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Abstract: Statistical applications often involve the calculation of intrac-
table multidimensional integrals. The Laplace formula is widely used to
approximate such integrals. However, in high-dimensional or small sam-
ple size problems, the shape of the integrand function may be far from
that of the Gaussian density, and thus the standard Laplace approxima-
tion can be inaccurate. We propose an improved Laplace approximation
that reduces the asymptotic error of the standard Laplace formula by one
order of magnitude, thus leading to third-order accuracy. We also show,
by means of practical examples of various complexity, that the proposed
method is extremely accurate, even in high dimensions, improving over the
standard Laplace formula. Such examples also demonstrate that the ac-
curacy of the proposed method is comparable with that of other existing
methods, which are computationally more demanding. An R implementa-
tion of the improved Laplace approximation is also provided through the R

package iLaplace available on CRAN.
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1. Background

Statistical applications often involve the evaluation of finite integrals of the form

In =

∫
IRd

e−hn(x) dx , (1.1)

where hn(x) is a smooth and concave real function indexed by n > 0, with x
a d-dimensional real vector. For instance, in Bayesian analyses, −hn(·) may be
the log-likelihood or the log-posterior kernel and (1.1) is the Bayesian marginal
likelihood or the posterior normalising constant. Furthermore, in Generalized
Linear Mixed Models (GLMM) −hn(·) may represent the log-likelihood plus
the log-density of the random effects. In this case, (1.1) gives the marginal
likelihood for the parameters (θ, θu), which can be generally written as

L(θ, θu; y) =

∫
L(θ;u, y)f(u; θu) du

=

∫
exp{logL(θ;u, y) + log f(u; θu)} du

=

∫
e−hn(u;θ,θu,y) du , (1.2)

where f(u; θu) is the density of the random effects indexed by the parameter θu,
and L(θ;u, y) is the likelihood for θ based on the conditional density of y given
u. The quantity n is related to the information in the sample, and is often the
sample size.

Integral (1.1) is frequently intractable but it can be approximated by several
methods; see, e.g., [16]. Here, we focus on the Laplace approximation; see, e.g.,
[5, Chap. 8] and [42, Chap. 6]. Let x̂ = (x̂1, . . . , x̂d) be the unique minimum
of h(·), where to ease notation hereafter we drop n from In, hn(·) and related
quantities. In addition, we assume that the Hessian matrix of h(·) at x̂, i.e.

V̂ = V (x̂) =
∂2h(x)

∂x∂xT

∣∣∣∣
x=x̂

,

is positive definite. The Laplace approximation of (1.1) is second-order accurate,
i.e., I = Î L{1 +O(n−1)}, with

Î L = (2π)d/2|V̂ |−1/2H(x̂), (1.3)

where H(·) = exp{−h(·)}; see, e.g., [5, p. 335].
The Laplace approximation is widely used both in the Bayesian framework

for approximating posterior densities and posterior moments [45, 36] or Bayes
Factors [24], and in the frequentist framework for integrating out random effects
in GLMM [7] or to compute marginal likelihoods in group models [2, 32]. In ad-
dition, it has also been used to approximate hypergeometric functions of matrix
arguments [8]. Moreover, [38] propose a simulation algorithm which draws pos-
terior samples by inverting the approximate cumulative distribution function



3988 E. Ruli et al.

based on the Laplace approximation for marginal posterior densities. Lastly,
[28] and [35] apply the Laplace method in the context of survival analysis and
joint modelling of survival and longitudinal data, respectively.

In the standard asymptotic setting with d fixed and n → ∞, the Laplace
approximation (1.3) is second-order accurate. On the other hand, if also d is
large, the asymptotic expansion requires more terms in order to achieve the
same accuracy as in lower-dimensions. For instance, when (1.1) factorises as a
product of d scalar identical integrals, the relative error is of order O(d/n) [42,
Sect. 6.9]. However, in practice both d and n are fixed, and when d is large
relatively to n it may be necessary to improve the accuracy of the standard
Laplace method. Moreover, an unappealing feature of the Laplace approxima-
tion is that it does not account for skewness or kurtosis in the integrand function.
Therefore, when the shape of the integrand is far from that of the Gaussian den-
sity, which can happen especially in high-dimensional or in small sample size
problems, the standard Laplace approximation can be severely inaccurate. Ex-
ample 3.2 in Sect. 3 shows an example in which the Laplace approximation fails
dramatically, and with inaccuracy that deteriorates with increasing dimension-
ality.

A possible way to improve the Laplace approximation is through the inclu-
sion of higher-order derivatives of h(·) in the Taylor expansions. [27] uses this
idea in a Bayesian context. [34] propose a higher-order Laplace approximation
for GLMM, by considering derivatives of h(·) up to the the sixth order. [32] use a
similar approach for approximating marginal likelihoods in group models. How-
ever, when d > 1, the computation of higher-order derivatives can be tedious.
Similar strategies are pursued by the Bayesian Bartlett correction proposed by
[14], and by the corrected Laplace approximation of [41]. However, the former in-
volves posterior expectations, which in practice must be approximated through
Monte Carlo methods and the latter solution is designed for situations, such
as models with crossed random effects, in which the standard Laplace approxi-
mation may not be asymptotically valid. Another improvement of the standard
Laplace approximation is proposed by [30], in which (1.1) is approximated by a
product of scalar blocks, after a preliminary variable transformation to achieve
approximate orthogonality.

In this paper we propose an improved Laplace approximation for integrals
of the form (1.1) that, unlike the standard Laplace formula, can account for
skewness and non-Gaussian tails in the integrand function. Moreover, we show
that the proposed method has relative approximation error of order O(n−3/2),
in a standard asymptotic setting in which the sample size n diverges and d is
fixed. The core idea of the proposed method is to build an approximation of the
normalised integrand through sequential and re-normalised ratios of Laplace
approximations. Finally, an approximation of the target integral (1.1) is ob-
tained indirectly by the ratio of the un-normalised integrand over the approx-
imation of the normalised integrand, both evaluated at a specific point x. Es-
sentially, the proposed approximation of (1.1) can be written as IiL = ĉ IL,
where ĉ > 0 is the improvement over the standard Laplace approximation, and
I = IiL{1 +O(n−3/2)}.
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Compared to the standard Laplace approximation, the proposed method re-
quires repeated conditional minimisations and repeated evaluations of the log-
integrand function and its Hessian matrix. Conditional minimisations can be
computationally demanding in high dimensions. Therefore, an alternative ver-
sion is introduced, which uses approximate conditional minima obtained through
a first order Taylor series expansion around the global minimum. This alterna-
tive version reduces the computational time while keeping comparable accuracy
with respect to the original version. Nevertheless, the most demanding task is
the computation of the global minimum, which is a requirement also for the
standard Laplace method.

The rest of the article is structured as follows. Section 2 introduces the im-
proved Laplace approximation. Section 3 illustrates the method in examples
in which comparison with alternative approximations are also given. Section 4
concludes with some final remarks.

2. The improved Laplace approximation

Let p(x) = H(x)/I be the density function which corresponds to the kernel
H(x) = exp{−h(x)} with normalising constant I. By the identity

I =
H(x)

p(x)
, (2.1)

if p(x) is known then I is readily available, for an arbitrary x. Alternatively,
if a suitable estimate p̂(x) of p(x) is available, (2.1) provides an estimate Î of
I, given by H(x)/p̂(x). For instance, (2.1) has been used to estimate Bayesian
marginal likelihoods in MCMC settings [9, 10, 21], and to approximate hidden
Gaussian Markov random fields [37, 36].

While (2.1) holds for any x, it is advisable to locate such a point at a high
density region [9]. One possibility is to choose x = x̂, which may be also con-
venient from a computational point of view. In MCMC settings, [21] show that
coordinate points other than x̂ may improve the approximation error. However,
locating such points can be computationally intensive.

Let x1:q = (x1, . . . , xq) be the first q and xq+1:d the last d − q components
of x (q < d). Moreover, let x̂x1 be the conditional minimum of h(·) with x1

fixed and let x̂x̂1:q ,xq+1 be the conditional minimum with x1:q fixed at x̂1:q and
xq+1 fixed. We require that h(·) satisfies the usual regularity conditions for the
validity of the Laplace approximation; see, e.g., [25].

Write p(x) as

p(x) = pX1(x1)pX2|X1
(x2|x1) · · · pXd|X1:d−1

(xd|x1:d−1)

=

∫
IRd−1 H(x) dx2:d∫

IRd H(x) dx

∫
IRd−2 H(x) dx3:d∫
IRd−1 H(x) dx2:d

· · · H(x)∫
IR
H(x) dxd

. (2.2)

An improved approximation of p(x) can be obtained by approximating the inte-
grals of each ratio on the right hand side of (2.2) through the Laplace formula.
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Specifically, the Laplace approximation of the marginal density pX1(x1) is

p̂X1(x1) =
H(x1, x̂x1)

H(x̂)

{
|V̂ |

2π|V2:d(x1, x̂x1)|

}1/2

, (2.3)

where V2:d(·) is the block (2:d, 2:d) of V (·). This result is due to [45]. For the qth
conditional density in (2.2) (2 ≤ q < d), we apply the Laplace approximation
to the numerator and the denominator and obtain

p̂Xq|X1:q−1
(xq|x1:q−1) =

p̂X1:q (x1:q)

p̂X1:q−1(x1:q−1)
. (2.4)

Finally, the conditional density pXd|X1:d−1
(·), approximated by applying the

univariate Laplace method to the integral in the denominator, is

p̂Xd|X1:d−1
(xd|x1:d−1) =

H(x)

H(x1:d−1, x̂x1:d−1
)

{
Vd:d(x1:d−1, x̂x1:d−1

)

2π

}1/2

, (2.5)

where Vd:d(·) is the dth element of the diagonal of V (·). Using results and under
the assumptions of [25] and of [45], it is possible to show that (2.3), (2.4) and
(2.5) have overall relative error of order O(n−1). Recalling that, to use identity
(2.1) we only need an approximation p̂(x̂) of p(x̂), we might be tempted to take
as p̂(x̂) the product of (2.3) times (2.4) (for 2 ≤ q < d) times (2.5), all evaluated
at x̂. However, such a product, when replaced in (2.1), reproduces exactly (1.3),
the Laplace approximation of I.

To achieve third-order accuracy we propose to re-normalise numerically (2.3),
(2.4) and (2.5). Re-normalisation of (2.4) and (2.5) entails the evaluation of
multi-dimensional numerical integrations. While this is true in general, in our
case we only need an approximation for p(x̂) and therefore it is still possible to
re-normalise (2.4) and (2.5) by using only scalar numerical integration. The key
point is to fix all the conditioning variables at the corresponding modal values
prior to the re-normalisations, as explained in Scheme 1.

The product of the re-normalised versions of (2.3), (2.4) and (2.5), evalu-
ated at x̂, gives a third-order approximation of p(x̂), as shown by the following
theorem.

Theorem 2.1. Under the assumptions of [25] for the regularity of the Laplace
approximation, the improved Laplace approximation of p(x̂) has third-order ac-
curacy, i.e.

p(x̂) = p̂iL(x̂){1 +O(n−3/2)} .
Proof. The first step is to show that the approximation error of (2.3) and (2.4)
holds uniformly. The uniformity of (2.3) has been shown by [25, Theorem 6].
Furthermore, on the basis of Theorem 6 of [25], we can show that also (2.4) holds
uniformly. This is immediate as (2.4) is the ratio of the Laplace approximation
of the marginal density of X1:q over that of X1:q−1 (2 ≤ q < d), both with
relative error of order O(n−1) holding uniformly. Hence the error in (2.4) is also
uniform.
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Step 1 Compute ĉ1, the normalising constant of (2.3);

Step 2 For each q (2 ≤ q < d), compute ĉq , the normalising constant of (2.4) with all
the conditioning variables fixed at their modal values;

Step 3 Compute ĉd, the normalising constant of (2.5) with all the conditioning
variables fixed at the corresponding modal values;

Step 4 Set p̂iL(x̂) =
p̂(x̂1)
ĉ1

{∏d−1
q=2

p̂(x̂q |x̂1:q−1)

ĉq

}
p̂(x̂d|x̂1:d−1)

ĉd
as the improved Laplace

approximation of p(x̂);

Step 5 Finally, get the improved Laplace approximation IiL = H(x̂)/p̂iL(x̂) of I.

Scheme 1: Pseudo-code description of the improved Laplace method.

As shown by [45], after numerical re-normalisation, (2.3) has error of order
O(n−3/2). This is because the O(n−1) term, when uniform, gets absorbed into
the normalising constant. To complete the proof we need to show that also (2.4),
after numerical re-normalisation with respect to xq and with the conditioning
variables fixed at the corresponding modal values, has error of order O(n−3/2).
To prove this, let p̂∗Xq|X1:q−1

(xq|x̂1:q−1) be the re-normalised approximate con-

ditional density of Xq|X1:q−1 with the conditioning variables fixed at the modal
values, i.e.

p̂∗Xq|X1:q−1
(xq|x̂1:q−1) =

c−1
q p̂X1:q (x̂1:q−1, xq)

c−1
q−1p̂X1:q−1(x̂1:q−1)

,

where cq =
∫
IRq p̂X1:q (x1:q) dx1:q and cq−1 =

∫
IRq−1 p̂X1:q−1(x1:q−1) dx1:q−1. This

re-normalised approximate conditional density is third-order accurate, i.e.

pXq|X1:q−1
(xq|x̂1:q−1) =

c−1
q p̂X1:q (x̂1:q−1, xq){1 +O(n−3/2)}
c−1
q−1p̂X1:q−1(x̂1:q−1){1 +O(n−3/2)}

=
c−1
q p̂X1:q (x̂1:q−1, xq)

c−1
q−1p̂X1:q−1(x̂1:q−1)

{1 +O(n−3/2)}

= p̂∗Xq|X1:q−1
(xq|x̂1:q−1){1 +O(n−3/2)} .

However, note that there is no need to compute cq−1 and cq, because

p̂∗Xq|X1:q
(xq|x̂1:q−1) =

c−1
q p̂X1:q

(x̂1:q−1,xq)

c−1
q−1p̂X1:q−1

(x̂1:q−1)∫
IR

c−1
q p̂X1:q

(x̂1:q−1,xq)

c−1
q−1p̂X1:q−1

(x̂1:q−1)
dxq

=
p̂X1:q (x̂1:q−1, xq)/p̂X1:q−1(x̂1:q−1)∫

IR
p̂X1:q (x̂1:q−1, xq)/p̂X1:q−1(x̂1:q−1) dxq

=
p̂X1:q (x̂1:q−1, xq)/p̂X1:q−1(x̂1:q−1)

ĉq
.

That is, we need only to re-normalise (2.4) with the conditioning variables fixed
prior to integration at their modal values, i.e. to compute ĉq. Note that, after
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numerical re-normalisation with the conditioning variables fixed, approxima-
tion (2.5) becomes exact.

Finally, the replacement of p(x̂) with p̂iL(x̂) in (2.1) delivers the improved
Laplace approximation of (1.1). Or equivalently, the improved Laplace approxi-

mation can be written as IiL = ĉIL, with ĉ =
∏d

i=1 ĉi and ĉi (1 ≤ i ≤ d) defined
in Scheme 1.

Remark 1. The factor ĉ is an index of the magnitude of the improvement of the
proposed method over the standard Laplace approximation. Indeed, values of ĉ
close to 1 indicate that the improved Laplace approximation is not improving
over the standard Laplace. In this case, it is likely that the integrand is Gaussian-
like. On the other hand, ĉ �= 1 indicates that the integrand may not be Gaussian-
like, e.g. it may be skewed and/or heavy-tailed. Note also that if I factors as
the product of d scalar integrals, then the improved Laplace approximation of
I corresponds to its computation via numerical integration.

Remark 2. An important difference of the proposed method from the inte-
grated nested Laplace approximation (INLA) of [36] is that our method is
specifically designed to approximate normalising constants or marginal likeli-
hoods for general models, and for arbitrary components of the parameter for
both Bayesian and frequentist inference. For instance, the method can be used
to approximate (1.2) even when random effects are not necessarily Gaussian.
On the other hand, INLA is designed for approximating marginal posterior dis-
tributions and can approximate only Bayesian marginal likelihoods of Gaussian
latent fields; see Eq. (30) of [36]. Some numerical comparison with INLA are
provided in Section 3.3.

Remark 3. The order (x1, . . . , xd) is arbitrary, that is, the asymptotic error of
the improved Laplace is not affected by their permutation. In practice, however,
it may be useful to order x according to the cardinality of the arguments of
each element of ∇h(x), the gradient of h(·). In particular, the element of x for
which the corresponding element of ∇h(x) depends on all elements of x may
be placed as the first factor in (2.2). For instance, if d = 3 and ∂h(x)/∂x1

depends on x1, ∂h(x)/∂x2 depends on x1:2 and ∂h(x)/∂x3 depends on x, then
the order (x3, x2, x1), with x3 being the first factor in (2.2), can simplify the
conditional minimisations required by the proposed method. Obviously, when
each element of ∇h(x) depends on x1:3, there is no preferred ordering. In the
examples considered in Section 3 we did not experience any practical difference
in the results across different permutations of x.

Remark 4. Conditional minimisations can become computationally demanding
when d is large. Nevertheless, it is possible to avoid them by considering a first-
order Taylor series expansion of the conditional minima as in [11]. In particular,
let x = (y, z), where y is the fixed block and z the remaining part of x. Then ẑy,
the conditional minimum of h(·) for fixed y, can be approximated by the linear
regression

z̃y = ẑ + V −1
zz Vzy(ŷ − y) , (2.6)
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which is such that ẑy − z̃y = O(n−1). Recently, [26] applied a similar idea in
a different context and noted excellent performance (see also [38]). We explore
the numerical performance of the improved Laplace approximation with approx-
imate conditional minima z̃y in place of their exact version ẑy in Examples 3.2,
3.3, 3.5 and 3.6.

Remark 5. Linear constraints Ax = b, with A and b being appropriate matrices
and vectors respectively, can be handled through a change of variables problem
and by applying the proposed method to the remaining free components of
x. Finally, when the distribution of x1|x2 is more Guassian-like and x2 is low-
dimensional, as it happens in the INLA framework, then it may be more sensible
to approximate x1|x2 by the proposed method and integrate out x2 by numerical
integration.

3. Examples

The improved Laplace approximation is implemented in the R [44] package
iLaplace [39], available on the CRAN repository. Except for the example of Sec-
tion 3.1, computations with the improved Laplace approximation, with either
exact or approximate conditional minima, are performed in parallel over 11
threads through the parallel implementation provided in the package iLaplace.
Essentially, it is an embarrassingly parallel implementation in which each inte-
gral in Steps 1–3 of Scheme 1 is computed through a separate thread.

3.1. Gompertz distribution: Fixed d and n → ∞

Consider the sequence of sample sizes {ni = �ni−1+1.2
√
ni−1	, n1 = 20, and i =

2, . . . , 30}, where the symbol �·	 denotes the ceiling function. Let yi =
(y1, . . . , yni) be a random sample of size ni (i = 2, . . . , 30) from the Gompertz
distribution, with density

p(y; θ) = αβeβyeα exp{−αeβy},

with θ = (θ1, θ2) = (logα, log β) ∈ IR2 and y > 0. Moreover, for each i, consider
100 random datasets of size ni from the Gompertz distribution with α = 2 and
β = 3. For each of these datasets, we compute the normalising constant of the
posterior distribution π(θ|yi) ∝ L(θ; yi)π(θ), where L(θ; yi) is the likelihood
function for θ based on data yi and π(θ) = π(θ1)π(θ2) is the prior distribution
with π(θ1) and π(θ2) both being N(0, 100).

The aim is to compare the behaviour of the standard (Î L) and the improved
(Î iL) Laplace approximations with the target value (I) computed by adaptive
numerical integration, as the sample size n diverges. Similarly to [13] and [12],
let a1 > 0, a2 > 0, (b1, b2) ∈ IR2 and suppose that

I = Î iL(1 + b1n
−a1) + o(n−a1),

and that
I = Î L(1 + b2n

−a2) + o(n−a2),
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Fig 1. Numerical evaluation of the asymptotic error of the improved and standard Laplace
methods. Left panel: log-log plot of (Î iL/I) (•) and (Î L/I) (◦) versus n. Right panel: log-log

plot of the relative error |Î iL/I−1| (•) and |Î L/I−1| (◦) versus n; the solid and dashed lines
are the corresponding least-squares regression lines. The empirical slope is -1.51, with 0.99
confidence interval (-1.53, -1.48), for the solid line, and -1.01, with 0.99 confidence interval
(-1.09, -0.93), for the dashed line.

for n → ∞. Then, lim
n→∞

{Î iL/I} = 1 and lim
n→∞

{Î L/I} = 1, and if the improved

Laplace approximation is more accurate than the standard Laplace, then the
first limit should converge faster. Furthermore, a log-log graph of |I/Î iL − 1|
(|I/Î L − 1|) against n should be be linear with slope −a1 (−a2) and intercept
log |b1| (log |b2|).

The left panel of Figure 1 reports the log-log plot of Î iL/I and Î L/I, both
averaged across the 100 repetitions at each value of and against the sample
size n. This plot highlights that the improved Laplace approximation is more
accurate than the standard Laplace method, since the visual convergence at 1
of Î iL/I happens at a faster rate.

The log-log plot of the relative error averaged across the 100 repetitions at
each value of the sample size n is shown on the right panel of Figure 1. This
shows that the improved Laplace method achieves third-order accuracy whereas
the standard Laplace formula is second-order accurate, e.g. a1 = 1.5 and a2 = 1.

3.2. Multivariate t/skew-t

To assess the accuracy of the proposed method even in extreme settings, we
consider the multivariate t/skew-t distribution of [22], with density

p(y; ν, a, c) =
Γ((ν + d)/2)

Γ((ν + 1)/2)B(a, c)(a+ c)1/22a+c−1(νπ)(d−1)/2

×
(1 + ν−1y21)

(v+1)/2
(
1 + y1

(a+c+y2
1)

1/2

)a+1/2

{1 + ν−1(y21 + . . .+ y2d)}(ν+d)/2

×
(
1− y1

(a+ c+ y21)
1/2

)c+1/2

. (3.1)
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The positive parameters a and c determine the distribution of the skewed
marginal, the parameter ν, i.e. the degrees of freedom (df), controls the tail
behaviour of the distribution, and B(·, ·) and Γ(·) are the beta and gamma
functions, respectively. This distribution is obtained from the multivariate Stu-
dent’s t-density centred at 0 and with identity scale matrix, where the marginal
density of the first component is replaced with the univariate t/skew-t den-
sity. The case with a = c = ν/2 leads the the ordinary multivariate Student’s
t-distribution with identity scale matrix and ν degrees of freedom.

We approximate the normalizing constant of the multivariate t/skew-t den-
sity, with the standard and the improved Laplace approximations, in two sce-
narios: the first with a = c = 1.5, and the second with a = 12 and c = 0.5. For
each scenario, we consider multivariate t/skew-t densities with varying dimen-
sion and degrees of freedom. Results in the first row of Figure 2 show that the
standard Laplace approximation rapidly deteriorates with increasing dimension-
ality, and increasing non-Gaussianity, i.e. low ν, higher skewness (large a and
small c or vice versa). On the contrary, the improved Laplace approximation is
reasonably accurate and stable across both increasing dimensionality and non-
Gaussianity. A similar example has been considered also by [30], in order to test
the accuracy of their modified Laplace approximation. However, their method
is substantially less accurate than ours, only slightly improving the poor quality
of the standard Laplace approximation. For instance, the normalising constant
of the 10-variate t/skew-t density with a = 4, c = 1 and ν = 3, is 0.013 with
the standard Laplace, 0.02 with the modified Laplace method of [30] and 0.9981
with the improved Laplace approximation.

Now consider the same example but using the approximate conditional min-
ima introduced in Remark 4 of Section 2.1. As shown in the second row of
Figure 2, in this case, the results of the improved Laplace approximation with
either actual or approximate conditional minima coincide.

3.3. A comparison with INLA

The following example has been considered by [17] and is known as challenging
for the INLA methodology.

Let y = (y1, . . . , yn) be conditionally independent binary values with

Yi|ui ∼ Bernoulli(pi) ,

logit(pi) = β + ui ,

where Ui ∼ N(0, σ2), for i = 1, . . . , n. We assume independent priors for β and
ν = σ−2, with β ∼ N(0, 1) and ν ∼ Gamma(1, 1) and we wish to obtain the
marginal posterior distributions of β and ν.

We apply the improved and the standard Laplace methods to approximate
L(β, ν; y), the marginal likelihood defined in (1.2) under the aforementioned
modelling assumptions. Since L(β, ν; y)π(β, ν) is bivariate, we use adaptive nu-
merical integration for obtaining the marginal posteriors π(β|y) and π(ν|y). For
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Fig 2. First row: standard (red coloured symbols) and improved Laplace (black) approxima-
tions of the normalizing constant (in logarithmic scale) of the multivariate t/skew-t density
against dimension. Second row: improved Laplace approximation with either exact or ap-
proximate conditional minima overlap. Degrees of freedom are: 3 (◦), 5 (�), 10 (+) and
20 (×).

comparison purposes, the marginal posteriors are also approximated by: MCMC,
the standard version of INLA and the improved INLA proposed by [17]. For the
MCMC approximation, we consider 106 final posterior samples with the JAGS

software [33], after a burn-in of 106 samples. Computations with INLA are done
using the associated R package R-INLA, using the default options.

Note that the integral over u = (u1, . . . , un), required for obtaining L(β, ν; y),
can be factorised as product of n scalar integrals. Hence, in this case the im-
proved Laplace method is as accurate in approximating π(β, ν|y) as is numerical
integration.

As an illustration, consider a sample of size n = 100 generated from the
model with σ2 = 1 and β = 2. As a gold standard we use MCMC as imple-
mented in the JAGS software. We compare it with the improved and the standard
Laplace approximations and with INLA and the improved ILNA of [17] in the
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Fig 3. First row: marginal posterior distributions for β and log ν approximated by: 106

MCMC samples with JAGS (histogram), Laplace (dash-dotted red curves), improved Laplace
(solid black), INLA (dashed blue) and improved INLA (dotted magenta) methods. Second
row: marginal posteriors of β and log ν with the improved Laplace approximation with exact
(black) and approximate conditional minima (red dashed).

first row of Figure 3. As expected, the improved Laplace approximation is virtu-
ally indistinguishable from the MCMC approximation. On the other hand, the
Laplace approximation and both versions of INLA perform slightly worse then
the improved Laplace approximation.

The second row of Figure 3 shows the marginal posteriors of β and log ν ap-
proximated by the improved Laplace method using the approximate conditional
minima introduced in Remark 4. In this case, the improved Laplace approxima-
tion with either exact (black continued) or approximate (red dashed) conditional
minima gives indistinguishable results.

A small simulation study is performed in order to assess the accuracy of
the proposed method. In particular, we consider 100 datasets with sample size
n = 100 drawn from the model and under the same parameter values as before.
For each dataset, we compute the marginal posteriors of θ by MCMC, here
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Fig 4. Log-KL divergences of marginal MCMC posteriors of β (left panel) and ν (right
panel) from the corresponding ones approximated through the: Laplace (LA), improved Laplace
(iLA), INLA and the corrected INLA methods in a repeated sampling context with 100 repli-
cations.

treated again as the gold standard, and by: the standard Laplace, the improved
Lapalce (with approximate conditional minima) and the original and corrected
versions of INLA. The MCMC approximation is done by 106 samples, after
a burn-in of 105, and thinning equal to 10. As a measure of discrepancy, we
compute the Kullback-Leibler (KL) divergence between the MCMC posterior
and the other approximation methods. The KL divergence is defined as

KL(π; π̃) =

∫
θ∈Θ

log

{
π(θ|y)
π̃(θ|y)

}
π(θ|y) dθ ,

where π(θ|y) is the MCMC posterior and π̃(θ|y) is the approximate posterior
obtained with the other methods. For simplicity, we compute two marginal
KL divergences, i.e. one for β and one for ν. The higher the KL, the worse
is the approximation π̃(·|y). The MCMC marginal posteriors are computed
with logspline density estimation using the logspline package of R. This tends
to give smoother density estimates than usual kernel density estimators. The
marginal posterior distributions obtained with either standard or improved
Laplace approximation are available analytically, whereas those based on the
two versions of INLA are build through smoothing splines.

The results in Figure 4 highlight that the marginal posteriors of β (left panel)
and ν (right panel) approximated with the proposed method are the closest to
the MCMC posteriors in terms of the KL divergence.

3.4. Nonlinear regression

Consider the nonlinear regression model

yi = β1 exp{1− exp(−xi/β2)}+ σεi,
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where yi is the response variable, xi is a covariate, (β1, β2) are unknown regres-
sion parameters, and the εi are independent error terms, i = 1, . . . , n. We focus
on two possible distributions for the error term: the normal distribution and
the Student’s t-distribution, with unknown degrees of freedom τ . The aim is to
choose among them through the Bayes Factor (BF), which in our case is given
by the ratio of the posterior normalising constant of the normal model over that
of the Student’s t model.

As an example we consider the BOD2 dataset [3, p. 305], which concerns
a study on biochemical oxygen concentration (y) as function of time (x). For
both models, we assume the parameters are a priori independent. Moreover, a
bivariate normal distribution with mean vector zero and scale matrix 10I2, is
assumed for β. Following the recommendations of [20], for the scale parameter σ
we assume a half-Cauchy prior with scale equal to 10. Finally, the Jeffreys rule
prior proposed by [18] is taken for τ . For numerical stability in the optimisations,
σ and τ are considered in logarithmic scale.

Table 1 shows the log-marginal likelihoods and the Bayes factor approxi-
mated by the improved Laplace approximation and by: the standard Laplace,
the Bartlett-corrected Laplace (DiCiccio et al. 14), importance sampling, the
method of [10] and adaptive numerical integration as implemented in the R

package cubature. The Chib and Jeliazkov’s, IS and Bartlett-corrected Laplace
approximations are replicated 500 times, where for each replication the MCMC
algorithm is started at a different point. The final estimates of the log-marginal
likelihood and of the BF (in decimal logarithmic scale) are obtained by averaging
the 500 replications. At each replication, the Bartlett-corrected Laplace approx-
imation is performed with 2 × 105 final MCMC posterior draws, after suitable
burn-in and thinning to reduce autocorrelation. The same MCMC posterior sam-
ple is used also for computing the marginal likelihood with Chib and Jeliazkov’s
method. For the IS approximation we consider 106 draws from the multivari-
ate Student’s t-distribution with m degrees of freedom, centred at the posterior
mode, with scale matrix equal to c > 0 times the inverse of the posterior Hes-
sian at the modal value. Several values of c around 1 and m ∈ [3, 50] were
also considered. However, they gave very similar results, so we set c = 1 and
m = 3. This choice permits to have an importance density with finite variance
and with heavy tails (see, e.g., 16, Sect. 6.3). The standard deviation of the 500
log-marginal likelihoods divided by

√
500 is taken as a measure of Monte Carlo

standard error.
Results in Table 1 indicate that the standard Laplace approximation and its

Bartlett-corrected version are quite inaccurate, since both lead to substantial
evidence in favor of the normal model (see [24] for the interpretation of the
BF). Such an evidence is not confirmed by the BF approximated through adap-
tive numerical integration, here treated as the gold standard; neither IS and
Chib and Jeliazkov’s method confirm the aforementioned evidence. In addition,
results of the improved Laplace method are in reasonable agreement with IS,
Chib and Jeliazkov’s approximation and adaptive numerical integration.

The inaccuracy of the standard Laplace approximation in the case of the
Student’s t model is most likely due to the non normality of the marginal pos-
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Table 1

BOD2 data. Logarithm of Bayesian marginal likelihoods and BF computed with: adaptive
numerical integration, standard Laplace, the improved Laplace, the Bartlett-corrected
Laplace, importance sampling (IS) and Chib and Jeliazkov’s method. For the last three

methods, the point estimates are obtained by averaging over 500 replications; the quantity in
parenthesis gives 3×SEMC, where SEMC is the Monte Carlo standard error given by the

standard deviation divided by
√
500.

Model Adaptive Laplace Improved Bartlett- Chib & IS
integration Laplace corrected Jeliazkov

Normal -2.539 -2.905 -2.540 -2.504 -2.537 -2.539
(0.0198) (0.003) (0.0001)

Student’s t -2.488 -5.179 -2.449 -4.188 -2.478 -2.457
(0.0199) (0.0031) (0.0001)

log10 BF -0.022 0.988 -0.039 0.731 -0.027 -0.036
(Normal vs t) (0.0103) (0.0057) (0.0183)

terior of (log σ, log ν). Indeed, a look at the bivariate kernel density estimate of
this marginal bivariate posterior (not reported here) reveals that it is banana-
shaped, and therefore it is quite far from being elliptical. Nevertheless, such a
shape is well accommodated by the improved Laplace approximation.

3.5. GLMM with crossed random effects

We consider the problem of approximating the marginal likelihood for the fixed
parameters in a model with crossed random effects [41, 40]. Such a model is
useful, for instance, when analysing the Salamander mating data [29, p. 439].
These data have been analysed by [23, 40, 6, 4, 43], among others, and consist
of three separate experiments, each performed according to the design given
in McCullagh and Nelder [29, Table 14.3]. Each experiment involved matings
among salamanders in two closed groups. Both groups contained five species
R females, five species W females, five species R males and five species W
males. Within each group, only 60 of the possible 100 heterosexual crosses were
observed owing to time constraints. Thus, each experiment resulted in 120 binary
observations indicating which matings were successful and which were not.

As in McCullagh and Nelder [29, p. 441], the data are modelled as if different
sets of 20 male and 20 female salamanders were used in each experiment. Let
yij be the indicator of a successful mating between female i and male j, for

i, j = 1, . . . , 60, where only 360 of the (i, j) pairs are relevant. Let uf
i denote the

random effect that the ith female salamander has across matings in which she
is involved, and define um

j similarly for the jth male. The data yij are assumed
conditionally independent with

Yij |uf
i , u

m
j ∼ Bernoulli(pij),

logit(pij) = x
T

ijβ + uf
i + um

j ,

where xij is a 4-dimensional row vector of zeros and ones indicating the type of

cross, β is the vector of fixed effects, Uf
i ∼ N(0, σ2

f ) and Um
j ∼ N(0, σ2

m).
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Table 2

Salamander data. Comparison of the improved Laplace method (with exact and approximate
conditional minima) with the standard Laplace and the modified Laplace approximation of

[40]. “Sec.” refers to the elapsed time in seconds and “Iter.” refers to the number of
iterations before convergence.

Approximate MLE
Methods β0 βWSf βWSm βWSf×WSm σ2

f σ2
m Sec. Iter.

Laplace:
Exper. 1 1.34 -2.94 -0.42 3.18 1.58 0.073 0.92 22
Exper. 2 0.57 -2.46 -0.77 3.71 1.81 0.92 0.72 15
Exper. 3 1.02 -3.23 -0.82 3.82 0.35 1.85 1.05 22

Modified Laplace of [40]a:
Exper. 1 1.37 -3.02 -0.44 3.27 1.72 0.185 − −
Exper. 2 0.57 -2.53 -0.77 3.79 2.10 1.10 − −
Exper. 3 1.04 -3.31 -0.83 3.90 0.46 2.07 − −

Improved Laplace:
Exper. 1 1.37 -3.02 -0.44 3.27 1.74 0.189 397 29
Exper. 2 0.56 -2.55 -0.79 3.77 2.12 1.14 209 17
Exper. 3 1.03 -3.30 -0.82 3.90 0.49 2.12 145 11

Improved Laplace with approximate conditional minima:
Exper. 1 1.36 -2.99 -0.44 3.24 1.72 0.15 56 15
Exper. 2 0.56 -2.49 -0.75 3.72 2.07 1.05 64 16
Exper. 3 1.02 -3.27 -0.82 3.87 0.43 2.03 83 20

aCorrected(1) values taken from [40]

As a first example we consider the estimation of β and (σ2
f , σ

2
m) for each sep-

arate experiment – following the same model structure as in [40] – performed
by maximising the approximate marginal likelihood. The aim is to compare
the maximum likelihood estimate (MLE) based on the marginal likelihood ap-
proximated by the improved Laplace method with those based on the modified
Laplace approximation proposed by [41] and [40]. It is well known that in models
with crossed random effects the standard Laplace approximation is not asymp-
totically valid [41], and it may give poor results.

Let β = (β0, βWSf
, βWSm

, βWSf×WSm) be the fixed effects, where β0 is a
constant, βWSf

is the effect of the dummy variable WSf which takes one if
the observation is from a species W female and zero otherwise, and so on. The
marginal likelihood has the form (1.2), with θ = β and θu = (σ2

f , σ
2
m) and

involves a 40 dimensional integral that cannot be reduced to a product of lower
dimensional integrals, even though the random effects uf = (uf

1 , . . . , u
f
20) and

um = (um
1 , . . . , um

20) have independent normal distributions. The approximate
MLE for the three separate experiments (reported in Tab 2) are compared with
those of Shun [40, Tab. 2 and Tab. 3].

From Table 2 we notice that the standard Laplace method is very fast but
the resulting MLE are quite inaccurate as far as variance components param-
eters are concerned. On the other hand, approximate MLE obtained with the
improved Laplace method, with either exact or approximate conditional min-
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Table 3

Salamander mating data analysed jointly. Comparisons of the improved Laplace
approximation (with either exact or approximate conditional minima) with the Monte Carlo
Expectation-Maximisation (MC-EM) of [6], the Gibbs sampling of [23], the quasi-likelihood

(PQL) approach of [7] and the standard Laplace approximation.

Approximate MLE
Methods β0 βWSf

βWSm βWSf×WSm σ2
f σ2

m

Laplace 1.01 0.31 -1.90 0.99 1.17 1.04
Improved Laplace 1.02 0.32 -1.95 1.00 1.39 1.25
Improved Laplace

1.01 0.31 -1.92 0.98 1.34 1.19
(approximate cond. min.)
MC-EM [6] 1.03 0.32 -1.95 0.99 1.40 1.25
Gibbs [23] 1.03 0.34 -1.98 1.07 1.50 1.36
PQLa 0.87 0.28 -1.69 0.95 1.35 0.93

aValues from [6]

ima, are closer to those based on the modified Laplace approximation of [40].
However, the improved Laplace method is easier to compute since it does not
require derivatives of the negative log-integrand beyond the second-order. In
terms of computing time, the improved Laplace approximation with approxi-
mate conditional minima is much faster than the version with exact conditional
minima, though slower than the standard Laplace approximation.

Consider now the joint analysis of the Salamander data, by independently
combining the three experiments’ data. In this case the marginal likelihood en-
tails the computation of three 40-dimensional integrals. To compare our method
with other results available in the literature, we consider a slightly modified
version of the fixed effects. In particular, here β = (βR/R, βR/W, βW/R, βW/W),
where βR/R denotes the effect of the cross between a species R female and a
species R male, and so on.

The approximate MLE obtained from the improved Laplace approximation,
the Monte Carlo Expectation-Maximisation (MC-EM) algorithm of [6], the
quasi-likelihood approach of [7], the standard Laplace approximation and the
posterior mean taken with the Gibbs sampling proposed by [23] are illustrated
in Table 3. The standard Laplace approximation underestimates the variance
parameters; see also [40]. The estimate of β and that of the variance parameters
based on both versions of the improved Laplace approximation are quite similar
to those of the MC-EM procedure of [6]; see also [43]. However, compared to
MC-EM, the proposed method does not require tuning from the practitioner.

We notice that the approximate MLE based on the improved Laplace method
with exact conditional minima is found within 9.5 minutes and after 14 itera-
tions. Using approximate conditional minima, the approximate MLE is located
within 3 minutes and after 15 iterations.

We can use (1.2) also for conducting full likelihood-based inference. For in-
stance, in the case of the Salamander data analysed jointly, let us consider profile
likelihood-based confidence intervals for σ2

f and σ2
m. Figure 5 depicts the afore-

mentioned relative profile likelihoods, obtained with the standard Laplace and
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Fig 5. Salamander mating data analysed jointly. Approximate relative profile log-likelihoods
for the variance components obtained with the standard Laplace approximation (black con-
tinued) and with the improved Laplace approximation with approximate conditional minima
(red dashed).

with the improved Laplace with approximate conditional minima. From this
plot we notice that standard Laplace-based profile likelihoods for the variance
parameters are narrower than those based on the improved Laplace approxi-
mation. For instance, the 0.95 confidence interval found by inverting the profile
likelihood of σ2

f and σ2
m with the standard Laplace approximation are (0.38,

2.7) and (0.31, 2.46) while those based on the improved Laplace approximation
are (0.46, 2.98) and (0.38, 2.69).

3.6. GLMM with spatial random effects

We consider the application a Poisson geostatistical model to the Rongelap
dataset [15]. This dataset reports counts yi on radionuclide concentration over
the length of time ti, at the spatial location si, for i = 1, . . . , 157 different
locations in Rongelap Island. On the basis of the theory of radioactive emissions,
the count Yi at the n locations can be treated approximately as realisations of
independent random variables with mean λ(si) = tiη(si), where η(si) measures
the radioactivity at location si, i = 1, . . . , n. See [15] and reference therein for
further details.

For these data, [15] propose the following geostatistical model

Yi |β0, Σ , u(si) ∼ Poisson(tiη(si)), (3.2)

log η(si) = β0 + u(si) ,

where (U(s1), . . . , U(sn) ∼ Nn(0,Σ) are spatial random effects, which are
marginally normally distributed with mean zero and covariance matrix Σ. Typ-
ically, estimation of a full Σ is not possible, unless we place a proper prior on
it, and some structure has to be imposed on it. Here we assume the exponential
model, which implies that

Σij = cov(U(si), U(sj) = σ2 exp{−||si − sj ||2/α},
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where σ2 is a variance parameter, α controls the correlation function. In our
computations the distance matrix of the locations is divided by 100 in order to
avoid numerical overflow problems in the computation of Σ.

The aim is to fit model (3.2) to the Rongelap data by maximum likelihood
estimation, where the parameter of interest is (β0, σ

2, α). The marginal like-
lihood of (β0, σ

2, α) can be recast in the form of (2), with fu(·; θu) given by
the multivariate normal distribution with mean zero and the covariance ma-
trix controlled by θu = (σ2, α) and with L(θ;u, y) the likelihood given by the
conditional distribution of y given u and θ = β0.

To approximate the marginal likelihood we use the Laplace method and the
improved Laplace approximation with approximate conditional minima. For
comparison purposes, we approximate (2) also by importance sampling as pro-
posed by [43]. Comparison with INLA in this case is not possible as the R-INLA
package provides only numerical approximations to the marginal posterior dis-
tributions and not to the full marginal likelihood (2). We use the multivariate
Student’s t-distribution as importance density. The location of the importance
density is fixed at the mode of the conditional density of u given y and (β0, σ

2, α)
and the scale matrix of the importance density is fixed at the Hessian matrix
of the negative logarithm of the conditional density of u given y and (β0, σ

2, α).
The IS approximation of (2) for a fixed (β0, σ

2, α) is

LIS(β0, σ
2, α; y) = m−1

m∑
j=1

L(β0;u(s)j , y)fu(s)(u(s)j ; Σ)

f̃(u(s)j)
,

where u(s)j is the jth random vector drawn from the importance distribution

f̃(·), for j = 1, . . . ,m and m is the overall number of random draws. To have
an importance density with heavy tails we fix the degrees of freedom to 5.
Furthermore, we fix the random seed in order to obtain a smooth approximation
for the likelihood function. An issue with the Monte Carlo approximation is
that the resulting estimate is subject to stochastic variability. To take this into
account we consider m = 2× 104 draws and compute the approximate MLE at
50 different seeds. Increasing m would give more stable results but at the cost
of higher computing time. The final estimates are obtained by averaging the 50
approximate MLEs and the Monte Carlo standard error is also computed from
these replications.

Results, shown in Table 4, highlight that the standard Laplace approxima-
tion tend to underestimate both σ2 and α as compared to the IS approximation,
here treated as more trustworthy. On the other hand, the improved Laplace ap-
proximation gives similar results to the IS approximation. Such a behaviour
is perhaps more clear-cut if we look at the relative profile log-likelihood func-
tion of σ2, depicted in Figure 6 (the plots for α are similar and are omitted).
This figure highlights that the standard Laplace approximation may produce
misleading frequentist inference on the variance parameters, in terms of both,
point estimation and profile likelihood-based interval estimation.
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Table 4

Rongelap data. Improved Laplace approximation (with approximate conditional minima) the
standard Laplace approximation and importance sampling estimates. For the IS method, the
point estimates are obtained by averaging over 50 replications obtained with 50 different

random seeds; the quantity in parenthesis gives 3×SEMC, where SEMC is the Monte Carlo
standard error given by the standard deviation divided by

√
50.

Methods
Approx. Laplace Improved Importance
MLE Laplace Sampling
β0 1.830 1.830 1.830 (3.6×10−6)
σ2 0.224 0.302 0.296 (2.2×10−4)
α 0.081 0.104 0.103 (4.5×10−5)

Fig 6. Rongelap data. Approximate relative profile log-likelihoods for σ2 obtained with the
standard Laplace approximation (black continued), with the improved Laplace approximation
with approximate conditional minima (red dashed) and with IS (green dot-dashed). The hor-
izontal dotted line is the level which gives the 0.95 confidence interval for σ2 based on the
log-profile likelihood ratio statistic.

4. Discussion

Although largely improving over the standard Laplace approximation, the pro-
posed method is guaranteed to work only if the integrand is unimodal, with the
mode being inside the domain of integration. This is because, if h(·) has either
multiple minima or the minimum is not inside the domain of integration, then
the determinants of blocks of its Hessian matrix may not be positive definite
and the computation of (2.3) and (2.4) may break down. A possible way to
deal with multimodal integrands is through a mixture of Laplace approxima-
tions, e.g. one Laplace approximation for each of mode, provided they can all
be found. However, these issues are open problems and are left for future work.

A convenient feature of the proposed method is that the d integrals can be
easily computed in parallel. The numerical re-normalisations are an additional
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and difficult-to-quantify source of error. However, scalar numerical integration
via carefully chosen adaptive quadratures is in general extremely accurate.

The main computational burden of the method is due to conditional minimi-
sations and Hessian determinants. Both can be greatly simplified by considering
analytical first and second-order derivatives of h(·). This is the strategy adopted
in the iLaplace package [39] and throughout the examples. An alternative to
analytical differentiation is the automatic differentiation, which provides on-line
function differentiation during its evaluation; see, e.g., [19]. However, since au-
tomatic differentiation requires further programming efforts, we have not tried
it in our package, though we plan to explore this possibility in future versions.

The version of the method with approximate conditional minima showed good
performance and significant savings in terms of computing time in the examples
considered. Another alternative to this could be to use approximate conditional
minima as starting points for the computation of the exact ones. Although this
would speed-up the computation of conditional minima, the method might not
be as fast as when using approximate conditional minima in place of the actual
one.

From a practical perspective, the improved Laplace approximation requires
the integrand to be concave and unimodal but not necessarily symmetric or
with Gaussian tails, though further assumptions are required to guarantee its
asymptotic properties. In our experience, the standard Laplace approximation
tends to work poorly when many variables of the integrand lay on the posi-
tive subset of the real numbers or when the dimensionality of the integrand
increases with the sample size. Indeed, despite applying logarithmic transfor-
mations, such variables may still lead to asymmetric or heavy-tailed integrands.
While in Bayesian applications H(·) may not always be unimodal, in GLMM
it is often unimodal. In many instances, with independent random effects, the
standard Laplace approximation or numerical integration with a few quadra-
ture points are accurate enough for practical purposes. Indeed standard GLMM
can now be fitted quite accurately by available R packages such as lme4. How-
ever, in models with complicated, dependent and/or crossed random effects,
Laplace’s method may perform poorly, and numerical integration may require
a large number of quadrature points, hence leading to a higher computational
overhead. Our method seems particularly suited for these contexts, as was also
demonstrated by the examples of Sections 3.5 and 3.6.

Finally, the improved Laplace approximation can be used to compute slightly
modified KL divergences that arise in the variational approximation framework
[31]. In this context, the method can be useful for extending the usual Gaussian
variational approach to the use of more flexible and non-conjugate densities,
such as the skew-t [1]. This and the extension of the method to cases in which
the mode lies outside the integration region are under investigation.
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