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Abstract: Probabilistic binary classification typically calls for a vector of
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the corresponding case to class 1. Scoring rules are principled ways to assess
probabilistic forecasts about any outcome that is subsequently observed.
We develop a class of proper scoring rules called linear scoring rules that
are specifically adapted to probabilistic binary classification. When applied
in competition situations, we show that all linear scoring rules essentially
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any user-defined misclassification loss function.

MSC 2010 subject classifications: Primary 62C99.
Keywords and phrases: Scoring rules, binary classification, probabilistic
forecast.

Received November 2015.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1597
2 The class of linear scoring rules . . . . . . . . . . . . . . . . . . . . . 1598

2.1 Linear scoring rules . . . . . . . . . . . . . . . . . . . . . . . . . 1599
2.2 Connection to other scoring rules . . . . . . . . . . . . . . . . . 1599
2.3 Additive sub-class . . . . . . . . . . . . . . . . . . . . . . . . . 1600
2.4 Homogeneous sub-class . . . . . . . . . . . . . . . . . . . . . . . 1601
2.5 Rank-based sub-class . . . . . . . . . . . . . . . . . . . . . . . . 1601

3 Training with linear scoring rules . . . . . . . . . . . . . . . . . . . . 1603
3.1 Estimating equations . . . . . . . . . . . . . . . . . . . . . . . . 1603

4 Deterministic classification and connection to decision theory . . . . 1603
4.1 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1604
4.2 Random classification . . . . . . . . . . . . . . . . . . . . . . . 1604
4.3 Proper scoring rule . . . . . . . . . . . . . . . . . . . . . . . . . 1605

5 Discriminative ability and robustness: choosing the best scoring rule 1605
6 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . 1606
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1607
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1607

1596

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/16-EJS1150
mailto:mparry@maths.otago.ac.nz


Linear scoring rules for probabilistic binary classification 1597

1. Introduction

Classification challenges have become an exciting and useful feature of the sta-
tistical and machine learning community. Given a labelled training dataset,
contestants are invited to submit their classifications for a test dataset. In order
to make the challenge more interesting, challenge organizers typically publish a
ranked list of the leading submissions and, ultimately, announce the winner of
the challenge. However, in order for such a competition to be considered worth
entering, the challenge organizers must be seen to evaluate the submissions in
a fair and open manner.

Perhaps the most common classification challenge involves probabilistic bi-
nary classification. Suppose there are n test cases and that y = (yi ∈ {0, 1} | i =
1, . . . , n) is the vector of labels known only to the challenge organizers. Contes-
tants are asked to submit a vector of probabilities ω = (ωi) with the interpreta-
tion that ωi = P(Yi = 1). Note that the contestant is being asked for marginal
probabilities only. How can such probabilistic classifications be evaluated?

Scoring rules were devised precisely to answer this kind of question. Scoring
rules are a principled way to assess probabilistic forecasts about any outcome
that is subsequently observed. Crucially, proper scoring rules elicit honest state-
ments of belief about the outcome. In the context of the probabilistic classifica-
tion challenge, if the challenge organizers use a proper scoring rule to evaluate
submissions, a competitor’s expected score under their true belief about the
class labels will be minimized1 by actually quoting that belief to the organizers.
A proper scoring rule therefore rules out any possibility of a competitor gaming
the challenge.

Scoring rules have long been applied to forecasts of binary outcomes. Indeed,
in one of the first papers on the subject, Brier (Brier, 1950) explicitly consid-
ered the case of a sequence of weather forecasts for rain or no rain. Almost all
discussion, however, has centered on sequential or online evaluation of forecast-
ers. Here our focus is on batch evaluation. Some of our results are anticipated
in the technical report by Buja et al. (Buja, Stuetzle and Shen, 2005), though
they implicitly assume additive scoring rules – see section 2.3. Banerjee et al.
(Banerjee, Guo and Wang, 2005) considered loss functions that are minimized
in expectation by quoting the expected value of the outcome in question. When
restricted to binary outcomes, their loss functions can be recast as scoring rules
that are essentially given by eq. 3. The excellent review article by Gneiting and
Raftery (Gneiting and Raftery, 2007) includes discussion of scoring rules for
categorical outcomes; these are superficially similar to the scoring rules intro-
duced here but the quoted probabilities are constrained to lie on the simplex.
Recently, Byrne (Byrne, 2016) has written about area-under-the-curve (AUC)
measures for probabilistic forecasting. In his elegant formulation of the problem,
when only marginal probabilities are quoted, the concept of a scoring function
is invoked, as opposed to a scoring rule. Finally, Frongillo and Kash (Frongillo
and Kash, 2015) have recently considered the general problem of devising proper

1Scoring rules are typically taken to be negatively oriented.
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scoring rules to elicit vector-valued properties of a distribution. In their termi-
nology, a property is linear if it is a linear function on the space of distributions.
The linear scoring rules in this paper can be understood as eliciting the vector-
valued linear property that is the marginal probabilities.

In section 2, we introduce the class of linear scoring rules and contrast them
with more general but more complicated scoring rules. We find three useful
sub-classes of linear scoring rules: additive, homogeneous and rank-based. We
also make a connection between a particular rank-based linear scoring rule and
the AUC measure. Section 3 is an aside on using linear scoring rules to train
probabilistic classifiers. In section 4, we show how linear scoring rules fit within
statistical decision theory. We are able to show that there is a linear scoring
rule which accounts correctly for any user-defined misclassification loss function.
Finally, in section 5, we show that all linear scoring rules essentially achieve the
same balance between the organizers’ need for discriminative power and the
competitors’ wish not to be penalized unduly by outliers.

2. The class of linear scoring rules

To fix notation, let y ∈ Y := {0, 1}n be an observed outcome of class labels
and let ω ∈ P := [0, 1]n be a vector of probabilities. We will refer to these
probabilities as marginal probabilities to emphasize the fact that ω is not a joint
probability from PY , the class of all distributions on Y . Note that the restriction
to P is not done for convenience but rather to fit in with the framework of the
classification challenge: competitors are asked to quote marginal probabilities,
not a joint distribution. We will be interested in scoring rules S : Y × P →
R ∪ {∞} and will say S(y, ω) is the score for quoting ω and observing y.

The fact that P is convex is crucial to what follows. For p ∈ PY , let Mp
denote the product of its marginal probabilities. More precisely, (Mp)(y) =∏n

i=1 π
yi

i (1− πi)
1−yi , where π = EY∼p Y . Then, as is well known, MPY is not

convex: for p, q ∈ PY and λ ∈ (0, 1), typically there is no p(λ) ∈ PY such that
Mp(λ) = (1− λ)Mp+ λMq. For this reason, we do not look to define scoring
rules on Y ×MPY . However, this does mean a competitor’s quote need not be
derived from a joint distribution.

We overload the notation for scoring rules by defining the expected score for
each π ∈ P ,

S(π, ω) = EY∼π S(Y, ω), (1)

where Y ∼ π is shorthand for Yi
ind∼ Bern(πi), i = 1, . . . , n. So defined, S(π, ω) is

affine in its first argument. A scoring rule is said to be proper in P , if S(π, ω) ≥
S(π, π), for all π, ω ∈ P . A scoring rule is said to be strictly proper if equality
holds for ω = π only. Note that the scoring rules we discuss in this paper remain
proper in PY , though not strictly proper.

As indicated previously, a proper scoring rule will elicit an honest statement
of a competitor’s belief. To see this, suppose π represents the competitor’s ac-
tual belief about the class labels. Then S(π, ω) will be their expected score
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under their actual belief if they quote ω. But, if the scoring rule is proper, their
expected score cannot be less than S(π, π), hence they should quote π.

It is convenient to define d(π, ω) := S(π, ω)− S(π, π), a quantity commonly
called the divergence. The divergence cannot be negative for a proper scoring
rule. For a strictly proper scoring rule, d(π, ω) = 0 only if ω = π.

2.1. Linear scoring rules

A great deal is known about how to generate proper scoring rules (McCarthy,
1956; Hendrickson and Buehler, 1971; Gneiting and Raftery, 2007). For our
situation, Theorem 1 of Gneiting and Raftery (2007) ensures that under mild
regularity conditions and for convex P , S(·, ω) will be a (strictly) proper scoring
rule iff there exists a (strictly) concave function H(ω) such that

S(y, ω) = H(ω) + (y − ω) · ∂H(ω), (2)

where ∂H(ω) is a supergradient toH(·) at ω. The converse result is thatH(ω) =
S(ω, ω). To reflect its importance, H(ω) is called the entropy.

When H(ω) is differentiable, the expression for the scoring rule simplifies to

S(y, ω) = H(ω) + (y − ω) · ∇H(ω), (3)

where ∇H(ω) := (∂H/∂ωi).
We call a scoring rule that is derived from eq. (2) a linear scoring rule. This

is motivated by the fact that such a scoring rule is a linear function of the class
labels y. For convenience, we will always assume H(ω) is concave so that a linear
2 scoring rule is also necessarily proper. Eq. (3) is also anticipated in Banerjee,
Guo and Wang (2005). Banerjee et al. (Banerjee, Guo and Wang, 2005) found
the necessary form of loss functions L(y, ω) that are minimized in expectation by
predicting ω = EY for the outcome y. When y is restricted to binary outcomes,
their loss functions are our linear scoring rules, since π = EY∼p Y .

A useful consequence of linearity is that even though in truth Y ∼ p ∈ PY ,
still S(p, ω) = S(π, ω), where π is the resulting vector of marginal probabilities
for the class labels.

2.2. Connection to other scoring rules

It is important to realize that linear scoring rules do not exhaust the forms of
scoring rules that can be applied to probabilistic binary classification. Indeed,
the obvious approach is the indirect one: take existing proper scoring rules
S(y, q) on Y × PY , and then restrict consideration to probability distributions

2We use linear in the sense of a linear function rather than a linear map. As a mapping,
the scoring rule is an affine transformation of the class labels y. However, we don’t want to
confuse this use of affine with the common use of affine in connection with scoring rules to
refer to the fact that S(π, ω) is affine in its first argument.
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of the form q(y) =
∏n

i=1 ω
yi

i (1 − ωi)
1−yi . However, apart from the logarithmic

scoring rule, S(y, q) = − log q(y), the resulting scoring rules are rather unwieldy.
Consider for example, the Brier scoring rule, which for q ∈ PY takes the

form S(y, q) = −q(y) + 1
2

∑
z∈Y q(z)2. When q(y) =

∏n
i=1 ω

yi

i (1 − ωi)
1−yi , this

becomes

S(y, ω) = −
n∏

i=1

ωyi

i (1− ωi)
1−yi + 1

2

n∏
i=1

{
ω2
i + (1− ωi)

2
}
. (4)

Thus linear scoring rules have the appeal of simplicity and tractability.
Having said that, linear scoring rules have a slightly reduced flexibility under

certain additive transformations. Typically, if S(y, q) is a scoring rule then so
is S(y, q) + k(y). For linear scoring rules, however, k(y) must take the form
k(y) = k · y + c.

2.3. Additive sub-class

We call a scoring rule additive if it is generated by an entropy function of the
form H(ω) =

∑
i hi(ωi), where each hi(·) is a concave function of its argument,

so that

S(y, ω) =
∑
i

Si(yi, ωi). (5)

Note that Frongillo and Kash (Frongillo and Kash, 2015) refer to additivity as
separability.

In most applications, we expect that hi(s) = h(s), for each i. Common exam-
ples include h(s) = −s log s− (1− s) log(1− s), which leads to the logarithmic
scoring rule,

S(y, ω) =
∑
i

{−yi logωi − (1− yi) log(1− ωi)} , (6)

and h(s) = 1
2s(1−s), which leads to the linear class version of the Brier scoring

rule,

S(y, ω) = 1
2‖y − ω‖2. (7)

Additive scoring rules also have a “local” property: the score for test case i
depends on ωi but not on the quoted probability for any other case. Note that
this is a different type of locality to that of local scoring rules (Parry, Dawid
and Lauritzen, 2012); there locality refers to the (relative) lack of dependence
on the quoted probability for unrealized outcomes.

An interesting twist on the usual additive scores comes from considering
hi(s) = wih(s), where the wi are weights satisfying wi > 0 and

∑
i wi = 1.

The ensuing scoring rule then weights the test cases differently. While this is
a proper scoring rule, if competitors are to make use of the weighting scheme,
they should also be given the weighting scheme for the training data.



Linear scoring rules for probabilistic binary classification 1601

2.4. Homogeneous sub-class

Recall that a function f(s) is said to be homogeneous of order k or k-homoge-
neous, if f(λs) = λkf(s), for λ > 0. We call a scoring rule homogeneous if
it is generated by an entropy function that is 1-homogeneous (up to an irrele-
vant additive constant). WhenH(ω) is also differentiable, 1-homogeneity implies
H(ω) = ω · ∇H(ω), and the associated scoring rule takes the very simple form,

S(y, ω) = y · ∇H(ω), (8)

and is 0-homogeneous.
Pseudospherical scoring rules are examples of homogeneous scoring rules.

They arise from the fact that the Lα-norm, ‖ω‖α = (
∑

i |ωi|α)1/α = (
∑

i ω
α
i )

1/α
,

is convex for α ≥ 1. Letting H(ω) = −‖ω‖α, we have

S(y, ω) = −
∑n

i=1 yiω
α−1
i

‖ω‖α−1
α

. (9)

In the limit α → ∞, i.e. the L∞-norm, we have the zero-one scoring rule

S(y, ω) = − 1

#M(ω)

∑
i∈M(ω)

yi, (10)

where M(ω) = {j |ωj = max{ω}} and #A denotes the cardinality of A. In
slightly different contexts, this is sometimes referred to as the misclassification
loss.

The only scoring rule that is both additive and homogeneous is the trivial
scoring rule, S(y, ω) = k · y.

2.5. Rank-based sub-class

A scoring rule is said to be rank-based if it depends only on the ranks of the
quoted probabilities ω. As a consequence, a rank-based scoring rule cannot be
strictly proper. A rank-based scoring rule is also a homogeneous scoring rule.

Here we give only an important example of a rank-based scoring rule. Let

ψi(ω) = #{j |ωj < ωi} −#{j |ωj > ωi}, (11)

so that ψi(ω) is the net number of elements of ω that are exceeded by ωi. Then
H(ω) = −ω · ψ(ω) is both 1-homogeneous and concave, where ψ(ω) := (ψi(ω)).
One-homogeneity is immediate since ψ(ω) 0-homogeneous. To show concavity,
first note that because H(ω) is a collection of planar surfaces essentially indexed
by the rank sets of ω, it suffices to consider what happens on either side of
ωi = ωk, for an arbitrary pair (i, k). Without loss of generality, fix k and let
Mk(ω) = {j |ωj = ωk}. Letting superscript 0 indicate the value of a quantity
when ωi = ωk, and superscript ± indicate the value of a quantity when ωi = ω±

k ,
we have ψ±

i = ψ0
i ±#Mk, ψ

±
j = ψ0

j ∓ 1, for j ∈ Mk, and ψ±
j = ψ0

j otherwise.
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Fig 1. Geometric interpretation of the ranked-based scoring rule given in eq. (12). In a sense,
the scoring rule averages the performance of the thresholded probabilistic classifier over all
thresholds.

Continuity of H(ω) follows since H± = H0 ∓ ω±
k · #Mk ±

∑
j∈Mk

ωj = H0 ∓
ωk ·#Mk ± ωk

∑
j∈Mk

1 = H0. Finally, H(ω) is concave because ∂H/∂ωi|+− =
−2#Mk < 0. The resulting scoring rule is

S(y, ω) = −y · ψ(ω). (12)

Byrne (Byrne, 2016) has shown that this is related to the Wilcoxon-Mann-
Whitney U -statistic and to the area-under-the-curve (AUC) measure, which is
very commonly used in classification challenges. Specifically, if we define n1 =∑

i yi to be the number of test cases of class 1, then

AUC(y, ω) =

{
1
2

[
1− 1

n1(n−n1)
· (−y · ψ(ω))

]
n1 �= 0, n,

1
2 otherwise,

(13)

where we follow Byrne (Byrne, 2016) and define the AUC to be 1
2 , when n1 =

0, n. Although the AUC appears to be a scaled, positively oriented scoring rule,
in general it is not. However, if n1 is known beforehand – sometimes this infor-
mation is provided to challenge contestants – then the AUC is in the class of
linear scoring rules. Byrne (Byrne, 2016) also shows that the AUC is a proper
scoring rule in the (unrealistic) case that Y ∼ ω ∈ P .

The obvious connection between eq. (12) and eq. (13), however, enables us to
give a simple geometric picture of the rank-based scoring rule introduced here.
Figure 1 is a plot of false positive counts (FP) vs. true positive counts (TP) for
all thresholds between 0 and 1. Then S(y, ω) = −2× (area above the diagonal).
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3. Training with linear scoring rules

Given a set of features or predictors x ∈ X ⊆ R
p, a rather general approach to

probabilistic classification is to let

ω(x) = F (x · θ), (14)

where F : (−∞,∞) → [0, 1] is a cumulative distribution function and θ ∈ R
p

is a parameter vector to be estimated from the training data. This framework
includes logistic and probit regression as special cases. We now show that there
is a natural additive scoring rule associated with each continuous cdf F (·).
Lemma 1. If Q(·) is the quantile function associated with the cdf F (·) then
h(ω) := −

∫ ω
dz Q(z) is concave in ω for ω ∈ [0, 1].

Proof. Since Q(·) is a non-negative, non-decreasing function, h(π) − h(ω) =
−

∫ π

ω
dz Q(z) ≤ −(π − ω)Q(ω) = (π − ω)h′(ω).

Consequently, H(ω) =
∑n

i=1 h(ωi) is concave and generates an additive scor-
ing rule. Using this in eq. (3) and after integrating by parts and a change of
variables, we obtain the scoring rule

S(y, ω) =

n∑
i=1

{
−yi xi · θ +

∫ xi·θ
F (ζ) dζ

}
. (15)

Note that in the case of logistic regression, this scoring rule is exactly the log
score.

The perceptron scoring rule is an interesting example connected to the per-
ceptron neural network that arises as a limiting case of eq. (15). Letting F (ζ) =
1{ζ > 0}, then

S(y, ω) =

n∑
i=1

{−yi + F (xi · θ)}xi · θ. (16)

3.1. Estimating equations

The system of (unbiased) estimating equations (Dawid and Lauritzen, 2005) for
θ is

∂S

∂θα
=

n∑
i=1

{−yi + F (xi · θ)}xiα = 0, (17)

where xiα denotes the α-component of feature vector xi and α = 1, . . . , p. The
simple form of these equations has useful consequences for back propagation in
neural net-type applications.

4. Deterministic classification and connection to decision theory

In some challenges, the organizers require definite class predictions and will rank
the competitors in terms of a loss function L(y, y�), where y� = (y�i ) and y�i is
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the predicted class for test case i. The question is then how to turn a proba-
bilistic classification into a deterministic classification. The obvious approach is
by thresholding:

y�i = 1{ωi > s}, (18)

for some threshold s ∈ [0, 1]. Another approach is to suppose the probabilities
ω are the basis for the randomized classification

Y � ∼ ω. (19)

(Recall this is shorthand for Y �
i

ind∼ Bern(ωi), i = 1, . . . , n.) We now show that
neither approach corresponds to a proper scoring rule but that there is, never-
theless, a linear scoring rule naturally associated with the loss function L(y, y�).

Following Hand (Hand, 2009), let c� ∈ [0,∞] denote the cost of misclassifying
an object that is in class 
. If we assume that there is no cost in correctly
assigning an object to its class and that the loss is additive in the cases, then

L(y, y�) = c0 y
� · (1− y) + c1(1− y�) · y, (20)

where 1 = (1, . . . , 1).

4.1. Thresholding

Under thresholding, the implied scoring rule is S(y, ω) = c01{ω > s} · (1− y) +
c1(1− 1{ω > s}) · y. The associated entropy is therefore

H(ω) = c01{ω > s} · (1− ω) + c1(1− 1{ω > s}) · ω. (21)

We now show that for s �= c0/(c0+ c1), the entropy is not a continuous function
of ω, and hence cannot be a generator of a proper scoring rule. Choose i and
compare the left and right limits as ωi → s, with ω otherwise fixed. Then
H|+− = c0(1 − s) − c1s �= 0. The case s = c0/(c0 + c1) is a special case that we
will return to shortly.

4.2. Random classification

Randomized classification implies the scoring rule S(y, ω) = EY �∼ω L(y, Y �) =
c0 ω · (1− y) + c1(1−ω) · y. We can see that this is not a proper scoring rule in
two different ways. The more direct way is via the implied entropy:

H(ω) = (c0 + c1)ω · (1− ω) (22)

and this actually generates the Brier scoring rule and not S(y, ω) above. The
more explicit way comes from noting that the divergence

d(π, ω) = S(π, ω)− S(π, π) = (ω − π) · (c0(1− π)− c1π) (23)

can be negative. For if we have πi �= 0, 1 for some i, then there exists ε = (εi)
such that π ± ε are interior points of [0, 1]n, and it follows that d(π, π ± ε) will
be of opposite sign.
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4.3. Proper scoring rule

Grünwald and Dawid (Grünwald and Dawid, 2004) give a decision theoretic
approach for turning any loss function into a proper scoring rule. The key is to
consider optimal acts in light of the expected loss, where the expectation is over
possible outcomes y. In this formulation, y� is the act of classification. Again
overloading the notation, the expected loss is L(π, y�) = c0 y

� · (1− π) + c1(1−
y�) · π. Then the Bayes act aπ against π is the choice

aπi = 1

{
πi >

c0
c0 + c1

}
, (24)

which ensures L(π, y�) ≥ L(π, aπ). Following Grünwald and Dawid, we have
that

S(y, ω) := L(y, aω) = c0 a
ω · (1− y) + c1(1− aω) · y (25)

is a proper scoring rule. Given the previous discussion, we immediately see that
this corresponds to converting the probabilistic classifier into a deterministic
classifier by choosing the particular threshold s = c0/(c0 + c1). This is the only
threshold that is appropriate.

The entropy associated with the scoring rule is

H(ω) = c0 a
ω · (1− ω) + c1(1− aω) · ω, (26)

which is continuous and concave since H(ω) =
∑

i h(ωi), where

h(ωi) =

{
c0(1− ωi), ωi >

c0
c0+c1

c1ωi, otherwise
. (27)

5. Discriminative ability and robustness: choosing the best scoring
rule

Given the large number of linear scoring rules that could be used, it is natural to
wonder whether there is an optimal scoring rule or a set of criteria for selecting
an appropriate proper scoring rule. We argue in this section that all linear
scoring rules are essentially on a par when it comes to balancing the requirements
of the organizers and the competitors.

Let ω be a competitor’s probabilistic classification and π = EY∼p Y , the true
marginal distribution resulting from p ∈ PY . Organizers will value discriminative
power in the scoring rule, i.e. the ability to discriminate between classifications
that are “close to” π. This will be achieved if (EY∼p[S(Y, ω) − S(Y, π)])2 is
large. On the other hand, contestants will not want their score to be sensitive to
outliers or unusual cases, i.e. the scoring rule should have a degree of robustness.
This will be achieved if varY∼p[S(Y, ω)−S(Y, π)] is small. These two desiderata
can be combined by seeking to maximize

(EY∼p[S(Y, ω)− S(Y, π)])
2

varY∼p[S(Y, ω)− S(Y, π)]
. (28)
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Importantly, this combination is invariant under a multiplicative rescaling of
the scoring rule.

To make more concrete statements about the objective function in eq. (28), we
will assume that the generating entropy H(ω) for the scoring rule is strictly con-
cave and sufficiently differentiable. Consequently,−∇2H(ω) := −(∂2H/∂ωi ∂ωj)
exists and is symmetric positive definite. Now suppose ω is close to π, i.e.
ω = π + ε η, where ε is a small real number and η�η = 1. Expanding the
competitor’s score around π, we have

S(y, ω) = S(y, π) + ε S1(y, π; η) +
1
2 ε

2S2(y, π; η) +O(ε3), (29)

where Sk(y, π; η) := (d/dε)kS(y, π + εη)|ε=0.
We now have the following lemma:

Lemma 2. For any p ∈ PY , if H(ω) is strictly concave and sufficiently differ-
entiable, then EY∼p S1(Y, π; η) = 0, where π = EY∼p Y .

Proof. S1(y, π; η) = (y − π)�∇2H(π) η, and the result follows.

As a consequence of lemma 2,

varY∼p S1(Y, π; η) = EY∼p S1(Y, π; η)
2 = η�∇2H(π) Σ∇2H(π) η, (30)

where Σ is the unknown covariance matrix covY∼p (Y ). Furthermore,
S2(y, π; η) = −η�∇2H(π) η, so that (trivially)

EY∼p S2(Y, π; η) = −η�∇2H(π) η. (31)

To lowest order in ε, the objective function becomes

1
4ε

2

(
−η�∇2H(π) η

)2
η�∇2H(π) Σ∇2H(π) η

. (32)

We now argue that all linear scoring rules have similar discriminatory and ro-
bustness properties, at least for predictions close to the truth. The usual method
of Lagrange multipliers shows that the objective function achieves its worst case
when η is an eigenvector of Σ∇2H(π), where it evaluates to 1

4ε
2η�Σ−1η. Thus

the best worst-case scenario is controlled by the data-generating distribution
alone – specifically the smallest eigenvalue of Σ−1 – and cannot be targeted by
any linear scoring rule.

6. Discussion and future work

We have introduced linear scoring rules that can be used in binary classifica-
tion challenges that call for a vector of class probabilities. We have illustrated
important sub-classes of these scoring rules and have shown that they balance
the needs of the organizers and the contestants. We have also shown how linear
scoring rules can be used to train a classifier. An important question for future
work is, given the scoring rule that will be used on the test cases, what is the
optimal way to train the classifier?
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