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Abstract

We propose a simple model of columnar growth through diffusion limited aggregation
(DLA). Consider a graph GN × N, where the basis has N vertices GN := {1, . . . , N},
and two vertices (x, h) and (x′, h′) are adjacent if |h−h′| ≤ 1. Consider there a simple
random walk coming from infinity which deposits on a growing cluster as follows: the
cluster is a collection of columns, and the height of the column first hit by the walk
immediately grows by one unit. Thus, columns do not grow laterally.

We prove that there is a critical time scale N/ log(N) for the maximal height of
the piles, i.e., there exist constants α < β such that the maximal pile height at time
αN/ log(N) is of order log(N), while at time βN/ log(N) is larger than Nχ for some
positive χ. This suggests that a monopolistic regime starts at such a time and only the
highest pile goes on growing. If we rather consider a walk whose height-component
goes down deterministically, the resulting ballistic deposition has maximal height of
order log(N) at time N .

These two deposition models, diffusive and ballistic, are also compared with uniform
random allocation and Polya’s urn.
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1 Introduction

Motivation. A celebrated model of deposition via diffusion was proposed in the early
80’s by Witten and Sanders [31]. The aggregate, denoted A(K), made of K sites of
Zd is built inductively as follows. Choose A(1) = {0} and assume A(K). Let ∂A(K)
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On diffusion limited deposition

denote its outer boundary. Informally, launch a simple random walk, n 7→ S(n), far
away from the origin, and stop it when it reaches ∂A(K), say on random site Y . We
set A(K + 1) = A(K) ∪ {Y }. In other words, if τ∂A(K) is the time at which the walk hits
∂A(K), then for y ∈ ∂A(K),

P
(
A(K + 1) = A(K) ∪ {y}

∣∣A(K)
)

= lim
‖x‖→∞

Px
(
S(τ∂A(K)) = y

∣∣τ∂A(K) <∞
)
.

Simulations show that the cluster looks like a ramified tree with long branches. Heuris-
tically, the origin of reinforcement is clear. Think of the walk in terms of its radial
component, which performs an almost symmetric one-dimensional walk, and its trans-
verse component. Either the random walk sticks soon after reaching the outer radius of
the cluster, and it has to settle on a tip, or it takes time before settling and its radial com-
ponent diffuses, and has more chances to visit the extremal shells, hence increasing the
probability of attaching a tip rather than an inside site. This explains reinforcement, but
does not explain why this reinforcement is enough to produce a ramified tree structure.
It is clear also, at the heuristic level, that we face two problems: controlling the number
of tips in the growing cluster, and controlling in a quantitative way the reinforcement of
these tips.

One natural way to measure the dimension of the cluster is to find the scaling of the
radius of A(K), and look for d̄ such that

Radius(A(K)) ∼ K1/d̄. (1.1)

If A(K) were a ball, then d̄ = d, and the conjecture is that d̄ < d. Now, physicists have a
much sharper conjecture

d̄c = d− d− 1

d+ 1
. (1.2)

In dimension 2, d̄c = 5/3, and simulations give d̄ = 1.7.
Kesten in [14, 15, 16] considered the problem, and showed that the arms of the

cluster are not too long. More precisely, his result reads

d̄ ≥


3/2 for d = 2 , (d̄c = 2− 1/3)

2 for d = 3 , (d̄c = 5/2)

d/2 for d ≥ 3 , (d̄c ≤ d− 3/5).

(1.3)

By reversing time, (see [21] and assume d ≥ 3) one writes the probability of adding
Y = y to the cluster as

P
(
A(K + 1) = A(K) ∪ {y}

∣∣A(K)
)

=
Py
(
τ∂A(K) =∞)∑

z∈∂A Pz
(
τ∂A(K) =∞)

. (1.4)

The difficulty is to estimate the escape probability when the set A is not a sphere, or
some simple geometric shape. Let us mention an interesting result about holes in the
DLA cluster, where a hole is a finite maximal connected subset of the complement of
A(K). Erbez-Wagner [12] showed that in dimension two, almost surely the number of
holes tends to infinity with K.

Barlow, Pemantle and Perkins in [7] studied DLA on a regular d-ary tree where the
conductance between edges joining generation n and n + 1 is α−n for α < 1. These
authors showed that the infinite cluster has a unique infinite line of descent. Even though
there is an explicit formula for the harmonic measure, the proof that r(A(K)) scales like
K with normal fluctuations is non-trivial.

Benjamini and Yadin in [9] proposed another toy model for DLA. They considered
a cylinder GN × N, where the graph GN has constant degree, N vertices, and is fast
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On diffusion limited deposition

mixing: the mixing-time should be less than log2−ε(|GN |) for some positive ε (the class of
d-regular random graphs works). They showed that if we send H × |GN | simple walks
from infinity, then the height of the aggregate is larger than H log(log(|GN |)) for any H
and N large enough.

There is a two-dimensional model, the Hastings-Levitov model, which takes advantage
of the conformal invariance of two-dimensional brownian motion, and Riemann’s mapping
Theorem to map the complement of the cluster into the complement of the unit disk, and
then attach on the unit circle a stick at a random uniform angle. Recently, Norris and
Turner [26] studied very precisely the limiting cluster obtained by iteration of randomly
rotated conformal mappings.

In a series of three recent papers, Amir, Angel, Benjamini and Kozma [1, 2, 3] studied
DLA on Z with long-range random walks. The cluster is no longer connected, and they
discover many phase transitions in the growth rate of the cluster according to the tail
decay of the increment of the walk.

Our model is a further simplification of Benjamini and Yadin’s model [9] in two ways:
(i) no lateral hair are produced, and (ii) the basis graph has no geometry. In our toy model
of DLA, the radial component does a one-dimensional random walk, and the transverse
component samples uniformly the section of our graph. Still we believe that our model
is interesting, and one can answer some of the following questions in a quantitative way.

• What is the origin of reinforcement?

• What is the critical height to overcome ?

• What are the different regimes in the cluster’s growth?

Models. We shall consider two deposition models, diffusive deposition and ballistic
deposition.

We start with defining diffusive deposition. Our graph is a half–cylinder GN × N,
where the basis has N vertices GN := {1, . . . , N}, and two vertices (x, h) and (x′, h′) are
adjacent if |h− h′| = 1. The set GN × {0} is called the ground.

Let n 7→ A(n) be the evolution of random subsets of GN × N that we call the cluster.
The cluster is built inductively with A(0) = GN × {0}. For an integer k, the cluster A(k)

is made of columns, that is,

A(k) =

N⋃
i=1

{i} × {0, . . . , σi(k)} with
N∑
i=1

σi(k) = k. (1.5)

We shall write for simplicity A(k) = (σ1(k), . . . , σN (k)).
Assume that A(k) is built. We consider a simple random walk n 7→ Sn = (Xn, Zn) on

our graph. In other words,

1. {Xn} an i.i.d. sequence uniformly distributed on GN ;

2. {Zn+1 − Zn} i.i.d. uniformly on {−1, 1};
3. the initial condition Z0 is above the maximal height of the cluster A(k). For

definiteness we take Z0 = maxi σi(k) + 1.

The following rule of aggregation, or deposition, makes the cluster grow. The walk
Sn, roams until it hits the cluster A(k). Let (X∗, Z∗) be the hitting site on A(k), and
necessarily 0 ≤ Z∗ ≤ σX∗(k). We build A(k + 1) by increasing the height of column X∗

by one unit. That is

σi(k + 1) = σi(k) for any i 6= X∗ and σX∗(k + 1) = σX∗(k) + 1 .
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On diffusion limited deposition

We shall also say that the walk attaches to the column, or pile, at X∗. The walk with the
aggregation rule is called an explorer. We shall denote by P the probability associated
with this process.

In diffusive deposition there are two relevant phenomena: one is diffusion, the
other is deposition which happens instantly and this explains the name diffusion limited
deposition.

Ballistic deposition is defined similarly, with the same notation, but with a totally
asymmetric walk {Zn+1 − Zn = −1}. One could consider a continuum of biased models
with a drift parameter.

Definitions and notation. We use σ, η to denote configurations, i.e., σ, η ∈ NN , σ =

(σ1, σ2, . . . , σN ). We also let |σ| :=
∑N
i=1 σi. The symbol σ̄ will denote the configuration

obtained by ordering the components of σ so that σ̄1 ≥ σ̄2 ≥ · · · ≥ σ̄N . We call ON the
set of ordered configurations η ∈ NN , namely, such that η1 ≥ η2 ≥ · · · ≥ ηN .

Given a configuration σ, we denote by ζ(σ) the height occupation of σ, i.e.,

ζj(σ) =

N∑
i=1

1I{σi≥j} . (1.6)

Note that
∑
j≥1 ζj(σ) = |σ|, and that ζ(σ) = ζ(σ̄). Given two configurations σ and η such

that |σ| = |η|, we say that σ is more monopolistic than η, writing σ � η, when

∀k = 1, . . . , N

k∑
i=1

σ̄i ≥
k∑
i=1

η̄i. (1.7)

Equivalently, one realizes η̄ from σ̄ by moving particles from the highest columns to the
lowest ones.

Urn models are paradigms of reinforcement phenomena (see for instance the survey
[27]), and our deposition models actually can be stochastically compared with urns with
N colors. We briefly recall Polya’s urn with N colors: starting with one ball of each color,
at each unit time one draws a ball and put it back in the urn with an additional ball of
the same color. Calling ηi, with i = 1, . . . , N , the number of added balls of color i after
|η| draws, the probability of drawing a ball of color i is

qPi (η) =
ηi + 1∑N
j=1 ηj +N

. (1.8)

We consider also a generalized urn by replacing the r.h.s. in (1.8) by f(ηi)/
∑N
j=1 f(ηj)

where f : N→ R+ is a function such that f(0) = 1. When f(x) = x2 +1, we call the model
the quadratic urn. When f ≡ 1, we call the model the uniform random allocation and
denote by qUi (η) = 1/N the corresponding probability of drawing a ball of color i at any
time. Finally, we say that a process t 7→ σ(t) is more monopolistic than process t 7→ η(t)

if there is a coupling of the processes such that for any t > 0 we have σ(t) � η(t), if this
is the case initially.

Main results. In this Section we collect our main results. The first Theorem gives an
estimate of the number of explorers necessary, in diffusive deposition, to form a cluster
with at least one column proportional to a power of N .

Theorem 1.1. Consider diffusive deposition. There are constants α < β, such that
almost surely, when N is large enough

max
i∈GN

σi
( αN

log(N)

)
≤ 3 log(N), (1.9)
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and there exists a positive constant χ such that

max
i∈GN

σi
( βN

log(N)

)
≥ Nχ. (1.10)

In ballistic deposition, we prove that the growth of the height of the cluster is much
slower. Indeed, it is unlikely that N explorers produce a column of height log(N).

Theorem 1.2. Consider ballistic deposition. There exists a positive constant A such that
almost surely, when N is large enough

max
i∈GN

σi(N) ≤ A log(N). (1.11)

Remark 1.3. For the radial component, we could have chosen {Zn+1 − Zn} i.i.d. with
some finite range law without affecting our results.

Theorem 1.1 occurs in a regime where less than N explorers are thrown in the graph.
We call this the early regime which is to be thought of as the configurations where an
additional explorer has good chances to settle on the ground GN × {0}. To motivate
other results, let us explain the different steps leading to a column of height Nχ. A
first step is to reach a subcritical height log(N)/ log(log(N)). We obtain that a large
number of columns reach this height by comparison with random allocation. We obtain
interesting comparison with other urns, with the observation that ballistic deposition
looks like Polya’s urn with N colors, whereas diffusive deposition looks like a quadratic
urn (see below (1.8) for the definition). Then, one of these subcritical columns reaches
the critical height log(N). Since our estimate requires the configuration to stay in the
early regime, one has to bound the number of critical columns. We show that the number
of critical columns is less than N1−2χ for some positive χ, and this implies that the
evolution remains in the early regime as long as the highest column has not crossed Nχ.
We now can state our comparison result.

Theorem 1.4. Both deposition models (diffusive and ballistic) are more monopolistic
than Polya’s urn, which itself is more monopolistic than random allocation.

The following corollary is a side result interesting on its own right which seems new,
to the best of our knowledge.

Proposition 1.5. Polya’s urn with N colors is monotone with respect to the order �.

Related models. There are many models of cluster growth similar in definition to DLA.
They differ according to the law of Y , the site we add on the boundary of the cluster A.
This can also be expressed according to the site, say X, from where the random walks
are launched and lead to different phenomenology.

• If X = 0, we rather define a dual model of erosion. The cluster represents the
eroded materia, and A(0) = ∅. Each new walk starts at 0, and settles on the first
visited site outside the cluster (a site which we interpreted as being eroded). This
is internal DLA, and was introduced by Meakin and Deutch in[25]. The cluster is
spherical as was first seen Lawler, Bramson and Griffeath in [22]. The fluctuations
were studied in [4, 5, 6] and independently in [18, 19, 20].

• If X is uniformly drawn in the cluster, then Benjamini, Duminil-Copin, Kozma,
Lucas in [8] showed that the cluster is spherical.

• If Y is uniform on the boundary of the cluster, then this is the celebrated Eden
model [11], which was proposed in the ’60, and studied first by Richardson [28].
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• If particles do not erode immediately the materia, but do it with an exponential
clock, and if they can be activated again when another walk stands on their site,
this is Activated Random Walks. This model has been introduced by Spitzer in the
70, and much discussed in the physics literature as an example of self-organized
criticality. This has been studied mathematically by Rolla and Sidoravicius [29]
(and references therein), and recently by Sidoravicius and Teixera [30] among
others. Recent efforts have focused on the case of an initial condition drawn from
a product Poisson measure. As one tunes the density there is phase transition
between settlement of explorers (in any finite box), and their perpetual activity.

Pictures and simulations. In order to illustrate our main results, we show some
numerics. In particular, we emphasize the freezing phenomenon which leads to the
monopolistic regime: after a given time the highest pile grows linearly catching all
particles. We stress that simulations do not capture quantitative aspects of the problem
(scaling or exponents), but serve merely as qualitative illustrations.

For both the diffusive and the ballistic model we have simulated the systems for
N = 50, 100, 200, . . . , 1000. For the diffusive model we have considered also the cases
N = 2000, 4000, 5000, 6000, 8000, 10000. In all the cases averages have been computed
over 104 independent realizations of the process. We have checked in all the cases that
the sample is large enough to get stable averages.
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Figure 1: Numerical simulations for the diffusive model. Left panel: the highest column
height is plotted as function of time (number of explorers). The five plotted curves, from
the left to the right, refer to N = 100, 300, 500, 700, 900, respectively. Right panel: solid
disks refer to the simulated highest column height at time N , namely, after N explorers
have been sent, for different values of the size of the graph N . The solid line is an
eye–guide obtained by plotting the fitting function 0.498×N1.044.

Simulations show clearly that the ballistic model reaches the monopolistic regime
much later than the diffusive one. Indeed in both models, compare the left panels in
Figures 1 and 2, the height of the highest pile attains a linear behavior after an initial
transient. This late time regime is the one in which all the particles are caught by the
highest pile. Data show that the time length of the transient is much smaller in the
diffusive model.

We have also tested numerically our main results in Theorems 1.1 and 1.2. Indeed, we
have computed, by averaging over different realizations of the process, the typical height
of the highest pile at time N . Rigorous results suggest that this quantity should scale as
a power law in the diffusive case and logarithmically in the ballistic one. The related
numerical results are shown in the right panels in Figures 1 and 2. The qualitative
agreement between simulations and theoretical results is striking. We stress again that
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Figure 2: Numerical simulations for the ballistic model for N = 50, 100, 200, . . . , 1000

with averages computed over 104 independent realizations of the process. Left panel:
the highest column height is plotted as function of time (number of explorers). The
plotted curves, from the left to the right, refer to N = 50, 100, 200, . . . , 1000, respectively.
Right panel: solid disks refer to the simulated highest column height at time N , namely,
after N explorers have been sent, for different values of the size of the graph N . The
solid line is an eye–guide obtained by plotting the function 1.957 log(N).

the numerical results cannot be interpreted as a quantitative description of the model
behavior since, for instance, too small values of the graph size N have been considered.

Finally, in the diffusive case we have also tested numerically our results about the
critical character of the time scale N/ log(N). In Figure 3 we compare the highest column
height measured at times N/ log(N) and 2N/ log(N). In the first case the numerical (solid
circles) data can be perfectly fitted by a logarithmic function. In the latter case, on the
other hand, the poor logarithmic fitting is opposed to a perfect power law one of the
numerical data (solid squares). This result is in perfect agreement with the one proved
in Theorem 1.1 and, in particular, it suggests that 1 < α < β < 2. We stress that our
numerics cannot in any case be considered quantitative, indeed, we have no clue to state
that, by considering larger sizes of the graph, our numerical results would be confirmed.
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Figure 3: Numerical simulations for the diffusive model. Solid disks and squares refer,
respectively, to the simulated highest column height at times N/ log(N) and 2N/ log(N)

for different values of the size of the graph N . The solid line is an eye–guide obtained by
plotting the fitting function 1.847×N0.367. The two dotted lines are the graph of the two
functions 0.724 log(N), 4.085 log(N), and 5.292 log(N).

Plan. The rest of the paper is organized as follows. In Section 2 we present our
main tool, which is the probability an explorer hits the ground, as well as a heuristic
explanation for the logarithmic scale of the critical height. In Section 3, we present
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comparison with urns models. The proof of Proposition 1.5 is given in Section 3.2. The
proof of the Theorem 1.4 is given in Section 3.3. In Section 4, we establish our main tool,
and related estimates. We study the very early regime in Section 5. Then, we study the
growth of cluster in Section 6, and the reason why a large number of columns cannot
overcome height log(N). Finally, we gather all the needed estimates to prove Theorem
1.1 in Section 7.

2 Key tools and sketch

The key to Theorem 1.1 is an estimate of the probability of attaching to a given
column. Before, we need a lower bound on the probability of hitting first the ground.

Lemma 2.1. Consider diffusive deposition with a configuration σ such that |σ| < N/2

explorers,

Pg(σ) := P
(

Explorer hits the ground
∣∣ σ) ≥ exp

(
− 1

N

( N∑
j=1

σj(σj + 1)
)(

1 +O(
|σ|
N

))
.

(2.1)

The time spent on the slab GN × {0, . . . , σi} before touching the ground is typically
σ2
i for a SRW, but only if the walk has good chances to cross the whole slab. Our key

attachment estimate follows.

Lemma 2.2. Consider diffusive deposition. Let σ be a configuration such that |σ| < N/2.
Then there exists a positive constant κD such that

P
(

explorer attaches pile i
∣∣ σ) ≥ κD σ2

i + 1

N
× exp

(
− 3

N

( N∑
j=1

σj(σj + 1)
)(

1 +O(
|σ|
N

))
.

(2.2)

In a sense (2.2) and (2.1) are saying opposite things: the former inequality tells how
easy it is to get trapped, whereas the latter tells how easy it is to reach the ground.

Imagine a regime where
∑
i σ

2
i � N . In view of (2.1) the probability of hitting the

ground would be small, and very likely the walk would not go below H, where H is such
that ∑

i

(
σi −H

)2
+
∼ N. (2.3)

In other words, H of (2.3) would play the role of an effective ground. We then replace
(2.2) by the following estimate.

Corollary 2.3. In the diffusive case, and for any positive H,

P
(

explorer attaches pile i
∣∣σ) ≥ κD (σi −H)2

+

N
× exp

(
− 3

N

N∑
x=1

(
σx −H

)2
+

(
1 +O(

|σ|
N

))
.

(2.4)

Sketch. We wish to sketch heuristically the reason why log(N) is the critical height
at which a monopole forms. We fix a given column, say column 1, and we estimate
the number of explorers needed to produce a given height. Lemma 2.2 allows us to
bound this number by a sum of independent geometric variables, for which we know
everything. Indeed, introduce τ1 the number of explorers needed so that the height of
our distinguished site reaches height 1, that is τ1 := inf{n > 0 : σ1(n) = 1}. By induction,
for any integer h knowing τh we define τh+1 := inf{n > 0 : σ1(τh + n) − σ1(τh) = 1}.
Assume now that we are in a regime where hitting the ground is likely. The estimate
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(2.2) means that for any integers h, n

P
(
τh+1 > n| τ1, . . . , τh

)
≤
(
1− κD

h2

N

)n
. (2.5)

Let us now introduce independent geometric variables {τ̃h, h ≥ 1} with E[τ̃h+1] =

N/(κDh
2). Then, we will show that for any height H

P
( H∑
i=1

τi ≤ X
)
≥ P

( H∑
i=1

τ̃i ≤ X
)
. (2.6)

Recall that {
∑H
i=1 τi ≤ X} means that X explorers produce a column of height H at site

1. Now, we want to find X such that a given height H is likely to be reached. This would
be the case if the probability that any distinguished site reaches height H is above 1/N .
Thus, we look for X such that

P
( H∑
i=1

τ̃i ≤ X
)
∼ 1

N
. (2.7)

Let us write X as N/f(N), and try to guess the size of f(N) which produces a monopole.
Note also that for any H > f(N),

E
[ H∑
i=f(N)

τ̃i
]

=

H∑
i=f(N)

N

κDi2
≤ N

κDf(N)
.

Thus, {
∑H
i=1 τ̃i ≤ N/f(N)} imposes a constraint only on the first f(N) variables in (2.7).

We then have to estimate f(N) such that

P
( f(N)∑
i=1

τ̃i
N
≤ 1

f(N)

)
∼ 1

N
.

We use now that {τ̃i} are independent geometric variables

P
(
τ̃1 + · · ·+ τ̃f(N) ≤

N

f(N)

)
≥
f(N)∏
i=1

P
(
τ̃i ≤

N

f2(N)

)
≥
f(N)∏
i=1

(
1−

(
1− κDi

2

N

)N/f2(N)
)

≥
f(N)∏
i=1

(
1− exp(−κD

i2

f2(N)
)
)
∼
f(N)∏
i=1

(
κD

i2

f2(N)

)
=
(
κD

1

f2(N)

)f(N)

(f(N)!)2.

(2.8)

Now, using Stirling’s formula, we obtain

P
(
τ̃1 + · · ·+ τ̃H ≤ X

)
≥
(
κD

1

e2

)f(N)

= exp
(
− log

( e2

κD

)
× f(N)

)
. (2.9)

Thus, if f(N) is of order log(N), it is likely that one monopole forms.

3 Comparison with urns

In this section, we establish a coupling between our deposition processes and simpler
ones which preserves a natural order on ordered configurations, to be defined below.
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We consider growth evolution on NN such that at each unit time we add a unit height
to a configuration, say η, at a given site, say i, with a probability pi(η) which depends
only on the value ηi, and on the unordered set {ηj , j 6= i}. In this case, it is useful to
reorder the indices through a permutation of the indices to obtain configurations whose
heights are in decreasing order. We call p = {(p1(η), . . . , pN (η)), η ∈ NN} the law of the
growth process.

3.1 Comparing evolutions

It will be important to compare configurations with the same number of explorers.
Our main results are the following.

Proposition 3.1. Consider two processes t 7→ η(t) and t 7→ σ(t) on NN evolving, respec-
tively, according to the laws p =

(
p1(·), . . . , pN (·)

)
and q =

(
q1(·), . . . , qN (·)

)
. Assume that

for any η, σ ∈ ON such that η ≺ σ we have that

∀k = 1, . . . , N

k∑
i=1

pi(η) ≤
k∑
i=1

qi(σ). (3.1)

Then, the process σ(t) is more monopolistic than η(t),i.e. there is a coupling between
the two processes such that σ(t) � η(t) for any t.

Lemma 3.2. Let {p1, . . . , pN} and {q1, . . . , qN} two sets of positive numbers both sum-
ming up to 1. Assume that

q1

p1
≥ q2

p2
≥ · · · ≥ qN

pN
. (3.2)

Then, for any k = 1, . . . , N , we have that

k∑
i=1

qi ≥
k∑
i=1

pi. (3.3)

Proof. The proof is by induction on N . Assume the Lemma is true with N − 1 sets of
positive numbers, and define the renormalized N − 1 numbers

p̃i = pi ×
1

1− pN
, and q̃i = qi ×

1

1− qN
. (3.4)

The induction hypothesis states that for k = 1 to N − 1

k∑
i=1

q̃i ≥
k∑
i=1

p̃i.

In other words,
k∑
i=1

qi ≥
(1− qN )

(1− pN )

k∑
i=1

pi. (3.5)

The question is whether 1− qN ≥ 1− pN or qN/pN ≤ 1 which follows from (3.2) since

1 =

N∑
i=1

pi
qi
pi
≥

N∑
i=1

pi
qN
pN

=
qN
pN

.

As a corollary of Proposition 3.1 and Lemma 3.2 we have the following result.

Corollary 3.3. With the notation of Proposition 3.1, assume that for any η, σ ∈ ON such
that η ≺ σ we have that

pi(η)

pi+1(η)
≤ qi(σ)

qi+1(σ)
for i = 1, . . . , N − 1.

Then, there is an order preserving coupling between η(t) and σ(t).
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In order to prove Proposition 3.1 we need some notation and some simple ob-
servations. We define the action Aj : NN → NN of adding one explorer to site j:
(Ajη)i = ηi + δi,j . Note that Aj does not leave ON invariant.

Assume that η ∈ ON and define

I(η) = {i ∈ {2, . . . , N} : ηi−1 > ηi} ∪ {1}. (3.6)

Also, for i ∈ {1, . . . , N}, let d(η, i) = max I(η) ∩ {1, . . . , i}. In other words, d(η, i) is the
last position of a height decrease up to position i. Note that for η ∈ ON we have

Aiη = Ad(η,i)η ∈ ON . (3.7)

For η ∈ ON , note that if i ≤ j, then d(η, i) ≤ d(η, j). Also, if i ≤ j, then Ajη ≺ Aiη.
The main observation about ordering is the following.

Lemma 3.4. Assume that η, σ ∈ ON with η ≺ σ. If i ≤ j, then Ajη ≺ Aiσ.

This lemma is based on the following simple observation.

Lemma 3.5. Assume that η, σ ∈ ON with η ≺ σ. If some integers i < j satisfying
d(η, j) ≤ i, are such that

i∑
k=1

ηk =

i∑
k=1

σk, (3.8)

then i ≥ d(σ, j).

Proof of Lemma 3.5. Assume for a moment that i > 1. Since η ≺ σ, we have

i−1∑
k=1

ηk ≤
i−1∑
k=1

σk, and
i+1∑
k=1

ηk ≤
i+1∑
k=1

σk. (3.9)

Rewrite now (3.8) as

i−1∑
k=1

ηk + ηi =

i−1∑
k=1

σk + σi, and
i+1∑
k=1

ηk − ηi+1 =

i+1∑
k=1

σk − σi+1.

Using (3.9), we have both that σi ≤ ηi, and ηi+1 ≤ σi+1. Since σ ∈ ON , we have σi+1 ≤ σi.
Now, if i = 1, we have σi = ηi so that σi ≤ ηi is again true. So that we reach

ηi+1 ≤ σi+1 ≤ σi ≤ ηi. (3.10)

Now d(η, j) ≤ i < j means that ηi = ηi+1 = · · · = ηj , and with (3.10) this implies that
σi = σi+1, and by induction, we reach that

ηi = σi = σi+1 = · · · = σj . (3.11)

These last equalities mean that i ≥ d(σ, j).

Proof of Lemma 3.4. To simplify notation assume η, σ ∈ ON . We have already observed
that for i ≤ j, Ajη ≺ Aiη. Thus, we only need to prove that Ajη ≺ Ajσ. If d(η, j) = j,
then d(η, j) ≥ d(σ, j), and the result is obvious. Assume henceforth that d(η, j) < j. If for
all k = d(η, j), . . . , j − 1, we have that

k∑
i=1

ηi <

k∑
i=1

σi,
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then the result is also obvious. In the opposite case, let k in [d(η, j), j[, be the first index
for which we have

k∑
i=1

ηi =

k∑
i=1

σi,

then, Lemma 3.5 implies that k ≥ d(σ, j), and the lemma follows.

Proof of Proposition 3.1. By way of induction, assume that up to time t, we have η(t) ≺
σ(t). Draw a uniform random variable U in [0, 1[, and define two random variables J, J∗

as follows:

– if U ∈ [p1(η(t)) + · · ·+ pi−1(η(t)), p1(η(t)) + · · ·+ pi(η(t))[ then J = i (we set p0 = 0);

– if U ∈ [q1(σ(t)) + · · ·+ qj−1(σ(t)), q1(σ(t)) + · · ·+ qj(σ(t))[ then J∗ = j.

Then, (3.1) implies that J ≥ J∗. We set

η(t+ 1) = AJη(t) and σ(t+ 1) = AJ∗σ(t). (3.12)

Then, Lemma 3.4 yields that η(t+ 1) ≺ σ(t+ 1).

3.2 Comparing Polya’s urn with random allocation

By random allocation, we mean repeated draws of one out of N colors, labelled from
1 to N, uniformly at random. In other words, at each draw, the probability to pick up
color i is 1/N . The law for Polya’s urn and random allocation are denoted respectively
qP and qU with

∀σ ∈ NN , qPi (σ) =
σi + 1

N +
∑
i≤N σi

and qUi (σ) =
1

N
.

Lemma 3.6. Polya’s urn with N colors is more monopolistic than random allocation of
N colors.

Proof. Note that for any σ, η ∈ ON such that η ≺ σ

qPi (σ)

qPi+1(σ)
≥ qUi (η)

qUi+1(η)
⇐⇒ σi + 1

σi+1 + 1
≥ 1, (3.13)

which clearly holds since σ ∈ ON . Thus, Corollary 3.3 implies the lemma.

Proof of Proposition 1.5. Note that if η � σ and |η| = |σ|, we have

∀k = 1, . . . , N,

k∑
i=1

qPi (η) =
k +

∑k
i=1 ηi

N +
∑N
i=1 ηi

≥
k +

∑k
i=1 σi

N +
∑N
i=1 σi

=

k∑
i=1

qPi (σ).

This establishes Proposition 1.5 saying that Polya’s evolution with N colors preserves
the order.

3.3 Comparing deposition models with Polya’s urn

Recall the definition of ballistic and diffusive deposition given in Section 1. Denote
their law, respectively, by pB and pD. We show that both ballistic and diffusive deposition
are more monopolistic than Polya’s urn, which is one of the statements of Theorem 1.4.

Assume for a moment the following lemma.

Lemma 3.7. For any k = 1, . . . , N and η ∈ ON
k∑
i=1

pBi (η) ≥
k∑
i=1

qPi (η) and
k∑
i=1

pDi (η) ≥
k∑
i=1

qPi (η) . (3.14)
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By Proposition 1.5, Lemma 3.7, and Proposition 3.1 we have that both ballistic and
diffusive deposition are more monopolistic than Polya’s urn.

To state a preliminary simple observation, we need more notation. For η ∈ ON , let
pB,Di,k (η) be the probability that the explorer hits site i at height k, for k ∈ N.

Lemma 3.8. For any i,∈ {1, . . . , N} and η(i) ≥ k > k′ ≥ 0 we have

pBi,k′(η) < pBi,k(η), and if η(j) ≥ k pBi,k(η) = pBj,k(η) (3.15)

Similarly,
pDi,k′(η) < pDi,k(η), and if η(j) ≥ k pDi,k(η) = pDj,k(η) (3.16)

Proof of Lemma 3.7. We consider first the ballistic case. In view of Lemma 3.2, we need
to show that

pBi (η)

pBi+1(η)
≥ ηi + 1

ηi+1 + 1
=

qPi (η)

qPi+1(η)
. (3.17)

In order to prove (3.17), we need to show that∑ηi
k=1 p

B
i,k(η)

ηi + 1
≥
∑ηi+1

k=1 p
B
i+1,k(η)

ηi+1 + 1
(3.18)

By Lemma 3.8, this inequality has the structure

a1 + · · ·+ an
n

≥ am+1 + · · ·+ an
n−m

for n > m ≥ 1 and a1 ≥ a2 ≥ · · · ≥ an. The validity of such an inequality is immediate
once we let µ = (am+1 + · · ·+ an)/(n−m), note a1 ≥ · · · ≥ am ≥ µ, and write

a1 + · · ·+ an
n

=
a1 + · · ·+ am + µ(n−m)

n
≥ µm+ µ(n−m)

n
= µ

Finally, by using (3.17) and Lemma 3.2 the first of equations (3.14) follows immedi-
ately. The diffusive case can be treated in the same way. This completes the proof of the
lemma.

Proof of Lemma 3.8. First we prove the lemma for the ballistic case. Note first that

pBi,k(η) =
1

N
P (explorer reaches height k + 1

∣∣ η).

Now, since the function k 7→ P (explorer reaches height k
∣∣ η) is increasing, the lemma

follows at once.
Now, we consider diffusive deposition, and assume k > k′. First, assume k−k′ an even

number. To prove the Lemma, we associate uniquely to each path s′ = {(x′j , z′j)}j=1,...,n,
hitting η at site i at height k′ in a time n, a path s = {(xj , zj)}j=1,...,n, of the same length,
and therefore the same probability, hitting η in i at height k. Indeed, given the path
s′, we construct s in the following way. Call n1 the time of last passage of s′ through
the intermediate height H = (k + k′)/2. s is equal to s′ up to time n1 while after n1 it
uses opposite height increments than the original s′, i.e. zj+1 − zj = −(z′j+1 − z′j) for
all n1 ≤ j < n keeping the same horizontal increments. We therefore obtain a path
ending in i and height k. Note that such a path avoids η until it hits site i at height k,
because η is a union of columns. If k − k′ is an odd number, we do a similar construction
but we have to associate with a collection of paths, of length n, one single path s of
length n − 1. The collection is obtained considering together all the paths coinciding
on [0, n] except at time n1 + 1 on the coordinate xn1+1, where n1 is now the last hitting
time of the level k+k′+1

2 of the vertical process. We now call s′ such a collection of
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paths. We construct s as follows. It coincides with the paths s′ up to time n1, and is
afterwards the reflection of s′ :]n1 + 1, n] with respect to height k+k′+1

2 . In other words,
xj = x′j+1, zj−zj−1 = −(z′j+1−z′j) for any j = n1+1, ..., n−1 so that xn−1 = i. Clearly the
probability of s is larger than or equal to the sum of the probabilities over the collection
of paths s′, since s is one step shorter, and the sum is over xn1+1 on N−ζn1+1(η) sites.

4 Estimating unit growth

In this section we discuss how heights grow. We consider the random walk Sn =

(Xn, Zn), and for an integer k, we call Hk the first time the walk reaches height k. In
other words,

Hk = inf{n ≥ 0 : Zn = k}. (4.1)

Since the X-component is uniform on the base, giving the configuration σ, the ordered
one σ̄, or the height occupation ζ (defined in (1.6)) is equivalent, and we use Pg(σ) or
Pg(ζ) indifferently to denote the probability an explorer hits the ground. Lemma 2.1
is obtained as a simple application of Jensen’s inequality whereas Lemma 2.2 requires
Kesten-Kozlov-Spitzer representation of the local times [17].

Proof of Lemma 2.1. For an integer k ≤ σ̄1 let l(k) be the number of visits of height k by
the random walk before H0. We have the representation

Pg(ζ) = E
[ σ̄1∏
k=1

(
1− ζk

N

)l(k)]
= E

[
exp

( σ̄1∑
k=1

l(k) log
(
1− ζk

N

))
. (4.2)

Our hypothesis |σ| < N/2 implies that for k ≥ 1, ζk ≤ ζ1 ≤ N/2, and since log(1 − x) ≥
−x− x2 for 0 ≤ x ≤ 1/2, we have using Jensen’s inequality

Pg(ζ) ≥ exp
(
−

σ̄1∑
k=1

E[l(k)]
(ζk
N

+
ζ2
k

N2

))
. (4.3)

Now note that E[l(k)] = 2k. Indeed, the height of the random walk being a simple
random walk on N, we have for k ≤ σ̄1, by conditioning on the first step

E[l(k)|Z0 = σ̄1] =E[l(k)|Z0 = k] = 1 +
1

2

(
E[l(k)|Z0 = k + 1] + E[l(k)|Z0 = k − 1]

)
=1 +

1

2

(
E[l(k)|Z0 = k] + P (Hk < H0|Z0 = k − 1)E[l(k)|Z0 = k]

)
=1 +

1

2

(
E[l(k)|Z0 = k] + (1− 1

k
)E[l(k)|Z0 = k]

)
.

(4.4)

The equality E[l(k)] = 2k for k ≤ σ̄1 follows at once. Note now that

∑
k≥1

2kζk =

N∑
i=1

σi(σi + 1).

Finally, (2.1) follows as we note that

∑
k≥1

2k
ζ2
k

N2
≤ ζ1
N

∑
k≥1

2k
ζk
N
≤ 2
|σ|
N

N∑
i=1

σi(σi + 1)

N
.
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On Kesten-Kozlov-Spitzer representation. Let u(h) be the number of up-crossings
of height h before touching the base. In other words, we define u(0) = 0 and for h > 0

u(h) =

H0∑
i=1

1I(Zi−1,Zi)=(h,h+1). (4.5)

Similarly, down-crossings of height h correspond to jumps from h to h− 1 before time
H0. One way to realize the random walk n 7→ Zn is to assign the sequence of up and
down-crossings on each height. Thus, we consider {{ξki , i ∈ N}, k ∈ N} a collection of
i.i.d. geometric variables, with law P (ξ = n) = 1/2n+1 for n ∈ N. Now, the sequence of
up and down-crossings at height k is as follows: ξk0 up-crossings, then one down-crossing,
then ξk1 up-crossings, the one down-crossing, then ξk2 up-crossings... and so on and so
forth. The key observation is that each ξki , for i ≥ 1, is preceded by an up-crossing of the
height k − 1. In other words,

u(k) = ξk0 +

u(k−1)∑
j=1

ξkj , and u(1) = ξ1
0 . (4.6)

We set G(h) = σ(ξki , k ≤ h, i ∈ N) the σ-field representing the choices of moves on
the first h heights. Kesten-Kozlov-Spizter representation expresses the local times of Z
in terms of the u. Thus, if l(k) represents the number of visits of height k before H0, for
a walk with starting level above σ̄1, then

∀k ≥ 1, l(k) = u(k) + u(k − 1) + 1. (4.7)

Then, with notation xi = 1− ζi/N

Pg(ζ) =E
[ σ̄1∏
k=1

x
l(k)
k

]
= E

[ σ̄1−1∏
k=1

x
l(k)
k x

u(σ̄1)+u(σ̄1−1)+1
σ̄1

]
=E
[ σ̄1−1∏
k=1

x
l(k)
k x

u(σ̄1−1)+1
σ̄1

E
[
x
ξ
σ̄1
0 +···+ξσ̄1

u(σ̄1−1)

σ̄1

∣∣G(σ̄1 − 1)
]]
.

(4.8)

Since E[zξ] = 1/(2− z), we have

E
[
x
ξ
σ̄1
0 +···+ξσ̄1

u(σ̄1−1)

σ̄1

∣∣G(σ̄1 − 1)
]

=
1

(2− xσ̄1
)1+u(σ̄1−1)

. (4.9)

We set a(k) = 0 for k ≥ σ̄1, whereas for any k < σ̄1

e−a(k−1) =
xk

2− xke−a(k)
, (4.10)

so that

Pg(ζ) = e−a(σ̄1−1)E
[ σ̄1−1∏
k=1

x
l(k)
k e−a(σ̄1−1)u(σ̄1−1)

]
, (4.11)

and by induction, we obtain

Pg(ζ) = exp
(
−
∑
k≥0

a(k)
)
. (4.12)

Note that (4.10) reads for 1 ≤ k ≤ σ̄1

e−a(k) + ea(k−1) =
2

xk
, and ea(k−1) − ea(k) = e−a(k+1) − e−a(k) +

2

xk
− 2

xk+1
, (4.13)

and a(k − 1) ≥ a(k) ≥ 0 follows by induction from (4.10). Inequality (2.1) implies that
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∑
k≥0

a(k) ≤ 2

N

∑
j≥1

jζj +
2

N2

∑
j≥1

jζ2
j . (4.14)

Proof of Lemma 2.2. An explorer settling on the pile at site i, hits the i-th pile at a height
between 1 and σi. Knowing that it settles at height k, it has chance 1/ζk to settle on (i, k)

since we are on the complete graph. We underestimate the probability of settling on σi,
if we only consider trajectories hitting only one of the {ζ1, ζ2, . . . } before H0. Thus,

P
(
explorer attaches pile i

∣∣ σ) ≥ σi∑
h=1

1

ζh
E
[(

1− xl(h)
h

)∏
j 6=h

x
l(j)
j

]
≥

σi∑
h=1

1

ζh

(
E
[ ∏
j 6=h

x
l(j)
j − Pg(ζ)

)
.

(4.15)

Fix h > 0, and write ζh for the height occupation such that

∀k 6= h, ζhk = ζk, and ζhh = 0.

We rewrite (4.15) in terms of the function Pg as follows

P
(
explorer attaches pile i

∣∣ σ) ≥ Pg(ζ)

σi∑
h=1

1

ζh

(Pg(ζh)

Pg(ζ)
− 1
)
. (4.16)

For a given h ≤ σ̄1, we now study the ratio Pg(ζh)/Pg(ζ). As in (4.12) in the previous
paragraph, we write Pg(ζh) = exp(−

∑
k≥0 ã(k)), with ã satisfying the relation (4.10) with

ζh in place of ζ. In other words,

∀k ≥ h, ã(k) = a(k), and exp(−ã(h− 1)) =
1

2− e−a(h)
. (4.17)

For k ≤ h− 1,

eã(k−1) + e−ã(k) =
2

xk
= ea(k−1) + e−a(k). (4.18)

We set δk = a(k)− ã(k), and from (4.18), we have that δk ≥ 0. In terms of δk, (4.18) reads
for k < h− 1

exp(δk−1)− 1 = e−ã(k−1)−a(k)
(

exp(δk)− 1
)
, (4.19)

whereas for k = h− 1 we have

exp(δh−1)− 1 =
2(1− xh)

xh(2− exp(−a(h))
≤ 2. (4.20)

Equality (4.20) implies (since a(.) ≤ 2 by (4.18)) that for some constant κD

δh−1 ≥ κD(1− xh) = κD
ζh
N
. (4.21)

We deduce that δk−1 ≤ δk and since x 7→ (ex − 1)/x is increasing, (4.19) implies

δk−1

δk
≥ exp

(
− ã(k − 1)− a(k)

)
≥ exp

(
− a(k − 1)− a(k)

)
≥ exp

(
− 2a(k − 1)

)
. (4.22)

By induction on (4.22), and using (4.21), this implies that for each h ≤ σ̄1
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Pg(ζ
h)

Pg(ζ)
− 1 = exp

( h−1∑
k=0

δk
)
− 1 ≥

h−1∑
k=1

δk

≥δh−1

h−1∑
k=0

exp
(
− 2

h−1∑
j=k

a(j)
)

≥κDζh
(h− 1)

N
exp

(
− 2

σ̄1−1∑
j=0

a(j)
)

≥κDζh
(h− 1)

N
exp

(
− 4

∑
j≥1

(
j
ζj
N

+ j
ζ2(j)

N2

))
.

(4.23)

Since ζj ≤ N , we have ζ2
j /N ≤ ζj , and (4.23) implies (2.2).

Remark 4.1. In order to obtain Corollary 2.3, consider simply the height occupation
{ζk+H , k ∈ N} and proceed along the exact same proof. This height occupation corre-
sponds to {(σi −H)+, i = 1, . . . , N}.

Given A > 0, we define the early regime as the following subset of configurations.

Xe(A) = {σ :
N∑
i=1

σ2
i ≤ AN,

N∑
i=1

σi <
N

2
}. (4.24)

Define also κ(A) to be κD exp(−2A).

Corollary 4.2. For any σ ∈ Xe(A), and i ∈ {1, . . . , N}

P
(

explorer attaches pile i
∣∣σ) ≥ κ(A)

σ2
i

N
. (4.25)

4.1 Upper bound

Lemma 4.3. Consider diffusive deposition. Let i be a fixed site and σ be a configuration
such that σi <

√
N . Then

P
(

explorer attaches to site i
∣∣ σ) ≤ κ (σi ∨ 1)2

N
. (4.26)

with κ = 1 +O(N−1/2).

Remark 4.4. Comparing lower and upper bound (Lemmas 2.2 and 4.3) on attachment
probability we obtain a good control on this probability for configurations in the early
regime, that is in Xe(A) when A is small.

Proof of Lemma 4.3. If σi = 0 then (4.26) is immediate with κ = 1. If σi ≥ 1 the chances
an explorer attaches to column i, in configuration σ, is smaller than if all columns distinct
from i were set to zero. This is seen by coupling. First, for configuration σ, let σi denote
the configuration where we annihilate all columns distinct from i. In other words

(σi)k = 0, when k 6= i, and (σi)i = σi.

Therefore, in σi, the highest column is i with height σi ≥ 1. Now, the event hit column
i in σi is the complement of the event hit the base first. Since Pg(σi) is the probability
the explorer hits first the base in configuration σi, by Lemma 2.1, we have that for some
κ > 0

P
(
explorer attaches to i

∣∣σ) ≤P (explorer attaches to i
∣∣σi)

=1− Pg(σi) ≤
σ2
i

N
(1 +O(N−1/2),

which completes the proof.
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Lemma 4.5. Consider ballistic deposition. Consider a configuration σ ∈ NGN , then

P
(

explorer attaches to site i
∣∣ σ) ≤ σi + 1

N
. (4.27)

Proof. To get attached to site i, the particle has to survive up to the time it reaches
height σi, and then at each step–down has a chance 1/N to fall on column i provided it
has avoided the other columns. Thus

P
(
explorer attaches to site i

∣∣σ)
=

[ maxσ∏
h=σi+1

(
1− ζh

N

)] 1

N

(
1 +

(
1− ζσi

N

)
+
(

1− ζσi
N

)(
1− ζσi−1

N

)
+ . . .

)
≤ 1

N

(
σi + 1

)
.

which completes the proof.

4.2 Stochastic domination

Both in ballistic and diffusive deposition, we have a simple upper bound on the
probability of attaching to a given column (see Section 4.1), which depends only on its
height. This, in turn, is used to bound the number of explorers necessary to increase the
height by one unit in terms of a geometric random variable, for which everything can
be computed explicitly. In other words, call τ1 the number of explorers needed so that
column 1 reaches height 1. Let τ2 be the additional number of explorers needed to reach
a height 2, and so on. Note that {τ1 > k} means that out of k explorers none of them has
reached site 1. These times are used to control the height of column 1 after k explorers
have been sent,

∀k ≥ 1, ∀H ≥ 1, P0(σ1(k) > H) = P (τ1 + · · ·+ τH < k).

We need to estimate the sum of the {τi} with the following general lemma.

Lemma 4.6. Let τ, T be stopping times with respect to a filtration {Fn}. Let τ1 := τ and
if θ(n) is the time-shift by n units, define inductively

τn := τ ◦ θ(τ1 + · · ·+ τn−1).

Let {τ̃n, n ∈ N} be independent random variables, which are also independent from
{τn, n ∈ N}. Assume that for positive integers ξ ≤ ξ′, we have

P
(
τn > ξ , T > ξ′| Fτ1+···+τn−1

)
≥ P

(
τ̃n > ξ

)
P (T > ξ′). (4.28)

Then, for any integer n and ξ > 0

P
( n∑
i=1

τi > ξ | T > ξ
)
≥ P

( n∑
i=1

τ̃i > ξ
)
. (4.29)

Similarly, if instead of (4.28) we have

P
(
τn > ξ , T > ξ′| Fτ1+···+τn−1

)
≤ P

(
τ̃n > ξ

)
P
(
T > ξ′

)
,

then

P
( n∑
i=1

τi > ξ| T > ξ
)
≤ P

( n∑
i=1

τ̃i > ξ
)
.
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Proof of Lemma 4.6. We prove (4.29) by induction. The step n = 1 is obvious. Assume
the inequality is true at step n− 1. Using that the variables are positive,

P
( n∑
i=1

τi > ξ, T > ξ
)

=
∑
K≤ξ

P
( n−1∑
i=1

τi = K, T > ξ, τn > ξ −K
)

+ P
( n−1∑
i=1

τi > ξ, T > ξ
)

=
∑
K≤ξ

E
[
P
(
τn > ξ −K, T > ξ −K

∣∣∣FK)1I∑n−1
i=1 τi=K, T>K

]
+ P

( n−1∑
i=1

τi > ξ, T > ξ
)

≥
∑
K≤ξ

E
[
P
(
τ̃n > ξ −K

)
P
(
T > ξ −K

∣∣∣FK)1I∑n−1
i=1 τi=K, T>K

]
+ P

( n−1∑
i=1

τi > ξ, T > ξ
)

=
∑
K≤ξ

P
(
τ̃n > ξ −K

)
× P

( n−1∑
i=1

τi = K,T > ξ
)

+ P
( n−1∑
i=1

τi > ξ, T > ξ
)

= P
( n−1∑
i=1

τi + τ̃n > ξ, T > ξ
)
. (4.30)

Now, we can exchange the role played by τ̃n and by τ1 + · · · + τn−1 in the previous
argument, to use the induction hypothesis. Indeed,

P
( n−1∑
i=1

τi + τ̃n > ξ, T > ξ
)

=

ξ∑
K=1

P
(
τ̃n = K

)
× P

( n−1∑
i=1

τi > ξ −K, T > ξ
)

+ P
(
τ̃n > ξ

)
≥ P

( n∑
i=1

τ̃i > ξ
)
P (T > ξ). (4.31)

The proof of the opposite inequalities follows the same steps.

5 Very early regime

One important step in the cluster growth is to reach height log(N). We cover this
intermediary step in the following proposition, even if it is included in Theorem 1.1.

Proposition 5.1. Consider diffusive deposition. There exist positive constants b and γ
such that almost surely, for N large

max
i≤N

σi
(
b
N

logN

)
≥ γ logN.

This proposition is concerned with what we call the very early regime, and it is based
on comparison with urn models.

Two scales play an important role in this section: the time scale N/ log(N), and the
space scale log(N)/ log log(N). We therefore introduce notation

TN =
N

log(N)
, and HN =

log(N)

log log(N)
. (5.1)

The set of configurations σ with maximal height lower than γ logN and |σ| ≤ βTN is
called the very early regime and is denoted by Xve(γ, β). In other words,

Xve(γ, β) = {σ : |σ| ≤ βTN , max
x

σx ≤ γ log(N)},

and note that

∀σ ∈ Xve(γ, β),

N∑
x=1

σ2
x ≤

(
max
x≤N

σx
)
|σ| ≤ βγN.
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If τA is the hitting time of set A, we show in this Section that there are constants b < β

and δ > 0 such that
P
(
τXve(γ,β)c > bTN

)
≤ exp(−Nδ). (5.2)

Strategy of the proof. We divide time in two periods. In the first, of length TN , a
large number of columns, of order Na with 0 < a < 1, reach a height δHN . This is the
content of Lemma 5.3, whose main ingredient is a coupling between diffusive deposition
and random allocation. In the second period, we use the estimate of Corollary 2.3 to
control the growth of these columns together with sending Poisson waves of explorers to
ensure the growth of each column independently.

Step 1: reaching height HN . The random allocation evolution is denoted by n 7→ η(n).
Our first lemma deals exclusively with random allocation.

Lemma 5.2. For α ∈ [ 1
2 , 1), and δ < (1−α)/2, we have almost surely, for N large enough

|{x : ηx(TN ) > δHN}| ≥ Nα. (5.3)

Proof. Let X be a Poisson variable of parameter TN/2. We have

P
(
|{x : ηx(TN ) > δHN}| < Nα

)
≤ P

(
|{x : ηx(X) > δHN}| < Nα

)
+ P

(
X > TN

)
. (5.4)

Now, {ηx(X), x = 1, . . . , N} are independent Poisson variables of parameter 1/2 log(N).
A tedious but simple computation gives

P
(
η1(X) ≥ δHN

)
= N−2δ(1+o(1)). (5.5)

Now,

|{x : ηx(X) > δHN}| =
N∑
x=1

1I{ηx(X)≥δHN}, (5.6)

and by Bernstein’s inequality, for α < 1− 2δ, and

P
(
|{x : ηx(X) > δHN}| < Nα

)
≤ exp(−N

1−2δ −Nα

2
). (5.7)

Note also that from Chebychev’s exponential inequality

P
(
X > TN

)
≤ exp

(
− 3− e

2
TN

)
. (5.8)

The statement follows.

In Lemma 3.7, we establish that diffusive deposition, denoted t 7→ σ(t) is more
monopolistic than random allocation. Thus, there is a coupling such that with probability
1, when σ(0) = η(0), we have for any t ≥ 0

∀k ≤ N,
k∑
i=1

σ̄i(t) ≥
k∑
i=1

η̄i(t).

Assume now that σ(TN ) ∈ Xve(γ, β), and that

L := |{x : ηx(TN ) > δHN}| > L′ := |{x : σx(TN ) >
δ

2
HN}|. (5.9)

Then, by our coupling

L∑
i=1

σ̄i(TN ) ≥
L∑
i=1

η̄i(TN ) ≥ δHNL, and
L∑

i=L′

σ̄i(TN ) ≤ δ

2
HNL. (5.10)
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Then

γ log(N)L′ ≥
L∑
i=1

σ̄i(TN ) ≥ δ

2
HNL =⇒ L′ ≥ δ

2γ log log(N)
L.

Thus, for any α > 1− 2δ, we have that L′ > Nα. We therefore state the result as follows.

Lemma 5.3. For α ∈ [ 1
2 , 1), and δ < (1−α)/2, we have almost surely, for N large enough,

and for the diffusive deposition t 7→ σ(t),

|{x : σx(TN ) >
δ

2
HN}| > Nα. (5.11)

By applying Markov’s property at time TN

P
(
τXve(γ,β)c(σ) > (b+ 1)TN

)
≤ P

(
|{x : ηx(TN ) > δHN}| < Nα

)
+ sup

(
Pσ
(
σ(bTN ) ∈ Xve(γ, β)

)
: σ ∈ Xve(γ, β), |{x : σx >

δ

2
HN}| > Nα

)
.

(5.12)

Step 2: poisson waves. We realize diffusive deposition for times in [TN , bTN ] by a
sequence of Poisson waves, the k-th wave made of X(k) explorers, and {X(k), k ≥ 1} an
i.i.d sequence of Poisson random variables with parameter xN going to infinity with N .

Our starting configuration denoted σ(0) satisfies

σ(0) ∈ Xve(γ, β), ΛN := {x : σ(0)
x >

δ

2
HN}, and |ΛN | > Nα.

Let σ(k) be the configuration of diffusive deposition starting from σ(0) after the k-th wave
is sent, i.e.,

σ(k) = σ
( k∑
`=1

X(`)
)

with |σ(k)| = |σ(0)|+
k∑
`=1

X(`)

Define now, using κD of Corollary 2.3,

KVE := κD exp(−γβ).

We have for the diffusive deposition process for any k = 1, 2, . . . , if σ(k) ∈ Xve(γ, β)

then

pi(σ(t)) ≥ Kve

N
(σ

(k−1)
i )2 ∀t ∈ [|σ(k−1)|, X(k) + |σ(k−1)|[, ∀i ∈ ΛN . (5.13)

This immediately follows from Corollary 2.3.
Consider an auxiliary growth process σ̃(t) which evolves on the sites of ΛN ∪ {0},

defined iteratively as follows. Set σ(0)
0 = 0, and for i ∈ ΛN , set σ̃(0)

i = δ
2Hn. Each explorer

in the k–th wave is attached to site i ∈ ΛN with probability

pAi (k) = KVE
(σ̃

(k−1)
i )2

N
, (5.14)

whereas site 0 grows by one with probability 1−
∑
i∈ΛN

pAi (k).
The following result is crucial.

Lemma 5.4. There exists a coupling between t 7→ σ(t) and t 7→ σ̃(t) such that if |σ(k)| ≤
τXve(γ,β)c and t is within the k-th wave, i.e., t ∈ [|σ(k−1)|, X(k) + |σ(k−1)|[

∀i ∈ ΛN , σi(t) ≥ σ̃i(t). (5.15)

Moreover, {σ̃i, i ∈ ΛN} are independent, where we used the shorthand notation σ̃i =

{σ̃(k)
i , k ≤ τXve(γ,β)c}.
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Proof. The coupling part is simple and we omit it here. We denote by {Y 1
i , i ∈ ΛN}

independent Poisson variables of parameter xNpAi (1). We denote by G1 the sigma-field
generated by X(1) and by {Y 1

i , i ∈ ΛN}. We now build Gk by induction. Assume that Gk−1

has been built. Then conditioned on Gk−1, we fix the height of all sites after the k − 1-th
wave. Draw a Poisson variable X(k) independent of Gk−1, and denote by {Y ki , i ∈ ΛN}
the independent Poisson variables of parameter pAi (k)xN which is itself Gk−1 measurable.
Note that Y ki depends only on X(k) and on the past through Y 1

i + · · ·+Y k−1
i , the height of

site i after the k − 1-th wave. In other words, for any real function fi, there is a function
φi such that

E
[
fi
(
Y ki + · · ·+Y ki

)
|Gk−1

]
= E

[
fi
(
Y ki + · · ·+Y ki

)
|Y 1
i + · · ·+Y k−1

i

]
= φi(Y

1
i + · · ·+Y k−1

i ).

(5.16)
Note also, that if we integrate only over Xk, and for any real functions fi, for i ∈ ΛN we
have

E
[ ∏
i∈ΛN

fi
(
Y ki + · · ·+ Y ki

)
|Gk−1

]
=
∏
i∈ΛN

E
[
fi
(
Y ki + · · ·+ Y ki

)
|Y 1
i + · · ·+ Y k−1

i

]
=
∏
i∈ΛN

φi(Y
1
i + · · ·+ Y k−1

i ).
(5.17)

This means that what happens on different sites of ΛN is independent.

Now, each Poisson wave we send has about xN explorers, and we expect to send
about (b− 1)TN/xN waves. Recall that for N large, we have a.s. that σ(0) ∈ Xve(γ, β) and
|ΛN | > Nα. Therefore, if tN denotes the integer part of bTN/(2exN ), and for simplicity
H = δ

2HN

Pσ(0)

(
τXve(γ,β)c > bTN

)
≤ P

( tN∑
k=1

|X(k)| > bTN
)

+ Pσ(0)

(
max
i∈ΛN

(
H +

tN∑
k=1

Y ki
)
< γN

)
≤ e−bTN/2 +

∏
i∈ΛN

(
1− Pσ(0)

((
H +

tN∑
k=1

Y ki
)
≥ γN

))
. (5.18)

Step 3: dealing with one site. We show that for a function ε(γ) going to 0 with γ, for
all i ∈ ΛN

P
( tN∑
k=1

Y ki ≥ γ log(N)−H
)
≥ exp

(
− ε(γ) logN

)
. (5.19)

We define the successive wave numbers at which the column at 1 grows. Let τ be the
number of waves needed so as to increase by at least one the height of site 1. Then, let
τ1 = τ and τn = τ ◦ θ(τ1 + · · ·+ τn−1). Note that for any integer n

P (τ1 > n) = P
(
Ỹ

(1)
i = 0, . . . , Ỹ

(n)
i = 0

)
= exp

(
− nKVEH

2xN
N

)
, (5.20)

where we used (5.14). Note that at the number of waves t = τ1 + · · · + τk−1, the

configuration σ̃(t)
i is larger or equal than H + k − 1. We have, using Lemma 5.4

P
(
τk > n

∣∣Gk−1

)
≤ exp

(
− nKVE(H + k − 1)2xN

N

)
. (5.21)

Then, we are in the setting of Lemma 4.6, and have a comparison with independent
geometric random variables {τ̃k, k ≥ 1} with

E[τ̃k] =
N

KVE(H + k − 1)2xN
.
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Then, (with the abuse of taking γ log(N) to be integer)

P
( tN∑
k=1

Y ki ≥ γ log(N)−H
)
≥ P

(
τ1 + · · ·+ τγ logN ≤ tN

)
≥ P

(
τ̃1 + · · ·+ τ̃γ logN ≤ tN

)
≥
γ logN∏
k=1

P
(
τ̃k ≤

tN
γ logN

)
≥
γ logN∏
k=1

(
1− exp

(
− tN

KVE(H + k)2xN
γN log(N)

))

≥
γ logN∏
k=1

(
1− exp

(
− γbKVE

2e

k2

γ2 log(N)

))
. (5.22)

Now use the estimate 1− e−x ≥ e−ax for 0 ≤ x ≤ a with a = γbKVE/2e. Now,

γ logN∏
k=1

(
1− exp

(
− γbKVE

2e

k2

γ2 log(N)

))
≥(ae−a)γlog(N) (γ log(N))!2

(γ2 log2(N))γ log(N)

≥ exp(−ε(γ) log(N)),

(5.23)

where we took ε(γ) = γ log(ae−a)− 2γ.
The proof of the Proposition 5.1 is completed if α > ε(γ).

6 Growing columns

In this section we present a simple way to bound the height of the maximal pile, based
on stochastic domination, for both ballistic and diffusive deposition. Indeed, for both
models we construct a sequence of inter-arrival times of explorers on a given column,
say column number 1, stochastically dominated by independent geometric variables.

We now state three propositions that are crucial in the proofs of Theorems 1.2 and
1.1. The propositions bound the probabilities of building a high pile, and are proven at
the end of this section.

Proposition 6.1. Consider ballistic deposition. There is a constant κ > 0 such that for
all H > 2, and any site i ∈ GN ,

P
(
σi(N) > H

)
≤ exp(−κH). (6.1)

Proposition 6.1 implies that, for a given column, N particles are not enough to reach
a maximal height of order log(N)/κ.

Proposition 6.2. Consider diffusive deposition. For H < N
1
2−ε, and any site i ∈ GN ,

and X a positive integer

P
(
σi(X) > H

)
≤ exp

(
κ
X

N
H2 − π

4
H
)
, (6.2)

with κ = 1 +O(N−1/2).

Proposition 6.2 implies that for α small, αN/ log(N) particles are not enough to reach
a maximal height of order log(N).

Finally, we consider diffusive deposition, with a configuration in Xe(A), and with one
distinguished site, say i, above height γ log(N). We show that as long as we do not leave
the early regime, see equation (4.24) we have a fast growth. Let τXe

c the time at which
you exit the early regime.

Proposition 6.3. Let χ, γ, C be any positive constants with χ < 1/2. Assume that there
is a distinguished site, say i∗, with σi∗ ≥ γ log(N). Then, we have

Pσ

(
σi∗
(
C

N

log(N)

)
< Nχ

∣∣τXe
c > C

N

log(N)

)
≤ exp

(
− γ
(
κ(A)

γC

2
− π

2

)
log(N)

)
. (6.3)
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6.1 Growing a column in ballistic deposition

Proof of Proposition 6.1. By lemma 4.5

P
(
τ1 > k

)
≥
(
1− 1

N

)k
so that E[τ1] > N. (6.4)

and in general

P
(
τi > k

)
≥
(
1− i

N

)k
. so that E[τi] >

N

i
. (6.5)

This implies that (6.1) is a large deviation event since

H∑
i=1

E[τi] ≥ N log(H).

More precisely by Lemma 4.6 we have

P
(
τ1 + ...+ τH < N) ≤ P

(
τ̃1 + ...+ τ̃H < N)

with {τ̃i, i = 1, . . . ,H} independent geometric variables of mean N
i . By the exponential

Chebyshev’s inequality we get, for every λ > 0

P
(
τ̃1 + ...+ τ̃H < N

)
≤ eλN

H∏
i=1

E[e−λτ̃i ]

Note that for a geometric variable X of mean 1/p

E[exp(−λX)] =
p

eλ − (1− p)
.

When λ is positive, exp(λ)− 1 ≥ λ, and we have

E[exp(−λX)] ≤ 1− λ

λ+ p
.

Now,
H∏
i=1

E[exp(−λτ̃i)] ≤
H∏
i=1

(
1− λ

λ+ i/N

)
≤ exp(−λ

H∑
i=1

1

λ+ i/N
).

We choose λ = i0/N so that by the asymptotic of the harmonic series

λ

H∑
i=1

1

λ+ i/N
= i0

i0+H∑
i=i0+1

1

i
≥ i0 log

( i0 +H + 1

i0 + 1

)
.

So, we obtain

P
(
τ̃1 + · · ·+ τ̃H ≤ N

)
≤ exp

(
− i0

[
log
( i0 + 1 +H

i0 + 1

)
− 1
])
.

Now, if we choose i0 to be the integer part of αH, for some constant α, then

P
(
τ̃1 + · · ·+ τ̃H ≤ N

)
≤ exp

(
− αH(1− 1

αH
)
(

log(
1 + α

α
)− 1

))
.

If α is sufficiently small, say α = 1
2 , then log((1 + α)/α) − 1 > 0, and Lemma 6.1 is

established.
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6.2 Growing a column in diffusive deposition

Proof of Proposition 6.2. We follow the arguments of the previous proof. By using
Lemma 4.3 for any i ≥ 1, and integer n

P
(
τi > n

)
≥
(
1− κ i

2

N

)n
, with κ = 1 +O(N−1/2).

By Lemma 4.6, we have for any H,X

P
(
τ1 + ...+ τH < X) ≤ P

(
τ̃1 + ...+ τ̃H < X),

with {τ̃i, i ≥ 1} independent geometric variables with E[τ̃i] = N/(κi2).
Then, for every λ > 0, by Chebyshev’s inequality

P
(
τ1 + · · ·+ τH < X

)
≤ exp

(
λX − λ

H∑
i=1

1

λ+ κi2/N

)
. (6.6)

We set λ = κH2/N and we note that

H2
H∑
i=1

1

H2 + i2
=

H∑
i=1

1

1 + ( iH )2
≥ H

∫ 1

0

dx

1 + x2
= H

π

4
. (6.7)

We conclude obtaining (6.2).

Proof of Proposition 6.3. Again, let {τ1, τ2, . . . , } be the random number of explorers
linked with growing a column at i∗ from σ with an initial state with σi∗ = γ log(N). By
Corollary 4.2 we have for any integer m < X

Pσ
(
τk > m

∣∣τ1, . . . , τk−1, τXe
c > X

)
≤
(

1− κ(A)
(γ logN + k − 1)2

N

)m
= P (τ̃k > m)

Therefore, by Lemma 4.6

Pσ
( Nχ∑
k=1

τk > X
∣∣τXe

c > X
)
≤ P

( Nχ∑
k=1

τ̃k > X
)
.

By Chebyshev inequality,

Eeλτ̃k =
pk

e−λ − (1− pk)
= 1 +

a

pk − a
, with pk := κ(A)

(γ logN + k − 1)2

N
,

assuming a := 1− e−λ < pk. Thus,

Eeλτ̃k < exp{a/(pk − a)} .

Hence,

P
( Nχ∑
k=1

τ̃k > X
)
≤ exp

(
− λX +

Nχ∑
k=1

a

pk − a

)
.

We choose a = κ(A)(γ2 log2N)/N (and a ≥ λ/2) and X = CN/ logN , and we have

Nχ∑
k=1

a

pk − a
≤ γ logN

∫ ∞
0

dx

1 + x2
=
π

2
γ logN,

so that

P
( Nχ∑
k=1

τ̃k > X
)
≤ exp

(
− κ(A)

γ2 log2N

2N
C

N

logN
+
π

2
γ logN

)
= exp

(
− γ logN [κ(A)

γC

2
− π

2
]
)
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6.3 Growing a tower in diffusive deposition

In this section, we bound the probability of forming a high tower of explorers in
diffusive deposition.

Fix a region Λ ⊂ {1, . . . , N} of size L. Let H be a fixed positive integer, and C =

Λ× {0, . . . ,H}. Given σ ∈ NGN we define

σ ∧ C := {i ∈ Λ : σi < H} ⊂ GN , and note that |σ ∧ C| =
∑
i∈Λ

1I{σi<H}. (6.8)

Proposition 6.4. Consider diffusive deposition. For any positive H,X and ξ with X <

N/2, we have that

P (∀x ∈ Λ, σx(X) ≥ H) ≤ exp
(
LH

(
ξ
HX

N
− ξ log(

1 + ξ + 1/H2

ξ + 1/H2
)
))

(6.9)

Moreover, for any positive a, γ, and a positive real χ satisfying 4χ < aγ2 exp(−2aγ), and
the choice H = γ log(N), X = aTN and L = N1−2χ, we have

P
(
|{i : σi(aTN ) > γ logN}| > N1−2χ

)
≤ exp

(
− χN1−2χ

)
. (6.10)

Proof. Lemma 4.3 immediately yields

P
(

explorer attaches to σ ∧ C
∣∣ σ) ≤ κA ∑

x∈σ∧C

σ2
x + 1

N

Note that ∑
x∈σ∧C

σ2
x + 1 ≤ L+H

∑
x∈σ∧C

σx.

We define nC(σ) =
∑
x∈σ∧C σx, so that, for N large enough we have that

P
(

explorer attaches to σ ∧ C
∣∣ σ) ≤ κA

N
[L+HnC(σ)]. (6.11)

This allows us to define, as before, geometric random variables stochastically smaller
than the number of explorers needed to settle one of them in C. Let τ1 be the number
of explorers needed in order that one settles in C, when we start with the empty
configuration. By induction, when k − 1 explorers are settled in C, define τk to be the
number of explorers needed to settle the k–th explorer in C, and we do this up to time
LH. Then for any configuration σ with nC(σ) = k − 1, for any positive integer m

P (τk > m | σ) ≥
(
1− kH + L

N

)m
= P (τ̃k > m). (6.12)

We invoke again Lemma 4.6 to obtain

P
(
τ1 + · · ·+ τHL ≤ X

)
≤ P

(
τ̃1 + · · ·+ τ̃HL ≤ X

)
≤ eλX

HL∏
k=1

E[exp(−λτ̃k)]

≤ exp
(
λX − λ

HL∑
k=1

1

λ+ (kH + L)/N

)
choose λ =

H2L

N
ξ

≤ exp
(
ξ
H2LX

N
− ξHL

HL∑
k=1

1

HLξ + k + LH

)
≤ exp

(
LH

(
ξ
HX

N
− ξ log(

1 + ξ + 1/H2

ξ + 1/H2
)
))
. (6.13)

EJP 21 (2016), paper 19.
Page 26/29

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4310
http://www.imstat.org/ejp/


On diffusion limited deposition

With the choice H = γ log(N), L = N1−2χ, and X = aTN we get

P
(
|{i : σi(aTN ) > γ logN}| > N1−2χ

)
≤
(
N

L

)
exp

(
LH

(
ξ
HX

N
− ξ log(

1 + ξ + 1/H2

ξ + 1/H2
)
))

≤ exp
(
L log(N/L) + LH

HX

N
ξ − LHξ log(

1 + ξ + 1/H2

ξ + 1/H2
)
))

≤ exp
(
− L log(N)

(
γξ log(

1 + ξ

ξ
)− 2χ− aγ2ξ

))
. (6.14)

First choose ξ = exp(−2aγ), to get

(
hξ log(

1 + ξ

ξ
)− 2χ− xh2ξ

)
≥
(
aγ2ξ − 2χ)

)
.

Now choose 4χ < (aγ2) exp(−2aγ), and the inequality (6.10) is obtained.

7 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Proof of (1.9): the statement follows immediately by Proposi-
tion 6.2 with H = 3 log(N) and X ≤ cN/ log(N), for c small enough. Indeed by Proposi-
tion 6.2 we have for the complementary event

P (∃i : σi(X) > 3 logN) ≤
N∑
i=1

P (σi(X) > 3 logN)

≤N exp
(

3 logN
(
3κc− π

4

))
.

(7.1)

Hence
P (∃i : σi(X) > 3 logN) ≤ N1−3(π/4−3κc).

This concludes the proof since the exponent of N is less than −1 when 9cκ < (3π/4− 2).
(recall that κ = 1 +O(N−1/2)).

Proof of (1.10). Recall that from Proposition 5.1 there is b > 0 (and (5.2) for the
quantitative estimate), so that very likely τXve(γ,β)c < bTN , where TN = N/ log(N). We
therefore condition on the evolution up to τXve(γ,β)c .

P
(

maxσx(aTN + bTN ) < Nχ
)
≤P
(
τXve(γ,β)c < bTN ,maxσx(aTN + bTN ) < Nχ

)
+ P

(
τXve(γ,β)c ≥ bTN

)
.

(7.2)

Now, in the first term use Markov’s property at time τXve(γ,β)c , calling for simplicity
σ(Xe) := σ(τXve(γ,β)c)

P
(
τXve(γ,β)c < bTN ,maxσx(aTN + bTN ) < Nχ

)
≤ E

[
1I{τXve(γ,β)c<bTN}Pσ(Xe)

(
maxσx(aTN ) < Nχ

)] (7.3)

Now, σ(Xe) ∈ Xe(A), for A > 2γβ, and there is i∗ ∈ GN such that σi∗(Xe) ≥ γ log(N).
Thus,

Pσ(Xe)

(
max
x

σx(aTN ) < Nχ
)
≤Pσ(Xe)

(
max
x

σx(aTN ) < Nχ
∣∣ τXe

c > aTN
)
Pσ(Xe)

(
τXe

c > aTN
)

+ Pσ(Xe)

(
τXe

c < aTN , max
x

σx(aTN ) < Nχ
)
. (7.4)

The first term on the right hand side of (7.4) is dealt with by Proposition 6.3.
The next lemma deals with the second term on the right hand side of (7.4).
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Lemma 7.1. Let σ ∈ Xe(A) be a configuration such that maxσx = γ log(N), for some
positive γ. For a > 0 such that aγ ≤ A− 1, and 4χ < aγ2 exp(−2aγ), we have

Pσ
(
τXe

c < aTN , max
x

σx(aTN ) < Nχ
)
≤ exp(−χN1−2χ). (7.5)

Proof of Lemma 7.1. Note that when aγ ≤ A− 1,

{τXe
c < aTN , σx(aTN ) < Nχ} ⊂ {

∣∣{x : σx(aTN ) > γ log(N)}
∣∣ > N1−2χ}. (7.6)

Indeed, on the event {τXe
c < aTN , σx(aTN ) < Nχ},

AN ≤
∑
i

σ2
i (τXe

c) =
∑

i:σi(τXec )≤γ logN

σ2
i (τXe

c) +
∑

i:σi(τXec )>γ logN

σ2
i (τXe

c)

≤γ(logN)aTN +N2χ|{i : σi(τXe
c) > γ logN}|

≤aγN +N2χ|{i : σi(τXe
c) > γ logN}|.

(7.7)

Proposition 6.4 deals with growing large towers, and by using inequality (6.10) the proof
is complete.

Proof of Theorem 1.2. The statement follows immediately by Proposition 6.1 with H =

γ log(N) with γ > 2/κ. Indeed, by Proposition 6.1, there exists a constant κ such that

P (∃i : σi(N) > γ logN) ≤ Ne−κγ logN = N1−κγ ,

and the proof concludes.
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