i,i′)(t,s)(Y1,Y2) − 1

D(i,i′)((t∨s)/2)
(Y1,Y2)

)
,

Dn = g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

)
1
D(i,i′)(t,s)(Y1,Y2).

Conditioning on Y12, we have

E{Cn} =
∫
(Rd )i

∫
(Rd )i

′ f (x1)f (x2)1
{
m(x1,x2) ≥ Rn

}
h

(i,j)
t (x1)h

(i′,j ′)
s (x2)

× (
1
D(i,i′)(t,s)(x1,x2) − 1

D(i,i′)((t∨s)/2)
(x1,x2)

)
× exp

{
−n

∫
B(x1;t)∪B(x2;s)

f (z) dz

}
dx2 dx1.

Proceeding as in the proof of (i), while suitably applying Potter’s bound, we can
obtain, as n → ∞,

R−d
n ni+i′

E{Cn} → λi+i′sd−1

∫ ∞
1

ρd−1−α(i+i′)
∫
(Rd )i+i′−1

h
(i,j,i′,j ′)
t,s (0,y)

× (
1
D(i,i′)(t,s)(0,y) − 1

D(i,i′)((t∨s)/2)
(0,y)

)
× e−λρ−α vol(B(0,y1,...,yi−1;t)∪B(yi ,...,yi+i′−1;s)) dydρ.

Similarly, we have

R−d
n ni+i′

E{Dn}
→ λi+i′sd−1

∫ ∞
1

ρd−1−α(i+i′)
∫
(Rd )i+i′−1

h
(i,j,i′,j ′)
t,s (0,y)1

D(i,i′)(t,s)(0,y)

× e−λρ−α[vol(B(0,y1,...yi−1;t))+vol(B(yi ,...,yi+i′−1;s))] dydρ,

and, therefore,

R−d
n ni+i′(

E{Cn} −E{Dn}) → λi+i′ξ (i,j,i′,j ′)
k (t, s, λ), n → ∞.
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Proof of (iv): Note first that∣∣R−d
n ni+i′

E
{
g

(i,j)
n,t (Y1,Y12 ∪Pn)g

(i′,j ′)
n,s (Y2,Y12 ∪Pn)

− g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

)}∣∣
= ∣∣R−d

n ni+i′(
E{Cn} −E{Dn})∣∣

≤ 2R−d
n ni+i′

E
{
h

(i,j)
n,t (Y1)h

(i′,j ′)
n,s (Y2)1D(i,i′)(t∨s)

(Y1,Y2)
}
.

Changing the variables in the same manner as in (i), the last expression above
equals

2
(
nf (Rne1)

)i+i′
∫
Sd−1

J (θ) dθ

∫ ∞
1

dρ

∫
(Rd )i+i′−1

dyρd−1 f (Rnρe1)

f (Rne1)

×
i+i′−1∏
�=1

f (Rn‖ρθ + y�/Rn‖e1)

f (Rne1)
1
{‖ρθ + y�/Rn‖ ≥ 1

}
× h

(i,j,i′,j ′)
t,s (0,y)1

D(i,i′)(t∨s)
(0,y).

Using the upper bound (A.17) and

i+i′−1∏
�=1

f (Rn‖ρθ + y�/Rn‖e1)

f (Rne1)
1
{‖ρθ + y�/Rn‖ ≥ 1

} ≤ (1 + ξ)i+i′−1,

and applying (A.19), we can complete the proof. �

LEMMA A.5. Fix a positive constant L > 0:

(i) For i ≥ k + 2, 0 ≤ t, s ≤ L,

∑
j,j ′≥1

jj ′
∫
(Rd )i−1

h
(i,j)
t (0,y)h(i,j ′)

s (0,y) dy ≤
(

i

k + 2

)2

ii−2(Ldωd

)i−1
,

where ωd is a volume of the unit ball in R
d .

(ii) For i, i′ ≥ k + 2, 0 ≤ t, s ≤ L,∑
j,j ′≥1

jj ′
∫
(Rd )i+i′−1

h
(i,j,i′,j ′)
t,s (0,y)1

D(i,i′)(t∨s)
(0,y) dy

≤ 2d

(
i

k + 2

)(
i ′

k + 2

)
ii−1(

i ′
)i′−1(

Ldωd

)i+i′−1
.

PROOF. We begin with proving (i). Since every connected component built on
a set of i points can contribute to the kth Betti number at most

(
i

k+2

)
times, we



2844 T. OWADA

have that ∑
j,j ′≥1

jj ′
∫
(Rd )i−1

h
(i,j)
t (0,y)h(i,j ′)

s (0,y) dy

≤
(

i

k + 2

)2 ∑
j,j ′≥1

∫
(Rd )i−1

h
(i,j)
t (0,y)h(i,j ′)

s (0,y) dy

≤
(

i

k + 2

)2

Ld(i−1)
∫
(Rd )i−1

1
{
Č(0,y;1) is connected

}
dy.

It is well known that there exist ii−2 spanning trees on a set of i points, and thus,∫
(Rd )i−1

1
{
Č(0,y;1) is connected

}
dy ≤ ii−2(ωd)i−1.

Now, the claim is proved.
Proof of (ii):∑

j,j ′≥1

jj ′
∫
(Rd )i+i′−1

h
(i,j,i′,j ′)
t,s (0,y)1

D(i,i′)(t∨s)
(0,y) dy

≤
(

i

k + 2

)(
i ′

k + 2

)
Ld(i+i′−1)

×
∫
(Rd )i+i′−1

1
{
Č(0, y1, . . . , yi−1;1) is connected,

Č(yi, . . . , yi+i′−1;1) is connected, Č(0,y;2) is connected
}
dy.

If Č(0, y1, . . . , yi−1;1) is connected, there exist ii−2 spanning trees constructed
from {0, y1, . . . , yi−1}. Similarly, there are (i ′)i′−2 spanning trees built on the
points {yi, . . . , yi+i′−1} whenever Č(yi, . . . , yi+i′−1;1) is connected. In addition,
if Č(0,y;2) is connected, two sets of points {0, y1, . . . , yi−1} and {yi, . . . , yi+i′−1}
must be at a distance of at most 2, implying that ‖yp − yq‖ ≤ 2 for some
p ∈ {0, . . . , i − 1} and q ∈ {i, . . . , i + i ′ − 1} (take y0 ≡ 0). Therefore,∫

(Rd )i+i′−1
1
{
Č(0, y1, . . . , yi−1;1) is connected,

Č(yi, . . . , yi+i′−1;1) is connected, Č(0,y;2) is connected
}
dy

≤ ii−2(
i ′

)i′−2
ii′(ωd)i+i′−22dωd = 2dii−1(i ′)i′−1

(ωd)i+i′−1. �

Subsequently, we establish the CLT for the truncated Betti number (A.13) as
well as related lifetime sums, for which, as its limit, we need to define a “truncated”
limiting Gaussian process. For M ≥ k + 2, we define

Z
(M)
k (t) :=

M∑
i=k+2

∑
j≥1

jZ
(i,j)
k (t), t ≥ 0.
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It is worthwhile noting that for these truncated versions, there is no need to re-
strict the range of λ as in (2.19). Further, we do not need to restrict the domain of
functions in the space C.

LEMMA A.6. Suppose that

nf (Rne1) → λ ∈ (0,∞), n → ∞.

Then, for every M ≥ k + 2,

(A.21) R−d/2
n

(
β

(M)
k,n (t) −E

{
β

(M)
k,n (t)

}) fidi⇒ Z
(M)
k (t),

and

(A.22) R−d/2
n

∫ t

0

(
β

(M)
k,n (s) −E

{
β

(M)
k,n (s)

})
ds ⇒

∫ t

0
Z

(M)
k (s) ds in C[0,∞).

PROOF. The proofs of (A.21) and (A.22) are very similar up to finite-
dimensional weak convergence, so we only verity the latter one. Our proof is
closely related to that in Theorem 3.9 in [41]. To prove finite-dimensional weak
convergence, we apply the Cramér–Wold device, for which we need to establish
the central limit theorem for

R−d/2
n

m∑
p=1

ap

∫ tp

0

(
β

(M)
k,n (s) −E

{
β

(M)
k,n (s)

})
ds

for every a1, . . . , am ∈R, 0 ≤ t1 < · · · < tm < ∞, and m ≥ 1.
We first decompose this term into two parts in the following manner. For K ≥ 1,

we write

m∑
p=1

ap

∫ tp

0
β

(M)
k,n (s) ds =

m∑
p=1

ap

∫ tp

0
β

(M)
k,n (s;K)ds

+
m∑

p=1

ap

∫ tp

0

M∑
i=k+2

∑
j≥1

j
∑

Y⊂Pn

g(i,j)
n,s (Y,Pn)

× 1
{
Max(Y) ∈ Ann(KRn,∞)

}
ds

:= T (M)
n (K) + U(M)

n (K).

Define

γ (M)(K) =
m∑

p=1

m∑
q=1

apaq

∫ tp

0

∫ tq

0
C

(M)
k (u, v;K)dudv,
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where C
(M)
k (u, v;K) is a truncated version of Ck(u, v;K) given by

C
(M)
k (u, v;K) :=

M∑
i=k+2

∑
j,j ′≥1

jj ′ λi

i! μ
(i,j,j ′)
k (u, v, λ;K)

+
M∑

i,i′=k+2

∑
j,j ′≥1

jj ′ λi+i′

i!i′! ξ
(i,j,i′,j ′)
k (u, v, λ;K).

Moreover, γ (M) := limK→∞ γ (M)(K). It then follows from Lemma A.3 that

γ (M)(K) = lim
n→∞R−d

n Var
{
T (M)

n (K)
}
.

For the required finite-dimensional weak convergence, we need to show that for
every M ≥ k + 2,

R−d/2
n

m∑
p=1

ap

∫ tp

0

(
β

(M)
k,n (s) −E

{
β

(M)
k,n (s)

})
ds ⇒ N

(
0, γ (M)), n → ∞.

By the standard approximation argument given on page 64 in [41], it suffices to
show that for every K ≥ 1,

R−d/2
n

(
T (M)

n (K) −E
{
T (M)

n (K)
}) ⇒ N

(
0, γ (M)(K)

)
, n → ∞;

equivalently, as n → ∞,

T
(M)
n (K) −E{T (M)

n (K)}√
Var{T (M)

n (K)}
⇒ N(0,1) for every K ≥ 1.

Let (Q�, � ∈N) be unit cubes covering R
d . Let

Vn := {
� ∈ N : Q� ∩ Ann(Rn,KRn) 
= ∅

}
.

Then we see that |Vn| ≤ C∗Rd
n .

Subsequently, we partition T
(M)
n (K) as follows:

T (M)
n (K) = ∑

�∈Vn

m∑
p=1

ap

∫ tp

0

M∑
i=k+2

∑
j≥1

j
∑

Y⊂Pn

g(i,j)
n,s (Y,Pn)

× 1
{
Max(Y) ∈ Ann(Rn,KRn) ∩ Q�

}
ds

:= ∑
�∈Vn

ξ�,n.

We define a relation ∼ on a vertex set Vn by � ∼ �′ if and only if the distance
between Q� and Q�′ is less than 2Mtm. In this case, (Vn,∼) constitutes a depen-
dency graph, that is, for any two vertex sets I1, I2 ⊂ Vn with no edges connecting
them, (ξ�,n, � ∈ I1) and (ξ�′,n, �′ ∈ I2) are independent. By virtue of Stein’s method
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for normal approximation (see Theorem 2.4 in [41]), the proof will be complete,
provided that for p = 3,4,

Rd
n max

�∈Vn

E|ξ�,n −E{ξ�,n}|p
(Var{T (M)

n (K)})p/2
→ 0, n → ∞.

For � ∈ Vn, we denote by Z�,n the number of points in Pn lying in

Tube(Q�;Mtm) :=
{
x ∈R

d : inf
y∈Q�

‖x − y‖ ≤ Mtm

}
.

Clearly, Z�,n possesses a Poisson law with mean n
∫

Tube(Q�;Mtm) f (z) dz. Using
Potter’s bound, we see that Z�,n is stochastically dominated by another Poisson
random variable with a constant mean C∗.

Observe that

|ξ�,n| ≤
m∑

p=1

|ap|tm
M∑

i=k+2

(
i

k + 2

)2 (
Z�,n

i

)
,

and, accordingly, we have

max
�∈Vn

E
∣∣ξ�,n −E{ξ�,n}

∣∣p ≤ C∗ for p = 3,4.

Therefore, for p = 3,4,

Rd
n max

�∈Vn

E|ξ�,n −E{ξ�,n}|p
(Var{T (M)

n (K)})p/2
≤ C∗Rd

n

(
Rd

n

)−p/2 → 0, n → ∞,

which completes the proof of the finite-dimensional weak convergence.
Next, we turn to verifying the tightness of

Xn(t) := R−d/2
n

∫ t

0

(
β

(M)
k,n (s) −E

{
β

(M)
k,n (s)

})
ds, t ≥ 0,

in the space C[0,∞). According to Theorem 12.3 in [7], we only have to show
that, for any L > 0, there exists B > 0 such that

E
{(

Xn(T ) − Xn(S)
)2} ≤ B(T − S)2

for all 0 ≤ S ≤ T ≤ L and n ≥ 1.
We see that

E
{(

Xn(T ) − Xn(S)
)2}

= R−d
n

∫ T

S

∫ T

S
Cov

{
β

(M)
k,n (t), β

(M)
k,n (s)

}
ds dt

=
∫ T

S

∫ T

S

M∑
i=k+2

∑
j,j ′≥1

jj ′R−d
n

ni

i!
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×E
{
g

(i,j)
n,t

(
Y ′,Y ′ ∪Pn

)
g(i,j ′)

n,s

(
Y ′,Y ′ ∪Pn

)}
ds dt

+
∫ T

S

∫ T

S

M∑
i,i′=k+2

∑
j,j ′≥1

jj ′R−d
n

ni+i′

i!i′!

×E
{
g

(i,j)
n,t (Y1,Y12 ∪Pn)g

(i′,j ′)
n,s (Y2,Y12 ∪Pn)

− g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

)}
ds dt

(Y ′ and P ′
n are defined in the statement of Lemma A.4).

Combining Lemma A.4(ii), (iv) and Lemma A.5(i), (ii), the integrands in the
last expression can be bounded above by a positive and finite constant, which does
not depend on s, t and n. We now conclude that

E
{(

Xn(T ) − Xn(S)
)2} ≤ C∗(T − S)2,

and thus, the tightness follows. �

PROOF OF THEOREM 2.8. For the proof of (2.21), by Lemma A.6 and Theo-
rem 3.2 in [8], it suffices to verify that for every ε > 0,

lim
M→∞ lim sup

n→∞
P

{
sup

0≤t≤1

∣∣∣∣∫ t

0

(
βk,n(s) − β

(M)
k,n (s)

−E
{
βk,n(s) − β

(M)
k,n (s)

})
ds

∣∣∣∣ > εRd/2
n

}
= 0,

(A.23)

and

(A.24) lim
M→∞P

{
sup

0≤t≤1

∣∣∣∣∫ t

0

(
Zk(s) − Z

(M)
k (s)

)
ds

∣∣∣∣ > ε

}
= 0.

By Chebyshev’s inequality, (A.23) immediately follows, provided that

lim
M→∞ lim sup

n→∞
R−d

n E

{(∫ 1

0

∣∣βk,n(s) − β
(M)
k,n (s) −E

{
βk,n(s) − β

(M)
k,n (s)

}∣∣ds

)2}
= 0.

By the Cauchy–Schwarz inequality, we only have to show that

lim
M→∞ lim sup

n→∞

∫ 1

0

(
R−d

n Var
{
βk,n(t) − β

(M)
k,n (t)

})1/2
dt = 0.

One can decompose the integrand as follows:

R−d
n Var

{
βk,n(t) − β

(M)
k,n (t)

}
=

∞∑
i=M+1

∑
j≥1

j2R−d
n

ni

i! E
{
g

(i,j)
n,t

(
Y ′,Y ′ ∪Pn

)}
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+
∞∑

i,i′=M+1

∑
j,j ′≥1

jj ′R−d
n

ni+i′

i!i′!

×E
{
g

(i,j)
n,t (Y1,Y12 ∪Pn)g

(i′,j ′)
n,t (Y2,Y12 ∪Pn)

− g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,t

(
Y2,Y2 ∪P ′

n

)}
(Y ′ and P ′

n are defined in the statement of Lemma A.4).
Combining Lemma A.4(ii), (iv) and Lemma A.5(i), (ii) proves that this is

bounded by

C∗
∞∑

i=M+1

(λ(1 + δ))i

i!
(

i

k + 2

)2

ii−2(ωd)i−1

+ C∗
∞∑

i,i′=M+1

(λ(1 + δ))i+i′

i!i′!
(

i

k + 2

)(
i ′

k + 2

)
ii−1(i ′)i′−1

(ωd)i+i′−1

≤ C∗
∞∑

i=M+1

i2k+2(
λ(1 + δ)eωd

)i + C∗
( ∞∑

i=M+1

ik+1(λ(1 + δ)eωd

)i)2

.

Since 0 < λ(1 + δ)eωd < 1, the claim has been proved. Since the proof of (A.24)
is almost the same as that of (A.23), we omit it.

A similar (or even easier) argument completes (2.20) as well. �

A.4. Proof of Theorem 2.5. The proof of Theorem 2.5 somewhat parallels
that of Theorem 2.8, for which we need to recall the notation of several indicator
functions and variants of the Betti numbers defined at the beginning of Section A.3.
As in Lemma A.3, we begin with computing the asymptotic mean and covariance
of the scaled kth Betti numbers. In the following, let ρn := nk+2Rd

nf (Rne1)
k+2.

LEMMA A.7. For every t, s ≤ 0 and 1 ≤ K ≤ ∞, we have, as n → ∞,

ρ−1
n E

{
βk,n(t;K)

} → μ
(k+2,1,1)
k (t, t,0;K)/(k + 2)! ∈ (0,∞),

and

ρ−1
n Cov

{
βk,n(t;K),βk,n(s;K)

} → μ
(k+2,1,1)
k (t, s,0;K)/(k + 2)! ∈ (0,∞),

where the definition of the limit is given in (A.14).

Recall that, in the last subsection, Lemmas A.4 and A.5 play a crucial role
in proving Lemma A.3. In the present subsection, however, one needs to replace
Lemma A.4 with Lemma A.8 below in order to show Lemma A.7. Since the proof
of Lemma A.8 is analogous to that of Lemma A.4, we omit the proof.



2850 T. OWADA

LEMMA A.8. Throughout the statements (i) and (ii) below, Y ′ denotes a set
of i.i.d. points in R

d with density f , independent of Pn:

(i) For t, s ≥ 0, we have, as n → ∞,

ρ−1
n nk+2

E
{
g

(k+2,1)
n,t

(
Y ′,Y ′ ∪Pn

)
g(k+2,1)

n,s

(
Y ′,Y ′ ∪Pn

)} → μ
(k+2,1,1)
k (t, s,0).

(ii) There exists a positive integer N ∈ N+ such that for all i ≥ k +2, j, j ′ ≥ 1,
and t, s ≥ 0,

ρ−1
n ni

E
{
g

(i,j)
n,t

(
Y ′,Y ′ ∪Pn

)
g(i,j ′)

n,s

(
Y ′,Y ′ ∪Pn

)}
≤ C∗(

2nf (Rne1)
)i−(k+2)

∫
(Rd )i−1

h
(i,j)
t (0,y)h(i,j ′)

s (0,y) dy

for all n ≥ N .
Moreover, Y1 and Y2 denote sets of i.i.d. points in R

d , independent of each
other, with density f such that |Y1 ∩ Y2| = 0 and Y12 := Y1 ∪ Y2 is independent
of Pn. Let P ′

n be an independent copy of Pn, which is independent of Y12.
(iii) There exists a positive integer N ∈ N+ such that for all i, i ′ ≥ k + 2,

j, j ′ ≥ 1, and t, s ≥ 0,∣∣ρ−1
n ni+i′

E
{
g

(i,j)
n,t (Y1,Y12 ∪Pn)g

(i′,j ′)
n,s (Y2,Y12 ∪Pn)

− g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

)}∣∣
≤ C∗(

2nf (Rne1)
)i+i′−(k+2)

∫
(Rd )i+i′−1

h
(i,j,i′,j ′)
t,s (0,y)1

D(i,i′)(t∨s)
(0,y) dy

for all n ≥ N .

PROOF OF LEMMA A.7. As in the proof of Lemma A.3, we may prove only
the case K = ∞. Moreover, we compute only the limit of scaled covariance by ρn.
Proceeding as in the proof of Lemma A.3, one can write

ρ−1
n Cov

{
βk,n(t), βk,n(s)

}
=

∞∑
i=k+2

∑
j,j ′≥1

jj ′ρ−1
n

ni

i! E
{
g

(i,j)
n,t

(
Y ′,Y ′ ∪Pn

)
g(i,j ′)

n,s

(
Y ′,Y ′ ∪Pn

)}

+
∞∑

i,i′=k+2

∑
j,j ′≥1

jj ′ρ−1
n

ni+i′

i!i′! E
{
g

(i,j)
n,t (Y1,Y12 ∪Pn)g

(i′,j ′)
n,s (Y2,Y12 ∪Pn)

− g
(i,j)
n,t (Y1,Y1 ∪Pn)g

(i′,j ′)
n,s

(
Y2,Y2 ∪P ′

n

)}
.

By Lemma A.8(i)–(iii), it now suffices to show that, as n → ∞,

An :=
∞∑

i=k+3

∑
j,j ′≥1

jj ′ (2nf (Rne1))
i−(k+2)

i!
∫
(Rd )i−1

h
(i,j)
t (0,y)h(i,j ′)

s (0,y) dy

→ 0,
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and

Bn :=
∞∑

i,i′=k+2

∑
j,j ′≥1

jj ′ (2nf (Rne1))
i+i′−(k+2)

i!i′!

×
∫
(Rd )i+i′−1

h
(i,j,i′,j ′)
t,s (0,y)1

D(i,i′)(t∨s)
(0,y) dy → 0.

It follows from Lemma A.5(i) that

An ≤
∞∑

i=k+3

(2nf (Rne1))
i−(k+2)

i!
(

i

k + 2

)2

ii−2((t ∨ s)dωd

)i−1

≤ C∗
∞∑

i=k+3

i2k+2(
2nf (Rne1)(t ∨ s)deωd

)i−(k+2)

→ 0 as n → ∞,

where the last convergence is obtained by nf (Rne1) → 0, n → ∞.
Similarly, by Lemma A.5(ii),

Bn ≤
∞∑

i,i′=k+2

(2nf (Rne1))
i+i′−(k+2)

i!i′!

× 2d

(
i

k + 2

)(
i ′

k + 2

)
ii−1(i ′)i′−1(

(t ∨ s)dωd

)i+i′−1

≤ C∗
∞∑

i,i′=k+2

ik+1(i ′)k+1(
2nf (Rne1)(t ∨ s)deωd

)i+i′−(k+2)

→ 0 as n → ∞. �

The next lemma claims the CLT for the truncated kth Betti number (A.13) and
its integral process. The proof is almost the same as that of Lemma A.6 and, there-
fore, we do not state it here. It is then straightforward to complete the proof of
Theorem 2.5 by combining Lemma A.9 and Theorem 3.2 in [8], as in the last
subsection.

LEMMA A.9. For every M ≥ k + 2, we have, as n → ∞,

ρ−1/2
n

(
β

(M)
k,n (t) −E

{
β

(M)
k,n (t)

}) fidi⇒ Yk(t),

and

ρ−1/2
n

∫ t

0

(
β

(M)
k,n (s) −E

{
β

(M)
k,n (s)

})
ds ⇒

∫ t

0
Yk(s) ds in C[0,∞).
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