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MULTIPLE-PRIORS OPTIMAL INVESTMENT IN DISCRETE TIME
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BY ROMAIN BLANCHARD∗ AND LAURENCE CARASSUS†,∗,1

Université Reims Champagne-Ardenne∗ and
Léonard de Vinci Pôle Universitaire Research Center†

This paper investigates the problem of maximizing expected terminal
utility in a discrete-time financial market model with a finite horizon under
nondominated model uncertainty. We use a dynamic programming frame-
work together with measurable selection arguments to prove that under mild
integrability conditions, an optimal portfolio exists for an unbounded utility
function defined on the half-real line.

1. Introduction. We consider investors trading in a multi-period and discrete-
time financial market. We study the problem of terminal wealth expected utility
maximisation under Knightian uncertainty. It was first introduced by F. Knight
[Knight (1921)] and refers to the “unknown unknown,” or uncertainty, as opposed
to the “known unknown,” or risk. This concept is very appropriate in the context
of financial mathematics as it describes accurately market behaviors which are be-
coming more and more surprising. The belief of investors are modeled with a set
of probability measures rather than a single one. This can be related to model mis-
specification issues or model risk and has triggered a renewed and strong interest
by practitioners and academics alike.

The axiomatic theory of the classical expected utility was initiated by von Neu-
mann and Morgenstern (1947). They provided conditions on investor preferences
under which the expected utility of a contingent claim X can be expressed as
EP U(X) where P is a given probability measure and U is a so-called utility
function. The problem of maximising the von Neumann and Morgenstern ex-
pected utility has been extensively studied; we refer to Rásonyi and Stettner (2005)
and Rásonyi and Stettner (2006) for the discrete-time case and to Kramkov and
Schachermayer (1999) and Schachermayer (2001) for the continuous-time one.
In the presence of Knightian uncertainty, Gilboa and Schmeidler (1989) provided
a pioneering contribution by extending the axiomatic of von Neumann and Mor-
genstern. In this case, under suitable conditions on the investor preferences, the
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utility functional is of the form infP∈QT EP U(X) where QT is the set of all pos-
sible probability measures representing the agent beliefs. Most of the literature on
the so-called multiple-priors or robust expected utility maximisation assumes that
QT is dominated by a reference measure. We refer to Schied, Föllmer and Weber
(2009) for an extensive survey.

However, assuming the existence of a dominating reference measure does not
always provide the required degree of generality from an economic and practical
perspective. Indeed, uncertain volatility models [see Avellaneda, Levy and Paras
(1996), Denis and Martini (2006), Lyons (1995)] are concrete examples where this
hypothesis fails. On the other hand, assuming a nondominated set of probability
measures significantly raises the mathematical difficulty of the problem as some
of the usual tools of probability theory do not apply. In the multiple-priors non-
dominated case, Denis and Kervarec (2013) obtained the existence of an optimal
strategy, a worst case measure as well as some “minmax” results under some com-
pacity assumption on the set of probability measures and with a bounded (from
above and below) utility function. This result is obtained in the continuous-time
case. In the discrete-time case, Nutz (2016) (where further references to multiple-
priors nondominated problematic can be found) obtained the first existence result
without any compacity assumption on the set of probability measures but for a
bounded (from above) utility function. We also mention two articles subsequent to
our contribution. The first one [see Bartl (2016)] provides a dual representation in
the case of an exponential utility function with a random endowment, and the sec-
ond one [see Neufeld and Sikic (2016)] study a market with frictions in the spirit
of Pennanen and Perkkio (2012) for a bounded from above utility function.

To the best of our knowledge, this paper provides the first general result for
unbounded utility functions assuming a nondominated set of probability measures
(and without compacity assumption). This includes, for example, the useful case
of Constant Relative Risk Aversion utility functions (i.e., logarithm or power func-
tions). In Theorem 1.11, we give sufficient conditions for the existence of an op-
timizer to our “maxmin” problem (see Definition 1.9). We work under the frame-
work of Bouchard and Nutz (2015) and Nutz (2016). The market is governed by
a nondominated set of probability measures QT that determines which events are
relevant or not. Assumption 1.1, which is related to measurability issues, is the only
assumption made on QT and is the cornerstone of the proof. We introduce two in-
tegrability assumptions. The first one (Assumption 3.1) is related to measurability
and continuity issues. The second one (Assumption 3.5) replaces the boundedness
assumption of Nutz (2016) and allows us to use auxiliary functions which play the
role of properly integrable bounds for the value functions at each step. The no-
arbitrage condition is essential as well; we use the one introduced in Bouchard and
Nutz (2015) and propose a “quantitative” characterisation in the spirit of Jacod and
Shiryaev (1998) and Rásonyi and Stettner (2005). Finally, we introduce an alter-
native “strong” no-arbitrage condition (the sNA, see Definition 2.4) and prove in
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Theorem 3.6 that under the sNA condition, Theorem 1.11 applies to a large range
of settings.

As in Bouchard and Nutz (2015) and Nutz (2016) our proof relies heavily on
measure theory tools, namely on analytic sets. Those sets display the nice property
of being stable by projection or countable unions and intersections; however, they
fail to be stable by complementation, hence the sigma-algebra generated by ana-
lytic sets contains sets that are not analytic which leads to significant measurability
issues. Such difficulties arise for instance in Lemma 3.26, where we are still able
to prove some tricky measurability properties, as well as in Proposition 3.30 which
is pivotal in solving the dynamic programming. Note as well that we have iden-
tified (and corrected) a small issue in Lemma 4.12 of Bouchard and Nutz (2015),
which is also used in Nutz (2016) to prove some important measurability prop-
erties. Indeed it is not enough in order to have joint-measurability of a function
θ(ω, x) to assume that θ(·, x) is measurable and θ(ω, ·) is lower-semicontinuous,
one has to assume for example that θ(ω, ·) is convex [see Lemma A.35 as well as
the counter-example A.34].

To solve our optimisation problem, we follow a similar approach as Nutz
(2016). We first consider a one-period case with strategy in Rd . To “glue” together
the solutions found in the one-period case, we use dynamic programming as in
Rásonyi and Stettner (2005, 2006), Carassus and Rásonyi (2016), Carassus, Rá-
sonyi and Rodrigues (2015), Nutz (2016) and Blanchard, Carassus and Rásonyi
(2016) together with measurable selection arguments (Auman and Jankov–von
Neumann theorems).

In the remainder of the Introduction, we recall some important properties of an-
alytic sets, present our framework and state our main result. In Section 2, we prove
our quantitative version of the multiple-priors no-arbitrage condition. In Section 3,
we solve the expected utility maximisation problem, first in the one period case.
Finally, the Appendix collects some technical results and proofs as well as some
counter-examples to Bouchard and Nutz (2015), Lemma 4.12.

1.1. Polar sets and universal sigma-algebra. For any Polish space X (i.e.,
complete and separable metric space), we denote by B(X) its Borel sigma-algebra
and by P(X) the set of all probability measures on (X,B(X)). We recall that
P(X) endowed with the weak topology is a Polish space [see Bertsekas and Shreve
(2004), Proposition 7.20, page 127, Proposition 7.23, page 131]. If P in P(X),
BP (X) will be the completion of B(X) with respect to P and the universal sigma-
algebra is defined by Bc(X) := ⋂

P∈P(X)BP (X). It is clear that B(X) ⊂ Bc(X).
In the rest of the paper, we will use the same notation for P in P(X) and for its
(unique) extension on Bc(X). A function f : X → Y (where Y is an other Polish
space) is universally measurable or Bc(X)-measurable [resp., Borel-measurable or
B(X)-measurable] if for all B ∈ B(Y ), f −1(B) ∈ Bc(X) [resp., f −1(B) ∈ B(X)].
Similarly, we will speak of universally adapted or universally predictable (resp.,
Borel-adapted or Borel-predictable) processes.
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For a given P ⊂ P(X), a set N ⊂ X is called a P-polar if for all P ∈ P , there
exists some AP ∈ Bc(X) such that P(AP ) = 0 and N ⊂ AP . We say that a property
holds true P-quasi-surely (q.s.), if it is true outside a P-polar set. Finally, we say
that a set is of P-full measure if its complement is a P-polar set.

1.2. Analytic sets. An analytic set of X is the continuous image of a Polish
space [see Aliprantis and Border (2006), Theorem 12.24, page 447]. We denote by
A(X) the set of analytic sets of X and recall some key properties that will often
be used in the rest of the paper without further references [see also Bertsekas and
Shreve (2004), Chapter 7, for more details on analytic sets]. The projection of an
analytic set is an analytic set [see Bertsekas and Shreve (2004), Proposition 7.39,
page 165] and the countable union, intersection or Cartesian product of analytic
sets is an analytic set [see Bertsekas and Shreve (2004), Corollary 7.35.2, page
160, Proposition 7.38, page 165]. However, the complement of an analytic set does
not need to be an analytic set. We denote by CA(X) := {A ∈ X,X \ A ∈ A(X)}
the set of all coanalytic sets of X. We have that [see Bertsekas and Shreve (2004),
Proposition 7.36, page 161, Corollary 7.42.1, page 169]

B(X) ⊂A(X) ∩ CA(X) and A(X) ∪ CA(X) ⊂ Bc(X).(1)

Now, for D ∈ A(X), a function f : D →R∪ {±∞} is lower-semianalytic or l.s.a.
[resp., upper-semianalytic or u.s.a.] on X if {x ∈ X f (x) < c} ∈ A(X) [resp.,
{x ∈ X f (x) > c} ∈ A(X)] for all c ∈ R. We denote by LSA(X) [resp., USA(X)]
the set of all l.s.a. [resp., u.s.a.] functions on X. A function f : X → Y (where Y

is another Polish space) is analytically measurable if for all B ∈ B(Y ), f −1(B)

belongs to the sigma-algebra generated by A(X). From (1), it is clear that if f is
l.s.a. or u.s.a. or analytically measurable then f is Bc(X)-measurable; again this
will be used through the paper without further references.

1.3. Measurable spaces, stochastic kernels and definition of QT . We fix a
time horizon T ∈ N and introduce a sequence (�t)1≤t≤T of Polish spaces. We
denote by �t := �1 × · · · × �t , with the convention that �0 is reduced to a sin-
gleton. An element of �t will be denoted by ωt = (ω1, . . . ,ωt ) = (ωt−1,ωt ) for
(ω1, . . . ,ωt ) ∈ �1 ×· · ·×�t and (ωt−1,ωt ) ∈ �t−1 ×�t (to avoid heavy notation
we drop the dependency in ω0). It is well known that B(�t) = B(�t−1) ⊗ B(�t)

[see Aliprantis and Border (2006), Theorem 4.44, page 149]. However, we have
only that Bc(�

t−1) ⊗ Bc(�t) ⊂ Bc(�
t), which makes the use of the projec-

tion theorem problematic and enlighten why analytic sets are introduced. For all
0 ≤ t ≤ T − 1, we denote by SKt+1 the set of universally measurable stochastic
kernel on �t+1 given �t [see Bertsekas and Shreve (2004), Definition 7.12, page
134, Lemma 7.28, page 174]. Fix some 1 ≤ t ≤ T , Pt−1 ∈ P(�t−1) and pt ∈ SKt .
Using Fubini’s theorem [see Bertsekas and Shreve (2004), Proposition 7.45, page
175], we set for all A ∈ Bc(�

t)

Pt−1 ⊗ pt(A) :=
∫
�t−1

∫
�t

1A

(
ωt−1,ωt

)
pt

(
dωt ,ω

t−1)Pt−1
(
dωt−1)

.
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For all 0 ≤ t ≤ T − 1, we consider the random sets Qt+1 : �t � P(�t+1):
Qt+1(ω

t ) can be seen as the set of possible models for the t + 1th period given the
state ωt until time t .

ASSUMPTION 1.1. For all 0 ≤ t ≤ T − 1, Qt+1 is a nonempty and convex
valued random set such that

Graph(Qt+1) = {(
ωt,P

)
,P ∈ Qt+1

(
ωt )} ∈ A

(
�t ×P(�t+1)

)
.

From the Jankov–von Neumann theorem [see Bertsekas and Shreve (2004),
Proposition 7.49, page 182], there exists some analytically measurable qt+1 :
�t → P(�t+1) such that for all ωt ∈ �t , qt+1(·,ωt ) ∈ Qt+1(ω

t ) [recall that for
all ωt ∈ �t , Qt+1(ω

t ) �= ∅]. In other words, qt+1 ∈ SKt+1 is a universally mea-
surable selector of Qt+1. For all 1 ≤ t ≤ T , we define Qt ⊂ P(�t) by

Qt := {
Q1 ⊗ q2 ⊗ · · · ⊗ qt ,Q1 ∈ Q1, qs+1 ∈ SKs+1,

qs+1
(·,ωs) ∈ Qs+1

(
ωs) Qs-a.s. ∀1 ≤ s ≤ t − 1

}
,

(2)

where if Qt = Q1 ⊗ q2 ⊗ · · · ⊗ qt ∈ Qt we write for any 2 ≤ s ≤ t Qs := Q1 ⊗
q2 ⊗ · · · ⊗ qs and Qs ∈ Qs . For any fixed P ∈ QT , EP denotes the expectation
under P .

1.4. The traded assets and strategies. Let S := {St ,0 ≤ t ≤ T } be a
universally adapted d-dimensional process where for 0 ≤ t ≤ T , St = (Si

t )1≤i≤d

represents the price of d risky securities in the financial market in consideration.
We make the following assumptions which were already stated in Nutz (2016).

ASSUMPTION 1.2. The process S is Borel-adapted.

REMARK 1.3. If Assumption 1.2 is not postulated, we cannot obtain some
crucial measurability properties [see Bouchard and Nutz (2015), Remark 4.4,
Lemma 2.2 below as well as (26) and (27) and Bertsekas and Shreve (2004),
Lemma 7.30(3), page 178]. Note that this assumption is not needed in the one
period case.

ASSUMPTION 1.4. There exists some 0 ≤ s < ∞ such that −s ≤ Si
t (ω

t ) <

+∞ for all 1 ≤ i ≤ d , ωt ∈ �t and 0 ≤ t ≤ T .

Note that we can easily incorporate the case where −s ≤ Si
t < +∞ only on a

Borel QT -full measure set. There exists also a riskless asset for which we assume
a price constant equal to 1, for sake of simplicity. Without this assumption, all the
developments below could be carried out using discounted prices. The notation
�St := St −St−1 will often be used. If x, y ∈Rd , then the concatenation xy stands
for their scalar product. The symbol | · | denotes the Euclidean norm on Rd (or
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on R). Trading strategies are represented by d-dimensional universally predictable
processes φ := {φt ,1 ≤ t ≤ T } where for all 1 ≤ t ≤ T , φt = (φi

t )1≤i≤d represents
the investor’s holdings in each of the d assets at time t . The family of all such
trading strategies is denoted by �. We assume that trading is self-financing. As
the riskless asset’s price is constant equal to 1, the value at time t of a portfolio φ

starting from initial capital x ∈ R is given by V
x,φ
t = x + ∑t

s=1 φs�Ss .
From now on, the positive (resp., negative) part of some number or random

variable Y is denoted by Y+ (resp., Y−). We will also write f ±(Y ) for (f (Y ))±
for any random variable Y and (possibly random) function f .

1.5. No arbitrage condition, risk preferences and main result.

DEFINITION 1.5. The NA(QT ) condition holds true if for φ ∈ �, V
0,φ
T ≥

0 QT -q.s. implies that V
0,φ
T = 0 QT -q.s. [see also Bouchard and Nutz (2015),

Definition 1.1].

DEFINITION 1.6. A random utility U is a function defined on �T × (0,∞)

taking values in R∪{−∞} such that for every x ∈ R, U(·, x) is B(�T )-measurable
and for every ωT ∈ �T , U(ωT , ·) is proper,2 nondecreasing and concave on
(0,+∞). We extend U by (right) continuity in 0 and set U(·, x) = −∞ if x < 0.

REMARK 1.7. Fix some ωT ∈ �T and let DomU(ωT , ·) := {x ∈ R,

U(ωT , x) > −∞} be the domain of U(ωT , ·). Then U(ωT , ·) is continuous on
Ri(DomU(ωT , ·)), the relative interior of the domain of U(ωT , ·) [see Rockafellar
(1970), Theorem 10.1, page 82]. Note that if U(ωT , ·) is improper then U(ωT , ·) =
+∞ on Ri(DomU(ωT , ·)) and if U(ωT , ·) is assumed to be upper semicontinu-
ous (u.s.c. from now) then it is infinite on all R [see Rockafellar (1970), Theo-
rem 7.2 and Corollary 7.2.1, page 53] which is a rather uninteresting case. Never-
theless, our results hold true for an improper u.s.c. function. Here, U(ωT , ·) will
not be assumed to be u.s.c. since Assumption 3.1 is postulated. Indeed it implies
that DomU(ωT , ·) = (0,∞) if ωT ∈ �T

Dom which is a Borel QT -full measure set
[see Lemma 3.2]. Then U can be modified so that it remains Borel-measurable,
that DomU(ωT , ·) = (0,∞), and thus extending U(ωT , ·) by continuity in 0 is
enough to get an u.s.c. function for all ωT ∈ �T . If DomU(ωT , ·) = (0,∞) is not
true on a Borel QT -full measure set, then one cannot avoid the u.s.c. assumption:
U(ωT , ·) is continuous on Ri(DomU(ωT , ·)) = (m(ωT ),∞) and one needs to ex-
tend U(ωT , ·) by (right)-continuity in m(ωT ) which might be strictly positive. This
is the reason why in the dynamic programming part we force the value function to
be u.s.c. on all �t by taking their closure [see Lemma 3.18, (19) and (24)]. Note
that we can easily include the case where U(ωT , ·) is nondecreasing and concave
only for ωT in a Borel QT -full measure set. We introduce the following notation.

2There exists x ∈ (0,+∞) such that U(ωT ,x) > −∞ and U(ωT ,x) < +∞ for all x ∈ (0,+∞).
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DEFINITION 1.8. Fix some x ≥ 0. For P ∈ P(�T ) fixed, we denote by
�(x,P ) the set of all strategies φ ∈ � such that V

x,φ
T (·) ≥ 0 P -a.s. and by

�(x,U,P ) the set of all strategies φ ∈ �(x,P ) such that either
EP U+(·,V x,φ

T (·)) < ∞ or EP U−(·,V x,φ
T (·)) < ∞. Then

(3) �
(
x,QT ) := ⋂

P∈QT

�(x,P ) and �
(
x,U,QT ) := ⋂

P∈QT

�(x,U,P ).

Under NA(QT ), if φ ∈ �(x,QT ) then Pt(V
x,φ
t (·) ≥ 0) = 1 for all P ∈ Qt and

1 ≤ t ≤ T ; see Lemma A.33. Note that in the definition of Hx in Nutz (2016) (see
top of page 10), this intertemporal budget constraint was postulated. We now state
our main concern.

DEFINITION 1.9. Let x ≥ 0. The multiple-priors portfolio problem with ini-
tial wealth x is

u(x) := sup
φ∈�(x,U,QT )

inf
P∈QT

EP U
(·,V x,φ

T (·)).(4)

REMARK 1.10. We will use the convention +∞ − ∞ = +∞ throughout the
paper. This choice is rather unnatural when studying maximisation problem. The
reason for this is that we will use Bertsekas and Shreve (2004), Proposition 7.48,
page 180 [which relies on Bertsekas and Shreve (2004), Lemma 7.30(4), page 177]
for lower-semianalytic function where this convention is required.

We now present our main result under conditions which will be detailed in Sec-
tion 3.

THEOREM 1.11. Assume that the NA(QT ) condition and Assumptions 1.1,
1.2, 1.4, 3.1 and 3.5 hold true. Let x ≥ 0. Then there exists some optimal strategy
φ∗ ∈ �(x,U,QT ) such that

u(x) = inf
P∈QT

EP U
(·,V x,φ∗

T (·)) < ∞.

In Theorem 3.6, we will propose a fairly general set-up where Assumption 3.5
is satisfied.

2. No-arbitrage condition characterisation. We will often use the following
one-period version of the no-arbitrage condition. For ωt ∈ �t fixed, we say that
NA(Qt+1(ω

t )) condition holds true if for all h ∈ Rd

(5) h�St+1
(
ωt, ·) ≥ 0 Qt+1

(
ωt )-q.s. ⇒ h�St+1

(
ωt, ·) = 0 Qt+1

(
ωt )-q.s.

We introduce the affine hull (denoted by Aff) of the (robust) conditional support
of �St+1.



MULTIPLE-PRIORS OPTIMAL INVESTMENT FOR UNBOUNDED UTILITY 1863

DEFINITION 2.1. Let 0 ≤ t ≤ T −1 be fixed. The random set Dt+1 : �t � Rd

is defined as

Dt+1(
ωt ) := Aff

(⋂{
A ⊂ Rd, closed,

Pt+1
(
�St+1

(
ωt, ·) ∈ A

) = 1,∀Pt+1 ∈ Qt+1
(
ωt )}).

A strategy φ ∈ � such that φt+1(ωt ) ∈ Dt+1(ωt ) have nice properties; see (6)
and Lemma 3.11. If Dt+1(ωt ) = Rd then, intuitively, there are no redundant assets
for all model specifications. Otherwise, for any Bc(�

t)-measurable strategy φt+1,
one may always replace φt+1(ω

t , ·) by its orthogonal projection φ⊥
t+1(ω

t , ·) on
Dt+1(ωt ) without changing the portfolio value [see Remark 3.10 below and Nutz
(2016), Lemma 2.6]. The following lemma establishes some important properties
of Dt+1.

LEMMA 2.2. Let Assumptions 1.1 and 1.2 hold true and 0 ≤ t ≤ T − 1 be
fixed. Then Dt+1 is a nonempty, closed valued random set and Graph(Dt+1) ∈
Bc(�

t) ⊗B(Rd).

PROOF. The proof uses similar arguments as in Rockafellar and Wets (1998)
Theorem 14.8, page 648, Example 14.2, page 652, together with Bouchard and
Nutz (2015) Lemma 4.3 and is thus omitted. �

Similarly, as in Rásonyi and Stettner (2005) and Jacod and Shiryaev (1998) [see
also Blanchard, Carassus and Rásonyi (2016)], we prove a “quantitative” charac-
terisation of the NA(QT ) condition.

PROPOSITION 2.3. Assume that the NA(QT ) condition and Assumptions
1.1, 1.2 hold true. Then for all 0 ≤ t ≤ T − 1, there exists some Qt -full measure
set �t

NA ∈ Bc(�
t) such that for all ωt ∈ �t

NA, NA(Qt+1(ω
t )) holds true, Dt+1(ωt )

is a vector space and there exists αt(ω
t ) > 0 such that for all h ∈ Dt+1(ωt ) there

exists Ph ∈ Qt+1(ω
t ) satisfying

Ph

(
h

|h|�St+1
(
ωt, ·) < −αt

(
ωt )) > αt

(
ωt ).(6)

We prove in Blanchard and Carassus (2017) that there is in fact an equivalence
between the NA(QT ) condition and (6). We also prove that ωt → αt(ω

t ) is Bc(�
t)-

measurable.

PROOF. Using Bouchard and Nutz (2015), Theorem 4.5, Nt := {ωt ∈ �t,

NA(Qt+1(ω
t )) fails} ∈ Bc(�

t) and P(Nt) = 1 for all P ∈ Qt . So setting �t
NA :=
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�t \ Nt , we get that (5) holds true for all ωt ∈ �t
NA. We fix some ωt ∈ �t

NA. If
h ∈ Dt+1(ωt ), we have that

h�St+1
(
ωt, ·) ≥ 0 Qt+1

(
ωt )-q.s. ⇒ h = 0.(7)

Indeed as ωt ∈ �t
NA, (5) together with Nutz (2016), Lemma 2.6, imply that h ∈

(Dt+1(ωt ))⊥ the orthogonal space of Dt+1(ωt ) and h = 0. Therefore, for all h ∈
Dt+1(ωt ), h �= 0, there exists Ph ∈ Qt+1(ω

t ) such that Ph(h�St+1(ω
t , ·) ≥ 0) < 1.

Using a slight modification of Blanchard, Carassus and Rásonyi (2016), Lemma 3.5,
we get that 0 ∈ Dt+1(ωt ) [i.e., Dt+1(ωt ) is a vector space]. We introduce for n ≥ 1,

An

(
ωt ) :=

{
h ∈ Dt+1(

ωt ), |h| = 1,

Pt+1

(
h�St+1

(
ωt, ·) ≤ −1

n

)
≤ 1

n
,∀Pt+1 ∈ Qt+1

(
ωt )}

and we define n0(ω
t ) := inf{n ≥ 1,An(ω

t ) = ∅} with the convention that inf∅ =
+∞. If Dt+1(ωt ) = {0}, then n0(ω

t ) = 1 < ∞. We assume now that Dt+1(ωt ) �=
{0} and prove by contradiction that n0(ω

t ) < ∞. Suppose that n0(ω
t ) = ∞.

For all n ≥ 1, we get some hn(ω
t ) ∈ Dt+1(ωt ) with |hn(ω

t )| = 1 and such
that for all Pt+1 ∈ Qt+1(ω

t ) Pt+1(hn(ω
t )�St+1(ω

t , ·) ≤ − 1
n
) ≤ 1

n
. By pass-

ing to a sub-sequence we can assume that hn(ω
t ) tends to some h∗(ωt ) ∈

Dt+1(ωt ) with |h∗(ωt )| = 1. Then {h∗(ωt )�St+1(ω
t , ·) < 0} ⊂ lim infn Bn(ω

t ),
where Bn(ω

t ) := {hn(ω
t )�St+1(ω

t , ·) ≤ −1/n}. Fatou’s lemma implies that for
any Pt+1 ∈Qt+1(ω

t ),

Pt+1
(
h∗(

ωt )�St+1
(
ωt, ·) < 0

) ≤ lim inf
n

∫
�t+1

1Bn(ωt )(ωt+1)Pt+1(dωt+1) = 0.

This implies that Pt+1(h
∗(ωt )�St+1(ω

t , ·) ≥ 0) = 1 for all Pt+1 ∈ Qt+1(ω
t ) and

h∗(ωt ) = 0 [see (7)], which contradicts |h∗(ωt )| = 1. Thus n0(ω
t ) < ∞. We set

for ωt ∈ �t
NA, αt(ω

t ) := 1
n0(ω

t )
, αt ∈ (0,1] and by definition of An0(ω

t )(ω
t ), (6)

holds true. �

Finally, we introduce an alternative notion of no arbitrage, called strong no ar-
bitrage.

DEFINITION 2.4. We say that the sNA(QT ) condition holds true if for all
P ∈ QT and φ ∈ �, V

0,φ
T ≥ 0 P -a.s. implies that V

0,φ
T = 0 P -a.s.

The sNA(QT ) condition holds true if the “classical” no-arbitrage condition
in model P , NA(P ), holds true for all P ∈ QT . Note that if QT = {P } then
sNA(QT ) = NA(QT ) = NA(P ). Clearly, the sNA(QT ) condition is stronger than
the NA(QT ) condition.
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As in Blanchard, Carassus and Rásonyi (2016), Definition 3.3, we introduce for
all P = P1 ⊗ q2 ⊗ · · · ⊗ qT ∈ QT and for all 1 ≤ t ≤ T − 1,

Dt+1
P

(
ωt ) := Aff

(⋂{
A ⊂ Rd, closed, qt+1

(
�St+1

(
ωt, .

) ∈ A,ωt ) = 1
})

.

The case t = 0 is obtained by replacing qt+1(·,ωt ) by P1(·).

PROPOSITION 2.5. Assume that the sNA(QT ) condition and Assumptions 1.1
and 1.2 hold true and let 0 ≤ t ≤ T − 1. Fix some P = P1 ⊗ q2 ⊗ · · · ⊗ qT ∈
QT . Then there exists �t

P ∈ B(�t ) with Pt(�
t
P ) = 1 such that for all ωt ∈ �t

P ,
there exists αP

t (ωt ) ∈ (0,1] such that for all h ∈ Dt+1
P (ωt ), qt+1(h�St+1(ω

t , ·) ≤
−αP

t (ωt )|h|,ωt ) ≥ αP
t (ωt ). Furthermore, ωt → αP

t (ωt ) is B(�t)-measurable.

PROOF. This is a careful adaptation of Blanchard, Carassus and Rásonyi
(2016), Proposition 3.7 since Bc(�

t) is not a product sigma-algebra. �

3. Utility maximisation problem.

ASSUMPTION 3.1. For all r ∈Q, r > 0 supP∈QT EP U−(·, r) < +∞.

The proof of the following lemma follows directly from Rockafellar (1970),
Theorem 10.1, page 82.

LEMMA 3.2. Assume that Assumption 3.1 holds true. Then �T
Dom :=

{U(·, r) > −∞,∀r ∈ Q, r > 0} ∈ B(�T ) is a QT -full measure set. For all
ωT ∈ �T

Dom, Ri(DomU(ωT , ·)) = (0,∞) and U(ωT , ·) is continuous on (0,∞),
right-continuous in 0, and thus u.s.c. on R.

REMARK 3.3. Assumption 3.1, which does not appear in the mono-prior case
[see Blanchard, Carassus and Rásonyi (2016)], allows to work with countable
supremum [see (18)] and to have value functions with “good” measurability prop-
erties; see also Remark 3.14. We will prove [see Proposition 3.27] that Assumption
3.1 is preserved through the dynamic programming procedure. Assumption 3.1 is
superfluous in the case of nonrandom utility function. Indeed let m := inf{x ∈
R,U(x) > −∞} ≥ 0 and U(x) = U(x + m). Then Ri(DomU(·)) = (0,∞), U

satisfies Definition 1.6 and if φ
∗

is a solution of (4) for U with an initial wealth x,
then it will be a solution of (4) for U starting from x + m. Assumption 3.1 is also
useless in the one-period case.

EXAMPLE 3.4. We propose the following example where As-
sumption 3.1 holds true. Assume that there exists some x0 > 0 such that
supP∈QT EP U−(·, x0) < ∞. Assume also that there exists some functions f1, f2 :
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(0,1] → (0,∞) as well as some nonnegative Bc(�
T )-measurable random vari-

able D verifying supP∈QT EP D(·) < ∞ such that for all ωT ∈ �T , x ≥ 0,
0 < λ ≤ 1, U(ωT ,λx) ≥ f1(λ)U(ωT , x) − f2(λ)D(ωT ). This condition is a
kind of elasticity assumption around zero. It is satisfied for example by the
logarithm function. Fix some r ∈ Q, r > 0. If r ≥ x0, it is clear from Defini-
tion 1.6 that supP∈QT EP U−(·, r) < ∞. If r < x0, we have for all ωT ∈ �T ,
U(ωT , r) ≥ f1(

r
x0

)U(ωT , x0)−f2(
r
x0

)D(ωT ) and supP∈QT EP U−(·, r) < ∞ fol-
lows immediately.

The following condition, together with Assumption 3.1, implies that if φ ∈
�(x,QT ) then EP U(·,V x,φ

T (·)) is well defined for all P ∈ QT [see Proposi-
tion 3.25]. It also allows us to work with auxiliary functions which play the role of
properly integrable bounds for the value functions at each step [see (20), (27), (28)
and (29)].

ASSUMPTION 3.5. We assume that

sup
P∈QT

sup
φ∈�(1,P )

EP U+(·,V 1,φ
T (·)) < ∞.

Assumption 3.5 is not easy to verify: we propose an application of Theorem 1.11
in the following fairly general set-up where Assumption 3.5 is automatically satis-
fied. We introduce for all 1 ≤ t ≤ T , r > 0,

Wr
t :=

{
X : �t →R∪ {±∞},B(

�t
)
-measurable, sup

P∈Qt

EP |X|r < ∞
}
,

Wt := ⋂
r>0

Wr
t .

In Denis, Hu and Peng (2011), Proposition 14, it is proved that Wr
t is a Banach

space (up to the usual quotient identifying two random variables that are Qt -q.s.

equal) for the norm ‖X‖ := (supP∈Qt EP |X|r ) 1
r . Hence, the space Wt is the “natu-

ral” extension of the one introduced in the mono-prior classical case [see Carassus
and Rásonyi (2016) or Blanchard, Carassus and Rásonyi (2016), (16)].

THEOREM 3.6. Assume that the sNA(QT ) condition and Assumptions 1.1,
1.2, 1.4 and 3.1 hold true. Assume furthermore that U+(·,1),U−(·, 1

4) ∈ WT and
that for all 1 ≤ t ≤ T , P ∈ Qt , �St,

1
αP

t

∈Wt (recall Proposition 2.5 for the defini-

tion of αP
t ). Let x ≥ 0. Then there exists some optimal strategy φ∗ ∈ �(x,U,QT )

such that

u(x) = inf
P∈QT

EP U
(·,V x,φ∗

T (·)) < ∞.
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3.1. One period case. Let (�,G) be a measurable space, P(�) the set of
all probability measures on � defined on G and Q a nonempty convex subset of
P(�). Let Y(·) := (Y1(·), . . . , Yd(·)) be a G-measurable Rd -valued random vari-
able (which could represent the change of value of the price process).

ASSUMPTION 3.7. There exists some constant 0 < b < ∞ such that Yi(·) ≥
−b for all i = 1, . . . , d .

Finally, as in Definition 2.1, D ⊂ Rd is the smallest affine subspace of Rd con-
taining the support of the distribution of Y(·) under P for all P ∈ Q.

ASSUMPTION 3.8. The set D contains 0 (D is a nonempty vector subspace
of Rd ).

The pendant of the NA(QT ) condition in the one-period model is given by the
following.

ASSUMPTION 3.9. There exists some constant 0 < α ≤ 1 such that for all
h ∈ D there exists Ph ∈ Q satisfying Ph(hY (·) ≤ −α|h|) ≥ α.

REMARK 3.10. Let h ∈ Rd and h′ ∈ Rd be the orthogonal projection of h

on D. Then h − h′ ⊥ D hence{
Y(·) ∈ D

} ⊂ {(
h − h′)Y(·) = 0

} = {
hY (·) = h′Y(·)}.

By definition of D, we have P(Y (·) ∈ D) = 1 for all P ∈ Q and, therefore, hY =
h′Y Q-q.s.

For x ≥ 0 and a ≥ 0, we define

Ha
x := {

h ∈ Rd, x + hY ≥ a Q-q.s.
}
,

Dx := Hx ∩ D where Hx := H0
x.

(8)

LEMMA 3.11. Assume that Assumption 3.9 holds true. Then for all x ≥ 0,
Dx ⊂ B(0, x

α
) where B(0, x

α
) = {h ∈Rd, |h| ≤ x

α
} and Dx is a convex and compact

subspace of Rd .

PROOF. For x ≥ 0, the convexity and the closedness of Dx are clear. Let h ∈
Dx be fixed. Assume that |h| > x

α
, then from Assumption 3.9, there exists Ph ∈ Q

such that Ph(x + hY (·) < 0) ≥ Ph(hY (·) ≤ −α|h|) ≥ α > 0, a contradiction. The
compactness of Dx follows immediately. �
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ASSUMPTION 3.12. We consider a function V : � × R → R ∪ {±∞} such
that for every x ∈ R, V (·, x) : � → R ∪ {±∞} is G-measurable, for every ω ∈ �,
V (ω, ·) :R →R∪{±∞} is nondecreasing, concave and u.s.c., and V (·, x) = −∞,
for all x < 0.

The reason for not excluding at this stage improper concave function is related
to the multi-period case. Indeed if Assumption 3.9 is not verified, then v [or vQ,
Cl(vQ)] might be equal to +∞. So in the multi-period part, finding a version of the
value function that is proper for all ωt while preserving its measurability is chal-
lenging since �t

NA (the set where Assumption 3.9 holds true, see Proposition 2.3)
is only universally measurable. So here we do not assume that V (ω, ·) is proper
but we will prove in Theorem 3.23 that the associated value function is finite. We
also assume that V (ω, ·) is u.s.c. for all ω; see Remark 1.7.

ASSUMPTION 3.13. For all r ∈ Q, r > 0, supP∈Q EP V −(·, r) < ∞.

REMARK 3.14. This assumption is essential to prove in Theorem 3.23
that (14) holds true as it allows to prove that Qd is dense in Ri({h ∈ Hx,

infP∈Q EV (·, x +hY (·)) > −∞}). Note that the one-period optimisation problem
in (9) could be solved without Assumption 3.13 [see Remark 3.3].

The following lemma is similar to Lemma 3.2 [recall also Blanchard, Carassus
and Rásonyi (2016), Lemma 7.12].

LEMMA 3.15. Assume that Assumptions 3.12 and 3.13 hold true. Then
�Dom := {V (·, r) > −∞,∀r ∈ Q, r > 0} ∈ G and �Dom is Q-full measure set
on which Ri(DomV (ω, ·)) = (0,∞), and thus V (ω, ·) is continuous on (0,∞).
Moreover, V (ω, ·) is right-continuous in 0 for all ω ∈ �.

Our main concern in the one period case is the following optimisation problem:

v(x) :=
⎧⎨⎩ sup

h∈Hx

inf
P∈QEP V

(·, x + hY (·)) if x ≥ 0,

−∞ otherwise.
(9)

We use the convention ∞ − ∞ = ∞ [see Remark 1.10], but we will see in
Lemma 3.21 that under appropriate assumptions, EP V (·, x + hY (·)) is well de-
fined. Note also that for x ≥ 0 [see Remark 3.10]

v(x) = sup
h∈Dx

inf
P∈QEP V

(·, x + hY (·)).(10)

We present now some integrability assumptions on V + which allow to assert that
there exists some optimal solution for (9).
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ASSUMPTION 3.16. For every P ∈ Q, h ∈H1, EP V +(·,1 + hY (·)) < ∞.

REMARK 3.17. If Assumption 3.16 is not true, Nutz (2016), Example 2.3
shows that one can find a counter-example where v(x) < ∞ but the supre-
mum is not attained in (9). So one cannot use the “natural” extension of the
mono-prior approach, which should be that there exists some P ∈ Q such that
EP V +(·,1 + hY (·)) < ∞ for all h ∈ H1 [see Blanchard, Carassus and Rásonyi
(2016), Assumption 5.9].

We define now

vQ(x) :=
⎧⎪⎨⎪⎩

sup
h∈Hx∩Qd

inf
P∈QEP V

(·, x + hY (·)) if x ≥ 0,

−∞ otherwise.

Finally, we introduce the closure of vQ denoted by Cl(vQ) which is the smallest
u.s.c. function w : R → R ∪ {±∞} such that w ≥ vQ. We will show in Theo-
rem 3.23 that v(x) = vQ(x) = Cl(vQ)(x), which allows in the multiperiod case
[see (18)] to work with a countable supremum (for measurability issues) and an
u.s.c. value function [see Remark 1.7]. But first we provide two lemmata which
are stated under Assumption 3.12 only. They will be used in the multi-period part
to prove that the value function is u.s.c., concave [see (24) and (25)] and dominated
[see (28)] for all ωt . This avoids difficult measurability issues when proving (26)
and (27) coming from full-measure sets which are not Borel and on which As-
sumptions 3.8, 3.9, 3.13 and 3.16 hold true. This can be seen, for example, in the
beginning of the proof of Proposition 3.30 where we need to apply Lemma 3.18
using only Assumption 3.12.

LEMMA 3.18. Assume that Assumption 3.12 holds true. Then v, vQ and
Cl(vQ) are concave and nondecreasing on R and Cl(vQ)(x) = limδ→0

δ>0
vQ(x + δ).

PROOF. As V is nondecreasing [see Assumption 3.12], v and vQ are clearly
nondecreasing. The proof of the concavity of v or vQ relies on a midpoint con-
cavity argument and on the Ostrowski theorem; see Donoghue (1969), page 12.
It is very similar to Rásonyi and Stettner (2006), Proposition 2 or Nutz (2016),
Lemma 3.5, and thus omitted. Using Rockafellar and Wets (1998), Proposi-
tion 2.32, page 57, we obtain that Cl(vQ) is concave on R. Then using, for ex-
ample, Rockafellar and Wets (1998), 1(7), page 14, we get that for all x ∈ R,
Cl(vQ)(x) = limδ→0 sup|y−x|<δ vQ(y) = limδ→0

δ>0
vQ(x + δ) and the proof is com-

pleted. �

Let x ≥ 0 and P ∈ Q be fixed. We introduce Hx(P ) := {h ∈ Rd, x + hY ≥
0 P -a.s.}. Note that Hx = ⋂

P∈Q Hx(P ) [see (8)].
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LEMMA 3.19. Assume that Assumption 3.12 holds true. Let I : � × R →
[0,∞] be a function such that for all x ∈ R and h ∈ Rd , I (·, x + hY (·)) is G-
measurable, I (ω, ·) is nondecreasing and nonnegative for all ω ∈ � and V ≤ I .
Set

i(x) := 1[0,∞)(x) sup
h∈Rd

sup
P∈Q

1Hx(P )(h)EP I
(·, x + hY (·)).

Then i is nondecreasing, nonnegative on R and Cl(vQ)(x) ≤ i(x+1) for all x ∈ R.

PROOF. Since I (·, x + hY (·)) is G-measurable for all x ∈ R and I ≥ 0, the
integral in the definition of i is well defined (potentially equals to +∞). It is clear
that i is nondecreasing and nonnegative on R. As V ≤ I and Hx ⊂ Hx(P ) if P ∈
Q, it is clear that vQ(x) ≤ i(x) for x ≥ 0. And since vQ(x) = −∞ < i(x) = 0
for x < 0, vQ ≤ i on R (note that v ≤ i on R for the same reasons). Applying
Lemma 3.18, Cl(vQ)(x) ≤ vQ(x + 1) ≤ i(x + 1) for all x ∈ R. �

PROPOSITION 3.20. Assume that Assumptions 3.12 and 3.13 hold true.
Then there exists some nonnegative G-measurable random variable C such that
supP∈Q EP (C) < ∞ and for all ω ∈ �Dom [see Lemma 3.15], λ ≥ 1, x ∈ R we
have

V (ω,λx) ≤ 2λ

(
V

(
ω,x + 1

2

)
+ C(ω)

)
.(11)

PROOF. We use similar arguments as Rásonyi and Stettner (2006), Lemma 2.
It is clear that (11) is true if x < 0. We fix ω ∈ �Dom, x ≥ 1

2 and λ ≥ 1. Then
Ri(DomV (ω, ·)) = (0,∞) [recall Lemma 3.15]. We assume first that there exists
some x0 ∈ DomV (ω, ·) such that V (ω,x0) < ∞. Since V (ω, ·) is u.s.c. and con-
cave, using similar arguments as in Rockafellar (1970), Corollary 7.2.1, page 53,
we get that V (ω, ·) < ∞ on R. Using the fact that V (ω, ·) is concave and nonde-
creasing, we get that (recall that x ≥ 1

2 )

V (ω,λx) ≤ V (ω,x) + V (ω,x) − V (ω, 1
4)

x − 1
4

(λ − 1)x

≤ V (ω,x) + 2(λ − 1)

(
V (ω,x) + V −

(
ω,

1

4

))
≤ V (ω,x) + 2

(
λ − 1

2

)(
V (ω,x) + V −

(
ω,

1

4

))
+ V −

(
ω,

1

4

)
≤ 2λ

(
V (ω,x) + V −

(
ω,

1

4

))
(12)

≤ 2λ

(
V

(
ω,x + 1

2

)
+ V −

(
ω,

1

4

))
.
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Fix now 0 ≤ x ≤ 1
2 and λ ≥ 1. Using again that V (ω, ·) is nondecreasing and (12),

V (ω,λx) ≤ V (ω,λ(x + 1
2)) ≤ 2λ(V (ω,x + 1

2)+V −(ω, 1
4)), and Proposition 3.20

is proved setting C(ω) = V −(ω, 1
4) [recall Assumption 3.13] when there exists

some x0 ∈ DomV (ω, ·) such that V (ω,x0) < ∞. Now, if this is not the case,
V (ω,x) = ∞ for all x ∈ DomV (ω, ·), C(ω) = V −(ω, 1

4) = 0 and (11) also holds
true for all x ≥ 0. �

LEMMA 3.21. Assume that Assumptions 3.8, 3.9, 3.12, 3.13 and 3.16 hold
true. Then there exists a nonnegative G-measurable L such that for all P ∈ Q,
EP (L) < ∞ and for all x ≥ 0 and h ∈ Hx , V +(·, x+hY (·)) ≤ (4x+1)L(·)Q-q.s.

PROOF. The proof is a slight adaptation of the one of Blanchard, Carassus
and Rásonyi (2016), Lemma 5.11 [see also Nutz (2016), Lemma 2.8] and is thus
omitted. Note that the function L is the one defined in Blanchard, Carassus and
Rásonyi (2016), Lemma 5.11. �

LEMMA 3.22. Assume that Assumptions 3.8, 3.9, 3.12, 3.13 and 3.16 hold
true. Let H be the set valued function that assigns to each x ≥ 0 the set Hx . Then
Graph(H) = {(x,h) ∈ [0,+∞) × Rd, h ∈ Hx} is a closed and convex subset of
R×Rd . Let ψ : R×Rd →R∪ {±∞} be defined by

ψ(x,h) :=
⎧⎨⎩ inf

P∈QEP V
(·, x + hY (·)) if (x,h) ∈ Graph(H),

−∞ otherwise.

Then ψ is u.s.c. and concave on R × Rd , ψ < +∞ on Graph(H) and ψ(x,0) >

−∞ for all x > 0.

PROOF. For all P ∈ Q, we define ψP : R×Rd → R ∪ {±∞} by ψP (x,h) =
EP V (·, x + hY (·)) if (x,h) ∈ Graph(H) and −∞ otherwise. As in Blanchard,
Carassus and Rásonyi (2016), Lemma 5.12, Graph(H) is a closed convex subset
of R × Rd , ψP is u.s.c. on R × Rd and ψP < ∞ on Graph(H) for all P ∈ Q.
Furthermore, the concavity of ψP follows immediately from the one of V . The
function ψ = infP∈Q ψP is then u.s.c. and concave. As ψP < ∞ on Graph(H) for
all P ∈ Q, it is clear that ψ < +∞ on Graph(H). Finally, let x > 0 be fixed and
r ∈ Q be such that r < x, then we have −∞ < ψ(r,0) ≤ ψ(x,0); see Assumptions
3.12 and 3.13. �

We are now able to state the main result of this section.

THEOREM 3.23. Assume that Assumptions 3.7, 3.8, 3.9, 3.12, 3.13 and 3.16
hold true. Then for all x ≥ 0, v(x) < ∞ and there exists some optimal strategy
ĥ ∈ Dx such that

v(x) = inf
P∈QEP

(
V

(·, x + ĥY (·))).(13)
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Moreover v is u.s.c., concave, nondecreasing and Domv = (0,∞). For all x ∈ R,

v(x) = vQ(x) = Cl
(
vQ

)
(x).(14)

PROOF. Let x ≥ 0 be fixed. Fix some P ∈ Q. Using Lemma 3.21, we have
that EP V (·, x + hY (·)) ≤ EP V +(·, x + hY (·)) ≤ (4x + 1)EP L(·) < ∞, for all
h ∈ Hx . Thus v(x) < ∞. Now if x > 0, v(x) ≥ ψ(x,0) > −∞, see Lemma 3.22.
Using Lemma 3.18, v is concave and nondecreasing. Thus v is continuous on
(0,∞).

From Lemma 3.22, h → ψ(x,h) is u.s.c. on Rd , and thus on Dx [recall that Dx

is closed and use Blanchard, Carassus and Rásonyi (2016), Lemma 7.11]. Since Dx

is compact [see Lemma 3.11], recalling (10) and applying Aliprantis and Border
(2006), Theorem 2.43, page 44, we find that there exists some ĥ ∈ Dx such that
(13) holds true.

We prove now that v is u.s.c. in 0 (the proof works as well for all x∗ ≥
0). Let (xn)n≥0 be a sequence of nonnegative numbers converging to 0. Let
ĥn ∈ Dxn be the optimal strategies associated to xn in (13). Let (nk)k≥1 be a
subsequence such that lim supn→∞ v(xn) = limk→∞ v(xnk

). Using Lemma 3.11,
|ĥnk

| ≤ xnk
/α ≤ 1/α for k big enough. So we can extract a subsequence, that

we still denote by (nk)k≥1, such that there exists some h∗ with ĥnk
→ h∗. As

(xnk
, ĥnk

)k≥1 ∈ Graph(H) which is a closed subset of R×Rd [see Lemma 3.22],
h∗ ∈ H0. Thus using that ψ is u.s.c., we get that

lim sup
n→∞

v(xn) = lim
k→∞ inf

P∈QEP V
(·, xnk

+ ĥnk
Y (·)) = lim

k→∞ψ(xnk
, hnk

)

≤ ψ
(
0, h∗) = inf

P∈QEP V
(·, h∗Y(·)) ≤ v(0).

For x < 0, all the equalities in (14) are trivial. We prove the first equality in (14) for
x ≥ 0 fixed. We start with the case x = 0. If Y = 0 Q-q.s., then the first equality
is trivial. If Y �= 0 Q-q.s., then it is clear that D0 = {0} [recall Assumption 3.8]
and the first equality in (14) is true again. We assume now that x > 0. From
Lemma 3.22, ψx : h → ψ(x,h) is concave, 0 ∈ Domψx . Thus Ri(Domψx) �= ∅

[see Rockafellar (1970), Theorem 6.2, page 45] and we can apply Lemma A.32.
Assume for a moment that we have proved that Qd is dense in Ri(Domψx). As
ψx is continuous on Ri(Domψx) (recall that ψx is concave), we obtain that

v(x) = sup
h∈Hx

ψx(h) = sup
h∈Domψx

ψx(h) = sup
h∈Ri(Domψx)

ψx(h)

= sup
h∈Ri(Domψx)∩Qd

ψx(h) ≤ sup
h∈Hx∩Qd

ψx(h) = vQ(x),

since Ri(Domψx) ⊂ Hx and the first equality in (14) is proved. It remains to
prove that Qd is dense in Ri(Domψx). Fix some h ∈ Ri(Hx). From Lemma A.31,
there is some r ∈ Q, r > 0 such that h ∈ Hr

x . Using Lemma 3.22, we obtain that
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ψx(h) ≥ ψ(r,0) > −∞ thus h ∈ Domψx and Ri(Hx) ⊂ Domψx . Recalling that
0 ∈ Domψx and that Ri(Hx) is an open set in Rd [see Lemma A.31] we obtain
that Aff(Domψx) = Rd . Then Ri(Domψx) is an open set in Rd and the fact that
Qd is dense in Ri(Domψx) follows easily.

The second equality in (14) follows immediately: vQ(x) = v(x) for all x ≥ 0
and v is u.s.c. on [0,∞), thus Cl(vQ)(x) = vQ(x) for all x ≥ 0. �

3.2. Multi-period case.

PROPOSITION 3.24. Assume that Assumption 3.1 holds true. Then there exists
a nonnegative, B(�T )-measurable random variable CT such that
supP∈QT EP (CT ) < ∞ and for all ωT ∈ �T

Dom [recall Lemma 3.2], λ ≥ 1 and
x ∈ R, we have

U
(
ωT ,λx

) ≤ 2λ

(
U

(
ωT , x + 1

2

)
+ CT

(
ωT ))

,

U+(
ωT ,λx

) ≤ 2λ

(
U+

(
ωT , x + 1

2

)
+ CT

(
ωT ))

.

PROOF. This is just Proposition 3.20 for V = U and G = B(�T ), recaling
Lemma 3.2 and setting CT (·) = U−(·, 1

4). The second inequality follows immedi-
ately since CT is nonnegative. �

PROPOSITION 3.25. Let Assumptions 3.1 and 3.5 hold true and fix some
x ≥ 0. Then

Mx := sup
P∈QT

sup
φ∈φ(x,P )

EP U+(·,V x,φ
T (·)) < ∞.

Moreover, �(x,U,P ) = �(x,P ) for all P ∈ QT , and thus �(x,U,QT ) =
�(x,QT ).

PROOF. Fix some P ∈ QT . From Assumption 3.5, we know that �(1,P ) =
�(1,U,P ) and M1 < ∞. Let x ≥ 0 and φ ∈ �(x,P ) be fixed. If x ≤ 1, then
V

x,φ
T ≤ V

1,φ
T , so from Definition 1.6 we get that Mx ≤ M1 < ∞ and �(x,P ) =

�(x,U,P ). If x ≥ 1, from Proposition 3.24 we get that for all ωT ∈ �T
Dom

U+(
ωT ,V

x,φ
T

(
ωT )) = U+

(
ωT ,2x

(
1

2
+

T∑
t=1

φt(ω
t−1)

2x
�St

(
ωt )))

≤ 4x
(
U+(

ωT ,V
1,

φ
2x

T

(
ωT )) + CT

(
ωT ))

.

As φ
2x

∈ �(1
2 ,P ) ⊂ �(1,P ) = �(1,U,P ), we get that Mx ≤ 4x(M1 +

supP∈QT EP CT ) < ∞, see Proposition 3.24. Thus �(x,P ) = �(x,U,P )

and the last assertion follows from (3). �
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We introduce now the dynamic programming procedure. First, we set for all
t ∈ {0, . . . , T − 1}, ωt ∈ �t , P ∈ P(�t+1) and x ≥ 0:

Ht+1
x

(
ωt,P

) := {
h ∈Rd, x + h�St+1

(
ωt, ·) ≥ 0 P -a.s.

}
,(15)

Ht+1
x

(
ωt ) := {

h ∈Rd, x + h�St+1
(
ωt, ·) ≥ 0 Qt+1

(
ωt )-q.s.

}
,(16)

Dt+1
x

(
ωt ) := Ht+1

x

(
ωt ) ∩ Dt+1(

ωt ),(17)

where Dt+1 was introduced in Definition 2.1. For all t ∈ {0, . . . , T − 1}, ωt ∈ �t ,
P ∈ P(�t+1) and x < 0, we set Ht+1

x (ωt ,P ) = Ht+1
x (ωt ) =∅. We introduce now

the value functions Ut from �t ×R →R∪{±∞} for all t ∈ {0, . . . , T }. To do that,
we define the closure of a random function F : �t ×R →R∪{±∞}. Fix ωt ∈ �t ,
then x → Fωt (x) := F(ωt , x) is a real-valued function and its closure is denoted
by Cl(Fωt ). Now Cl(F ) : �t × R → R ∪ {±∞} is defined by Cl(F )(ωt , x) :=
Cl(Fωt )(x). For 0 ≤ t ≤ T , we set for all x ∈ R and ωt ∈ �t

UT

(
ωT , x

) := U
(
ωT , x

)
1�T

Dom×[0,∞)∪�T ×(−∞,0)

(
ωT , x

)
,

Ut

(
ωt, x

) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup

h∈Ht+1
x (ωt )∩Qd

inf
P∈Qt+1(ω

t )

∫
�t+1

Ut+1
(
ωt , ·, x + h�St+1

(
ωt , ·))dP

if x ≥ 0,

−∞ if x < 0,

(18)

Ut

(
ωt, x

) := Cl(Ut )
(
ωt, x

)
.(19)

Since UT is u.s.c. [recall Lemma 3.2], it is clear that UT = UT . As already men-
tioned for t = 0, we drop the dependency in ω0 and note U0(x) = U0(ω

0, x). The
convention ∞−∞ = ∞ is used in the integral in (18) [recall Remark 1.10], where
the intersection with Qd is taken since measurability issues are better handled in
this way; see the discussion before Nutz (2016), Lemma 3.6. We introduce the
function It : �t × R → [0,∞] which allows us to remove the boundedness as-
sumption of Nutz (2016) and will be used for integrability issues. We set IT := U+

T ,
then for all 0 ≤ t ≤ T − 1, x ∈R and ωt ∈ �t

(20) It

(
ωt , x

)
:= 1[0,∞)(x) sup

h∈Rd ,P∈Qt+1(ωt )

1
Ht+1

x (ωt ,P )
(h)

∫
�t+1

It+1

(
ωt , ·, x + 1 + h�St+1

(
ωt , ·

))
dP.

LEMMA 3.26. Assume that Assumptions 1.1 and 1.2 hold true. Let 0 ≤ t ≤
T − 1 be fixed, G be a fixed nonnegative, real-valued, Bc(�

t)-measurable ran-
dom variable and consider the following random sets Ht+1 : (ωt , x) � Ht+1

x (ωt )

and Dt+1
G : ωt � Dt+1

G(ωt )
(ωt ). They are closed valued, Graph(Ht+1) ∈ CA(�t ×

R × Rd) and Graph(Dt+1
G ) ∈ Bc(�

t) ⊗ B(Rd). Moreover, (ωt ,P,h, x) →
1
Ht+1

x (ωt ,P )
(h) is B(�t) ⊗B(P(�t+1)) ⊗B(Rd) ⊗B(R)-measurable.

PROOF. It is clear that Ht+1 and Dt+1
G are closed valued. Lemma A.37

will be in force. First, it allows to prove the last assertion since {(ωt ,P,h, x),
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P(x +h�St+1(ω
t , ·) ≥ 0) = 1} ∈ B(�t)⊗B(P(�t+1))⊗B(Rd)⊗B(R). Then it

shows that

Graph
(
Ht+1) =

{(
ωt, x,h

)
, inf
P∈Qt+1(ω

t )
P

(
x + h�St+1

(
ωt, ·) ≥ 0

) = 1
}

∈ CA
(
�t ×R×Rd)

.

Fix some x ∈ R. For any integer k ≥ 1, r ∈ Q, r > 0, we introduce the fol-
lowing Rd -valued random variable and random set �Sk,t+1(·) := �St+1(·) ×
1{|�St+1(·)|≤k}(·) and Hr,t+1

k,x (ωt ) := {h ∈ Rd, x+�Sk,t+1(ω
t , ·) ≥ r Qt+1(ω

t )-q.s.}
for all ωt ∈ �t . In the sequel, we will write Ht+1

k,x (ωt ) instead of H0,t+1
k,x (ωt ). We

first prove that Graph(Ht+1
x ) ∈ Bc(�

t) ⊗ B(Rd) [recall (16)]. Since Ht+1
x (·) =⋂

k∈N,k≥1 Ht+1
k,x (·), it is enough to prove that Graph(Ri(Ht+1

k,x )) ∈ Bc(�
t) ⊗B(Rd)

for any fixed k ≥ 1. Indeed from Lemma A.31, for all ωt ∈ �t , Ri(Ht+1
k,x )(ωt ) =

Ht+1
k,x (ωt ) and Lemma A.38(i) applies. Since �Sk,t+1 is bounded, we also

get for all ωt ∈ �t that Ri(Ht+1
k,x )(ωt ) = ⋃

r∈Q,r>0 Hr,t+1
k,x (ωt ). Using Lem-

mata A.37 and A.36, we obtain that for all r ∈ Q, r > 0, Graph(Hr,t+1
k,x )

and also Graph(Ri(Ht+1
k,x )) are co-analytic sets. Lemma A.38(ii) implies that

Graph(Ri(Ht+1
k,x )) ∈ Bc(�

t) ⊗B(Rd).

Now let Ht+1
G : ωt � Ht+1

G(ωt )
(ωt ) then it is easy to see that

Graph
(
Ht+1

G

) = ⋂
n∈N,n≥1

⋃
q∈Q,q≥0

{(
ωt,h

) ∈ �t ×R×Rd,

q ≤ G
(
ωt ) ≤ q + 1

n
,h ∈ Graph

(
Ht+1

q+ 1
n

)}
∈ Bc

(
�t ) ⊗B

(
Rd)

,

since G is Bc(�
t)-measurable. So using Lemma 2.2 and that Graph(Dt+1

G ) =
Graph(Ht+1

G ) ∩ Graph(Dt+1), we obtain that Graph(Dt+1
G ) ∈ Bc(�

t) ⊗ B(Rd),
which concludes the proof. �

We introduce for all r ∈ Q, r > 0

J r
T

(
ωT ) := U−

T

(
ωT , r

)
for ωT ∈ �T ,(21)

J r
t

(
ωt ) := sup

P∈Qt+1(ω
t )

∫
�t+1

J r
t+1

(
ωt, ·)dP for t ∈ {0, . . . , T − 1},ωt ∈ �t .(22)

As usual, we will write J r
0 = J t

0(ω0).
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PROPOSITION 3.27. Assume that Assumptions 1.1 and 3.1 hold true. Then for
any t ∈ {0, . . . , T }, r ∈ Q, r > 0, the function ωt → J r

t (ωt ) is well defined, non-
negative, u.s.a. and verifies supP∈Qt EP J r

t < ∞. Furthermore, there exists some
Qt -full measure set �̂t ∈ CA(�t) on which J r

t (·) < ∞.

PROOF. We proceed by induction on t . Fix some r ∈ Q, r > 0. For t = T ,
J r

T (·) = U−
T (·, r) is nonnegative and u.s.a. [see Definition 1.6, Lemma 3.2 and

(1)]. We have that supP∈QT EP (J r
T ) < ∞ by Assumption 3.1. Using Lemma 3.2,

�̂T := �T
Dom ∈ B(�T ) ⊂ CA(�T ) [see (1)], P(�̂T ) = 1 for all P ∈ QT and

J r
T < ∞ on �̂T . Assume now that for some t ≤ T − 1, J r

t+1 is nonnega-
tive, u.s.a. and that supP∈Qt+1 EP (J r

t+1) < ∞. As J r
t+1(·) ≥ 0, it is clear that

J r
t (·) ≥ 0 holds true. We now apply Bertsekas and Shreve (2004), Proposition 7.48,

page 180,3 with X = �t ×P(�t+1), Y = �t+1, f (ωt ,P,ωt+1) = J r
t+1(ω

t ,ωt+1)

and q(dωt+1|ωt ,P ) = P(dωt+1). Indeed f is u.s.a. [see Bertsekas and Shreve
(2004), Proposition 7.38, page 165], (ωt ,P ) → P(dωt+1) ∈ P(�t+1) is a
B(�t)⊗B(P(�t+1))-measurable stochastic kernel. So we get that j r

t : (ωt ,P ) →∫
�t+1

J r
t+1(ω

t ,ωt+1)P (dωt+1) is u.s.a. As Assumption 1.1 holds true [recall
that Proj�t (Graph(Qt+1)) = �t ], Bertsekas and Shreve (2004), Proposition 7.47,
page 179, applies and ωt → supP∈Qt+1(ω

t ) j
r
t (ωt ,P ) = J r

t (ωt ) is u.s.a. We set
�t

r := {ωt ∈ �t, J r
t (ωt ) < ∞}, then �t

r = ⋃
n≥1{ωt ∈ �t, J r

t (ωt ) ≤ n} ∈ CA(�t).
Fix some ε > 0. From Bertsekas and Shreve (2004), Proposition 7.50, page 184
[recall Assumption 1.1], there exists some analytically measurable pε : ωt →
P(�t+1) [pε ∈ SKt+1], such that pε(·,ωt ) ∈ Qt+1(ω

t ) for all ωt ∈ �t and

j r
t

(
ωt,pε

) =
∫
�t+1

J r
t+1

(
ωt,ωt+1

)
pε

(
dωt+1,ω

t )

≥
⎧⎨⎩J r

t

(
ωt ) − ε if ωt ∈ �t

r,
1

ε
otherwise.

(23)

Assume that �t
r is not a Qt -full measure set. Then there exists some P ∗ ∈ Qt such

that P ∗(�t
r) < 1. Set P ∗

ε := P ∗ ⊗ pε then P ∗
ε ∈ Qt+1 [see (2)] and we have that

sup
P∈Qt+1

EP J r
t+1 ≥ EP ∗

ε
J r

t+1 ≥ 1

ε

(
1 − P ∗(

�t
r

)) − εP ∗(
�t

r

)
.

As the previous inequality holds true for all ε > 0, letting ε go to 0 we obtain that
supP∈Qt+1 EP (J r

t+1) = +∞: a contradiction and �t
r is a Qt -full measure set. Now,

for all P ∈ Qt , we set Pε = P ⊗ pε ∈ Qt+1 [see (2)]. Then, using (23) we get that

EP J r
t − ε = EP 1�t

r
J r

t − ε ≤ EPεJ
r
t+1 ≤ sup

P∈Qt+1
EP

(
J r

t+1
)
.

3As we will often use similar arguments in the rest of the paper, we provide some details at this
stage.
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Again, as this is true for all ε > 0 and all P ∈ Qt we obtain that supP∈Qt EP (J r
t ) ≤

supP∈Qt+1 EP (J r
t+1) < ∞. Finally, we set �̂t = ⋂

r∈Q,r>0 �t
r . It is clear that �̂t ∈

CA(�t) is a Qt -full measure set and that J r
t (·) < ∞ on �̂t for all r ∈ Q, r > 0.

�

Let 1 ≤ t ≤ T be fixed. We introduce the following notation: for any Bc(�
t−1)-

measurable random variable G and any P ∈ Qt , φt (G,P ) is the set of all
Bc(�

t−1)-measurable random variable ξ (one-step strategy), such that G(·) +
ξ�St (·) ≥ 0 P -a.s. Propositions 3.28 to 3.30 solve the dynamic programming pro-
cedure and hold true under the following set of conditions.

∀ωt ∈ �t, Ut

(
ωt, ·) :R →R∪ {±∞} is nondecreasing, u.s.c. and

(24)
concave on R,

∀ωt ∈ �t, It

(
ωt, ·) :R →R∪ {+∞} is nondecreasing and

(25)
nonnegative on R,

Ut ∈ LSA
(
�t ×R

)
,(26)

It ∈ USA
(
�t ×R

)
,(27)

Ut

(
ωt, x

) ≤ It

(
ωt, x + 1

)
for all

(
ωt, x

) ∈ �t ×R,(28)

sup
P∈Qt

sup
ξ∈φt (G,P )

∫
�t

It

(
ωt,G

(
ωt−1) + ξ

(
ωt−1)

�St

(
ωt ))P (

dωt ) < ∞,(29)

for any G := x + ∑t−1
s=1 φs�Ss , where x ≥ 0, (φs)1≤s≤t−1 is universally pre-

dictable,

Ut

(
ωt, r

) ≥ −J r
t

(
ωt ) for all ωt ∈ �t , all r ∈ Q, r > 0.(30)

PROPOSITION 3.28. Let 0 ≤ t ≤ T −1 be fixed. Assume that the NA(QT ) con-
dition, that Assumptions 1.1, 1.2, 1.4 hold true and that (24), (25), (26), (27), (28),
(29) and (30) hold true at stage t + 1. Then there exists some Qt -full measure set
�̃t ∈ Bc(�

t) such that for all ωt ∈ �̃t the function (ωt+1, x) → Ut+1(ω
t ,ωt+1, x)

satisfies the assumptions of Theorem 3.23 (or Lemmata 3.21 and 3.22) with � =
�t+1, G = Bc(�t+1), Q = Qt+1(ω

t ), Y(·) = �St+1(ω
t , ·), V (·, ·) = Ut+1(ω

t , ·, ·)
where V is defined on �t+1 ×R (shortly called context t + 1 from now on).

Note that under the assumptions of Proposition 3.28, for all ωt ∈ �̃t and x ≥ 0
we have that [see (14), (18) and (19)]

(31) Ut

(
ωt , x

) = Ut

(
ωt , x

) = sup
h∈Ht+1

x (ωt )

inf
P∈Qt+1(ω

t )

∫
�t+1

Ut+1
(
ωt , ·, x + h�St+1

(
ωt , ·))dP.

PROOF. To prove the proposition, we will review one by one the assumptions
needed to apply Theorem 3.23 in the context t + 1. First, from Assumption 1.4
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for ωt ∈ �t fixed, we have that Yi(·) = �Si
t+1(ω

t , ·) ≥ −b := −max(1 + s +
Si

t (ω
t ), i ∈ {1, . . . , d}) and 0 < b < ∞: Assumption 3.7 holds true. From (24) at

t + 1 for all ωt ∈ �t and ωt+1 ∈ �t+1, Ut+1(ω
t ,ωt+1, ·) is nondecreasing, u.s.c.

and concave on R. From (26) at t +1, Ut+1 is Bc(�
t+1 ×R)-measurable. Fix some

x ∈ R and ωt ∈ �t , then ωt+1 → Ut+1(ω
t ,ωt+1, x) is Bc(�t+1)-measurable; see

Bertsekas and Shreve (2004), Lemma 7.29, page 174. Thus Assumption 3.12 is
satisfied in the context t + 1.

We now prove the assumptions that are verified for ωt in some well-chosen Qt -
full measure set. First, from Proposition 2.3, for all ωt ∈ �t

NA, Assumptions 3.8
and 3.9 hold true in the context t + 1. Fix ωt ∈ �̂t and some r ∈ Q, r > 0. Using
(30) at t + 1 and Proposition 3.27, we get that

sup
P∈Qt+1(ω

t )

∫
�t+1

U−
t+1

(
ωt,ωt+1, r

)
P

(
dωt )

≤ sup
P∈Qt+1(ω

t )

∫
�t+1

J r
t+1

(
ωt,ωt+1

)
P

(
dωt ) = J r

t

(
ωt ) < ∞,

and Assumption 3.13 in context t + 1 is verified for all ωt ∈ �̂t . We finish with
Assumption 3.16 in context t + 1 whose proof is more involved. We want to show
that for ωt in some Qt -full measure set to be determined, for all h ∈ Ht+1

1 (ωt ) and
P ∈ Qt+1(ω

t ) we have that∫
�t+1

U+
t+1

(
ωt, ·,1 + h�St+1

(
ωt, ·))dP < ∞.(32)

Let it (ω
t , h,P ) = ∫

�t+1
It+1(ω

t ,ωt+1,2 + h�St+1(ω
t ,ωt+1))P (dωt+1) and

I t (ωt ) := {(h,P ) ∈ Rd ×Qt+1(ω
t ),P (1+h�St+1(ω

t , ·) ≥ 0) = 1, it (ω
t , h,P ) =

∞}. Fix some ωt ∈ �t , then using (25) and (28) at t + 1 we have that if
h ∈ Ht+1

1 (ωt ) and P ∈ Qt+1(ω
t ) are such that (32) does not hold true, then

(h,P ) ∈ I t (ωt ). Thus (32) holds true for all h ∈ Ht+1
1 (ωt ) and P ∈ Qt+1(ω

t )

if ωt ∈ {I t = ∅} and if this set is of Qt -full measure, Assumption 3.16 in context
t +1 is proved. We first prove that Graph(I t ) ∈ A(�t ×Rd ×P(�t+1)). From (27)
at t + 1, Assumption 1.2 and Bertsekas and Shreve (2004), Lemma 7.30(3), page
178, (ωt , h,ωt+1) → It+1(ω

t ,ωt+1,2 + h�St+1(ω
t ,ωt+1)) is u.s.a. Then using

Bertsekas and Shreve (2004), Proposition 7.48, page 180 [which can be used with
similar arguments as in the proof of Proposition 3.27], we get that it is u.s.a. It
follows that

i−1
t

({∞}) = ⋂
n≥1

{(
ωt,h,P

)
, it

(
ωt,h,P

)
> n

} ∈ A
(
�t ×Rd ×P(�t+1)

)
.

Now using Assumption 1.1 together with Lemma A.37 we get that {(ωt , h,P ),

P ∈ Qt+1(ω
t ),P (1 + h�St+1(ω

t , ·) ≥ 0) = 1} ∈ A(�t × Rd × P(�t+1)) and
the fact that Graph(I t ) and Proj�t (Graph(I t )) = {I t �= ∅} are analytic sets
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follows immediately [recall Bertsekas and Shreve (2004), Proposition 7.39,
page 165]. Applying the Jankov–von Neumann projection theorem [see Bertsekas
and Shreve (2004), Proposition 7.49, page 182], we obtain that there exists
some analytically measurable and, therefore, Bc(�

t)-measurable function ωt ∈
{I t �= ∅} → (h∗(ωt ),p∗(·,ωt )) ∈ Rd × P(�t+1) such that for all ωt ∈ {I t �= ∅},
(h∗(ωt ),p∗(·,ωt )) ∈ I t (ωt ). We may and will extend h∗ and p∗ on all �t so that
h∗ and p∗ remain Bc(�

t)-measurable.
We prove now by contradiction that {I t = ∅} is a Qt -full measure set. Assume

that there exists some P̃ ∈ Qt such that P̃ ({I t �= ∅}) > 0 and set P̃ ∗ = P̃ ⊗ p∗.
Since p∗ ∈ SKt+1 and p∗(·,ωt ) ∈ Qt+1(ω

t ) for all ωt ∈ �t , P̃ ∗ ∈ Qt+1 [see (2)].
It is also clear that P̃ ∗(2 + h∗(·)�St+1(·) ≥ 0) = 1. Now for all ωt ∈ {I t �= ∅}, we
have that it (ω

t , h∗(ωt ),p∗(·,ωt )) = ∞, and thus∫
�t+1

It+1
(
ωt+1,2 + h∗(

ωt )�St+1
(
ωt+1))

P̃ ∗(
dωt+1) ≥

∫
{I t �=∅}

(+∞)P̃
(
dωt ) = +∞

a contradiction with (29) at t + 1.
We can now define �̃t := {I t = ∅}∩�̂t ∩�t

NA ⊂ �̂t . It is clear, recalling Propo-
sitions 2.3 and 3.27, that �̃t ∈ Bc(�

t) is a Qt -full measure set and the proof is
complete. �

The next proposition enables us to initialize the induction procedure that will be
carried on in the proof of the main theorem.

PROPOSITION 3.29. Assume that the NA(QT ) condition, Assumptions 3.1
and 3.5 hold true. Then (24), (25), (26), (27), (28), (29) and (30) hold true for
t = T .

PROOF. As UT = U1�T
Dom×[0,∞)∪�T ×(−∞,0) and IT = U+

T , using Defini-

tion 1.6, (25), (28) and (30) [recall (21)] for t = T are true. For all ωT ∈ �T ,
UT (ωT , ·) is also right-continuous and u.s.c. [see Lemma 3.2], thus (24) also
holds true. Moreover, UT (·, x) is B(�T )-measurable for all x ∈ R, thus UT

is B(�T ) ⊗ B(R)-measurable [see Blanchard, Carassus and Rásonyi (2016),
Lemma 7.16] and (26) and (27) hold true for t = T . It remains to prove that (29)
is true for t = T . Let G := x + ∑T −1

t=1 φt�St where x ≥ 0 and (φs)1≤s≤T −1 is

universally predictable. Fix some P ∈ QT and ξ ∈ φT (G,P ). Let (φ
ξ
i )1≤i≤T ∈

� be defined by φ
ξ
T = ξ and φ

ξ
s = φs for 1 ≤ s ≤ T − 1, then V

x,φξ

T =
G+ ξ�ST , φξ ∈ �(x,P ),

∫
�T IT (ωT ,G(ωT −1)+ ξ(ωT −1)�ST (ωT ))P (dωT ) =

EP U+(·,V x,φξ

T (·)) and (29) follows from Proposition 3.25. �

The next proposition proves the induction step.
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PROPOSITION 3.30. Let 0 ≤ t ≤ T − 1 be fixed. Assume that the NA(QT )

condition holds true as well as Assumptions 1.1, 1.2, 1.4 and (24), (25), (26), (27),
(28), (29) and (30) at t + 1. Then (24), (25), (26), (27), (28), (29) and (30) are true
for t .

Moreover, for all X = x + ∑t
s=1 φs�Ss , where x ≥ 0, (φs)1≤s≤t is universally

predictable and {X ≥ 0} is Qt -full measure set, there exists some Qt -full measure
set �t

X ∈ Bc(�
t), such that �t

X ⊂ �̃t (see Proposition 3.28 for the definition of
�̃t ) and some Bc(�

t)-measurable random variable ĥX
t+1 such that for all ωt ∈ �t

X ,

ĥX
t+1(ω

t ) ∈ Dt+1
X(ωt )

(ωt ) and

Ut

(
ωt ,X

(
ωt )) = inf

P∈Qt+1(ω
t )

∫
�t+1

Ut+1
(
ωt , ·,X(

ωt ) + ĥX
t+1

(
ωt )�St+1

(
ωt , ·))dP.(33)

PROOF. First, we prove that (24) is true at t . We fix some ωt ∈ �t . From
(24) at t + 1, the function Ut+1(ω

t ,ωt+1, ·) is u.s.c., concave and nondecreasing
on R for all ωt+1 ∈ �t+1. From (18) and (19), Ut+1(ω

t ,ωt+1, x) = −∞ for all
x < 0 and ωt+1 ∈ �t+1. Then using (26) at t + 1 and Lemma A.36, we find that
Ut+1(ω

t , ·, x) is Bc(�t+1)-measurable for all x ∈ R. Hence, Assumption 3.12 of
Lemma 3.18 holds true in the context t + 1 and we obtain that x → Ut(ω

t , x) =
Cl(Ut )(ω

t , x) [see (18) and (19)] is u.s.c., concave and nondecreasing. As this is
true for all ωt ∈ �t , (24) at t is proved. Note that we also obtain that x → Ut (ω

t , x)

is nondecreasing for all ωt ∈ �t . Now we prove (26) at t . Since integrals might not
always be well defined, we need to be a bit cautious. We introduce first ut and
ût : �t ×Rd × [0,∞) ×P(�t+1) →R∪ {±∞}

ut

(
ωt,h, x,P

) =
∫
�t+1

Ut+1
(
ωt,ωt+1, x + h�St+1

(
ωt,ωt+1

))
P(dωt+1),

ût

(
ωt,h, x,P

) = 1Ht+1
x (ωt )

(h)ut

(
ωt,h, x,P

) + (−∞)1
Rd\Ht+1

x (ωt )
(h).

As Ut+1 is l.s.a. [see (26) at t + 1] and Assumption 1.2 holds true, Bertsekas
and Shreve (2004), Lemma 7.30(3), page 177, implies that (ωt ,ωt+1, h, x) →
Ut+1(ω

t ,ωt+1, x + h�St+1(ω
t ,ωt+1)) is l.s.a. So Bertsekas and Shreve (2004),

Proposition 7.48, page 180 [recall the convention ∞ − ∞ = ∞, see Re-
mark 1.10], shows that ut is l.s.a. Fix some c ∈ R and set Ĉ := û−1

t ((−∞, c)),
C := u−1

t ((−∞, c)), A := {(ωt , h, x), h ∈ Ht+1
x (ωt )} × P(�t+1) and Ac :=

{(ωt , h, x), h /∈ Ht+1
x (ωt )}×P(�t+1), then Ĉ = (C ∩A)∪Ac = C ∪Ac. As ut is

l.s.a., C is an analytic set. Lemma 3.26 implies that Ac = {(ωt , h, x), (ωt , x, h) /∈
Graph(Ht+1)} ×P(�t+1), and thus Ĉ, are analytic sets and ût is l.s.a. Using As-
sumption 1.1 and Bertsekas and Shreve (2004), Proposition 7.47, page 179, we get
that

(34) ũt : (
ωt,h, x

) → inf
P∈Qt+1(ω

t )
ût

(
ωt,h, x,P

) ∈ LSA
(
�t ×Rd ×R

)
.
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Then Bertsekas and Shreve (2004), Lemma 7.30(2), page 178, implies that Ũt :
(ωt , x) → suph∈Qd ũt (ω

t , h, x) is l.s.a. and since Ũt = Ut on �t × [0,∞), it fol-
lows that Ut is l.s.a. We have already seen that ωt ∈ �t , Ut (ω

t , ·) is nondecreasing
thus, for all ωt ∈ �t and x ∈R we get that [recall (19)]

Ut

(
ωt, x

) = Cl(Ut )
(
ωt, x

) = lim sup
y→x

Ut

(
ωt, y

) = lim
n→∞Ut

(
ωt, x + 1

n

)
.

As (ωt , x) → Ut (ω
t , x + 1

n
) is l.s.a., Bertsekas and Shreve (2004), Lemma 7.30(2),

page 178, implies that Ut is also l.s.a. We prove now that (27) holds true for t . We
introduce ı̂t : �t ×Rd × [0,∞) ×P(�t+1) →R∪ {+∞} [recall (15)],

(35) ı̂t
(
ωt,h, x,P

) = 1
Ht+1

x (ωt ,P )
(h)

∫
�t+1

It+1
(
ωt, ·, x+1+h�St+1

(
ωt, ·))dP.

Note that, using (25) at t +1, the integral in (35) is well defined (potentially infinite
valued). Using Assumption 1.2, (27) at t + 1 and Bertsekas and Shreve (2004),
Lemma 7.30(3), page 177, we find that (ωt+1, h, x,P ) → It+1(ω

t ,ωt+1, x + 1 +
h�St+1(ω

t ,ωt+1)) is u.s.a. Thus Bertsekas and Shreve (2004), Proposition 7.48,
page 180, applies4 and(

ωt,h, x,P
) →

∫
�t+1

It+1
(
ωt, ·, x + 1 + h�St+1

(
ωt, ·))dP

∈ USA
(
�t ×Rd ×R×P(�t+1)

)
.

Lemma 3.26 together with Bertsekas and Shreve (2004), Lemma 7.30(4), page 177
imply that ı̂t is u.s.a. Finally, as {(ωt , h, x,P ),P ∈ Qt+1(ω

t )} is analytic [see
Assumption 1.1], Bertsekas and Shreve (2004), Proposition 7.47, page 179,
Lemma 7.30(4), page 178 apply and recalling (20) and (35), we get that It (ω

t , x) =
1[0,∞)(x) suph∈Rd supP∈Qt+1(ω

t ) ı̂t (ωt , h, x,P ) is u.s.a. and (27) for t is proved.
For later purposes, we set ıt : �t ×Rd × [0,∞) ×P(�t+1) →R∪ {±∞}

ıt
(
ωt,h, x,P

) := ı̂t
(
ωt,h, x,P

) + (−∞)1
Rd\Ht+1

x (ωt ,P )
(h).(36)

Using Lemma 3.26, ıt is u.s.a. and

I t

(
ωt, x

) := 1[0,∞)(x) sup
h∈Rd

sup
P∈Qt+1(ω

t )

ıt
(
ωt,h, x,P

)
is u.s.a. as before. Furthermore, as ı̂t ≥ 0 we have that I t = It . To prove (25) and
(28) at t , we apply Lemma 3.19 to V (ωt+1, x) = Ut+1(ω

t ,ωt+1, x), I (ωt+1, x) =
It+1(ω

t ,ωt+1, x +1) [recall (20)] and G = Bc(�t+1) for any fixed ωt ∈ �t . Indeed

4As already mentioned, Bertsekas and Shreve (2004), Proposition 7.48, page 180, relies on
Bertsekas and Shreve (2004), Lemma 7.30(4), page 177, applied for upper-semianalytic functions
where the convention −∞ + ∞ = −∞ needs to be used. But here, as we deal with a nonnegative
function the convention is useless.
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we have already proved [see the proof of (24) at t] that Assumption 3.12 holds true
for V . From (25) and (28) at t + 1, I (ωt+1, ·) is nondecreasing and nonnegative
on R for all ωt+1 and V ≤ I . Finally, using Assumption 1.2 and (27) at t + 1
together with Bertsekas and Shreve (2004), Lemma 7.30, page 177, we get that
ωt+1 → It+1(ω

t ,ωt+1, x + 1 + h�St+1(ω
t ,ωt+1)) is Bc(�t+1)-measurable.

We prove now (30) at t . Fix some r ∈ Q, r > 0. We have from the definition of
Ut [see (18), and (19)], (30) at t + 1 and the definition of J r

t [see (22)] that for all
ωt ∈ �t ,

Ut

(
ωt, r

) ≥ Ut

(
ωt, r

) ≥ inf
P∈Qt+1(ω

t )

∫
�t+1

Ut+1
(
ωt, ·, r)

dP

≥ inf
P∈Qt+1(ω

t )

∫
�t+1

−J r
t+1

(
ωt, ·)dP = −J r

t

(
ωt ).

We prove now (29) at t . Choose x ≥ 0, (φs)1≤s≤t−1 universally predictable ran-
dom variables and set G := x + ∑t−1

s=1 φs�Ss . Furthermore, fix some P ∈ Qt ,
ξ ∈ φt(G,P ), ε > 0 and set G(·) := G(·) + ξ(·)�St (·). We apply Bertsekas and
Shreve (2004), Proposition 7.50, page 184, to ıt [see (36)] in order to obtain
Sε : (ωt , x) → (hε(ωt , x),pε(·,ωt , x)) ∈ Rd × P(�t+1) that is analytically mea-
surable such that pε(·,ωt , x) ∈ Qt+1(ω

t ) for all ωt ∈ �t , x ≥ 0 and (recall that
I t = It )

(37) ıt
(
ωt,hε(ωt, x

)
, x,pε(·,ωt , x

)) ≥
⎧⎨⎩

1

ε
if It

(
ωt, x

) = ∞,

It

(
ωt, x

) − ε otherwise.

Set hε
G(ωt ) := hε(ωt ,1{G≥0}(ωt )G(ωt)), pε

G(·,ωt ) := pε(·,ωt ,1{G≥0}(ωt )G(ωt)).
Using Bertsekas and Shreve (2004), Proposition 7.44, page 172, both hε

G and
pε

G are Bc(�
t)-measurable. For some ωt ∈ �t , y ≥ 0 fixed, if hε(ωt , y) /∈

Ht+1
y (ωt ,pε(·,ωt , y)), using (36), we have ıt (ωt , hε(ωt , y), y,pε(·,ωt , y)) =

−∞ < min(1
ε
, It (ω

t , y) − ε) [indeed from (25) at t , It ≥ 0]. This contra-
dicts (37) and, therefore, hε(ωt , y) ∈ Ht+1

y (ωt ,pε(·,ωt , y)) and also hε
G(ωt ) ∈

Ht+1
G(ωt )

(ωt ,pε
G(·,ωt )) for ωt ∈ {G ≥ 0}. We set P ε

G := P ⊗ pε
G ∈ Qt+1 [see (2)]

and get that

P ε
G

(
G(·) + hε

G(·)�St+1(·) ≥ 0
)

=
∫
{G≥0}

∫
�t+1

pε
G

(
G

(
ωt ) + hε

G

(
ωt )�St+1

(
ωt,ωt+1

) ≥ 0,ωt )P (
dωt ) = 1,

since {G ≥ 0} is a Qt -full measure set, hε
G ∈ φt+1(G,P ε

G) follows. Using (35) and
(36),∫

�t
ıt

(
ωt,hε

G

(
ωt ),pε

G

(
ωt ),G(

ωt ))P (
dωt )

=
∫
�t+1

It+1
(
ωt+1,G

(
ωt ) + 1 + hε

G

(
ωt )�St+1

(
ωt+1))

P ε
G

(
dωt+1) ≤ A,
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where

A := sup
P∈Qt+1

sup
ξ∈φt+1(G+1,P )

∫
�t+1

It+1
(
ωt+1,G

(
ωt )+1+ξ

(
ωt )�St+1

(
ωt+1))

P
(
dωt+1)

and A < ∞ using (29) at t + 1 [note that φt+1(G,P ) ⊂ φt+1(G + 1,P )]. Com-
bining with (37), we find that

1

ε

∫
{It (·,G(·))=∞}

P
(
dωt ) +

∫
{It (·,G(·))<∞}

(
It

(
ωt,G

(
ωt )) − ε

)
P

(
dωt )

≤
∫
�t

ıt
(
ωt,hε

G

(
ωt ),G(

ωt ),pε
G

(·,ωt ))P (
dωt ) ≤ A < ∞.

(38)

As this is true for all ε > 0, P({It (·,G(·)) = ∞}) = 0 follows. Using again (38),
we get that

∫
�t It (ω

t ,G(ωt−1) + ξ(ωt−1)�St (ω
t ))P (dωt ) ≤ A and as this is true

for all P ∈Qt and ξ ∈ φt(G,P ), (29) is true for t .
We are left with the proof of (33) for Ut . Let X = x + ∑t−1

s=1 φs�Ss+1, with
x ≥ 0 and (φs)1≤s≤t−1 some universally predictable random variables, be fixed
such that X ≥ 0 Qt -q.s. Let �t

X := �̃t ∩ {X(·) ≥ 0}. Then �t
X ∈ Bc(�

t) is a Qt -
full measure set. We introduce the following random set ψX : �t � Rd :

ψX

(
ωt ) :=

{
h ∈ Dt+1

X(ωt )

(
ωt ),Ut

(
ωt,X

(
ωt ))

= inf
P∈Qt+1(ω

t )

∫
�t+1

Ut+1
(
ωt, ·,X(

ωt ) + h�St+1
(
ωt, ·))dP

}
for ωt ∈ �t

X and ψX(ωt) = ∅, otherwise [Dt+1
X(ωt )

(ωt ) is defined in (17)]. To prove
(33), it is enough to find some Bc(�

t)-measurable selector for ψX and to show
that �t

X ⊂ {ψX �= ∅}. The last point follows from Proposition 3.28 and Theo-
rem 3.23 [see (13), (14), (18), (19) and recall that �t

X ⊂ �̃t ]. Let uX : �t ×Rd →
R ∪ {±∞} be defined by [recall (34)] uX(ωt , h) = 1�t

X
(ωt )ũt (ω

t , h,X(ωt)). Us-
ing Rockafellar and Wets (1998), Proposition 14.39, page 666, Corollary 14.34,
page 664, we first prove that −uX is a Bc(�

t)-normal integrand [see Rockafellar
and Wets (1998), Definition 14.27, page 661] and that uX is Bc(�

t) ⊗ B(Rd)-
measurable. Indeed we show that for all h ∈ Rd , uX(·, h) is Bc(�

t)-measurable
and for all ωt ∈ �t , uX(ωt , ·) is u.s.c. and concave. The first point follows from
the fact that ũt is l.s.a., X is Bc(�

t)-measurable, �t
X ∈ Bc(�

t) and Bertsekas and
Shreve (2004), Proposition 7.44, page 172. Now we fix ωt ∈ �t . If ωt /∈ �t

X , it is
clear that uX(ωt , ·) is u.s.c. and concave. If ωt ∈ �t

X ⊂ �̃t , we know from Propo-
sition 3.28 that Lemma 3.22 applies and that φωt (·, ·) is u.s.c. and concave where
φωt (x, h) = infP∈Qt+1(ω

t )

∫
�t+1

Ut+1(ω
t ,ωt+1, x + h�St+1(ω

t ,ωt+1))P (dωt+1)

if x ≥ 0 and h ∈ Ht+1
x (ωt ) and −∞ otherwise. In particular for ωt ∈ �t

X and
x = X(ωt), we get that φωt (X(ωt ), ·) = uX(ωt , ·) is u.s.c. and concave. Now, from
the definitions of ψX and uX for ωt ∈ �t

X , we have that

ψX

(
ωt ) = {

h ∈ Dt+1
X(ωt )

(
ωt ),Ut

(
ωt,X

(
ωt )) = uX

(
ωt,h

)}
.
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Lemma 3.26 implies that Graph(Dt+1
X ) ∈ Bc(�

t) ⊗B(Rd). Since Ut is l.s.a., Ut is
Bc(�

t ×R)-measurable and Bertsekas and Shreve (2004), Lemma 7.29, page 174,
implies that Ut(·, x) is Bc(�

t)-measurable for x ∈ R fixed. From (24), Ut(ω
t , ·)

is u.s.c. and nondecreasing for any fixed ωt ∈ �t , so Blanchard, Carassus and Rá-
sonyi (2016), Lemmata 7.12, 7.16, imply that Ut is Bc(�

t) ⊗ B(R)-measurable.
As X is Bc(�

t)-measurable, we obtain that Ut(·,X(·)) is Bc(�
t)-measurable

[see Bertsekas and Shreve (2004), Proposition 7.44, page 172]. It follows that
Graph(ψX) ∈ Bc(�

t)⊗B(Rd), we can apply the projection theorem [see Castaing
and Valadier (1977), Theorem 3.23, page 75] and we get that {ψX �= ∅} ∈ Bc(�

t).
Using the Auman theorem [see Sainte-Beuve (1974), Corollary 1], there exists
some Bc(�

t)-measurable ĥX
t+1 : {ψX �= ∅} → Rd such that for all ωt ∈ {ψX �=∅},

ĥX
t+1(ω

t ) ∈ ψX(ωt). This concludes the proof of (33) extending ĥX
t+1 on all �t

(ĥX
t+1 = 0 on �t \ {ψX �= ∅}). �

PROOF OF THEOREM 1.11. We proceed in three steps. First, we handle some
integrability issues that are essential to the proof and were not required in Nutz
(2016). In particular, we show that it is possible to apply the Fubini theorem. Then
we build by induction a candidate for the optimal strategy, and finally we establish
its optimality. The proof of the two last steps is very similar to the one of Nutz
(2016).

Integrability issues. First, from Proposition 3.25 and (4), u(x) ≤ Mx < ∞. We
fix some x ≥ 0 and φ ∈ �(x,QT ) = �(x,U,QT ); see again Proposition 3.25.
From Proposition 3.29, we can apply by backward induction Proposition 3.30 for
t = T − 1, T − 2, . . . ,0. In particular, we get that (28) and (29) hold true for all
0 ≤ t ≤ T and choosing G = V

x+1,φ
t−1 and ξ = φt [use Lemma A.33 since φ ∈

�(x,QT )], we get for all P ∈ Qt ,∫
�t

U+
t

(
ωt,V

x,φ
t

(
ωt ))P (

dωt ) < ∞.(39)

So for all P = Pt−1 ⊗ p ∈ Qt [see (2)] Bertsekas and Shreve (2004), Proposi-
tion 7.45, page 175, implies that∫

�t
Ut

(
ωt ,V

x,φ
t

(
ωt ))P (

dωt ) =
∫
�t−1

∫
�t

Ut

(
ωt−1,ωt ,V

x,φ
t

(
ωt−1,ωt

))
p

(
dωt ,ω

t−1)
Pt−1

(
dωt−1)

.(40)

Construction of φ∗. We fix some x ≥ 0 and build by induction our candidate φ∗
for the optimal strategy which will verify that

Ut

(
ωt ,V

x,φ∗
t

(
ωt )) = inf

P∈Qt+1(ω
t )

∫
�t+1

Ut+1
(
ωt , ·,V x,φ∗

t

(
ωt ) + φ∗

t+1
(
ωt )�St+1

(
ωt , ·))dP.(41)

We start at t = 0 and use (33) in Proposition 3.30 with X = x ≥ 0. We set
φ∗

1 := ĥx
1 ∈ D1

x and we obtain that P1(x + φ∗
1�S1(·) ≥ 0) = 1 for all P ∈ Q1 and

that (41) holds true for t = 0. Assume that until some t ≥ 1 we have found some
universally predictable random variables (φ∗

s )1≤s≤t and some sets (�
s
)1≤s≤t−1
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such that �
s ∈ Bc(�

s) is a Qs -full measure set, φ∗
s+1(ω

s) ∈ Ds+1(ωs) for all

ωs ∈ �
s
, {V x,φ∗

s+1 (·) ≥ 0} is a Qs+1-full measure set and (41) holds true at s for

all ωs ∈ �
s

where s = 0, . . . , t − 1. We apply Proposition 3.30 with X = V
x,φ∗
t

and there exists Qt -full measure set �
t := �t

V
x,φ∗
t

∈ Bc(�
t) and some Bc(�

t)-

measurable random variable φ∗
t+1 := ĥ

V
x,φ∗
t

t+1 such that φ∗
t+1(ω

t ) ∈ Dt+1

V
x,φ∗
t (ωt )

(ωt )

for all ωt ∈ �
t

and (41) holds true at t . Let P t+1 = P ⊗ p ∈ Qt+1 where P ∈ Qt

and p ∈ SKt+1 with p(·,ωt ) ∈ Qt+1(ω
t ) for all ωt ∈ �

t
[see (2)]. From Bertsekas

and Shreve (2004), Proposition 7.45, page 175, we get

Pt+1
(
V

x,φ∗
t+1 ≥ 0

) =
∫
�t

p
(
V

x,φ∗
t

(
ωt )+φ∗

t+1
(
ωt )�St+1

(
ωt, ·) ≥ 0,ωt )P (

dωt ) = 1,

where we have used that φ∗
t+1(ω

t ) ∈Ht+1

V
x,φ∗
t (ωt )

(ωt ) for all ωt ∈ �
t

and P(�
t
) = 1

and we can continue the recursion. Thus, we have found that φ∗ ∈ �(x,QT ) and
from Proposition 3.25, φ∗ ∈ �(x,U,QT ).

Optimality of φ∗. We fix some P = PT −1 ⊗ pT ∈ QT . Using (40),

PT −1(�
T −1

) = 1 and (41) for t = T − 1 we get that

EP U
(·,V x,φ∗

T (·))
=

∫
�

T −1

∫
�T

UT
(
ωT −1,ωT ,V

x,φ∗
T −1

(
ωT −1) + φ∗

T

(
ωT −1)

�ST
(
ωT −1,ωT

))
pT

(
dωT ,ωT −1)

PT −1
(
dωT −1)

≥
∫
�T −1

UT −1
(
ωT −1,V

x,φ∗
T −1

(
ωT −1))

PT −1
(
dωT −1)

.

We iterate the process by backward induction and obtain that (recall that �0 :=
{ω0}) U0(x) ≤ EP U(·,V x,φ∗

T (·)). As the preceding equality holds true for all P ∈
QT and as φ∗ ∈ �(x,U,QT ), we get that U0(x) ≤ u(x) [see (4)]. So φ∗ will be
optimal if U0(x) ≥ u(x). We fix some φ ∈ �(x,U,QT ) and show that

(42) inf
P∈Qt+1

EP Ut+1
(·,V x,φ

t+1 (·)) ≤ inf
Q∈Qt

EQUt

(·,V x,φ
t (·)), t ∈ {0, . . . , T −1}.

Then infP∈QT EP UT (·,V x,φ
T (·)) ≤ infQ∈Q1 EQU1(·,V x,φ

1 (·)) ≤ U0(x) is obtained
recursively [recall (31)]. As this is true for all φ ∈ �(x,U,QT ), u(x) ≤ U0(x) and
the proof is complete.

We fix some t ∈ {0, . . . , T − 1} and prove (42). As Ut+1 is l.s.a. [see (26)]
and Assumption 1.2 holds true, Bertsekas and Shreve (2004), Lemma 7.30(3),
page 177, Proposition 7.48, page 180, imply that f is l.s.a. where

f
(
ωt, y,h,P

) :=
∫
�t+1

Ut+1
(
ωt, ·, y + h�St+1

(
ωt, ·))dP.

Let f ∗(ωt , y, h) = infP∈Qt+1(ω
t ) f (ωt , y, h,P ) and fix some ε > 0. Then since

{(ωt , y, h,P ),P ∈Qt+1(ω
t )} is an analytic set [recall Assumption 1.1], Bertsekas
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and Shreve (2004), Proposition 7.50, page 184, implies that there exists some
universally measurable p̃ε

t+1 : (ωt , y, h) → P(�t+1) such that p̃ε
t+1(·,ωt , y, h) ∈

Qt+1(ω
t ) for all (ωt , y, h) ∈ �t ×R×Rd and

(43)f
(
ωt, y,h, p̃ε

t+1
(·,ωt , y, h

)) ≤
⎧⎨⎩f ∗(

ωt, y,h
) + ε if f ∗(

ωt, y,h
)
> −∞,

−1

ε
otherwise.

Let pε
t+1(·,ωt ) = p̃ε

t+1(·,ωt ,V
x,φ
t (ωt ), φt+1(ω

t )): Bertsekas and Shreve (2004),
Proposition 7.44, page 172, implies that pε

t+1 is Bc(�
t)-measurable. For all ωt ∈

�̃t ∩ {V x,φ
t (·) ≥ 0},
f ∗(

ωt,V
x,φ
t

(
ωt ), φt+1

(
ωt )) ≤ sup

h∈Ht+1

V
x,φ
t (ωt )

(ωt )

f ∗(
ωt,V

x,φ
t

(
ωt ), h)

= Ut

(
ωt,V

x,φ
t

(
ωt ))

[use Lemma A.33 since φ ∈ �(x,QT ) and recall (31)]. Choosing y = V
x,φ
t (ωt ),

h = φt+1(ω
t ) in (43), we find that for all ωt ∈ �̃t ∩ {V x,φ

t (·) ≥ 0}∫
�t+1

Ut+1
(
ωt,ωt+1,V

x,φ
t+1

(
ωt,ωt+1

))
pε

t+1
(
dωt+1,ω

t ) − ε

≤ max
(
Ut

(
ωt,V

x,φ
t

(
ωt )),−1

ε
− ε

)
.

Fix some Q ∈ Qt and set P ε := Q ⊗ pε
t+1 ∈ Qt+1 [see (2)]. Using (40) and since

�̃t ∩ {V x,φ
t (·) ≥ 0} is a Qt full measure set [recall again that φ ∈ �(x,QT ) and

Lemma A.33], we get

inf
P∈Qt+1

EP Ut+1
(·,V x,φ

t+1 (·)) − ε ≤ EP εUt+1
(·,V x,φ

t+1 (·)) − ε

≤ EQ max
(
Ut

(·,V x,φ
t (·)),−1

ε
− ε

)
.

Since for all 0 < ε < 1, max(Ut (·,V x,φ
t (·)),−1

ε
− ε) ≤ −1 + U+

t (·,V x,φ
t (·)), re-

calling (39), letting ε go to zero and applying Fatou’s lemma, we obtain that
infP∈Qt+1 EP Ut+1(·,V x,φ

t+1 (·)) ≤ EQUt(·,V x,φ
t (·)). As this holds true for all Q ∈

Qt , (42) is proved. �

PROOF OF THEOREM 3.6. Since the sNA(QT ) condition holds true, the
NA(QT ) condition is also verified and to apply Theorem 1.11 it remains to
prove that Assumption 3.5 is satisfied. We fix some P ∈ QT x ≥ 0 and some
φ ∈ φ(x,P ). Since the NA(P ) condition holds true, using similar arguments as
in the proof of Blanchard, Carassus and Rásonyi (2016), Theorem 4.17, we find
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that for Pt -almost all ωt ∈ �t , |V x,φ
t (ωt )| ≤ ∏t

s=1(x + |�Ss(ω
s)|

αP
s−1(ω

s−1)
). Note that V x,φ

is universally adapted and that supP∈Qt EP |V x,φ
t (·)|r < ∞ for all r > 0 [recall that

�Ss,
1

αP
s

∈ Ws for all s ≥ 1]. The monotonicity of U+ and Proposition 3.24 [with

λ = 2
∏T

s=1(1 + |�Ss(ω
s)|

αP
s−1(ω

s−1)
) ≥ 1] implies that for Pt -almost all ωt ∈ �t

(44) U+(
ωT ,V

1,φ
T

(
ωT )) ≤ 4

(
T∏

s=1

(
1 + |�Ss(ω

s)|
αP

s−1(ω
s−1)

))(
U+(

ωT ,1
) + CT

(
ωT ))

.

We set N := 4 supP∈QT EP ((
∏T

s=1(1 + |�Ss(ω
s)|

αP
s−1(ω

s−1)
))(U+(ωT ,1) + CT (ωT ))).

Since U+(·,1), U−(·, 1
4) ∈ WT and �Ss,

1
αP

s
∈ Ws for all s ≥ 1, we obtain that

N < ∞ (recall the definition of CT in Proposition 3.24). Using (44), we find that
EP U+(·,V 1,φ

T (·)) ≤ N < ∞ and as this is true for all P ∈ QT and φ ∈ �(1,P ),
Assumption 3.5 holds true. �

APPENDIX

A.1. Auxiliary results. The two first lemmata were used in the proof of The-
orem 3.23 and Lemma 3.26. The second one is a well-known result on concave
functions in which the proof is given since we did not find some reference.

LEMMA A.31. Assume that Assumption 3.7 holds true. For all x > 0, we have
Aff(Hx) = Rd , Ri(Hx) is an open set in Rd and Qd is dense in Ri(Hx).5 More-
over, Ri(Hx) ⊂ ⋃

r∈Q,r>0 Hr
x ⊂ Hx and, therefore,

⋃
r∈Q,r>0 Hr

x = Hx , where the
closure is taken in Rd . If furthermore, we assume that there exists some 0 ≤ c < ∞
such that Yi(ω) ≤ c for all i = 1, . . . , d , ω ∈ � (recalling Assumption 3.7, |Y | is
bounded) then Ri(Hx) = ⋃

r∈Q,r>0 Hr
x .

PROOF. Fix some x > 0. Let ε > 0 be such that x − ε > 0 and R := {h ∈
Rd,0 ≤ hi ≤ x−ε

db
}. Using Assumption 3.7, if h ∈ R for all ω ∈ �, x + hY (ω) ≥

x − b
∑d

i=1 hi ≥ ε and h ∈ Hε
x ⊂ Hx . Thus R ⊂ Hx and Aff(Hx) = Rd follows

(recall that 0 ∈ Hx). Therefore, Ri(Hx) is the interior of Hx in Rd , and thus an
open set in Rd and the fact that Qd is dense in Ri(Hx) follows immediately. Fix
now some h ∈ Ri(Hx). As 0 ∈ Hx , there exists some ε > 0 such that (1+ε)h ∈ Hx

[see Rockafellar (1970), Theorem 6.4, page 47] which implies that x + hY (·) ≥
ε

1+ε
x > 0 Q-q.s., hence h ∈ Hr

x for r ∈ Q such that 0 < r ≤ ε
1+ε

x and Ri(Hx) ⊂⋃
r∈Q,r>0 Hr

x ⊂ Hx is proved and also
⋃

r∈Q,r>0 Hr
x = Hx since Ri(Hx) = Hx .

Assume now that |Y | is bounded by some constant K > 0. Let h ∈ ⋃
r∈Q,r>0 Hr

x

5For a Polish space X, we say that a set D ⊂ X is dense in B ⊂ X if for all ε > 0, b ∈ B , there
exists d ∈ D ∩ B such that d(b, d) < ε where d is a metric on X consistent with its topology.
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and r ∈ Q, r > 0 be such that h ∈ Hr
x , we set ε := r

2K
. Then for any g ∈ B(0, ε), we

have for Q-almost all ω ∈ � that x + (h+g)Y (ω) ≥ r +gY (ω) ≥ r −|g||Y(ω)| ≥
r
2 , hence h + g ∈ Hx , B(h, ε) ⊂ Hx and h belongs to the interior of Hx [and also
to Ri(Hx)]. �

LEMMA A.32. Let f : Rd → R ∪ {±∞} be a concave function such that
Ri(Domf ) �= ∅. Then suph∈Domf f (h) = suph∈Ri(Domf ) f (h).

PROOF. Let C := suph∈Ri(Domf ) f (h) and h1 ∈ Domf \ Ri(Domf ) be fixed.
We have to prove that f (h1) ≤ C. If C = ∞, there is nothing to show. So assume
that C < +∞. Let h0 ∈ Ri(Domf ) and introduce φ : t ∈ R→ f (th1 + (1 − t)h0)

if t ∈ [0,1] and −∞ otherwise. From Rockafellar (1970), Theorem 6.1, page 45,
th1 + (1 − t)h0 ∈ Ri(Domf ) if t ∈ [0,1), and thus [0,1) ⊂ {t ∈ [0,1], φ(t) ≤ C}.
Clearly, φ is concave on R. Since Domf is convex, Domφ = [0,1]. So, using
Föllmer and Schied (2002) , Proposition A.4, page 400, φ is l.s.c. on [0,1] and
{t ∈ [0,1], φ(t) ≤ C} is a closed set in R. It follows that 1 ∈ {t ∈ [0,1], φ(t) ≤ C},
that is, f (h1) ≤ C and the proof is complete. �

The following lemma was used several times.

LEMMA A.33. Assume that the NA(QT ) condition holds true. Let φ ∈ � such
that V

x,φ
T ≥ 0 QT -q.s. [i.e., φ ∈ �(x,QT )], then V

x,φ
t ≥ 0 Qt -q.s. for all t ∈

{0, . . . , T }.

PROOF. Let φ ∈ � be such that V
x,φ
T ≥ 0 QT -q.s. and assume that V

x,φ
t ≥ 0

Qt -q.s. for all t does not hold true. Then n := sup{t,∃Pt ∈ Qt , Pt (V
x,φ
t < 0) >

0} < T and there exists some P̂n ∈ Qn such that P̂n(A) > 0 where A = {V x,φ
n <

0} ∈ Bc(�
n) and for all s ≥ n+ 1, P ∈ Qs , P(V

x,φ
s ≥ 0) = 1. Let �s(ω

s−1) = 0 if
1 ≤ s ≤ n and �s(ω

s−1) = 1A(ωn)φs(ω
s−1) if s ≥ n+1. Then � ∈ � and V

0,�
T =∑T

k=n+1 �s�Ss = 1A(V
x,φ
T − V

x,φ
n ). Thus V

0,�
T ≥ 0 QT -q.s. and V

0,�
T > 0 on A.

Let P̂T := P̂n ⊗pn+1 ⊗· · ·⊗pT ∈ QT where for s = n+ 1, ·, T , ps(·, ·) is a given
universally measurable selector of Qs [see (2)]. It is clear that P̂T (A) = P̂n(A) > 0,
hence we get an arbitrage opportunity. �

A.2. Measure theoretical issues. In this section, we first provide some
counter-examples to Bouchard and Nutz (2015), Lemma 4.12, and propose an
alternative to this lemma. Our counter-example A.34 is based on a result from
Gelbaum and Olmsted (1964) originally due to Sierpinski (1920). An other
counter-example can be found Rockafellar and Wets (1998), Proposition 14.28,
page 661.
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EXAMPLE A.34. We denote by L(R2) the Lebesgue sigma-algebra on R2.
Recall that B(R2) ⊂ L(R2). Let A /∈ L(R2) be such that every line has at most two
common points with A [see Gelbaum and Olmsted (1964), Example 22, page 142,
for the proof of the existence of A] and define F : R2 →R by F(x, y) := 1A(x, y).
We fix some x ∈ R and let A1

x := {y ∈ R, (x, y) ∈ A}. By assumption, A1
x con-

tains at most two points: thus it is a closed subset of R. It follows that {y ∈ R,

F (x, y) ≥ c} is a closed subset of R for all c ∈ R and F(x, ·) is u.s.c. Similarly,
the function F(·, y) is u.s.c., and thus B(R)-measurable for all y ∈ R fixed. But
since A /∈ L(R2), F is not L(R2)-measurable and, therefore, not B(R) ⊗ B(R)-
measurable.

We propose now the following correction to Bouchard and Nutz (2015),
Lemma 4.12. Note that Lemma A.35 can be applied in the proof of Nutz (2016),
Lemma 3.7, since the considered function is concave [as well as in the proof of
Bouchard and Nutz (2015), Lemma 4.10, where the considered function is con-
vex].

LEMMA A.35. Let (A,A) be a measurable space and let θ : Rd × A → R ∪
{±∞} be a function such that ω → θ(y,ω) is A-measurable for all y ∈ Rd and
y → θ(y,ω) is l.s.c. and convex for all ω ∈ A. Then θ is B(Rd) ⊗A-measurable.

PROOF. It is a direct application of Rockafellar and Wets (1998), Proposi-
tion 14.39, page 666, Corollary 14.34, page 664. �

We finish with three lemmata related to measurability issues used throughout
the paper.

LEMMA A.36. Let X,Y be two Polish spaces and F : X × Y → R ∪ {±∞}
be u.s.a. [resp., l.s.a.]. Then, for x ∈ X fixed, the function Fx : y ∈ Y → F(x, y) ∈
R∪ {±∞} is u.s.a. [resp., l.s.a.].

PROOF. Assume that F is u.s.a. and fix some c ∈ R, then C := F−1((c,∞)) ∈
A(X × Y). Fix now some x ∈ X. Since Ix : y → (x, y) is B(Y )-measurable,
applying Bertsekas and Shreve (2004), Proposition 7.40, page 165, we get that
{y ∈ Y,Fx(y) > c} = {y ∈ Y, (x, y) ∈ C} = I−1

x (C) ∈A(Y ). �

LEMMA A.37. Assume that Assumptions 1.1 and 1.2 hold true. Let 0 ≤ t ≤
T − 1, B ∈ B(R). Then

FB : (
ωt,P,h, x

) → P
(
x + h�St+1

(
ωt, ·) ∈ B

)
is B

(
�t

) ⊗B
(
P(�t+1)

) ⊗B
(
Rd

) ⊗B(R)-measurable,

HB : (
ωt,h, x

) → inf
P∈Qt+1(ω

t )
P

(
x + h�St+1

(
ωt, ·) ∈ B

) ∈ LSA
(
�t ×Rd ×R

)
,
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KB : (
ωt,h

) → sup
P∈Qt+1(ω

t )

P
(
x + h�St+1

(
ωt, ·) ∈ B

) ∈ USA
(
�t ×Rd)

.

PROOF. The first assertion follows from Bertsekas and Shreve (2004), Propo-
sition 7.29, page 144, applied to f (ωt+1,ω

t ,P,h, x) = 1x+h�St+1(ω
t ,·)∈B(ωt+1)

[recall Assumption 1.2] and q(dωt+1|ωt,P,h, x) = P(dωt+1). The second one
is obtained applying Bertsekas and Shreve (2004), Proposition 7.47, page 179,
to FB [recall Assumption 1.1]. The last assertion is using supP∈Qt+1(ω

t ) P (x +
h�St+1(ω

t , ·) ∈ B) = 1 − infP∈Qt+1(ω
t ) P (x + h�St+1(ω

t , ·) ∈ Bc) and
Lemma A.36. �

LEMMA A.38. Let X be a Polish space and � be an Rd -valued random vari-
able:

(i) Assume that Graph(�) ∈ Bc(X) ⊗ B(Rd). Then Graph(�) ∈ Bc(X) ⊗
B(Rd) where � is defined by �(x) = �(x) for all x ∈ X, where the closure is
taken in Rd .

(ii) Assume now that � is open valued and Graph(�) ∈ CA(X × Rd). Then
Graph(�) ∈ Bc(X) ⊗B(Rd).

PROOF. From Rockafellar and Wets (1998), Theorem 14.8, page 648, � is
Bc(X)-measurable [see Rockafellar and Wets (1998), Definition 14.1, page 643]
and using Aliprantis and Border (2006), Theorem 18.6, page 596, we get that
Graph(�) ∈ Bc(X) ⊗ B(Rd). Now we prove (ii). Fix some open set O ⊂ Rd and
let �c(x) = Rd \ �(x). As Graph(�c) = (X × Rd) \ Graph(�) ∈ A(X × Rd),
from Bertsekas and Shreve (2004), Proposition 7.39, page 165, we get that{

x ∈ X,�c(x) ∩ O �= ∅
} = ProjX

(
(X × O) ∩ Graph

(
�c)) ∈ A(X) ⊂ Bc(X).

Thus �c is Bc(X)-measurable and as �c is closed valued, Rockafellar and Wets
(1998), Theorem 14.8, page 648, applies and Graph(�c) belongs to Bc(X) ⊗
B(Rd) and Graph(�) as well. �
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