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Abstract: Matrix completion has been well studied under the uniform
sampling model and the trace-norm regularized methods perform well both
theoretically and numerically in such a setting. However, the uniform sam-
pling model is unrealistic for a range of applications and the standard
trace-norm relaxation can behave very poorly when the underlying sam-
pling scheme is non-uniform.

In this paper we propose and analyze a max-norm constrained empiri-
cal risk minimization method for noisy matrix completion under a general
sampling model. The optimal rate of convergence is established under the
Frobenius norm loss in the context of approximately low-rank matrix recon-
struction. It is shown that the max-norm constrained method is minimax
rate-optimal and yields a unified and robust approximate recovery guaran-
tee, with respect to the sampling distributions. The computational effec-
tiveness of this method is also discussed, based on first-order algorithms for
solving convex optimizations involving max-norm regularization.
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1. Introduction

The problem of recovering a low-rank matrix from a subset of its entries, also
known as matrix completion, has been an active topic of recent research with
a range of applications including collaborative filtering (the Netflix problem)
(Goldberg et al., 1992), multi-task learning (Argyriou, Evgeniou and Pontil,
2008), system identification (Liu and Vandenberghe, 2009), and sensor localiza-
tion (Singer and Cucuringu, 2010; Candés and Plan, 2010), among many others.
We refer to Candés and Plan (2010) for detailed discussions of the aforemen-
tioned applications. Another noteworthy example is the structure-from-motion
problem in computer vision (Tomasi and Kanade, 1992; Chen and Suter, 2004).
Let f and d be the number of frames and feature points, respectively. The data
are stacked into a low-rank matrix of trajectories, say M ∈ R2f×d, such that
every element of M corresponds to an image coordinate from a feature point
of a rigid moving object at a given frame. Due to objects occlusions, errors
on the tracking or variable out of range (i.e. images beyond the camera field of
view), missing data are inevitable in real-life applications and are represented as
empty entries in the matrix. Therefore, accurate and effective matrix completion
methods, which fill in missing entries by suitable estimates, are required.

Because a direct search for the lowest-rank matrix satisfying the equality
constraints is NP-hard, most previous work on matrix completion has focused
on using the trace-norm, which is defined to be the sum of the singular values
of the matrix, as a convex relaxation for the rank. This can be viewed as an
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analogue to relaxing the sparsity of a vector to its �1-norm, which has been shown
to be effective both empirically and theoretically in compressed sensing. Several
recent papers proved in different settings that a generic d×d rank-r matrix can
be exactly and efficiently recovered from O{rd poly(log d)} randomly chosen
entries (Candés and Recht, 2009; Candés and Tao, 2010; Gross, 2011; Recht,
2011). These results thus provide theoretical guarantees for the constrained
trace-norm minimization method. In the case of recovering approximately low-
rank matrices based on noisy observations, different types of trace-norm based
estimators, which are akin to the Lasso and Dantzig selector used in sparse
signal recovery, were proposed and well-studied. See, for example, Candés and
Plan (2010), Keshavan and Montanari (2010), Rohde and Tsybakov (2011),
Koltchinskii, Lounici and Tsybakov (2011), Negahban and Wainwright (2012),
Koltchinskii (2011) and Klopp (2011, 2014), among others.

It is, however, unclear that whether the trace-norm is the best convex re-
laxation for the rank, especially when the underlying sampling scheme is non-
uniform, and more importantly, is unknown. A matrix M ∈ Rd1×d2 can be
viewed as an operator mapping from Rd2 to Rd1 , its rank can be alternatively
expressed as the smallest integer k such that the matrix M can be decomposed
as M = UV ᵀ for some U ∈ Rd1×k and V ∈ Rd2×k. In view of the matrix fac-
torization M = UV ᵀ, by enforcing U and V to have a small number of columns
we obtain a low-rank M . The number of columns of U and V can be relaxed in
a different way from the usual trace-norm by the so-called max-norm (Linial et
al., 2004), defined by

‖M‖max = min
M=UV ᵀ ‖U‖2,∞‖V ‖2,∞, (1.1)

where the infimum is carried out over all factorizations M = UV ᵀ with ‖U‖2,∞
denoting the operator norm of U : �k2 �→ �d1∞ and ‖V ‖2,∞ the operator norm

of V : �k2 �→ �d2∞ (or, equivalently, V ᵀ : �d2
1 �→ �k2) and k = 1, . . . ,min(d1, d2).

Note that ‖U‖2,∞ is also the maximum �2 row norm of U . Since �2 is a Hilbert
space, the factorization constant ‖ · ‖max indeed defines a norm on the space of
operators between �d2

1 and �d1
∞.

The max-norm was recently proposed as an alternative convex surrogate to
the rank of the matrix. For collaborative filtering problems, the max-norm has
been shown to be empirically superior to the trace-norm Srebro, Rennie and
Jaakkola (2004). Foygel and Srebro (2011) used the max-norm for matrix com-
pletion under the uniform sampling distribution. Their results are direct conse-
quences of a recent bound on the excess risk for a smooth loss function, such
as the quadratic loss, with a bounded second derivative (Srebro, Sridharan and
Tewari, 2010). Further, a max-norm constrained maximum likelihood method
was considered by Cai and Zhou (2013) for one-bit matrix completion, where
instead of observing real-valued entries of an unknown matrix one is only able
to see binary outputs, i.e. yes/no, true/false, agree/disagree (Davenport et al.,
2014). Theoretical guarantees are obtained in general non-uniform sampling
models, and numerical studies show that the max-norm based approach is com-
parable to and sometimes slightly outperform the corresponding trace-norm
method.
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Matrix completion has been well analyzed in the uniform sampling model,
where observed entries are assumed to be sampled randomly and uniformly. In
such a setting, the trace-norm regularized approach has been shown to have good
theoretical and numerical performance. However, in some applications such as
collaborative filtering, the uniform sampling model is unrealistic. For example,
in the Netflix problem, the uniform sampling model is equivalent to assuming
all users are equally likely to rate each movie and all movies are equally likely
to be rated by any user. From a practical point of view, invariably some users
are more active than others and some movies are more popular and thus rated
more frequently. Hence, the sampling distribution is in fact non-uniform in the
real world. In such a setting, Salakhutdinov and Srebro (2010) showed that the
standard trace-norm relaxation can sometimes behave poorly, and suggested a
weighted trace-norm penalty, which incorporates the knowledge of true sam-
pling distribution in its construction. Since the true sampling distribution is
most likely unknown and can only be estimated based on the locations of those
entries that are revealed in the sample, a practically available method relies
on the empirically-weighted trace-norm (Foygel et al., 2011). It is also worth
noticing that, when the sampling probabilities are bounded from below and
above, the trace-norm penalized estimator is minimax optimal up to a logarith-
mic factor (Klopp, 2014). We refer to Fang et al. (2015b) for further numerical
evaluations of the trace-norm regularized method under various non-uniform
sampling schemes.

In this paper, we employ the max-norm as a convex relaxation for the rank to
study matrix completion based on noisy observations in a general, unspecified
sampling model. The rate of convergence for the max-norm constrained least
squares estimator is obtained. Information-theoretical methods are used to es-
tablish a matching minimax lower bound in the general non-uniform sampling
model. Together, the minimax upper and lower bounds yield the optimal rate
of convergence for the Frobenius norm loss. It is shown that the max-norm reg-
ularized approach indeed provides a unified and robust approximate recovery
guarantee with respect to sampling schemes. In the uniform sampling model as
a special case, our results also show that the extra logarithmic factors appeared
in the error rates obtained by Srebro, Sridharan and Tewari (2010) and Foygel
and Srebro (2011) could be avoided after a careful analysis to match the min-
imax lower bound with the upper bound (see Theorems 3.1 and 3.3 and the
discussions in Section 3).

The max-norm constrained minimization problem is a convex program. To
solve general convex programs that involve either a max-norm constraint or
a max-norm penalization, a first-order algorithm was proposed by Lee et al.
(2010), which is computationally effective and outperforms the semi-definite
programming (SDP) method of Srebro, Rennie and Jaakkola (2004). In princi-
ple, the method of Lee et al. (2010) is based on nonconvex relaxations. There-
fore, their algorithm is only guaranteed to find a stationary point, and sta-
tistical properties of such solutions are difficult to analyze. Recently, Fang et
al. (2015b) proposed a scalable algorithm based on the alternating direction
of multipliers method to efficiently solve the max-norm constrained optimiza-
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tion problem with guaranteed rate of convergence to the global optimum. In
summary, the max-norm constrained empirical risk minimization problem can
indeed be implemented in polynomial time as a function of the sample size and
matrix dimensions.

The remainder of the paper is organized as follows. After introducing basic
notation and definitions, Section 2 collects a few useful results on the max-norm,
trace-norm and Rademacher complexity that will be needed in the rest of the
paper. Section 3 introduces the model and the estimation procedure and then
investigates the theoretical properties of the estimator. Both minimax upper and
lower bounds are given. The results show that the max-norm constrained min-
imization method achieves the optimal rate of convergence over the parameter
space. Comparison with past work is also given. Computation and implementa-
tion issues are discussed in Section 4. A brief discussion is given in Section 5, and
the proofs of the main results and key technical lemmas are placed in Section 6.

2. Notations and preliminaries

In this section, we begin with some notation that will be used throughout the
paper, and then collect some known results on the max-norm, trace-norm and
Rademacher complexity that will be applied repeatedly later.

For any positive integer d, we use [d] to denote the collection of integers
{1, 2, . . . , d}. For any set S, denote by Sc its complement, and |S| its cardi-
nality. For a vector u ∈ Rd and 1 ≤ p < ∞, define its �p-norm by ‖u‖p =(∑d

i=1 |ui|p
)1/p

. In particular, ‖u‖∞ = maxi=1,...,d |ui| is the �∞-norm. For any

d1×d2 matrix M = (Mk�)1≤k≤d1,1≤�≤d2 , let ‖M‖F =
√∑d1

k=1

∑d2

�=1 M
2
k� be the

Frobenius norm and let ‖M‖∞ = max(k,�)∈[d1]×[d2] |Mk�| denote the elementwise

�∞-norm. Given two norms �p and �q on Rd1 and Rd2 respectively, the corre-
sponding operator norm ‖ · ‖p,q of a matrix M ∈ Rd1×d2 is defined by ‖M‖p,q =
sup‖u‖p=1 ‖Mu‖q. It is easy to verify that ‖M‖p,q = ‖Mᵀ‖q∗,p∗ , where (p, p∗)
and (q, q∗) are conjugate pairs; that is, 1/p+ 1/p∗ = 1/q + 1/q∗ = 1. In partic-

ular, ‖M‖ = ‖M‖2,2 is the spectral norm; ‖M‖2,∞ = maxk=1,...,d1

√∑d2

�=1 M
2
k�

is also known as the maximum row norm of M . Moreover, for two real num-
bers a and b, we write for ease of presentation that a ∨ b = max(a, b) and
a ∧ b = min(a, b).

2.1. Max-norm and trace-norm

For a matrix M ∈ Rd1×d2 , the trace-norm (also known as the Schatten 1-norm)
‖M‖1 is defined as the sum of all singular values of M , or equivalently,

‖M‖1

= inf

⎧⎨⎩
d1∧d2∑
j=1

|σj | : M =

d1∧d2∑
j=1

σjujv
ᵀ
j , uj ∈ Rd1 , vj ∈ Rd2 , ‖uj‖2 = ‖vj‖2 = 1

⎫⎬⎭ .
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In other words, the trace-norm promotes low-rank decompositions with factors
in �2. Similarly, using Grothendiek’s inequality (Jameson, 1987), the max-norm
defined in (1.1) has the following analogous representation in terms of factors
in �∞:

‖M‖max ≈ inf

⎧⎨⎩
d1∧d2∑
j=1

|σj | : M =

d1∧d2∑
j=1

σjujv
ᵀ
j , ‖uj‖∞ = ‖vj‖∞ = 1

⎫⎬⎭ .

The factor of equivalence is the Grothendieck’s constant KG ∈ (1.67, 1.79).
Based on these properties, the max-norm regularization is expected to be more
effective when dealing with uniformly bounded data (Lee et al., 2010).

Of the same spirit as the definition of the max-norm in (1.1), the trace-norm
has the following equivalent characterization in terms of matrix factorizations:

‖M‖1 = min
U,V :M=UV ᵀ ‖U‖F ‖V ‖F =

1

2
min

U,V :M=UV ᵀ

(
‖U‖2F + ‖V ‖2F

)
.

See, for example, Srebro and Shraibman (2005). It is easy to see that

1√
d1d2

‖M‖1 ≤ ‖M‖max, (2.1)

which in turn implies that any low max-norm approximation is also a low trace-
norm approximation. As pointed out by Srebro and Shraibman (2005), there
can be a large gap between 1√

d1d2
‖ · ‖1 and ‖ · ‖max. The following relation

between the trace-norm and Frobenius norm is well-known: ‖M‖F ≤ ‖M‖1 ≤√
rank(M) · ‖M‖F . An analogous bound holds for the max-norm, in connection

with the element-wise �∞-norm (Linial et al., 2004):

‖M‖∞ ≤ ‖M‖max ≤
√

rank(M) · ‖M‖1,∞ ≤
√

rank(M) · ‖M‖∞. (2.2)

For any R > 0, let

Bmax(R) =
{
M ∈ Rd1×d2 : ‖M‖max ≤ R

}
and Btr(R) =

{
M ∈ Rd1×d2 : ‖M‖1 ≤ R

}
be the max-norm and trace-norm ball with radius R, respectively. It is now well-
known (Srebro and Shraibman, 2005) that Bmax(1) can be bounded, from both
below and above, by the convex hull of rank-one sign matrices M± = {M ∈
{±1}d1×d2 : rank(M) = 1}, i.e.

convM± ⊆ Bmax(1) ⊆ KG · convM± (2.3)

with KG ∈ (1.67, 1.79) denoting the Grothendieck’s constant. Moreover, M± is
a finite class with cardinality |M±| = 2d−1, where d = d1 + d2.
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2.2. Rademacher complexity

A technical tool used in our analysis involves data-dependent estimates of the
Rademacher and Gaussian complexities of a function class. We refer to Bartlett
and Mendelson (2002) and Srebro and Shraibman (2005) for a detailed intro-
duction of these concepts.

Definition 2.1. For a class F of functions mapping from X to R, its empirical
Rademacher complexity over a specific sample S = (x1, x2, . . . , xn) ⊆ X is given
by

R̂S(F) =
2

|S|Eε

{
sup
f∈F

∣∣∣∣∣
n∑

i=1

εif(xi)

∣∣∣∣∣
}
,

where ε = (ε1, ε2, . . . , εn)
ᵀ is a Rademacher sequence. The Rademacher com-

plexity with respect to a distribution P is the expectation, over an independent
and identically distributed (i.i.d.) sample of |S| points drawn from P, denoted
by

R|S|(F) = ES∼P{R̂S(F)}.

Replacing ε1, . . . , εn with independent standard normal variables g1, . . . , gn leads
to the definition of (empirical) Gaussian complexity.

Considering a matrix as a function from the index pairs to the entry val-
ues, Srebro and Shraibman (2005) obtained upper bounds on the Rademacher
complexity of the unit balls under both the trace-norm and the max-norm.
Specifically, for any d1, d2 > 2 and any sample of size 2 < |S| < d1d2, the
empirical Rademacher complexity of the max-norm unit ball is bounded by

R̂S (Bmax(1)) ≤ 12

√
d1 + d2
|S| . (2.4)

3. Max-norm constrained empirical risk minimization

3.1. The statistical model

We now consider matrix completion under a general random sampling model.
Let M∗ ∈ Rd1×d2 be the unknown target matrix. Suppose that a random sample

S = {(i1, j1), (i2, j2), . . . , (in, jn)} ⊆ ([d1]× [d2])
n

of the index set is drawn independently according to a general sampling dis-
tribution Π = {πk�}1≤k≤d1,1≤�≤d2 on [d1] × [d2], with replacement; that is,
P{(it, jt) = (k, �)} = πk� for all t = 1, . . . , n and (k, �) ∈ [d1] × [d2]. Given
a random index subset S = {(i1, j1), . . . , (in, jn)} of size n, we observe noisy
entries {Yitjt}nt=1 indexed by S, i.e.

Yitjt = M∗
itjt + σξt, t = 1, . . . , n, (3.1)
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for some σ > 0. The noise variables ξt are independent with zero mean and unit
variance. By expressing the model as in (3.1), it is implicitly assumed that the
noise on the entry is drawn independently each time.

Instead of assuming the uniform sampling distribution, we consider a general
sampling distribution Π here. Since

∑d1

k=1

∑d2

�=1 πk� = 1, we have maxk,� πk� ≥
(d1d2)

−1. Motivated by some applications, to ensure that each entry is observed
with a positive probability, it is sometimes natural to assume that there exists
a positive constant ν ≥ 1 such that

πk� ≥
1

ν d1d2
(3.2)

holds for all (k, �) ∈ [d1] × [d2]. We write hereafter d = d1 + d2 for brevity.
Clearly, max(d1, d2) ≤ d ≤ 2max(d1, d2).

The rescaled Frobenius norm (d1d2)
−1‖ · ‖2F is typically used in the literature

as a natural measure of the estimation accuracy. Now that the sampling distri-
bution Π is arbitrary, we use instead the weighted Frobenius norm with respect
to Π to measure the estimation error. For any A = (Ak�) ∈ Rd1×d2 , define

‖A‖2Π = E(i,j)∼ΠA
2
ij =

d1∑
k=1

d2∑
�=1

πk�A
2
k�. (3.3)

When Π corresponds to the uniform distribution, ‖A‖Π = (d1d2)
−1/2‖A‖F .

The preceding work on matrix completion has mainly focused on the case
of exact low-rank matrices. Here we allow a relaxation of this assumption and
consider the more general setting of approximately low-rank matrices. Specifi-
cally, we consider recovery of matrices with �∞-norm and max-norm constraints
defined by

K(α,R) :=
{
M ∈ Rd1×d2 : ‖M‖∞ ≤ α, ‖M‖max ≤ R

}
. (3.4)

Here both α and R are free parameters to be determined. If the matrix M∗ is
of rank at most r and ‖M∗‖∞ ≤ α, then by (2.2) we have M∗ ∈ Bmax(α

√
r)

and hence M∗ ∈ K(α, α
√
r).

3.2. Max-norm constrained least squares estimator

Given a collection of observations YS = {Yitjt}nt=1 from the observation model
(3.1), we estimate the unknown M∗ ∈ K(α,R) for some α,R > 0 by the mini-
mizer of the empirical risk with respect the quadratic loss function

L̂n(M ;Y ) =
1

n

n∑
t=1

(Yitjt −Mitjt)
2.

That is,
M̂max := argmin

M∈K(α,R)

L̂n(M ;Y ). (3.5)
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The minimization procedure requires that all the entries of M∗ are bounded
in magnitude by a prespecified constant α. This condition enforces that M∗

should not be too “spiky”, and a too large bound may jeopardize exactness of
the estimation. See, for example, Koltchinskii, Lounici and Tsybakov (2011),
Negahban and Wainwright (2012) and Klopp (2014). On the other hand, as
argued in Lee et al. (2010), the max-norm regularization is expected to be more
effective particularly for uniformly bounded data, which is our main motivation
for using the max-norm constrained estimator.

Although the max-norm constrained minimization problem (3.5) is a con-
vex program, fast and efficient algorithms for solving large-scale optimization
problems that incorporate the max-norm have only been developed recently in
Lee et al. (2010) and Fang et al. (2015b). We will show in Section 4 that the
convex optimization problem (3.5) can be implemented in polynomial time as a
function of the sample size n and dimensions d1 and d2.

3.3. Upper bounds

In this section, we state our main results regarding the recovery of an approxi-
mately low-rank (low-max-norm) matrix M∗ using max-norm constrained em-
pirical risk minimization.

Theorem 3.1. Suppose that the noise sequence {ξt}nt=1 are independent sub-
exponential random variables; that is, there is a constant K > 0 such that

max
1≤t≤n

E{exp(|ξt|/K)} ≤ e. (3.6)

The parameters α,R > 0 are such that M∗ ∈ K(α,R). Then, for a sample size
n satisfying d ≤ n ≤ d1d2,

‖M̂max −M∗‖2Π ≤ C(α ∨Kσ)R

√
d

n
, (3.7)

with probability greater than 1− 2e−d, where C > 0 is an absolute constant. If,
in addition, assumption (3.2) is satisfied, then for a sample size n with d ≤ n ≤
d1d2,

1

d1d2
‖M̂max −M∗‖2F ≤ C ν(α ∨Kσ)R

√
d

n
(3.8)

holds with probability at least 1− 2e−d.

Remark 3.1.

(1) It is worth noticing that the general result on approximate reconstruction
guarantee (3.7) holds without any prior information on the sampling dis-
tribution Π, in particular the lower bound assumption (3.2). In fact, it is
reflected in the result that for every location index (k, �), the smaller the
sampling probability πk� is, the more difficult it will be to recovery the
entry at this location.
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(2) The upper bounds given in Theorem 3.1 hold with high probability. The
rate of convergence under expectation can be obtained as a direct con-
sequence. More specifically, for a sample size n with d ≤ n ≤ d1d2, we
have

sup
M∗∈K(α,R)

1

d1d2
E‖M̂max −M∗‖2F ≤ C ν(α ∨ σ)R

√
d

n
. (3.9)

In view of the upper bound in (6.1), when the noise level σ is compara-
ble to or dominated by α, the rate is of order αR ( dn )

1/2. To fully understand
how the random noise affects the estimation accuracy particularly when σ is
much smaller than α, we provide a complementary result in Theorem 3.2 which
generalizes Theorem 9 in Foygel and Srebro (2011) to the general non-uniform
sampling model.

Theorem 3.2. Assume that the conditions of Theorem 3.1 are satisfied and
σ ≤ α. Then,

‖M̂max −M∗‖2Π

≤ C

{
σ

√
(log n)3

R2d

n
+ (logn)3/2

α2

n
+ (logn)3

R2d

n
+ (log n)3/2

α2

n

}
(3.10)

holds with probability at least 1−2n−1 over a random sample of size n satisfying
d ≤ n ≤ d1d2, where C > 1 is a constant.

An interesting consequence of Theorem 3.2 is that, in the noiseless case where
σ = 0 and a random subset of the entries of M∗ are perfectly observed, then
for any prespecified tolerance level ε > 0, the target matrix M∗ can be approx-
imately recovered in the sense that ‖M̂max − M∗‖2Π ≤ ε whenever the sample

size n � max
{

R2d
ε (logn)3, α2

ε (log n)3/2
}
.

3.4. Information-theoretic lower bounds

Theorem 3.1 gives the rate of convergence for the max-norm constrained least
squares estimator M̂max. In this section we shall use information-theoretical
methods to establish a minimax lower bound for non-uniform sampling at ran-
dom matrix completion on the max-norm ball. The minimax lower bound
matches the rate of convergence given in (3.8) when the sampling distribution
Π satisfies 1

ν d1d2
≤ mink,� πk� ≤ maxk,� πk� ≤ μ

d1d2
for some constants ν and

μ. The results show that the max-norm constrained least-squares estimator is
indeed rate-optimal in such a setting.

To derive the lower bound, we assume that the sampling distribution Π sat-
isfies

max
k,�

πk� ≤
μ

d1d2
(3.11)

for a positive constant μ ≥ 1. Clearly, when μ = 1, it amounts to say that the
sampling distribution is uniform.
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Theorem 3.3. Suppose that the noise sequence {ξt}nt=1 are i.i.d. standard nor-
mal random variables, the sampling distribution Π satisfies the condition (3.11)
and the quintuple (n, d1, d2, α,R) satisfies

48α2

d1 ∨ d2
≤ R2 ≤ σ2(d1 ∧ d2)d1d2

128μn
. (3.12)

Then the minimax ‖ · ‖F -risk is lower bounded as

inf
M̂

sup
M∈K(α,R)

1

d1d2
E‖M̂ −M‖2F ≥ min

{
α2

16
,

σ

256
R

√
d

μn

}
. (3.13)

In particular, for a sample size n ≥ 1
α2μR

2d,

inf
M̂

sup
M∈K(α,R)

1

d1d2
E‖M̂ −M‖2F ≥ 1

256
(α ∧ σ)R

√
d

μn
. (3.14)

Assume that both ν and μ, respectively appeared in (3.2) and (3.11), are
bounded above by universal constants, then comparing the lower bound (3.14)
with the upper bound (3.9) shows that if the sample size n > (Rα )

2d, the optimal

rate of convergence is R
√

d/n; that is,

inf
M̂

sup
M∈K(α,R)

1

d1d2
E‖M̂ −M‖2F � R

√
d1 + d2

n
, (3.15)

and the max-norm constrained least-squares estimator (3.5) is rate-optimal.
The requirement here on the sample size n > (Rα )

2(d1 + d2) is weak. If, in
addition, d1 = d2, condition (3.12) is reduced to α2d−1 � R2 � σαd, which
is a mild constraint since R2 is of order α2r0 in the exact low-rank case where
r0 = rank(M∗).

The proof of Theorem 3.3 uses information-theoretic methods. A key techni-
cal tool for the proof is the following lemma which guarantees the existence of
a suitably large packing set for K(α,R) in the Frobenius norm.

Lemma 3.1. Let r = (Rα )
2 and let γ ≤ 1 be such that r ≤ γ2(d1 ∧ d2) is an

integer. Then, there exists a subset M ⊆ K(α,R) with cardinality

|M| =
⌊
exp

{
r(d1 ∨ d2)

16γ2

}⌋
+ 1

and with the following properties:

(i) For any M = (Mk�) ∈ M, rank(M) ≤ r/γ2 and Mk� ∈ {±γα}, such that

‖M‖∞ = γα ≤ 1,
1

d1d2
‖M‖2F = γ2α2.
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(ii) For any two distinct M i,M j ∈ M,

1

d1d2
‖M i −M j‖2F >

γ2α2

2
.

The proof of Lemma 3.1 is based on an adaptation of the arguments used to
prove Lemma 3 in Davenport et al. (2014), which for self-containment, is given
in Section 6.4.

3.5. Comparison to past work

We now compare the results established in this section with those known in the
literature for matrix completion under uniform or general sampling schemes.

3.5.1. Approximate/non-exact low-rank recoveries

It is now well-known that the exact recovery of a low-rank matrix in the noiseless
case requires the “incoherence conditions” on the target matrixM∗ (Candés and
Recht, 2009; Candés and Tao, 2010; Recht, 2011; Gross, 2011). In this paper, we
consider instead a general setting of approximately low-rank matrices, and prove
that approximate recovery is still possible without enforcing exact structural
assumptions.

Our results are directly comparable to those of Koltchinskii, Lounici and
Tsybakov (2011) and Negahban and Wainwright (2012), in which the trace-
norm was used as a proxy to the rank. Taking the latter as an example to
illustrate, Negahban and Wainwright (2012) considered the setup where the
sampling distribution is a product distribution, i.e. for all (k, �) ∈ [d1]× [d2],

πk� = πk·π·�,

where πk· and π·� are marginals that satisfy

πk· ≥
1√
νd1

, π·� ≥
1√
νd2

for some ν ≥ 1. (3.16)

Accordingly, define the weighted norms as

‖M‖w(†) :=
∥∥∥√WrM

√
Wc

∥∥∥
†
, † ∈ {F, 1,∞},

where Wr = d1 · diag(π1·, . . . , πd1·) and Wc = d2 · diag(π·1, . . . , π·d2)
Based on a collection of observations

Yitjt = εtM
∗
itjt + σξt, t = 1, . . . , n,

where (it, jt) are i.i.d. according to P{(it, jt) = (k, �)} = πk� and εt ∈ {−1,+1}
are i.i.d. random signs, and under the assumption that the unknown matrix M∗

satisfies

‖M∗‖w(1) ≤ R
√

d1d2, ‖M∗‖w(F ) ≤
√
d1d2 and

‖M∗‖w(∞)

‖M∗‖w(F )
≤ α√

d1d2
,

(3.17)
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Negahban and Wainwright (2012) proposed the following estimator of M∗ based
on the trace-norm penalized minimization:

M̂tr ∈ argmin
‖M‖w(∞)≤α

{
1

n

n∑
t=1

(Yitjt − εtMitjt)
2 + λn‖M‖w(1)

}
. (3.18)

In the context of low-trace-norm (approximately low-rank) matrix recovery
where the true matrix M∗ satisfies (3.17), they proved that for properly chosen
λn depending on σ (see, e.g. Corollary 2 therein), there exist absolute positive
constants c1–c3 such that

1

d1d2
‖M̂tr −M∗‖2F ≤ c1ν

{
(σ ∨ ν)αR

√
d log d

n
+

να2

n

}
, (3.19)

holds with probability at least 1− c2 exp(−c3 log d).

First, the product distribution assumption can be fairly restrictive in practice
and is not valid in many applications. For example, in the case of the Netflix
problem, this assumption would imply that conditional on any movie, it will
be rated by all users with the same probability. Second, the constraint on M∗

highly depends on the true sampling distribution which is really unknown in
practice and can only be estimated based on the empirical frequencies, i.e. for
any pair (k, �) ∈ [d1]× [d2],

π̂k· =
1

n

n∑
t=1

1{it = k}, π̂·� =
1

n

n∑
t=1

1{jt = �}.

Since only a relatively small sample of the entries of M∗ is observed, these es-
timates may not be accurate enough. The max-norm constrained minimization
approach, on the other hand, is proved (Theorem 3.1) to be effective in the pres-
ence of non-uniform sampling distributions. The method does not require either
a product distribution or the knowledge of the exact true sampling distribu-
tion. From this point of view, the max-norm constrained method indeed yields
a more robust approximate recovery guarantee, with respect to the sampling
distributions.

We now turn to the special case of uniform sampling. The “spikeness” as-
sumption in Negahban and Wainwright (2012) can actually be reduced to a
single constraint on the �∞-norm (Klopp, 2014). Let B∞(α) = {M ∈ Rd1×d2 :
‖M‖∞ ≤ α} be the �∞-norm ball with radius α. Define the class of matrices

Ktr(α,R) :=
{
M ∈ B∞(α) : (d1d2)

−1/2‖M‖1 ≤ R
}
. (3.20)

It can be seen from (2.1) and (2.2) that {M ∈ B∞(α) : rank(M) ≤ r} �

K(α, α
√
r) � Ktr(α, α

√
r). The following results provide upper bounds on the

accuracy of both the max- and trace-norm regularized estimators under the
Frobenius norm.



1506 T. T. Cai and W.-X. Zhou

Corollary 3.1. Suppose that the noise sequence {ξt}nt=1 are i.i.d. N(0, 1) ran-
dom variables and the sampling distribution Π is uniform on [d1] × [d2]. Then
the following inequalities hold with probability at least 1− 3d−1:

(i) The optimum M̂max to the convex program (3.5) satisfies

sup
M∗∈K(α,R)

1

d1d2
‖M̂max −M∗‖2F � (σ ∨ α)R

√
d

n
+ α2 log d

n
. (3.21)

(ii) The minimum M̂tr to the SDP (3.18) with all weighted norms replaced by
the standard ones and with a properly chosen λn satisfies

sup
M∗∈Ktr(α,R)

1

d1d2
‖M̂tr −M∗‖2F � (σ ∨ α)R

√
d log d

n
+ α2 log d

n
. (3.22)

The upper bound (3.21) follows immediately from (6.1) in Theorem 3.1, and
(3.22) is a straightforward extension of Theorem 7 in Klopp (2014) on exact
low-rank matrix recovery to the case of low-trace-norm matrix reconstruction.
The proof is essentially the same and thus is omitted.

Foygel and Srebro (2011) analyzed the recovery guarantee for M̂max based
on an excess risk bound for empirical risk minimization with a smooth loss
function recently developed in Srebro, Sridharan and Tewari (2010). Specifically,
assuming a uniform sampling model with sub-exponential noise and that the
target matrix M∗ ∈ K(α,R), they proved that with high probability,

1

d1d2
‖Y − M̂max‖2F − σ̂2 � (logn)3/2 σ̂

√
R2d

n
+ (log n)3

R2d

n
, (3.23)

where Y = M∗+Z with Z = (ξk�)1≤k≤d1,1≤�≤d2 , and σ̂2 := 1
d1d2

∑d1

k=1

∑d2

�=1 ξ
2
k�

denotes the average noise level which is concentrated around σ2 with high prob-
ability.

After a more delicate analysis, our result shows that the additional logarith-
mic factors in (3.23) purely arise from an artifact of the proof technique and thus
can be avoided. Moreover, in view of the lower bounds given in Theorem 3.3,
we see that the max-norm constrained least square estimator M̂max achieves
the optimal rate of convergence for recovering approximately low-rank matri-
ces over the parameter space K(α,R) under the Frobenius norm loss. To our
knowledge, the best known rate for the trace-norm regularized estimator given
in (3.22) is near-optimal up to logarithmic factors in a minimax sense, over a
larger parameter space Ktr(α,R).

3.5.2. Uniform/non-uniform sampling distributions

We now provide further insight into the rationale behind the phenomenon that
the max-norm regularized/constrained method is more robust with respect to
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the sampling distribution. As before, we focus on the setting with a product
sampling distribution πk� = πk·π·� for (k, �) ∈ [d1]× [d2].

Motivated by Salakhutdinov and Srebro (2010), Negahban and Wainwright

(2012) studied the weighted trace-norm penalized estimator M̂tr given at (3.18),
where for any matrix M ∈ Rd1×d2 ,

‖M‖w(1) =
√
d1d2

∥∥diag(√π1·, . . . ,
√
πd1·)M diag(

√
π·1, . . . ,

√
π·d2)

∥∥
1
. (3.24)

However, the “true” form of the sampling distribution is ambiguous and even
if it is a product distribution, the marginal probabilities πk· and π·� are typi-
cally unknown. Therefore, the weighted trace-norm ‖ · ‖w(1) can not be used in
practice.

For the max-norm, a useful equivalent definition is that for any M ∈ Rd1×d2 ,

‖M‖max = max
u∈Rd1 ,v∈Rd2 :‖u‖2=‖v‖2=1

‖diag(u)M diag(v)‖1 .

See, for example, Theorem 9 in Lee, Shraibman and Spalek (2008). As a result,
by considering a max-norm penalized estimator that solves

min
‖M‖∞≤α

{
1

n

n∑
t=1

(Yitjt − εtMitjt)
2 + λn‖M‖max

}
,

all the possible marginal probabilities are taken into account, and therefore the
solution is expected to be more robust with respect to the unknown sampling
distributions.

Although the sampling distribution is not known exactly in practice, its es-
timated version is expected to be stable enough as an alternative. According
to Foygel et al. (2011), given a random sample S = {(it, jt)}nt=1, we can esti-
mate πk� by π̂k� = π̂k·π̂·� with empirical marginals π̂k· = n−1

∑n
t=1 1{it = k}

and π̂·� = n−1
∑n

t=1 1{jt = �}, or by π̃ij = π̃k·π̃·� with smoothed empirical
marginals

π̃k· =
1

2

(
π̂k· + d−1

1

)
, π̃·� =

1

2

(
π̂·� + d−1

2

)
.

The empirically-weighted trace-norm ‖ · ‖ŵ(1) can be defined in the same spirit
as in (3.24) for the weighted trace-norm, only with πk� replaced by π̂k�. Then
the unknown matrix can be estimated via penalization on the π̂-weighted trace-
norm, i.e.

min
‖M‖∞≤α

{
1

n

n∑
t=1

(Yitjt − εtMitjt)
2 + λn‖M‖ŵ(1)

}
.

Foygel et al. (2011) proved the error bound for the excess risk of the empirically-
weighted trace-norm constrained estimator when the loss function is Lipschitz.
It is interesting to investigate whether the results similar to those in Negahban
andWainwright (2012) hold for the empirically-weighted trace-norm constrained
and penalized estimators when the quadratic loss function is used.
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It is also worth noting that, under condition (3.6) and when the sampling
distribution is nearly uniform in the sense that

min
(k,�)∈[d1]×[d2]

πk� ≥
1

ν d1d2
and max

( d1∑
k=1

πk�,

d2∑
�=1

πk�

)
≤ L

min(d1, d2)

(3.25)
for some constants ν, L ≥ 1, Klopp (2014) showed that the trace-norm penalized
estimator

M̂tr(λ) ∈ argmin
‖M‖∞≤α

{
1

n

n∑
t=1

(Yitjt − εtMitjt)
2 + λ‖M‖1

}
satisfies

1

d1d2
‖M̂tr(λ)−M∗‖2F � (σ ∨ α)2ν2L

r0 d log d

n
+ να2

√
log d

n

with probability greater than 1 − 3d−1, provided that ‖M∗‖∞ ≤ α and λ =
λn � σ(L log d

nd )1/2. In the case of Gaussian errors and under condition (3.11),
the above rate of convergence is minimax optimal, up to a logarithmic factor, for
the class of exact low-rank matrices {M ∈ Rd1×d2 : ‖M‖∞ ≤ α, rank(M) ≤ r0}
(Koltchinskii, Lounici and Tsybakov, 2011). An interesting and challenging open
problem is that in the context of exact low-rank matrix recovery and when the
sampling probabilities satisfy (3.25), whether the optimal recovery guarantee
can be achieved using the max-norm constrained method. Also, to the best
of our knowledge, there are no theoretical guarantees for exactly recovering a
low-rank matrix when the sampling distribution is non-uniform and unspecified.

4. Computational algorithms

Although Theorem 3.1 presents theoretical guarantees that hold uniformly for
any global minimizer, it does not provide guidance on how to approximate such
a global minimizer using a polynomial-time algorithm. A parallel line of work
has studied computationally efficient algorithms for solving problems with the
trace-norm constraint or penalization. See Lin et al. (2009), Mazumber, Hastie
and Tibshirani (2010) and Nesterov (2013), among others. Here we restrict our
attention to the less-studied max-norm oriented approach. We discuss two dif-
ferent types of algorithms which are particularly designed to solve large scale
optimization problems that incorporate the max-norm as a semidefinite relax-
ation of the rank. The first one is a fast first-order algorithm developed in Lee
et al. (2010) based on nonconvex relaxation. The problem of interest to us is the
optimization program (3.5) with both the max-norm and the element-wise �∞-
norm constraints, in which case the algorithm introduced in Lee et al. (2010)
can be applied after suitable modifications as described in Section 4.1. The
second one, on the other hand, is a convex approach proposed by Fang et al.
(2015b) using the alternating direction of multipliers method with guaranteed
convergence to the global optimum since it deals with the convex problem (4.1)
directly.
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4.1. A projected gradient method

Due to Srebro, Rennie and Jaakkola (2004), the max-norm of a d1 × d2 matrix
M can be computed via a semi-definite program:

‖M‖max = min R s.t.

(
W1 M
Mᵀ W2

)
� 0, diag(W1) ≤ R, diag(W2) ≤ R.

Correspondingly, we can reformulate (3.5) as the following SDP problem

min f(M)

s.t.

(
W1 M
Mᵀ W2

)
� 0, diag(W1) ≤ R, diag(W2) ≤ R, ‖M‖∞ ≤ α,

where the objective function f is given by

f(M) = f(M ;Y ) = L̂n(M ;Y ).

This SDP can be solved using standard interior-point methods, though are fairly
slow and do not scale to matrices with large dimensions. For large-scale prob-
lems, an alternative factorization method based on (1.1), as described below, is
preferred (Lee et al., 2010).

We begin by introducing dummy variables U ∈ Rd1×k, V ∈ Rd2×k for some
1 ≤ k ≤ d1 + d2 and let M = UV ᵀ. If the optimal solution M̂max is known to
have rank at most r, we can take U ∈ Rd1×(r+1), V ∈ Rd2×(r+1). In practice,
without a known guarantee on the rank of M̂max, we alternatively truncate the
number of columns k to some reasonably high value less that d1 + d2. Then, we
rewrite the original problem (3.5) in the factored form as follows:

minimize f(UV ᵀ) =
1

n

n∑
t=1

(Uᵀ
it
Vjt − Yitjt)

2

subject to ‖U‖22,∞ ≤ R, ‖V ‖22,∞ ≤ R, max
(k,�)∈[d1]×[d2]

|Uᵀ
k V�| ≤ α, (4.1)

where {(i1, j1), . . . , (in, jn)} ⊆ ([d1] × [d2])
n is a training set of row-column

indices, Ui and Vj denote the ith row of U and the jth row of V , respectively.
This problem, however, is non-convex since it involves a constraint on all product
factorizations UV ᵀ. When the size of the problem k is large enough, Burer and
Choi (2006) proved that this reformulated problem has no local minima. To
solve this problem fast and efficiently, Lee et al. (2010) suggested the following
first-order method.

Notice that f(M) = L̂n(M ;Y ) is a smooth function Rd1×d2 �→ R. The pro-
jected gradient descent method generates a sequence of iterates {(U t, V t), t =
0, 1, 2, . . .} by the recursion: First, define an intermediate iterate[

Ũ t+1

Ṽ t+1

]
=

[
U t − τ√

t
· ∇f(U t(V t)ᵀ;Y )V t

V t − τ√
t
· ∇f(U t(V t)ᵀ;Y )ᵀU t

]
for t = 0, 1, 2, . . . ,
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where τ > 0 is a stepsize parameter. If ‖Ũ t+1(Ṽ t+1)ᵀ‖∞ > α, we replace[
Ũ t+1

Ṽ t+1

]
with

√
α

‖Ũ t+1(Ṽ t+1)ᵀ‖1/2∞

[
Ũ t+1

Ṽ t+1

]
,

otherwise we keep it still. Next, compute updates according to[
U t+1

V t+1

]
= ΠR

([
Ũ t+1

Ṽ t+1

])
,

where ΠR is the Euclidean projection onto {(U, V ) : ‖U‖22,∞ ∨ ‖V ‖22,∞ ≤ R}.
This projection can be computed by re-scaling the rows of the current iterate
whose �2-norms exceed R so that their norms become exactly R, while rows
with norms already less than R remain unchanged.

4.2. An alternating direction method of multipliers based approach

The first-order algorithm described in Section 4.1 is computationally efficient
and fast. However, (4.1) is in principle a non-convex optimization problem and
thus the algorithm is only guaranteed to find a stationary point. Recently, an
alternating direction method of multipliers (ADMM) based approached was
proposed by Fang et al. (2015b) to solve the convex program (3.5) efficiently
with strong theoretical guarantee. Furthermore, it was shown in Fang et al.
(2015a) that the worst-case rate of convergence of the ADMM method is of
order 1/t, where t denotes the iteration counter. We briefly summarize this
ADMM approach here for the sake of readability.

Define the class of matrices

P =
{
W ∈ Sd : diag(W ) ≥ 0, ‖W11‖∞ ≤ R, ‖W22‖∞ ≤ R, ‖W12‖∞ ≤ α

}
,

where d = d1 + d2, Sd denotes the class of all symmetric matrices in Rd×d and
for every W ∈ Sd, we write

W =

(
W11 W12

W ᵀ
12 W22

)
with W11 ∈ Rd1×d2 , W22 ∈ Rd2×d2 and W12 ∈ Rd1×d2 .

In this notation, the problem (4.1) can be equivalently formulated as

min
W,X∈Rd×d

f(W12) s.t. W ∈ P , X � 0, W −X = 0, (4.2)

where as before, the function f : Rd1×d2 �→ R is given by f(M) = L̂n(M ;Y ). As
pointed out by Fang et al. (2015b), the rationale of reformulating the problem
into (4.2) is to divide the complexity of the feasible set in (4.1), which consists
of a positive semidefinite constraint and �∞-norm constraints, into two parts.
Then, by using an iterative method, we only need to control the �∞-norm of W
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and project X into the positive semidefinite cone in each step. The additional
constraint W −X = 0 ensures the feasibility of both W and X.

More specifically, consider the augmented Lagrangian function of (4.2) that
is given by

F (W,X,Z) = f(W12) + 2〈W −X,Z〉+ ρ‖W −X‖2F

for W ∈ P and X ∈ Sd
+ = {S ∈ Sd : S � 0}, where Z denotes the dual variable

and ρ > 0 is prespecified. The ADMM is used to solve (4.2) iteratively as follows:
Initialize (W 0, X0, Z0) and ρ > 0; at the (t+ 1)-th iteration, update (W,X,Z)
according to

Xt+1 = argmin
X

F (W t, Xt, Zt) = ΠSd
+
(W t − ρ−1Zt),

W t+1 = argmin
W∈P

{
f(W12) + ρ‖W −Xt+1 − ρ−1Zt‖2F

}
,

Zt+1 = Zt + ρ(Xt+1 −W t+1),

(4.3)

where ΠSd
+
: Rd×d �→ Sd

+ is the map that projects a matrix into the semidefinite

cone Sd
+. The second step of (4.3) has an explicit solution given by (Fang et al.,

2015b)

W t+1
k� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π[−α,α](ρ
−1Yk� +W t

k�), if (k, �) ∈ ([d1]× [d] \ [d1]) ∩ S,

Π[−α,α](W
t
k�), if (k, �) ∈ ([d1]× [d] \ [d1]) \ S,

Π[−R,R](W
t
k�), if (k, �) ∈ [d1]× [d1], k �= �,

Π[0,R](W
t
k�), if (k, �) ∈ [d1]× [d1], k = �,

Π[−R,R](W
t
k�), if (k, �) ∈ [d] \ [d1]× [d] \ [d1], k �= �,

Π[0,R](W
t
k�), if (k, �) ∈ [d] \ [d1]× [d] \ [d1], k = �,

where S = {(it, jt)}nt=1 is the index set of observed entries and Π[a,b](x) =
min{b,max(a, x)} is the projection function from R to [a, b].

4.3. Implementation

Before the max-norm constraint approach can be actually implemented in prac-
tice to generate a full matrix by filling in missing entries, additional prior knowl-
edge of the unknown true matrix is needed to avoid deviated results. As before,
let M∗ ∈ Rd1×d2 be the true underlying matrix. Suitable upper bounds on the
following key quantities are needed in advance:

α0 = ‖M∗‖∞, R0 = ‖M∗‖max and r0 = rank(M∗). (4.1)

In order to estimate R0 directly from a missing data matrix, it can be seen
from (2.2) that α0

√
r0 is a sharp upper bound on R0 and is more amenable to

estimation. Fortunately, it is possible to convincingly specify α0 beforehand in
many real-life applications. When dealing with the Netflix data, for instance,
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α0 can be chosen as the highest rating index; in the structure-from-motion
problem, α0 depends on the range of the camera field of view, which in most
cases is sufficiently large to capture the feature point trajectories. In case where
the percentage of missing entries is low, the largest magnitude of the observed
entries can be used as an alternative for α0.

As for r0, we recommend the rank estimation approach recently developed in
Juliá et al. (2011), which was shown to be effective in computer vision problems.
Recall that in the structure-from-motion problem, each column of the data
matrix corresponds a trajectory along the frames of a given feature point, and
can be regarded as a signal vector with missing coordinates. Due to the rigidity
of the moving objects, it was noted in Juliá et al. (2011) that the behavior of
observed and missing data is the same and thus they both generate an analogous
(frequency) spectral representation. Motivated by this observation, the proposed
approach is based on the study of changes in frequency spectra on the initial
matrix after missing entries are recovered.

In general, choosing the tuning parameter R > 0 in (3.5) adaptively is a
difficult problem. In the regression case, it can be done by the Scaled LASSO
method (Sun and Zhang, 2012). It is unclear whether a similar approach would
work for matrix completion problems. By convexity and strong duality, the
optimization program in (3.5) is equivalent to

min
M∈Rd1×d2 :‖M‖∞≤α

{
1

n

n∑
t=1

(Yitjt −Mitjt)
2 + λ‖M‖max

}
(4.2)

for a properly chosen λ. In fact, for any R > 0 specified in (3.5), there exists
a λ > 0 such that the solutions to the two problems (3.5) and (4.2) coincide.
In practice, we suggest to solve (4.2) using the ADMM method described in
Section 4.2 with λ obtained via cross-validation, in a way similarly to that
for LASSO or the trace-norm penalized M -estimator studied in Negahban and
Wainwright (2011).

Next we describe an implementation of the max-norm constrained matrix
completion procedure, which incorporates the rank estimation approach in Juliá
et al. (2011). Assume without loss of generality that α0 is known.

(1) Given the observed partial matrix MS , the initial matrix Mini is obtained
by adding the average of the corresponding column to the missing entries
of MS . Applying the Fast Fourier Transform (FFT) to the columns of Mini

and taking its modulus, i.e. F := |FFT(Mini)|.
(2) Set an initial rank r = 2 and an upper bound rmax. Clearly, rmax ≤

min(d1, d2) and it can be computed automatically by adding a criteria for
stopping the iteration.

(3) For the current value of r, using the computational algorithms given in
Section 4 with R = α0

√
r to solve the max-norm constraint optimization

(3.5). The resulting estimated full matrix is denoted by M̂r.

(4) Apply the FFT to M̂r as in step 1. Write Fr = |FFT(M̂r)| and compute
the error e(r) = ‖F − Fr‖F .

(5) If r < rmax, set r = r + 1 and go to step 3.
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Finally, let

r∗ = argmin
2≤r≤rmax

e(r)

and the corresponding M̂r∗ is the final estimate of M∗. Clearly, the above proce-
dure can be modified by replacing the rank r with the max-norm R. A suitable
initial value for the max-norm is R = α0

√
2 and at each iteration, increase

R = R + δ with a fixed step size δ > 0. An upper-bound Rmax could be auto-
matically computed by adding some criteria for stopping the iteration.

5. Discussions

This paper considers the approximate recovery of approximately low-rank ma-
trices, in particular low-max-norm matrices in contrary to low-trace-norm ma-
trices. The max-norm ball with radius 1 is nearly equivalent to the convex hull
of rank-1 matrices, and therefore is an alternative convex surrogate for the rank.
A max-norm constrained empirical risk minimization method is proposed and
its theoretical properties are studied along with computational algorithms. Al-
lowing for unknown non-uniform sampling which is an important relaxation of
the uniform assumption in practice, it is shown that the method is rate-optimal
and can be solved efficiently in polynomial time.

When the underlying matrix has exactly rank r, it is known that using the
trace-norm based approach leads to a mean square error of order O{rd(log d)/n}
(Keshavan and Montanari, 2010; Koltchinskii, Lounici and Tsybakov, 2011; Ne-
gahban and Wainwright, 2012; Klopp, 2014), where d = d1 + d2. In the ideal
uniform sampling model, the trace-norm regularized method is arguably the
mostly preferable one as it achieves optimal rate of convergence (up to a loga-
rithmic factor) and is computationally feasible. The sampling scheme considered
in this paper is unspecified and is allowed to be highly non-uniform, which brings
additional randomness and uncertainty to the recovery problem. Therefore, we
are essentially dealing with a much more complex model, and the max-norm con-
straint is not only introduced as a convex relaxation for low-rankness according
to (2.2) but also takes into account the effect of non-uniform sampling.

6. Proofs

We prove the main results, Theorems 3.1 and 3.3, in this section. The proofs of
a few key technical lemmas including Lemma 3.1 are also given.

6.1. Proof of Theorem 3.1

For ease of exposition, we write M̂ = M̂max as long as there is no ambiguity.
To illustrate the main idea, we first consider the case where ξ1, . . . , ξn are i.i.d.
normal random variables and prove that there exists an absolute constant C
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such that for any t ∈ (0, 1) and a sample size n satisfying 2 < n ≤ d1d2,

‖M̂max −M∗‖2Π ≤ C

{
(α ∨ σ)R

√
d

n
+ α2 log(2/t)

n

}
(6.1)

holds with probability greater than 1 − t − e−d. The case of sub-exponential
noise can be obtained via a straightforward adaptation of the arguments for
Gaussian noise.

To begin with, noting that M̂ is optimal and M∗ is feasible for the convex
optimization problem (3.5), we thus have the basic inequality that

1

n

n∑
t=1

(Yitjt − M̂itjt)
2 ≤ 1

n

n∑
t=1

(Yitjt −M∗
itjt)

2.

This, combined with our model assumption Yitjt = M∗
itjt

+ σξt yields that

1

n

n∑
t=1

Δ̂2
itjt =

1

n

n∑
t=1

(M̂itjt −M∗
itjt)

2 ≤ 2σ

n

n∑
t=1

ξtΔ̂itjt , (6.2)

where Δ̂ = M̂ − M∗ ∈ K(2α, 2R) is the error matrix. By (6.2), the major
challenges in proving Theorem 3.1 consist of two parts, bounding the left-hand
side of (6.2) from below in a uniform sense and the right-hand side of (6.2) from
above.

Step 1. (Upper bound). Recalling that {ξt}nt=1 is a sequence of N(0, 1) random
variables and that S = {(i1, j1), . . . , (in, jn)} is drawn i.i.d. according to Π on
[d1]× [d2], we define

R̂n(α,R) := sup
M∈K(α,R)

∣∣∣∣∣ 1n
n∑

t=1

ξtMitjt

∣∣∣∣∣ . (6.3)

Due to Pisier (1989), we obtain that for any realization of the training set S
and for any δ > 0, with probability at least 1− δ over ξ = {ξt}nt=1,

sup
M∈K(α,R)

∣∣∣∣∣ 1n
n∑

t=1

ξtMitjt

∣∣∣∣∣
≤ Eξ

{
sup

M∈K(α,R)

∣∣∣∣∣ 1n
n∑

t=1

ξtMitjt

∣∣∣∣∣
}

+ π

√
log(1/δ) supM∈K(α,R)

∑n
t=1 M

2
itjt

2n2

≤ Eξ

{
sup

M∈K(α,R)

∣∣∣∣∣ 1n
n∑

t=1

ξtMitjt

∣∣∣∣∣
}

+ π(α ∧R)

√
log(1/δ)

2n
. (6.4)

Thus it remains to estimate the following expectation over the class of matrices
K(α,R):

Rn := Eξ

{
sup

M∈K(α,R)

∣∣∣∣∣ 1n
n∑

t=1

ξtMitjt

∣∣∣∣∣
}
.
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As a direct consequence of (2.3), we have

Rn ≤ KG ·R · Eξ

(
max

M∈M±

∣∣∣∣∣ 1n
n∑

t=1

ξtMitjt

∣∣∣∣∣
)
, (6.5)

where M± contains rank-one sign matrices with cardinality |M±| = 2d−1. For
each M ∈ M±,

∑n
t=1 ξtMitjt is a Gaussian random variable with mean zero

and variance n. Then, the expectation of the Gaussian maximum in (6.5) can
be bounded by

2
√
n log(|M±|) ≤ 2

√
log 2

√
nd.

Substituting this into (6.5) gives

Rn ≤ 2KG

√
log 2 ·R

√
nd.

Since this upper bound holds uniformly over all realizations of S, we conclude
that with probability at least 1 − δ over both the random samples S and the
noise ξ = {ξt}nt=1,

R̂n(α,R) ≤ 3

{
R

√
d

n
+ (α ∧R)

√
log(1/δ)

n

}
. (6.6)

In the case of sub-exponential noise, i.e. {ξt}nt=1 satisfies the assumption (3.6),
it follows from (2.3) that

R̂n(α,R) ≤ KG ·R · sup
M∈M±

∣∣∣∣∣ 1n
n∑

t=1

ξtMitjt

∣∣∣∣∣ with |M±| = 2d−1.

For any realization of the training set S = {(i1, j1), . . . , (in, jn)} and for any
M ∈ M± fixed, it follows from a Bernstein-type inequality for sub-exponential
random variables (Vershynin, 2012) that

P

(∣∣∣∣∣ 1n
n∑

t=1

ξtMitjt

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
−c ·min

(
nt2

K2
,
nt

K

)}
,

where c > 0 is an absolute constant. By the union bound, it can be easily verified
that for a sample size n ≥ d,

R̂n(α,R) ≤ CKR

√
d

n
(6.7)

holds with probability at least 1− e−d for some absolute constant C > 0.

Step 2. (Lower bound). For the given sampling distribution Π, note that

‖M‖2Π =
∑
k,�

πk�M
2
k� =

1

|S|ES∼Π‖MS‖22,
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where MS = (Mi1j1 , . . . ,Minjn)
ᵀ ∈ Rn for any training set S = {(it, jt)}nt=1 of

size n. For β ≥ 1 and δ > 0, consider the following subset

C(β, δ) :=
{
M ∈ K(1, β) : ‖M‖2Π ≥ δ

}
.

Here, δ can be regarded as a tolerance parameter. The goal is to show that there
exists some function fβ such that with high probability, the following inequality

1

n
‖MS‖22 ≥ 1

2
‖M‖2Π − fβ(n, d1, d2) (6.8)

holds uniformly over M ∈ C(β, δ).
Proof of (6.8). Instead, we will prove a stronger result that with exponentially
high probability,∣∣∣∣ 1n‖MS‖22 − ‖M‖2Π

∣∣∣∣ ≤ 1

2
‖M‖2Π + fβ(n, d1, d2)

holds for all M ∈ C(β, δ), based on a straightforward adaptation of the peeling
argument used in Negahban and Wainwright (2012). Taking � = 3

2 , define a
sequence of subsets

C�(β, δ) :=
{
M ∈ C(β, δ) : ��−1δ ≤ ‖M‖2Π ≤ ��δ

}
for � = 1, 2, . . . , and for any radius D > 0, set

B(D) :=
{
M ∈ C(β, δ) : ‖M‖2Π ≤ D

}
. (6.9)

In fact, if there exists some M ∈ C(β, δ) satisfying∣∣∣∣ 1n‖MS‖22 − ‖M‖2Π
∣∣∣∣ > 1

2
‖M‖2Π + fβ(n, d1, d2),

then there corresponds an � ≥ 1 such that, M ∈ C�(β, δ) ⊆ B(��δ) and∣∣∣∣ 1n‖MS‖22 − ‖M‖2Π
∣∣∣∣ > 1

3
��δ + fβ(n, d1, d2).

Therefore, the main task is to show that the latter event occurs with small
probability. To this end, define the maximum deviation for each S ⊆ ([d1]×[d2])

n

that

ΔD(S) = sup
M∈B(D)

∣∣∣∣ 1n‖MS‖22 − ‖M‖2Π
∣∣∣∣ . (6.10)

The following lemma shows that n−1‖MS‖22 does not deviate far from its ex-
pectation uniformly for all M ∈ B(D).

Lemma 6.1 (Concentration). There exists a universal positive constant C1

such that, for any D > 0,

P

{
ΔD(S) >

D

3
+ C1β

√
d

n

}
≤ e−nD/26. (6.11)
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In view of the above lemma, we take fβ(n, d1, d2) = C1β
√

d/n and consider
the following sequence of events

E� =
{
Δ��δ(S) >

1
3�

�δ + fβ(n, d1, d2)
}

for � = 1, 2, . . . .

Because C(β, δ) = ∪�≥1C�(β, δ), using the union bound we have

P

{
∃M ∈ C(β, δ), s.t.

∣∣∣∣ 1n‖MS‖22 − ‖M‖2Π
∣∣∣∣ > 1

2
‖M‖2Π + fβ(n, d1, d2)

}
≤

∞∑
�=1

P

{
∃M ∈ C�(β, δ), s.t.

∣∣∣∣ 1n‖MS‖22 − ‖M‖2Π
∣∣∣∣ > 1

2
‖M‖2Π + fβ(n, d1, d2)

}

≤
∞∑
�=1

P (Ec
� )

≤
∞∑
�=1

exp(−n��δ/26)

≤
∞∑
�=1

exp{− log(�)�nδ/26} ≤ exp(−c0nδ)

1− exp(−c0nδ)
(6.12)

with c0 = log(3/2)/26, where we used the elementary inequality that

�� = exp{� log(�)} ≥ � log(�).

Consequently, for a sample size n ≤ d1d2 satisfying exp(−c0nδ) ≤ 1
2 , or equiv-

alently, n > (c0δ)
−1 log 2, we obtain that with probability greater than 1 −

2 exp(−c0nδ),

1

n
‖MS‖22 ≥ 1

2
‖M‖2Π − C1β

√
d

n
(6.13)

holds for all M ∈ C(β, δ).
Step 3. Now we combine the results in Step 1 and Step 2 to finish the proof.
On one hand, it follows from (6.6) that for a sample size 2 < n ≤ d1d2,

1

n

n∑
t=1

ξtΔ̂(it, jt) ≤ R̂n(2α, 2R) ≤ 12R

√
d

n

holds with probability at least 1 − e−d. On the other hand, set Δ̃ = Δ̂/(2α)

such that ‖Δ̃‖∞ ≤ 1 and ‖Δ̃‖max ≤ R/α := β, or equivalently, Δ̃ ∈ K(1, β). For

any 0 < t < 1, applying (6.13) with δ = log(2/t)
c0n

implies that for a sample size n
with 2 < n ≤ d1d2,

‖Δ̃‖2Π ≤ max

{
log(2/t)

c0n
,
2

n
‖Δ̃S‖22 + 2βC1

√
d

n

}
holds with probability at least 1 − t. The last two displays, joint with the ba-
sic inequality (6.2) lead to the final conclusion (6.1) after a simple rescaling.
Similarly, using the upper bound (6.7), instead of (6.6), together with the lower
bound (6.13) proves (3.7) in the case of sub-exponential noise.
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6.1.1. Proof of Lemma 6.1

Here, we prove the concentration inequality given in Lemma 6.1. The argu-
ment is based on some basic techniques of probability in Banach spaces, in-
cluding symmetrization, contraction inequality and Bousquet’s version of Tala-
grand concentration inequality as well as the upper bound (2.4) on the empirical
Rademacher complexity of the max-norm ball.

Regarding the matrix M ∈ Rd1×d2 as a function: [d1] × [d2] �→ R, i.e.
M(k, �) = Mk�, we are interested in the following empirical process indexed
by B(D):

ΔD(S) = sup
fM :M∈B(D)

∣∣∣∣∣ 1n
n∑

t=1

fM (it, jt)− E{fM (it, jt)}
∣∣∣∣∣ with fM (·) = {M(·)}2.

Recall that |Mk�| ≤ ‖M‖∞ ≤ 1 for all pairs (k, �), we have

sup
M∈B(D)

Var{fM (i1, j1)} ≤ sup
M∈B(D)

‖M‖2∞‖M‖2Π ≤ D.

We first bound ES∼Π{ΔD(S)}, and then show that ΔD(S) is concentrated
around its expectation. A standard symmetrization argument Ledoux and Ta-
lagrand (1991) yields

ES∼Π{ΔD(S)} ≤ 2ES∼Π

[
Eε

{
sup

M∈B(D)

∣∣∣∣∣ 1n
n∑

i=1

εiM
2
itjt

∣∣∣∣∣
}]

,

where {εi}ni=1 is an i.i.d. Rademacher sequence, independent of S. Given an
index set S = {(i1, j1), . . . , (in, jn)}, since |Mitjt | ≤ 1, using Ledoux-Talagrand
contraction inequality (Ledoux and Talagrand, 1991) implies that for d = d1+d2,

Eε

{
sup

M∈B(D)

∣∣∣∣∣ 1n
n∑

i=1

εiM
2
itjt

∣∣∣∣∣
}

≤ 4Eε

{
sup

M∈B(D)

∣∣∣∣∣ 1n
n∑

t=1

εtMitjt

∣∣∣∣∣
}

≤ 4Eε

(
sup

‖M‖max≤β

∣∣∣∣∣ 1n
n∑

t=1

εtMitjt

∣∣∣∣∣
)

≤ 48β

√
d

n
,

where we used inequality (2.4) in the last step. Since the “worst-case”
Rademacher complexity is uniformly bounded, we have

ES∼Π{ΔD(S)} ≤ 96β

√
d

n
. (6.14)

Next, applying Bousquet’s version of Talagrand’s concentration inequality for
empirical processes indexed by bounded functions (Bousquet, 2003) yields that
for every t > 0,

ΔD(S) ≤ ES∼Π{ΔD(S)}+
√

2tD

n
+ ES∼Π{ΔD(S)}4t

n
+

t

3n
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≤ ES∼Π{ΔD(S)}+ 2

√
ES∼Π{ΔD(S)} t

n
+

√
2tD

n
+

t

3n

≤ 2ES∼Π{ΔD(S)}+
√

2tD

n
+

4t

3n

with probability at least 1 − e−t. The conclusion (6.11) thus follows by taking
t = nD/26.

6.2. Proof of Theorem 3.2

The proof is based on a general result in Srebro, Sridharan and Tewari (2010)
on excess risk bounds for learning with a smooth loss. Recall that the noisy
response is of the form Yitjt = M∗

itjt
+ ξt for t = 1, 2, . . ., where the location

(it, jt) of the entry is drawn from [d1]× [d2] according to Π and the noise ξt on
the entry is drawn independently each time. For every d1×d2 matrix M , define
the quadratic loss function

L(M) = E (it,jt)∼Π
ξt∼N(0,1)

(M − Y )2itjt

= E (it,jt)∼Π
ξt∼N(0,1)

{(M∗ −M)itjt + ξt}2 = ‖M −M∗‖2Π + σ2,

and its empirical counterpart L̂(M) = 1
n

∑n
t=1(Mitjt − Yitjt)

2 + σ2 for a given

i.i.d. sample {(it, jt), Yitjt = M∗
itjt

+ξt}nt=1. In this notation, our estimator M̂max

can be written as M̂max = argminM∈K(α,R) L̂(M).
In view of Definition 2.1, define the worst-case Rademacher complexity as

Rn(K) = sup
{(it,jt)}n

t=1∈([d1]×[d2])n
Eε

{
sup
M∈K

1

n

∣∣∣∣∣
n∑

i=1

εiM(it, jt)

∣∣∣∣∣
}

= sup
{(it,jt)}n

t=1∈([d1]×[d2])n
Eε

(
sup
M∈K

1

n

∣∣∣∣∣
n∑

i=1

εiMitjt

∣∣∣∣∣
)
,

where K = K(α,R).
For any B > 0, let EB be the event that max1≤t≤n |ξt| ≤ B holds. On EB ,

applying Theorem 1 in Srebro, Sridharan and Tewari (2010) by taking H = 2
and b = 5α2 + 4ασB that, for any 0 < δ < 1,

L(M̂max)− min
M∈K(α,R)

L(M)

≤ C1

[√
min

M∈K(α,R)
L(M)

{
(log n)3R2

n(K) +
B log(1/δ)

n

}
+ (logn)3R2

n(K) +
B log(1/δ)

n

]
holds with probability at least 1 − δ over a random sample {(it, jt)}nt=1 of size
n, where C1 > 0 is an absolute constant. By (2.4), the worst-case Rademacher
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complexity Rn(K) is bounded by 6R
√

d/n. Moreover, note that
minM∈K(α,R) L(M) = L(M∗) = σ2 and

L(M̂max) = ‖M̂max −M∗‖2Π + σ2.

Putting the above calculations together, we obtain that on the event EB ,

‖M̂max −M∗‖2Π

≤ C2 σ

[√{
(log n)3

R2d

n
+

B log(1/δ)

n

}
+ (logn)3

R2d

n
+

B log(1/δ)

n

]
(6.15)

holds with probability at least 1− δ.
Finally, it follows from Borell’s inequality that for every t > 0,

P

{
max
1≤t≤n

|ξt| ≥ E

(
max
1≤t≤n

|ξt|
)
+ t

}
≤ e−t2/2.

A standard result on Gaussian maximum gives E(max1≤t≤n |ξt|) ≤ 2
√
logn.

Together with the last display, this implies that with probability at least 1− δ,

max
1≤t≤n

|ξt| ≤ 2
√
logn+

√
2 log(1/δ). (6.16)

In particular, taking δ = n−1 in both (6.15) and (6.16) proves (3.10).

6.3. Proof of Theorem 3.3

By construction in Lemma 3.1, setting δ = γα
√
d1d2/2 we see that M is a δ-

packing set of K(α,R) in the Frobenius norm. Next, a standard argument (Yang
and Barro, 1999; Yu, 1997) yields a lower bound on the ‖ · ‖F -risk in terms of
the error in a multi-way hypothesis testing problem. More specifically,

inf
M̂

max
M∈K(α,R)

E‖M̂ −M‖2F ≥ δ2

4
min
M̃

P(M̃ �= M∗),

where the random variable M∗ ∈ Rd1×d2 is uniformly distributed over the pack-
ing set M. Conditional on S = {(i1, j1), . . . , (in, jn)}, a variant of Fano’s in-
equality (Cover and Thomas, 1991) leads to the lower bound

P(M̃ �= M∗|S) ≥ 1−
(|M|

2

)−1∑
i �=j K(M i‖M j) + log 2

log |M| , (6.17)

where K(M i‖M i) denotes the Kullback-Leibler divergence between distribu-
tions (YS |M i) and (YS |M j). For the observation model (3.1) with i.i.d. Gaussian
noise, we have

K(M i‖M j) =
1

2σ2

n∑
t=1

(M i −M j)2itjt
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and
ES∼Π{K(M i‖M j)} =

n

2σ2
‖M i −M j‖2Π, (6.18)

where ‖ · ‖Π is the weighted Frobenius norm as in (3.3). For any two distinct
M i,M j ∈ M, ‖M i −M j‖2F ≤ 4d1d2γ

2, which together with (6.17), (6.18) and
the assumption maxk,� πk� ≤ μ

d1d2
implies that

P(M̃ �= M∗)

≥ 1−
(|M|

2

)−1∑
i �=j ES∼Π{K(M i‖M j)}+ log 2

log |M|

≥ 1−
32μγ4α2n

σ2 + 12γ2

r(d1 ∨ d2)
≥ 1− 32μγ4α2n

σ2r(d1 ∨ d2)
− 12

r(d1 ∨ d2)
≥ 1

2
, (6.19)

provided that r(d1 ∨ d2) ≥ 48 and γ4 ≤ σ2

128α2

r(d1∨d2)
μn . If σ2

128α2

r(d1∨d2)
μn > 1, we

choose γ = 1 so that

inf
M̂

max
M∈K(α,r)

1

d1d2
E‖M̂ −M‖2F ≥ α2

16
.

Otherwise, as long as the parameters (n, d1, d2, α,R) satisfy (3.12), taking

γ2 =
σ

8
√
2α

√
r(d1 ∨ d2)

μn

yields

inf
M̂

max
M∈Bmax(R)

1

d1d2
E‖M̂ −M‖2F ≥ σα

128
√
2

√
r(d1 ∨ d2)

μn
≥ σR

256

√
d

μn
,

as desired.

6.4. Proof of Lemma 3.1

We proceed via a probabilistic method. Assume without loss of generality that
d2 ≥ d1. Let N = exp( rd2

16γ2 ), B = r
γ2 , and for each i = 1, . . . , N , we draw a

random matrix M i ∈ Rd1×d2 as follows: The matrix M i consists of i.i.d. blocks
of dimensions B × d2, stacked from top to bottom, with the entries of the first
block being i.i.d. symmetric random variables taking values ±αγ, such that

M i
k� := M i

k′�, k′ = k(mod B) + 1.

Next, we show that above random procedure succeeds in generating a set having
all desired properties, with non-zero probability. For 1 ≤ i ≤ N , it is easy to see
that

‖M i‖∞ = αγ ≤ α,
1

d1d2
‖M i‖2F = α2γ2



1522 T. T. Cai and W.-X. Zhou

and because rank(M i) ≤ B,

‖M i‖max ≤
√
B ‖M i‖∞ =

√
r

γ2
αγ = α

√
r = R.

Consequently, M i ∈ K(α,R) and it remains to show that the set {M i}Ni=1

satisfies property (ii). In fact, for any 1 ≤ i �= j ≤ N ,

‖M i −M j‖2F =
∑
k,�

(M i
k� −M j

k�)
2

≥
⌊
d1
B

⌋ B∑
k=1

d2∑
�=1

(M i
k� −M j

k�)
2 = 4α2γ2

⌊
d1
B

⌋ B∑
k=1

d2∑
�=1

δkl,

where δkl are independent 0/1 Bernoulli random variables with mean 1/2. Using
Hoeffding’s inequality gives

P

(
B∑

k=1

d2∑
�=1

δk� ≥
Bd2
4

)
≤ exp(−Bd2/8).

Because there are less than N2/2 such index pairs in total, the above in-
equality, together with the union bound implies that with probability at least

1− N2

2 exp(−Bd2/8) ≥ 1/2,

‖M i −M j‖2F > α2γ2

⌊
d1
B

⌋
Bd2 ≥ α2γ2d1d2

2

holds for all i �= j. This completes the proof of Lemma 3.1.
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