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Abstract: Various association measures have been proposed in the litera-
ture that equal zero when the associated random variables are independent.
However many measures, (e.g., Kendall’s tau), may equal zero even in the
presence of an association between the random variables. In order to over-
come this drawback, Bergsma and Dassios (2014) proposed a modification
of Kendall’s tau, (denoted as τ∗), which is non-negative and zero if and only
if independence holds. In this article, we investigate the robustness prop-
erties and the asymptotic distributions of τ∗ and some other well-known
measures of association under null and contiguous alternatives. Based on
these asymptotic distributions under contiguous alternatives, we study the
asymptotic power of the test based on τ∗ under contiguous alternatives and
compare its performance with the performance of other well-known tests
available in the literature.
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1. Introduction

Since the early part of the last century, several measures of association have
been proposed to detect the association between random variables. Some of the
most popular are Kendall’s τ (see Kendall (1938), Spearman’s ρ (see Spearman
(1904), Hoeffding’s coefficient (see Hoeffding (1948), Blum-Kiefer-Rosenblatt’s
coefficient (see Blum, Kiefer, and Rosenblatt (1961), distance covariance (see
Székely, Rizzo, and Bakirov (2007) and Kolmogorov—Smirnov and Cramer von
Mises tests (e.g., see Serfling (1980). Among these tests, Kendall’s τ and Spear-
man’s ρ have effective representations in terms of the sign function. For two ran-
dom variables X and Y , Kendall’s τ is defined as E sign{(X1 −X2)(Y1 − Y2)},
and Spearman’s ρ is defined as E sign{(X1 − X2)(Y1 − Y3)}, where (X1, Y1),
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(X2, Y2) and (X3, Y3) are independent replications of (X,Y ) (see, e.g., Gibbons
and Chakraborti (2011), and sign(x) = x/|x|, if x �= 0, and sign(x) = 0, if
x = 0. It follows from the definitions of τ and ρ that both τ , ρ ∈ [−1, 1], and
τ = ρ = 0 if X ⊥⊥ Y . For given data (x1, y1), . . . , (xn, yn), the sample versions
of τ and ρ can be defined as τn = 1

(n2)

∑
1≤i<j≤n sign{(xi − xj)(yi − yj)} and

ρn = 1

(n3)

∑
1≤i<j<k≤n sign{(xi − xj)(yi − yk)}, respectively.

However, τ and ρ may equal zero even in the presence of association between
X and Y . In order to make this relationship equivalent (i.e., the measure of asso-
ciation = 0 if and only if X⊥⊥ Y ), Bergsma and Dassios (2014) proposed a new
measure (denoted as τ∗), which is defined as τ∗ = Ea(X1, X2, X3, X4)a(Y1, Y2,
Y3, Y4), where a(z1, z2, z3, z4) = sign(|z1 − z2| + |z3 − z4| − |z1 − z3| − |z2 −
z4|), and (X1, Y1), (X2, Y2), (X3, Y3) and (X4, Y4) are independent replica-
tions of (X,Y ). Bergsma and Dassios (2014) showed that τ∗ ≥ 0, and τ∗ =
0 ⇔ X ⊥⊥ Y . It also follows from the definition of Kendall’s τ that τ2 =
Es(X1, X2, X3, X4)s(Y1, Y2, Y3, Y4), where s(z1, z2, z3, z4) = sign(|z1 − z2|2 +
|z3−z4|2−|z1−z3|2−|z2−z4|2). Note that the form of τ2 is similar to the form
of τ∗ though τ2 = 0 does not satisfy the if and only if condition as we mentioned
earlier. For the given data (x1, y1), . . . , (xn, yn), the sample version of τ∗ (de-
noted as τ∗n) can be defined as τ∗n = 1

(n4)

∑
1≤i<j<k<l≤n a(xi, xj , xk, xl)a(yi, yj ,

yk, yl).
Another recently popularized measure of association is distance covariance

(see Székely et al. (2007), which is defined as dcov = E||X1 −X2|| ||Y1 − Y2||+
E||X1 −X2|| E||Y1 − Y2|| − 2E||X1 −X2|| ||Y1 − Y3||, where (X1, Y1), (X2, Y2)
and (X3, Y3) are independent replications of (X,Y ) ∈ R

p × R
q, p, q ≥ 1. It

is straightforward to show that dcov = 1
4Eh(X1, X2, X3, X4)h(Y1, Y2, Y3, Y4),

where h(z1, z2, z3, z4) = |z1 − z2|+ |z3 − z4| − |z1 − z3| − |z2 − z4|, and (X1, Y1),
(X2, Y2), (X3, Y3), (X4, Y4) are independent replications of (X,Y ). In addi-

tion, one can also show that dcov = 1
cpcq

∫
Rp×Rq

|ψX,Y (s,t)−ψX(s)ψY (t)|2
||t||1+p||s||1+q dsdt (see

Székely et al. (2007)), where ψX,Y , ψX and ψY are the characteristic functions
of (X,Y ), X and Y respectively, and this definition implies that dcov = 0 ⇔
X ⊥⊥ Y . For the given data (x1, y1), . . . , (xn, yn), the sample version of dcov
is defined as dcovn = 1

(n4)

∑
1≤i<j<k<l≤n

1
4h(xi, xj , xk, xl)h(yi, yj , yk, yl). How-

ever, it is expected that dcov is not a robust measure of association since it is
moment based, whereas τ and τ∗ are expected to be robust against the outliers
since these measures are based on the ranks or the positions of the observations.
Due to this reason, it is also expected that the test based on τ∗n will be more
powerful than the test based on dcovn when the null and the alternative dis-
tributions are associated with two well separated distinct populations, i.e., the
data from one population can be considered as the outliers relative to the data
cloud formed by the observations obtained from the other population.

Along with the issue of robustness of different measures of independence, it
is also of interest whether we can determine if the pair of random variables are
independent or not based on τ , τ∗ and dcov. In order to investigate this testing
of hypothesis problem, one should ideally carry out the tests based on the exact
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distributions of τn, τ
∗
n and dcovn. However, since the exact distributions of τn, τ

∗
n

and dcovn are not tractable, we estimate the size and the power of the tests based
on the asymptotic distributions of τn, τ

∗
n and dcovn. In addition, since both the

tests based on τ∗n and dcovn are consistent tests against fixed alternative, here
we investigate the asymptotic powers of the tests under contiguous alternatives.
In short, under the condition of contiguity, a limit law Qn of random vectors
Xn : Ωn → R

k, k ≥ 1 can be obtained from a suitable other limit law Pn, where
Qn and Pn are probability measures defined on (Ωn,An). The more technical
issues related to contiguity will be discussed at the beginning of Section 3.

The rest of the article is organized as follows. In Section 2, we study the
robustness of the aforementioned measures of association. In Section 3, we obtain
the asymptotic distributions of τn, τ

∗
n and dcovn under null and contiguous

alternatives, and based on these results, we investigate the asymptotic powers of
the tests based on these statistics. Section 4 contains some concluding remarks.
All technical details appear in the appendix.

2. Robustness study

(Huber, 2011, p. 9, 11) discusses a concept of maximum bias to investigate the
robustness of the estimator (or the corresponding functional), which is based
on a contamination neighborhood. The maximum bias of T (·) is defined as
b1(ε) = supF∈Pε

|T (F ) − T (F0)|, for any small ε > 0, where Pε = {F : F =
(1 − ε)F0 + εH,H ∈ M}, F0 is the true distribution function, and M is the
collection of probability measures such that the map F →

∫
ψdF from M

into R is continuous whenever ψ is bounded and continuous. Motivated by the
concept of maximum bias, we define a new measure b(β;T (F0)) as follows. Let
H be the dirac measure, i.e., HX,Y = δX,Y (h, k), where δX,Y (h, k) = 1, if
(X,Y ) = (h, k), and δX,Y (h, k) = 0, if (X,Y ) �= (h, k), and let F0 be the joint
distribution function of (X,Y ), whose associated random vector has independent
components. Finally, b(β;T (F0)) is defined as

b(β;T (F0)) = lim
h,k→∞

|T ((1− β)F0 + βδX,Y (h, k))− T (F0)|.

In other words, b(β;T (F0)) measures the effect on T (F0) of an arbitrary large
observation with mass β.

Remark 1. It is also appropriate to mention here that one can define b(β;T (F0))
when h, k → ±∞, and in view of the fact that τ , τ∗ and dcov are based on the
absolute values of the differences between the observations, the values of b(β; .)
measure for τ(F0), τ

∗(F0) and dcov(F0) will remain the same when h, k → −∞.
However, for the sake of simplicity, we assume h, k → ∞ throughout the paper
unless mentioned otherwise.

The following theorem states the behaviour of b(β; τ∗(F0)).

Theorem 1. Let F0 be a joint distribution function of (X,Y ), whose associated
marginal distribution functions are GX and HY of X and Y , respectively and in
addition, F0 = GXHY . Then, for any β < 1/2, we have b(β; τ∗(F0)) = 4β2(1−
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β)2, and consequently, b(β; τ∗(F0)) < 1/4 for any β < 1/2. Here τ∗(F0) =
EF0{a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)}, where (X1, Y1), (X2, Y2), (X3, Y3) and
(X4, Y4) are independent replications of (X,Y ), and for any z1, z2, z3 and z4,
a(z1, z2, z3, z4) = sign(|z1 − z2|+ |z3 − z4| − |z1 − z3| − |z2 − z4|).

Theorem 1 implies that in the presence of β ∈ [0, 1/2) proportion outliers in
the data, the bias of the functional τ∗ evaluated at F0 will be bounded by β2.
In fact, strictly speaking, the bias will be bounded by 1/4. In other words, the
bias will not break down to 1 even in the presence of arbitrarily large outliers.
Also, in view of the fact that τ∗n → τ∗ in probability as n → ∞, the bias of τ∗n
will be bounded by 1/4 in probability when the data is obtained from the joint
distribution function having independent marginal distribution functions.

Proposition 1 discusses the behaviour of b(β; τ(F0)) and b(β; dcov(F0)).

Proposition 1. Under the conditions of Theorem 1, for any β < 1/2, we have
b(β; τ(F0)) = 4β2(1−β)2, and consequently, b(β; τ(F0)) < 1/4 for any β < 1/2.
Here τ(F0) = EF0 [sign{(X1 −X2)(Y1 − Y3)}], where (X1, Y1) and (X2, Y2) are
independent replications of (X,Y ). Under the same conditions, for any β < 1/2,
we have b(β; dcov(F0)) = ∞. Here dcov(F0) =

1
4EF0{h(X1, X2, X3, X4)h(Y1, Y2,

Y3, Y4)}, where (X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4) are independent replica-
tions of (X,Y ), and for any z1, z2, z3 and z4, h(z1, z2, z3, z4) = |z1− z2|+ |z3−
z4| − |z1 − z3| − |z2 − z4|.

The assertion in Proposition 1 implies that τ is also a robust measure in the
sense of having bounded b(β; τ(F0)), whereas unlike b(β; τ(F0)) and b(β; τ∗(F0)),
b(β; dcov(F0)) is unbounded. This fact implies that distance covariance is non-
robust against the outliers. As we have mentioned in the Introduction, the non-
robustness of distance covariance is expected to be reflected in the asymptotic
power study, which will be fully discussed in the forthcoming section.

3. Asymptotic power study under contiguous alternatives

Besides the issue of robustness, since the tests based on both τ∗n and dcovn are
consistent (i.e., the power of the test tends to one as the sample size tends to in-
finite), a natural question is how the asymptotic powers of the tests based on τ∗n
and dcovn compare with other well-known tests (e.g., a test based on τn) under
contiguous alternatives (e.g., see Hajek, Sidak, and Sen (1999), p. 249). Precisely,
the sequence of probability measures Qn is contiguous with respect to the se-
quence of probability measures Pn if Pn(An) → 0 implies that Qn(An) → 0
for every sequence of measurable sets An, where (Ωn,An) is the sequence of
measurable spaces, and Pn and Qn are two probability measures defined on
(Ωn,An). In order to characterise the contiguity in terms of the asymptotic
behaviour of the likelihood ratios between Pn and Qn, Le Cam proposed some
results popularly known as Le Cam’s Lemma (e.g., see Hajek et al. (1999)).
A consequence of Le Cam’s first lemma is that the sequence Qn will be contigu-
ous with respect to the sequence Pn if log Qn

Pn
asymptotically follow a Gaussian
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distribution with mean = −σ2

2 and Variance = σ2 under Pn (e.g., see Ha-
jek et al. (1999), p. 253, Corollary to Le Cam’s first Lemma)), where σ > 0 is
a constant, and we use this fact to establish contiguity in this article (see the
proof of Theorem 2).

Suppose that we now want to test H0 : F0 = GXHY , where F0 is the joint
distribution function of (X,Y ) with the associated marginal distribution func-
tions of X and Y being GX and HY , respectively, and we consider a sequence of
contiguous or local alternatives Hn : Fn = (1− γ/

√
n)F0+(γ/

√
n)K for a fixed

γ > 0 and n = 1, · · · ,. Here we should point out that An is a sequence of sets,
which is changing over n along with its σ-field An, and for that reason, it does
not follow directly from the definition of contiguity that Fn is contiguous with
respect to F0. In Theorem 2, based on Le Cam’s first lemma, we establish that
the alternatives Hn will be contiguous alternatives under certain conditions.

In order to carry out the tests based on τn, τ
∗
n and dcovn, one needs to know

the distributions (or an approximation of the distributions) of these estimators.
In this context, note that τn, τ

∗
n and dcovn are U -statistics (e.g., see Lee (1990))

and to derive the asymptotic distributions of them, one needs to know the order
of degeneracy of each τn, τ

∗
n and dcovn. For the sake of completeness, the defi-

nition of U -statistic and its order of degeneracy are given below. For the given
data X = {x1, . . . , xn}, Un = 1

(n
m)

∑
1≤i1<...<im

k(xi1 , . . . , xim) is said to be a

U -statistic of order m with kernel k(·) having the order of degeneracy = l if
V ar(EXl+1,...,Xmk(X1, . . . , Xl, Xl+1, . . . , Xm)) = 0 but V ar(EXl+2,...,Xmk(X1,
. . . , Xl+1, Xl+2, . . . , Xm)) > 0, i.e., in other words, EXl+1,...,Xmk(x1, . . . , xl,
Xl+1, . . . , Xm) = 0, for all x1, . . . , xl. The statistic τn has the order of degener-
acy = 0, whereas that of τ∗n and dcovn are of order 1 (see the proofs of Theorems
2, 3 and 4). Here it should be further pointed out that 0 = δ20 ≤ δ21 ≤ . . . ≤ δ2m,
where δ2l = V ar(EXl+1,...,Xmk(X1, . . . , Xl, Xl+1, . . . , Xm)) for l = 1, . . . ,m (see,
e.g., Serfling (1980), p. 182), which implies that for all k ≥ l, δ2k > 0 when δ2l > 0.
This fact ensures the uniqueness of the order of degeneracy of U -statistic in view
of the definition of the order of degeneracy. The connection between the rate
of convergence of U -statistic and its order of degeneracy will be discussed in
Remark 3. In Theorems 2, 3 and 4, we describe the asymptotic behaviour of τn,
τ∗n and dcovn respectively under contiguous alternatives Hn.

Theorem 2. Assume that F0 and K have Lebesgue densities f0 and k, respec-
tively, and Ef0{ k

f0
− 1}2 < ∞. Then, the sequence of alternatives Hn is con-

tiguous to H0. Moreover, under Hn,
√
n(τn−τ) converges weakly to a Gaussian

distribution with mean μ1 and variance σ2
1, where

μ1 = 2γ

∞∫
∞

∞∫
∞

[
2

∞∫
x

∞∫
y

f0(u, v)dudv + 2

x∫
−∞

y∫
−∞

f0(u, v)dudv − 1

]
k(x, y)dxdy

and

σ2
1 = 4

∞∫
∞

∞∫
∞

[
2

∞∫
x

∞∫
y

f0(u, v)dudv + 2

x∫
−∞

y∫
−∞

f0(u, v)dudv − 1

]2

f0(x, y)dxdy.
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Here note that Ef0(log
k
f0
) = Ef0 log(1−(1− k

f0
)) ≈ −1

2Ef0(1− k
f0
)2 as Ef0(1−

k
f0
) = 0, and hence, −1

2Ef0(1− k
f0
)2 is essentially the first order approximation

of an entropy Ef0(log
k
f0
) that measures dissimilarity between two densities f0

and k. In other words, Ef0(1− k
f0
)2 is the mean square contingency (see (Rényi,

1959, p. 446)) of f0 and k. Further, we should mention that if k = f0, we have
k
f0

− 1 = 0, i.e., k and f0 are similar. At the same time, larger values of k
f0

− 1
indicate that k and f0 are more dissimilar. To summarize, Theorem 2 asserts
that the sequence of alternatives Hn will be contiguous with respect to H0 when
the mean square contingency of f0 and k is finite.

To prove Theorem 2, Le Cam’s third lemma is used to obtain the asymptotic
normality of

√
n{τ∗n−τ} under Hn, and Le Cam’s third lemma uses the fact that

logLn converges weakly to a random variable associated with a normal distri-
bution having certain location and scale parameters (see the proof of Theorems
2). We should point out that the asymptotic normality of logLn is a sufficient
condition but not a necessary condition to establish the contiguity of Qn with
respect to Pn. Instead of Le Cam’s third lemma, one can also follow Behnen and
Neuhaus (1975)’s approach based on a specific truncation method for contiguity
of the density functions associated with Hn with respect to the density function
associated with H0. Also, Behnen (1971) investigated the asymptotic relative
efficiency of some tests for independence against general contiguous alternatives
of positive quadrant dependence. However, neither Behnen (1971) nor Behnen
and Neuhaus (1975) considered the distribution functions associated with Hn as
a mixture distribution, as we consider here. Recently, Banerjee (2005) studied
the behaviour of the likelihood ratio statistics for testing a finite dimensional pa-
rameter under local contiguous hypotheses. To obtain the local (or contiguous)
alternatives, he perturbed the null hypothesized parameter, which is different
from the perturbance on the distribution function considered by us.

Note that the sequence of contiguous alternatives Hn coincide with the null
hypothesis H0 when γ = 0, and hence, the asymptotic distribution of

√
n(τn−τ)

under H0 directly follows from the assertion in Theorem 2 by choosing γ = 0.
Corollary 1 states the asymptotic distribution of

√
n(τn − τ) under H0.

Corollary 1. Assume that F0 has density function f0. Then, under H0,
√
n(τn−

τ) converges weakly to a Gaussian distribution with mean zero and variance σ2
1,

where σ2
1 is the same as defined in Theorem 2.

Theorem 3. Assume the same conditions on F0 and K as mentioned in Theo-
rem 2. Then, under Hn, n(τ

∗
n−τ∗) converges weakly to

∑∞
i=1 λi{(Zi+ai)

2−1},
where Zi’s are i.i.d. N(0, 1) random variables, and λi’s are the eigenvalues as-
sociated with l(x, y) = E{sign(|X1−X2|+ |X3−X4|− |X1−X3|− |X2−X4|)×
sign(|Y1−Y2|+ |Y3−Y4|− |Y1−Y3|− |Y2−Y4|)|X1 = x, Y1 = y}. Here (X1, Y1),
(X2, Y2), (X3, Y3) and (X4, Y4) are i.i.d. bivariate random vectors, and

ai = γ

∫ {
k(x, y)

f0(x, y)
− 1

}
gi(x)gi(y)fX,Y dxdy,
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where gi(x) and gi(y) are the eigenfunctions such that

∞∫
−∞

∞∫
−∞

l(x, y)

4∏
i=2

gk(Xi)gk(Yi)d(

4∏
i=2

F0;Xi,Yi) = λkgk(x)gk(y) for all (x, y).

Theorem 4. Assume the same conditions on F0 and K as mentioned in The-
orem 2. Then, under Hn, n(dcovn −dcov) converges weakly to

∑∞
i=1 λ

∗
i {(Z∗

i +
a∗i )

2−1}, where Z∗
i ’s are i.i.d. N(0, 1) random variables, and λ∗

i ’s are the eigen-
values associated with l∗(x, y) = E{(|X1 −X2|+ |X3 −X4| − |X1 −X3| − |X2 −
X4|)×(|Y1−Y2|+|Y3−Y4|−|Y1−Y3|−|Y2−Y4|)|X1 = x, Y1 = y}. Here (X1, Y1),
(X2, Y2), (X3, Y3) and (X4, Y4) are i.i.d. bivariate random vectors, and

ai = γ

∫ {
k(x, y)

f0(x, y)
− 1

}
g∗i (x)g

∗
i (y)fX,Y dxdy,

where g∗i (x) and g∗i (y) are the eigenfunctions such that

∞∫
−∞

∞∫
−∞

l∗(x, y)
4∏

i=2

g∗i (Xi)g
∗
i (Yi)d(

4∏
i=2

F0;Xi,Yi) = λ∗
kg

∗
k(x)g

∗
k(y) for all (x, y).

Here again, when γ = 0, the sequence of contiguous alternatives Hn for
n = 1, · · · coincide with the null hypothesis H0, and as a consequence, one can
derive the asymptotic distributions of n(τ∗n−τ∗) and n(dcovn −dcov) under H0

from their asymptotic distributions under Hn when γ = 0. Corollaries 2 and 3
state the asymptotic distributions of n(τ∗n − τ∗) and n(dcovn −dcov) under H0,
respectively.

Corollary 2. Assume the same conditions on F0 as mentioned in Theorem 2.
Then, under H0, n(τ

∗
n − τ∗) converges weakly to

∑∞
i=1 λi(Z

2
i − 1), where Zi’s

are i.i.d. N(0, 1) random variables, and λi’s are the eigenvalues associated with
l(x, y) = E{sign(|X1 −X2|+ |X3 −X4| − |X1 −X3| − |X2 −X4|)× sign(|Y1 −
Y2|+ |Y3 −Y4| − |Y1 −Y3| − |Y2 −Y4|)|X1 = x, Y1 = y}. Here (X1, Y1), (X2, Y2),
(X3, Y3) and (X4, Y4) are i.i.d. bivariate random vectors, and gi(x) and gi(y)
are the eigenfunctions such that

∞∫
−∞

∞∫
−∞

l(x, y)

4∏
i=2

gk(Xi)gk(Yi)d(

4∏
i=2

F0;Xi,Yi) = λkgk(x)gk(y) for all (x, y).

Corollary 3. Assume the same conditions on F0 as mentioned in Theorem 2.
Then, under H0, n(dcovn −dcov) converges weakly to

∑∞
i=1 λ

∗
i {Z∗2

i −1}, where
Z∗
i ’s are i.i.d. N(0, 1) random variables, and λ∗

i ’s are the eigenvalues associated
with l∗(x, y) = E{(|X1 − X2| + |X3 − X4| − |X1 − X3| − |X2 − X4|) × (|Y1 −
Y2|+ |Y3 −Y4| − |Y1 −Y3| − |Y2 −Y4|)|X1 = x, Y1 = y}. Here (X1, Y1), (X2, Y2),
(X3, Y3) and (X4, Y4) are i.i.d. bivariate random vectors, and g∗i (x) and g∗i (y)
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are the eigenfunctions such that

∞∫
−∞

∞∫
−∞

l∗(x, y)
4∏

i=2

g∗k(Xi)g
∗
k(Yi)d(

4∏
i=2

F0;Xi,Yi) = λ∗
kg

∗
k(x)g

∗
k(y) for all (x, y).

The assertion in Corollary 1 implies that
√
n(τn − τ) = Op(1), which follows

from Prohorov’s theorem (e.g., see (Van der Vaart, 2000, p. 8), and consequently,
we have τn − τ = op(1), which ensures that τn is a consistent estimator of
τ . Similarly, along with a straightforward application of Prohorov’s theorem
(e.g., see (Van der Vaart, 2000, p. 8), it follows from Corollaries 2 and 3 that
n(τ∗n − τ∗) = Op(1) and n(dcovn −dcov) = Op(1), respectively. These facts
imply that τ∗n and dcovn are consistent estimators of τ∗ and dcov respectively.

Remark 2. It is appropriate to mention here that one can directly establish the
results related to the consistency of τn, τ

∗
n and dcovn using the results on the

consistency of U -statistics. Among these three estimators τn, τ
∗
n and dcovn, τn is

a non-degenerate U -statistic, whereas τ∗n and dcovn are degenerate U -statistics
of order = 1. The exact variance expressions of non-degenerate and degenerate
U -statistics are given in p. 183 (Lemma A), and in p. 189 in Serfling (1980)
respectively, and those variance terms converge to zero as n → ∞ (see p. 183
in (iii) of Lemma A in Serfling (1980)). These facts establish the consistency
of τn, τ

∗
n and dcovn to its population counterpart.

Remark 3. The rates of convergence of τn, τ
∗
n and dcovn also follow from the

results related to the rate of convergence of the U -statistic. Based on the well-
known projection method of the U -statistic (see, e.g., Section 5.3.4 in Serfling
(1980), pp. 189–190), one can derive directly the rate of convergence of τn when
c = 1 in the expression given in 5.3.4 in Serfling (1980) and that of τ∗n and
dcovn when c = 2 in that expression. The aforementioned choices of c depend
on the order of degeneracy of the corresponding U -statistic. In other words, this
fact gives us an idea on how the rate of convergence of U -statistic is associated
with its order of degeneracy. To summarize, for a U -statistic with the order of

degeneracy = p, the rate of convergence will be of n
p+1
2 , where n is the sample

size, and p is an integer (see, e.g., Section 5.3.4 in Serfling (1980), pp. 189–
190).

Remark 4. We would like to end this section with a discussion of the eigen-
values and the eigenfunctions, which are associated with the asymptotic dis-
tributions of τ∗n and dcovn stated in Theorems 3 and 4. In view of the non-
zero order of degeneracy of τ∗n and dcovn, the eigenvalues and the eigenfunc-
tions are involved in the asymptotic distributions of them (see, e.g., Section
5.5.2 in Serfling (1980), pp. 193–194). Further, using a spectral decomposition
of the kernels l(x, y) and l∗(x, y), we have l(x, y) =

∑∞
k=1 λkgk(x)gk(y) and

l∗(x, y) =
∑∞

k=1 λ
∗
kg

∗
k(x)g

∗
k(y), which hold true in the L2-sense. Here, gk(·)s

are orthonormal eigenfunctions and λks are the corresponding eigenvalues of
the integral equation on l(x, y) described in the statement of Theorem 3. Simi-
larly, g∗k(·)s are orthonormal eigenfunctions and λ∗

ks are the corresponding eigen-
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values of the integral equation on l∗(x, y) described in the statement of Theo-
rem 4. In addition, the orthonormality of gk(·) implies that E{g2k(X)} = 1 and
E{gk(X)gk′(X)} = 0 for all k �= k′. Similarly, due to the same reason, we have
E{g∗2k (X)} = 1 and E{g∗k(X)g∗k′(X)} = 0 for all k �= k′. Moreover, it is here
appropriate to mention that for n(dcovn −dcov), Bergsma (2006) listed the ex-
act forms of the eigenvalues and the eigenfunctions for various distributions,
and as a result, any asymptotic inference based upon Theorem 4 and Corollary
3 is feasible. However, the exact forms of the eigenvalues and the eigenfunctions
associated with the asymptotic distributions of n(τ∗n − τ∗) are not yet available
in the literature.

3.1. Computation: Implementation of the tests and some examples

Theorem 2 helps us to compute the asymptotic power of the test based on τn
for different values of γ, and the asymptotic critical value at α% level of sig-
nificance (denote it as c1(α)) can be obtained from the (1 − α)% quantile of
the Gaussian distribution described in Corollary 1. Similarly, Theorems 3 and 4
enable us to compute the asymptotic power of the tests based on τ∗n and dcovn,
and the corresponding asymptotic critical values (denoted as c2(α) and c3(α)
respectively) can be obtained from the (1 − α)% quantile of the distributions
described in Corollary 2 and Corollary 3 respectively. However, since the infinite
sum of the weighted chi-squared distribution (see Theorems 3 and 4 and Corol-
lary 2 and 3) with weights as the eigenvalues of the kernels associated with τ∗ (or
dcov), is not easily tractable in practice, it becomes difficult to have quantiles of
this distribution. In order to overcome this problem related to infinitely many
eigenvalues and the infinite sum, we approximate the kernel function at n1×n1

many marginal quantile points and compute the eigenvalues of n1 × n1 finite-
dimensional matrix associated with the kernel function. The (i, j)-th element of
the matrix is the (i/n1, j/n1)-th marginal quantile (see Babu and Rao (1988)) of
the joint distribution associated with the bivariate random vector (X,Y ), where
i = 1, . . . , n1 and j = 1, . . . , n1. Then, we generate a large sample with size n2

from that approximated finite sum of the weighted chi-squared distribution, and
the (1 − α)%-th quantile of that sample is taken as the approximated value of
the asymptotic critical value at α% level of significance. Similarly, in order to
compute power, we approximate the infinite sum of the weighted chi-squared
distributions, described in Theorems 3 and 4, by an appropriate finite sum of
the chi-squared distributions. We simulate a large sample with size n3 from the
approximated distributions, and finally, the proportion of the observations in
the sample larger than the approximated critical value, is considered to be the
value of the asymptotic power. Also, for distance covariance, we carry out an al-
ternative procedure based on the exact forms of the first four eigenvalues, which
essentially explains more than 90% variation (see Bergsma (2006)) and the cor-
responding eigenfunctions. The results obtained by this procedure are nearly
the same as the reported results. In the asymptotic power studies of different
tests, we consider n1 = 10, n2 = 100 and n3 = 100 unless mentioned otherwise.
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Fig 1. The asymptotic power of the test based on τn (solid curve −), the test based on τ∗n
(lined curve − −) and the test based on dcovn (dotted line curve −o−) for different values
of γ.

In the following examples, we compute the asymptotic power of the tests based
on τn, τ

∗
n and dcovn for different values of γ with various choices of f0 and k.

All results are summarized in Figure 1.

Example 1. Consider

f0(x, y) = 1 if (x, y) ∈ [0, 1]2

= 0 if (x, y) /∈ [0, 1]2,

and

k(x, y) = 1 if (x, y) ∈ [2, 3]2

= 0 if (x, y) /∈ [2, 3]2.

The results are reported in Table 1.
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Table 1

The results for Example 1: The asymptotic power of the different tests for different values
of γ. For different values of γ, the value within each cell of the second, the third, the fourth,
the sixth, the seventh and the eighth rows denote the asymptotic power of the corresponding

test at 5% level of significance under contiguous alternatives.

γ 0 0.01 0.02 0.03 0.04 0.05

Test based on τn 0.05 0.12 0.24 0.41 0.60 0.77

Test based on τ∗n 0.05 0.14 0.33 0.55 0.72 0.89

Test based on dcovn 0.05 0.12 0.31 0.41 0.48 0.55

γ 0.06 0.07 0.08 0.09 0.10

Test based on τn 0.89 0.95 0.98 0.99 0.99

Test based on τ∗n 1 1 1 1 1

Test based on dcovn 0.68 0.78 0.95 1 1

The values in Table 1 indicate that the test based on τ∗n is more powerful than
the test based on dcovn because of dcovn’s non-robustness property. Comparing
between the tests based on τn and dcovn, for small values of γ, the τn-based test
performs better whereas for large values of γ, the test based on dcovn performs
marginally better than the test based on τn.

Example 2. Consider

f0(x, y) = 1 if (x, y) ∈ [0, 1]2

= 0 if (x, y) /∈ [0, 1]2,

and

k(x, y) = 1 if (x, y) ∈ [24, 25]2

= 0 if (x, y) /∈ [24, 25]2.

The results are reported in Table 2.

Table 2

The results for Example 2: The asymptotic power of the different tests for different values
of γ. For different values of γ, the value within each cell of the second, the third, the fourth,
the sixth, the seventh and the eighth rows denote the asymptotic power of the corresponding

test at 5% level of significance under contiguous alternatives.

γ 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

Test based on τn 0.05 0.17 0.39 0.66 0.86 0.96 0.99

Test based on τ∗n 0.05 0.25 0.41 0.75 0.91 1 1

Test based on dcovn 0.05 0.07 0.09 0.08 0.17 0.14 0.16

γ 0.0007 0.0008 0.0009 0.001 0.05 0.10

Test based on τn 0.99 1 1 1 1 1

Test based on τ∗n 1 1 1 1 1 1

Test based on dcovn 0.27 0.25 0.31 0.43 0.38 0.36

In this example, given that the right end point of the support of F0 is too
distant from the left end point of the support of K, the test based on dcovn does
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not perform well as it is a moment based procedure, i.e., non-robust against the
outliers. Whereas, as expected, the test based on τ∗n performs well since it is
robust against the outliers.

Example 3. Consider f0(x, y) =
1
2π e

− x2+y2

2 and k(x, y) = 1
2π e

− (x−20)2+(y−20)2

2 ,
where (x, y) ∈ R

2. The results are reported in Table 3.

Table 3

The results for Example 3: The asymptotic power of the different tests for different values
of γ. For different values of γ, the value within each cell of the second, the third, the fourth,
the sixth, the seventh and the eighth rows denote the asymptotic power of the corresponding

test at 5% level of significance under contiguous alternatives.

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Test based on τn 0.05 0.08 0.15 0.23 0.33 0.44 0.56 0.68

Test based on τ∗n 0.05 0.09 0.25 0.41 0.56 0.67 0.79 0.89

Test based on dcovn 0.05 0.06 0.11 0.21 0.18 0.29 0.38 0.41

γ 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Test based on τn 0.77 0.85 0.91 0.95 0.97 0.98 0.99 1

Test based on τ∗n 0.96 1 1 1 1 1 1 1

Test based on dcovn 0.39 0.46 0.51 0.55 0.57 0.56 0.61 0.59

The figures in Table 3 also indicate that the test based on τ∗n performs better
than the test based on dcov as expected in view of the fact that b(β; τ∗(F0))
is bounded whereas b(β; dcov(F0)) is unbounded. The nature of b(β; ·) plays
a crucial role in the power study because the distance between the location
parameters of F0 and K is large while the scatter matrices associated with F0

and K are the same.

Example 4. Consider f0(x, y) = 1
2π e

− x2+y2

2 and k(x, y) = 1
2

1

(1+x2+y2)
3
2

(i.e.,

standard bivariate Cauchy density function), where (x, y) ∈ R
2. The results are

reported in Table 4.

Table 4

The results for Example 4: The asymptotic power of the different tests for different values
of γ. For different values of γ, the value within each cell of the second, the third and the

fourth rows denote the asymptotic power of the corresponding test at 5% level of significance
under contiguous alternatives.

γ 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Test based on τn 0.05 0.11 0.18 0.23 0.36 0.52 0.75 0.84 0.97 0.99 1

Test based on τ∗n 0.05 0.13 0.26 0.40 0.63 0.85 0.95 1 1 1 1

Test based on dcovn 0.05 0.09 0.14 0.11 0.35 0.38 0.53 0.62 0.61 0.67 0.74

As expected, the figures in Table 4 indicate that the test based on τ∗n per-
forms best whereas the test based on dcovn does not, since the latter lacks the
robustness against the outliers generated from a heavy tailed distribution K,
namely, the standard bivariate Cauchy distribution.
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4. Concluding remarks

The asymptotic power study in Section 3.1 indicates that the test based on τ∗n
performs well when the null and alternative distributions are far away from each
other while the test based on dcovn does not perform well in this situation since
distance covariance is not robust against outliers. On the other hand, perfor-
mances of both measures are comparable when null and alternative distributions
are close.

Recently, Weihs, Drton, and Leung (2016 (to appear)) provided an efficient
method to compute τ∗n. Direct computation of τ∗n using the definition requires
O(n4) operations. Similar to Christensen’s 2005 idea for computing Kendall’s τ ,
Weihs et al. observed that computing τ∗n relies only on the relative ordering of
quadruples of points. Based on this fact, they derived an algorithm to compute
τ∗n using only O(n2 log(n)) operations.

We should also point out that one can carry out two-sample tests based on
τ∗n (or dcovn). Suppose that U = {U1, . . . , Um} and V = {V1, . . . , Vn} are two
independent sets of random variables associated with distribution functions F
and G, respectively, and we want to test H0 : F = G against H1 : F �= G.
We now define (Xi, Yi) = (Ui, 0) if i = 1, . . . ,m and (Xi, Yi) = (Vi−m, 1) if
i = m+ 1, . . . ,m+ n. The construction of (Xi, Yi) for i = 1, . . . , n+m implies
that X ⊥⊥ Y ⇒ F = G. Note that it follows from (Bergsma and Dassios,
2014, Theorem 1)that τ∗(X,Y ) = 0 ⇔ X⊥⊥ Y , which implies that τ∗(X,Y ) =
0 ⇒ F = G. In other words, the two-sample test (i.e., H0 : F = G against
H1 : F �= G) is a special case of the test for independence.

One can also use τ∗ to estimate the mixing proportion in the mixture distribu-
tion such as FX,Y = (1−ε)F1XG1Y +εF2XG2Y , where ε ∈ (0, 1/2) is the mixing
proportion, and F1X , G1Y , F2X and G2Y are distribution functions. Suppose
that (X1, Y1), . . . , (Xn, Yn) are i.i.d. bivariate random vectors associated with
F1XG1Y , and as a consequence of the product form F1XG1Y of the joint distri-
bution function, we have τ∗(X,Y ) = 0. Also, let (X∗

1 , Y
∗
1 ), . . . , (X

∗
m, Y ∗

m) be i.i.d.
bivariate random vectors associated with F2XG2Y , and we have τ∗(X∗, Y ∗) = 0
in view of the product form F2XG2Y of the joint distribution function. We now
combine these n many (X,Y ) and m many (X∗, Y ∗) random vectors and then
randomly choose n many random vectors from the combined (n+m) many ran-
dom vectors, which can be done in

(
n+m
n

)
ways. We denote j-th set of chosen

random vectors are (x∗∗
1j , Y

∗∗
1j ), . . . , (X

∗∗
nj , Y

∗∗
nj ), where j = 1, . . . ,

(
n+m
n

)
and com-

pute τ∗(X∗∗
j , Y ∗∗

j ) for each j = 1, . . . ,
(
n+m
n

)
. Finally, in view of the structure

of the mixture distribution FX,Y , one can propose the estimate of ε to be

ε̂n,m =

∑(n+m
n )

j=1 1{τ∗(X∗∗
j ,Y ∗∗

j )>c}(
n+m
n

) ,

where c is a constant, significantly larger than zero. The investigation of the
properties of ε̂n,m is a subject for future research.
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Appendix

Proof of Theorem 1. It follows from the definition of τ∗ that

τ∗X,Y {(1− β)FX,Y + βGX,Y }
=Ea(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)

=

∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)

4∏
i=1

d{(1− β)FXi,Yi + βGXi,Yi}

=(1− β)4
∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(HX1,Y1HX2,Y2HX3,Y3HX4,Y4)

+β(1− β)3
∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(HX1,Y1GX2,Y2HX3,Y3HX4,Y4)

+β(1− β)3
∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(GX1,Y1HX2,Y2HX3,Y3HX4,Y4)

+β2(1− β)2
∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(GX1,Y1GX2,Y2HX3,Y3HX4,Y4)

+β(1− β)3
∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(HX1,Y1HX2,Y2GX3,Y3HX4,Y4)

+β2(1− β)2
∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(HX1,Y1GX2,Y2GX3,Y3HX4,Y4)

+β2(1− β)2
∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(GX1,Y1HX2,Y2GX3,Y3HX4,Y4)

+β3(1− β)

∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(GX1,Y1GX2,Y2GX3,Y3HX4,Y4)

+β(1− β)3
∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(HX1,Y1HX2,Y2HX3,Y3GX4,Y4)

+β2(1− β)2
∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(HX1,Y1GX2,Y2HX3,Y3GX4,Y4)

+β2(1− β)2
∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(GX1,Y1HX2,Y2HX3,Y3GX4,Y4)

+β3(1− β)

∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(GX1,Y1GX2,Y2HX3,Y3GX4,Y4)

+β2(1− β)2
∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(HX1,Y1HX2,Y2GX3,Y3GX4,Y4)
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+β3(1− β)

∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(HX1,Y1GX2,Y2GX3,Y3GX4,Y4)

+β3(1− β)

∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(GX1,Y1HX2,Y2GX3,Y3GX4,Y4)

+β4

∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(GX1,Y1GX2,Y2GX3,Y3GX4,Y4).

Note that, since X and Y are independent, if GX,Y = δX,Y (h, k), we have∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(HX1,Y1HX2,Y2HX3,Y3HX4,Y4) = 0

and∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(GX1,Y1GX2,Y2GX3,Y3GX4,Y4) = 0.

Also, all terms associated with either β3(1 − β) or β(1 − β)3 converge to zero
as h, k → ∞. Among the terms associated with β2(1− β)2,∫

R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(HX1,Y1GX2,Y2GX3,Y3HX4,Y4)

and ∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(GX1,Y1HX2,Y2HX3,Y3GX4,Y4)

converge to zero, whereas∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(GX1,Y1GX2,Y2HX3,Y3HX4,Y4),

∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(HX1,Y1GX2,Y2GX3,Y3HX4,Y4),

∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(HX1,Y1GX2,Y2HX3,Y3GX4,Y4)

and ∫
R8

a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)d(HX1,Y1HX2,Y2GX3,Y3GX4,Y4)

converge to one as h, k → ∞, in view of the definition of a. All these facts imply
that b(β; τ∗) = 4β2(1 − β)2. Also, previously mentioned in Remark 1, we will
have the same expression of b(β; τ∗) = 4β2(1− β2) when h, k → −∞.
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Further, note that β2(1 − β)2 is an increasing function for any β < 1/2,
and consequently, β2(1 − β)2 < 1/16 ⇔ b(β; τ) < 1/4 for any β < 1/2. This
completes the proof of the theorem.

Proof of Proposition 1. For τ , considering s(.) instead of a(.) in the proof of
Theorem 1 and arguing in the same way, we have b(β; τ) = 4β2(1 − β)2 and
b(β; τ) < 1/4 for any β < 1/2.

For dcov, considering 1
4h(.) instead of a(.) in the expression of τ∗X,Y {(1 −

β)FX,Y + βGX,Y }, which appeared in the proof of Theorem 1, we have
dcovX,Y {(1− β)FX,Y + βGX,Y }. Note that, since X and Y are independent, if
GX,Y = δX,Y (h, k), we have∫

R8

1

4
h(X1, X2, X3, X4)h(Y1, Y2, Y3, Y4)d(HX1,Y1HX2,Y2HX3,Y3HX4,Y4) = 0

and∫
R8

1

4
h(X1, X2, X3, X4)h(Y1, Y2, Y3, Y4)d(GX1,Y1GX2,Y2GX3,Y3GX4,Y4) = 0.

Also, all terms associated with either β3(1 − β) or β(1 − β)3 converge to zero
as h, k → ∞. Among the terms associated with β2(1− β)2,∫

R8

1

4
h(X1, X2, X3, X4)h(Y1, Y2, Y3, Y4)d(HX1,Y1GX2,Y2GX3,Y3HX4,Y4)

and ∫
R8

1

4
h(X1, X2, X3, X4)h(Y1, Y2, Y3, Y4)d(GX1,Y1HX2,Y2HX3,Y3GX4,Y4)

converge to zero whereas∫
R8

1

4
h(X1, X2, X3, X4)h(Y1, Y2, Y3, Y4)d(GX1,Y1GX2,Y2HX3,Y3HX4,Y4),

∫
R8

1

4
h(X1, X2, X3, X4)h(Y1, Y2, Y3, Y4)d(HX1,Y1GX2,Y2GX3,Y3HX4,Y4),

∫
R8

1

4
h(X1, X2, X3, X4)h(Y1, Y2, Y3, Y4)d(HX1,Y1GX2,Y2HX3,Y3GX4,Y4)

and ∫
R8

1

4
h(X1, X2, X3, X4)h(Y1, Y2, Y3, Y4)d(HX1,Y1HX2,Y2GX3,Y3GX4,Y4)
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converge to ∞ as h, k → ∞, in view of the definition of h. All these facts imply
that b(β; dcov) = ∞. Similarly, here also as in the case of τ∗, the expressions
of b(β; τ) = 4β2(1− β)2 and b(β; dcov) = ∞ will remain the same when h, k →
−∞.

To prove Theorem 2, we should state a lemma proposed by Le Cam on the
asymptotic distribution of test statistics under contiguous alternatives and the
result related to the asymptotic distribution of non-degenerate U -statistics.

Lemma (Le Cam’s third lemma). Let {Xn} ∈ R
d be a sequence of random

vectors, and the sequence of measures Qn is contiguous with respect to the se-
quence of another probability measures Pn. If (Xn, log

dQn

dPn
) converges weakly to

a random vector in R
d+1 associated with (d + 1)-dimensional normal distribu-

tion with the location parameter =
( μ

−σ2

2

)
and the scatter parameter =

(
Σ τ
τT σ2

)
under Pn, then {Xn} converges weakly to a random vector in R

d associated with
d-dimensional normal distribution with the location parameter = μ+ τ and the
scatter parameter = Σ under Qn.

Proof. See (Van der Vaart, 2000, p. 90).

Result 1 (Asymptotic normality of non-degenerate U -statistics). For a given
data X = {x1, . . . , xn}, let Un = 1

(n
m)

∑
1≤i1<...<im

k(xi1 , . . . , xim) be a U -

statistic of order m with kernel k(.) If σ2
1 := V arX1(EX2,...,Xmk(x1, X2, . . . ,

Xm)) > 0, then
√
n(Un −E[Un]) converges weakly to a random variable associ-

ated with the normal distribution with mean zero and variance m2σ2
1.

Proof. See the proof of Theorem 1 in Lee (1990), page 76.

Proof of Theorem 2. In order to establish the contiguity of the sequence Fn

relative to F0, it is enough to show that Ln, the logarithm of the likelihood ratio,
is asymptotically normal with mean −1

2σ
2 and variance σ2 (see (Hajek et al.,

1999, p. 253, Corollary to Le Cam’s first Lemma), where σ is a positive constant.
For notational convenience, we denote Z = (X,Y ), and fn and f0 are the density
functions of Fn and F0, respectively. Now, we have

Ln =

n∑
i=1

log
fn(zi)

f0(zi)
=

n∑
i=1

log
(1− γ/

√
n)f0(zi) + γ/

√
nk(zi)

f0(zi)

=

n∑
i=1

log

[
1 + γ/

√
n

{
k(zi)

f0(zi)
− 1

}]

=
γ√
n

n∑
i=1

{m(zi)− 1} − γ2

2n

n∑
i=1

{m(zi)− 1}2 /
{
1 +

ainγ {m(zi)− 1}√
n

}2

,

where m(zi) =
k(zi)
f0(zi)

, and ain ∈ (0, 1) with probability 1.

Now, we define Wn =
∑n

i=1
γ√
n
{m(zi)− 1} − γ2

2 Ef0{m(z1)− 1}2. Note that

by straightforward application of C.L.T., it follows that Wn is asymptotically

normal with mean −γ2

2 Ef0{m(z1)− 1}2 and variance γ2Ef0{m(z1)− 1}2 since
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EF0{
k(z)
f0(z)

−1}2 < ∞. So, in order to prove contiguity of the sequence of densities

associated with Hn, it is enough to show that |Ln −Wn|
p→ 0 as n → ∞.

For convenience of writing, we denote σ2 = Ef0{m(z1) − 1}2, σ2
1l =

Ef0{m(z1)− 1}21{m(z1)≤l} and σ2
2l = Ef0{m(z1)− l}21{m(z1)>l}, where l > 0 is

a constant. So, we have

|Ln −Wn| ≤
∣∣∣∣T1n − γ2σ2

1l

2

∣∣∣∣+
∣∣∣∣T2n − γ2σ2

2l

2

∣∣∣∣ ,
where T1n and T2n are given by T1n =

∑n
i=1

γ2{m(zi)−1}2

2n /[1+ ainγ{m(zi)−1}√
n

]2×
1{m(zi)≤l} and T2n =

∑n
i=1

γ2{m(zi)−1}2

2n /[1+ ainγ{m(zi)−1}√
n

]21{m(zi)>l}. Now, for

a fixed ε > 0, we choose l0 sufficiently large such that γ2σ2
2l0

< ε and l0 > 1.
Then,

P

[∣∣∣∣∣T2n −
γ2σ2

2l0

2

∣∣∣∣∣ > ε/2

]

= P

[
T2n >

γ2σ2
2l0

2
+

ε

2

]
+ P

[
T2n <

γ2σ2
2l0

2
− ε

2

]

= P

[
T2n >

γ2σ2
2l0

2
+

ε

2

]
+ 0 (since

γ2σ2
2l0

2 − ε
2 < 0)

≤ P

[
n∑

i=1

γ2{m(zi)− 1}2
2n

1{m(zi)>l0} >
γ2σ2

2l0

2
+

ε

2

]
→ 0 as n → ∞.

The last implication follows from the fact that
∑n

i=1
γ2{m(zi)−1}2

2n 1{m(zi)>l0}
p→

γ2σ2
2l0

2 .
Now, we fix 0 < η < 1 on the event {m(zi) ≤ l0}, and hence, we have

1 + ainγ{m(zi)−1}√
n

≤ 1 + γ(l0−1)√
n

< 1 + η for all n ≥ N (say). Also, since

m(z) ≥ 0, 1 + ainγ{m(zi)−1}√
n

≥ 1− ainγ√
n

> 1− η for all n ≥ N . Next, we define

V1n =
∑n

i=1

γ2{m(zi)−1}21{m(zi)≤l0}
2n(1+η)2 and V2n =

∑n
i=1

γ2{m(zi)−1}21{m(zi)≤l0}
2n(1−η)2 . The

aforementioned facts imply that T1n ∈ (V1n, V2n) for all n ≥ N , V1n
p→ γ2σ2

1l0

2(1+η)2

and V2n
p→ γ2σ2

1l0

2(1−η)2 . Hence, we have

P

[∣∣∣∣∣T1n −
γ2σ2

1l0

2

∣∣∣∣∣ > ε/2

]
≤ P

[∣∣∣∣∣V1n −
γ2σ2

1l0

2(1 + η)2

∣∣∣∣∣ > ε/2−
γ2σ2

1l0

2
+

γ2σ2
1l0

2(1 + η)2

]

+ P

[∣∣∣∣∣V2n −
γ2σ2

1l0

2(1− η)2

∣∣∣∣∣ > ε/2 +
γ2σ2

1l0

2
+

γ2σ2
1l0

2(1− η)2

]
.

Now, we choose η > 0 so small such that ε/2 − γ2σ2
1l0

2 +
γ2σ2

1l0

2(1+η)2 > 0 and

ε/2 +
γ2σ2

ll0

2 +
γ2σ2

1l0

2(1−η)2 > 0. Thus, we have T1n − γ2σ2
1l0

2

p→ 0, and consequently,
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Ln−Wn
p→ 0, which ensures the contiguity of the sequence of densities associated

with Hn.
Next, since τn is a non-degenerate U-statistics (see Lee (1990), p. 14–15) as

EX1,Y1 [Esign{(X1−X2)(Y1−Y2)|(X1, Y1)}]2 =
∫∞
∞

∫∞
∞ [2

∫∞
x

∫∞
y

f0(u, v)dudv+

2
∫ x

−∞
∫ y

−∞ f0(u, v)dudv− 1]2f0(x, y)dxdy > 0, it follows from Result 1 (see also

Lee (1990), Theorem 1, p. 76) that
√
n{(τn − τ) converges weakly to a random

variable associated with a normal distribution with zero mean and variance σ2
1 ,

where the expression of σ2
1 is provided later. Further, in view of expansion of

Ln, we have the asymptotic normality of the all possible linear combination of√
n(τn − τ) and Ln under H0. This fact implies that the joint distribution of√
n{(τn−τ), Ln/

√
n} is asymptotically bivariate normal distribution under H0.

Hence, one can apply Le Cam’s third lemma (see the statement of this lemma
before this proof and also see Hajek et al. (1999)) to establish the asymptotic
distribution of

√
n{(τn− τ) under Hn. It is here appropriate to note that under

Hn also,
√
n{(τn− τ) weakly converges to a Gaussian random variable as under

H0 but a location shift occurs in the expression of the location parameter of the
Gaussian distribution. Le Cam’s third lemma indicates that the location shift
is essentially the asymptotic covariance between

√
n(τn − τ) and Ln. Now, the

asymptotic covariance between
√
n(τn − τ) and Ln is

2γ

n
Ef0

[
n∑

i=1

ψ1(Xi, Yi)×
{

k(zi)

f0(zi)
− 1

}]
,

where ψ1(Xi, Yi) = Esign{(Xi −Xj)(Yi − Yj)|(Xi, Yi)}
= 2γEkψ1(X,Y )− 2γEf0ψ1(X,Y ) = 2γEkψ1(X,Y )

since 2Ef0ψ1(X,Y ) = 0

= 2γ

∞∫
∞

∞∫
∞

⎡
⎣2

∞∫
x

∞∫
y

f0(u, v)dudv + 2

x∫
−∞

y∫
−∞

f0(u, v)dudv − 1

⎤
⎦ k(x, y)dxdy.

Hence, Le Cam’s third lemma leads to the conclusion that under contiguous
alternatives Hn,

√
n(τn − τ) converges weakly to a Gaussian distribution with

mean

μ1 = 2γ

∞∫
∞

∞∫
∞

⎡
⎣2

∞∫
x

∞∫
y

f0(u, v)dudv + 2

x∫
−∞

y∫
−∞

f0(u, v)dudv − 1

⎤
⎦ k(x, y)dxdy

and variance

σ2
1 = 4

∞∫
∞

∞∫
∞

⎡
⎣2

∞∫
x

∞∫
y

f(u, v)dudv + 2

x∫
−∞

y∫
−∞

f(u, v)dudv − 1

⎤
⎦
2

f(x, y)dxdy.

This completes the proof.



Test for independence 349

Proof of Theorem 3. We first note that τ∗n is a U-statistic having a degeneracy
of order 1, which follows from the following. Note that

Ef0{a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)|(X1, Y1)}
= Ef0{a(X1, X2, X3, X4)|X1}Ef0{a(Y1, Y2, Y3, Y4)|Y1} since F0 = GXHY .

So, in order to establish that fact, it is now enough to show that E{a(X1, X2,
X3, X4)|(X1 = x1)} = 0 for all x1.

Hence, we consider

Ea(x1, X2, X3, X4) = Esign(|x1 −X2|+ |X3 −X4| − |x1 −X3| − |X2 −X4|)
= P [|x1 −X2|+ |X3 −X4| − |x1 −X3| − |X2 −X4| > 0]

− P [|x1 −X2|+ |X3 −X4| − |x1 −X3| − |X2 −X4| < 0]

= P [|x1 −X2|+ |X3 −X4| > |x1 −X3|+ |X2 −X4|]
− P [|x1 −X2|+ |X3 −X4| < |x1 −X3|+ |X2 −X4|]

=
1

2
− 1

2
= 0 for all x1.

The last step follows from the fact that X2, X3 and X4 are i.i.d. random vari-
ables. Also, it is easy to see that E{a(X1, X2, X3, X4)|(X1 = x1, X2 = x2)} �= 0
for some x1 and x2. Hence, it is now established that τ∗n is a U-statistic having
a degeneracy of order 1.

Further, note that the densities (denoted as qn) associated with Hn is domi-
nated by the density (denote it as p0) associated with H0 with Radon-Nikodym

derivative dqn
dp0

= 1+n− 1
2hn, where hn = γ( k

f0
−1) ∈ L2(p0) since Ef0(

k
f0
−1)2 <

∞, which is asserted in the statement of Theorem 2. Hence, qn and p0 satisfy
the assumptions stated in Theorem 1 in Gregory (1977), which concludes that
n(τ∗n − τ∗) converges weakly to

∑∞
i=1 λi{(Zi + ai)

2 − 1} under Hn, where λi,
Zi and ai are as defined in the statement of the theorem. This completes the
proof.

Proof of Theorem 4. We first note that dcovn is a U-statistic having a degener-
acy of order 1, which follows from the following. Note that

1

4
Ef0{h(X1, X2, X3, X4)h(Y1, Y2, Y3, Y4)|(X1, Y1)}

=
1

4
Ef0{h(X1, X2, X3, X4)|X1}Ef0{h(Y1, Y2, Y3, Y4)|Y1} since F0 = GXHY .

So, in order to establish that fact, it is now enough to show that E{h(X1, X2, X3,
X4)|(X1 = x1)} = 0 for all x1.

Hence, we consider Eh(x1, X2, X3, X4) =
∫
R3{|x1 −X2|+ |X3 −X4| − |x1 −

X3|−|X2−X4|}
∏4

i=2 dGXi = 0 for all x1 in view of the fact that X2, X3 and X4

are i.i.d. random variables. In addition, it is easy to see that E{h(X1, X2, X3, X4)|
(X1 = x1, X2 = x2)} �= 0 for some x1 and x2. Hence, it is now established that
dcovn is a U-statistic having a degeneracy of order 1.
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Next, arguing in a similar way as in the last paragraph of the proof of Theorem
3, we have n(dcovn −dcov) converging weakly to

∑∞
i=1 λ

∗
i {(Z∗

i +a∗i )
2−1} under

Hn, where λ∗
i , Z

∗
i and a∗i are as defined in the statement of the theorem. This

completes the proof.
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