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Abstract

We consider the activated random walk model on Zd, which undergoes a transition
from an absorbing regime to a regime of sustained activity. A central question for
this model involves the estimation of the critical density µc. We prove that if the jump
distribution is biased, then µc < 1 for any sleeping rate λ, d ≥ 1, and that µc → 0 as
λ→ 0 in one dimension. This answers a question from Rolla and Sidoravicius (2012)
and Dickman, Rolla and Sidoravicius (2010) in the case of biased jump distribution.
Furthermore, we prove that the critical density depends on the jump distribution.
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1 Introduction

In this paper we consider the activated random walk (ARW) model on the lattice.
This is a continuous-time interacting particle system with conserved number of particles,
where each particle can be in one of two states: A (active) or S (inactive, sleeping). Each
A-particle performs an independent, continuous time random walk on Zd with jump rate
1 and jump distribution p(·). Moreover, every A-particle has a Poisson clock with rate
λ > 0 (sleeping rate). When the clock rings, if the particle does not share the site with
other particles, the transition A → S occurs, otherwise nothing happens. S-particles
do not move and remain sleeping until the instant when an other particle is present
at the same vertex. At such an instant, the particle which is in the S-state flips to the
A-state, giving the transition A+S→ 2A. The initial particle configuration is distributed
according to a product of Bernoulli distributions having expectation µ ∈ [0, 1], that we
call particle density. As we consider initial configurations with only active particles, from
the previous rules it follows that sleeping particles can be observed only if they occupy
the site alone.

In ARW a phase transition arises from a conflict between the spread of the activity
and a tendency of the activity to die out. We say that ARW exhibits local fixation if for
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Biased activated random walk

any finite set V ⊂ Zd, there exists a finite time tV such that after this time the set V
contains no active particles. We say that ARW stays active if local fixation does not occur.

Some of the central questions for this model involve the estimation of the critical
density which separates the two regimes,

µc(λ, p( · )) := inf {µ ∈ [0, 1] : P(ARW is active) > 0},

where P(ARW is active) is intended as a function of the parameter µ. The 0-1 law and
the monotonicity properties that have been proved in the seminal article by Rolla and
Sidoravicius [9] imply that if µ > µc, then ARW sustains activity almost surely.

In several articles an estimation for µc has been provided. In one dimension, it
has been proved by Rolla and Sidoravicius [9] that µc ∈ [ λ

1+λ , 1]. Our definition of µc
implies that µc ≤ 1 since particles are initially distributed as Bernoulli random variables.
However, even if we replace this with any product measure of density µ > 0, it is intuitive
that µc ≤ 1, since at most one particle can fall asleep at any given vertex. This fact has
been proved in [6, 9, 12] in wide generality. A fundamental question for this model is
whether µc < 1 for any sleeping rate λ. This question has been asked by Dickman, Rolla
and Sidoravicius [4] and by Rolla and Sidoravicius [9] and its answer is expected to be
positive in wide generality. In this article we provide a positive answer to this question
in any dimension in the case of biased jump distribution. In particular, in one dimension
we prove a stronger statement, i.e, that µc → 0 as λ→ 0.

We are now ready to state our results. We let m =
∑
z∈Zd p(z) z be the expected jump

of the random walk, we let ej be the axis direction such that m · ei takes the maximum
value, we let H = {z ∈ Zd s.t. ej · z ≤ 0} and we define the number,

F (λ, p( · )) := E[(1 + λ)−`H ], (1.1)

where `H is the total time spent on H by a discrete time random walk with jump
distribution p( · ). Such a number is the probability that a continuous time random walk
never deactivates, if it jumps at rate 1 and it deactivates at a rate λ only when it is in H.
As a consequence of the law of large numbers, for any jump distribution such that m 6= 0

and for any λ > 0, such a probability is positive and, furthermore, lim
λ→0

F (λ, p( · )) = 1, as

the walker spends only a finite amount of time in H.

Theorem 1.1. Consider ARW on Z with jump distribution p( · ) having a finite support
and such that m 6= 0. Then,

µc (λ, p( · )) ≤ 1− F (λ, p( · )) .

The next theorem provides an upper bound for the critical density in dimension d ≥ 2.

Theorem 1.2. Consider ARW on Zd with jump distribution p( · ) having a finite support
and such that m 6= 0. Then,

µc (λ, p( · )) ≤ 1

F (λ, p( · )) + 1
. (1.2)

Although µc is conjectured to be strictly less than one for any positive λ and for any
jump distribution, our proof techniques allow to answer such a question only under the
assumption of biased jump distribution. A second, natural question is how and whether
the critical density depends on the jump distribution. Our third theorem states that the
critical density is not a constant function of the jump distribution.

Theorem 1.3. Consider ARW with jump distribution on nearest neighbours, p(1) = q

and p(−1) = 1− q, where q ∈ [0, 1]. For any fixed λ ∈ R+, the critical density µc(λ, q) is
not a constant function of q.

EJP 21 (2016), paper 13.
Page 2/15

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4275
http://www.imstat.org/ejp/


Biased activated random walk

0.0 0.2 0.4 0.6 0.8 1.0
q

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1-FH1�2,qL

BH1�2,qL

1-FH1,qL

BH1,qL

Figure 1: Upper and lower bound (respectively, dashed and continuous lines) for the
critical density in one dimension and jumps on nearest neighbours, p(1) = q and p(−1) =

1− q.

The proof of the theorem uses the stabilization procedure of Rolla and Sidoravicius
[9] and it is based on an observation. In particular, we provide a new lower bound for the
critical density as a function of the sleeping rate and of the bias parameter (see Figures
1 and 2) and we prove that µc(λ, q) >

λ
1+λ when q 6∈ {0, 1}. The statement of Theorem

1.3 follows from our lower bound, as it is known [7] that µc(λ, q) = λ
1+λ when q ∈ {0, 1}.

Remark 1.4. Our Theorems 1.1 and 1.3 hold for any distribution of the initial location
of the particles which is a product of identical distributions parametrized by their
expectation µ. On the contrary, if we fixed beforehand a distribution which is different
from Bernoulli, the statement of Theorem 1.2 would be that µc < 1 only for small
enough λ.

We end this introductory section by presenting the structure of the article. In Section
2 we introduce the proofs of Theorems 1.1 and 1.2 to the reader. In Section 3 we present
the Diaconis-Fulton graphical representation, which is a fundamental framework for the
analysis of ARW. In Section 4 we prove our upper bound for the critical density in one
dimension. In Section 5 we prove our upper bound in more than two dimensions. In
Section 6 we sketch the stabilization algorithm of Rolla and Sidoravicius and we present
our observation for the proof of Theorem 1.3.

2 Some words on the proofs

Our proofs rely on the discrete Diaconis-Fulton representation for the dynamics
of ARW. As it has been proved in [9], local fixation for ARW is related to the stability
properties of this representation, which leaves aside the chronological order of events.

At every site x ∈ Zd, an infinite sequence of independent and identically distributed
random variables is defined. Their outcomes are some operators (“instructions”) acting
on the current particle configuration by moving one particle from one site to the other
one or by trying to let the particle turn to the S-state.

Local fixation for the dynamics of ARW is related to the the number of instructions
that must be used in order to stabilize the initial particle configuration. Denote by BL a
compact subset of Zd such that BL ↑ Zd as L→∞. For every x ∈ Zd, let mBL,η,τ (x) be
the number of instructions that must be used at x in order to make the configuration
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Figure 2: Lower bound B(q, λ) for the critical density for low lambda (λ = 1/1000) as
a function of the bias parameter q (continuous line), contrasted with the lower bound
λ/(1 + λ) from [9] (dashed horizontal line).

η stable in BL according to the instructions τ and denote by ξBL,η,τ the corresponding
stable configuration. A configuration is stable in BL if there are no active particles in BL.
A fundamental property of the representation is commutativity, i.e., ξBL,η,τ and mBL,η,τ

do not depend on the order according to which instructions have been used. A second
property of the representation is that if there exists a positive constant c such that for
every integer L large enough,

Pν(mBL,η,τ (0) = 0) ≥ c, (2.1)

then ARW fixates almost surely. Analogously, if there exists a positive constant c′ such
that for every integer L large enough,

Pν(mBL,η,τ (x) > c′ L) ≥ c′, (2.2)

then ARW stays active almost surely. The proof of our results is based on the definition of
stabilization algorithms for the set BL and on counting the number of particles crossing
the origin, which is chosen to belong to the inner boundary of BL. In order to prove
the upper bound (resp. the lower bound), we provide an estimation of the choice of
parameters such that (2.1) (resp. 2.2) holds for every L large enough.

The proof of Theorem 1.2 is based on the following idea. In two dimensions, we
introduce the set BL = [−L+ 1, 0]× [−L3, L3] by assuming that m · e1 > 0 by symmetry.
We define a stabilization procedure where particles are moved one by one until a certain
“stopping” event occurs. By “moving”, we mean that we use always the instruction on
the site where the particle is located until such an event occurs. We say that a particle is
“good” if it stops on one of the sites which is empty in the initial particle configuration
or if it leaves BL from the boundary side containing the origin. Because of the choice
of our stopping events, of the order according to which particles are moved and of the
bias of the jump distribution, we can provide a positive uniform lower bound F for the
probability that a particle is good. Thus, we show that, if the density of good particles
µ · F is higher than the density of empty sites 1− µ, then a positive density of particles
leaves BL by crossing the boundary side containing the origin. In one dimension this
would be enough to prove almost sure activity when µ < 1 with BL = [−L, 0], as the
number of sites belonging to the inner boundary of BL does not grow to infinity with L.
Instead, in two or more dimensions a control of which boundary sites are crossed by the
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particles jumping away from BL is needed. To obtain such a control, we adapt to our
setting the method of ghost explorers [8] and we exploit the symmetry properties of the
random walk. Thus, we prove that the number of particles crossing the origin before
leaving BL is larger than cL for some c > 0 with high probability.

This idea applies also to the one dimensional case, but actually the stabilization
procedure that has been employed in the proof of Theorem 1.1 (one dimension) is
different from the one described above, as the same particle is “moved” several times in
the course of the procedure and, every time it fills an empty site, it paves the way to the
particle that are moved subsequently. This allows to prove a stronger result, i.e., that
activity is sustained at arbitrarily low density by setting λ small enough.

The proof of Theorem 1.3 uses the stabilization procedure that has been developed
by Rolla and Sidoravicius [9] and it is based on an observation. We refer the reader to
Section 6.

3 Diaconis-Fulton representation

In this section we describe the Diaconis-Fulton graphical representation for the

dynamics of ARW. We follow [9]. Let η ∈ N0ρ
Zd

denote the particle configuration, where
N0ρ = N0 ∪ {ρ}. We define an order relation for ρ, which represents the presence of an
S-particle at one site, setting 0 < ρ < 1 < 2 . . .. We also let |ρ| = 1, so that |ηt(x)| counts
the number of particles regardless of their state. The addition is defined by ρ+ 0 = ρ,
and ρ+ k = k + 1 if k ≥ 1, providing the A+ S → 2A transition. The A→ S transition is
represented by ρ · k, where ρ · 1 = ρ and ρ · k = k if k ≥ 2. We introduce two operators,
“move” from x to y, which is denoted by τxy, and “sleep” at x, which is denoted by τxρ.

These operators act on the particle configuration. For any η ∈ NZd

0ρ , the configuration

τxyη ∈ NZ
d

0ρ is defined as,

τxyη(z) =


η(z) + 1 if z = y,

η(z)− 1 if z = x,

η(z) if z 6= x and z 6= y,

(3.1)

and the configuration τxρη ∈ NZ
d

0ρ is defined as,

τxρη(z) =

{
η(z) · ρ if z = x,

η(z) if z 6= x.
(3.2)

A site x ∈ Zd is stable in the configuration η if η(x) ∈ {0, ρ} and it is unstable if η(x) ≥ 1.
We fix an array of instructions τ = (τx,j : x ∈ Zd, j ∈ N), where τx,j = τxy or τx,j = τxρ.
Let h = (h(x) : x ∈ Zd) count the number of instructions used at each site. We say that
we use an instruction at x when we act on the current particle configuration η through
the operator Φx, which is defined as,

Φx(η, h) = (τx,h(x)+1 η, h+ δx). (3.3)

The operation Φx is legal for η if x is unstable in η, i.e., η(x) ≥ 1, otherwise it is illegal.

Properties. We now describe the properties of this representation. Later we discuss how
they are related to the the stochastic dynamics of ARW. For α = (x1, x2, . . . xk), we write
Φα = Φxk

Φxk−1
. . .Φx1 and we say that Φα is legal for η if Φxl

is legal for Φ(xl−1,...,x1)(η, h)

for all l ∈ {1, 2, . . . k}. Let mα = (mα(x) : x ∈ Zd) be given by, mα(x) =
∑
l 1xl=x, the

number of times the site x appears in α. We write mα ≥ mβ if mα(x) ≥ mβ(x) ∀x ∈ Zd.
Analogously we write η′ ≥ η if η′(x) ≥ η(x) for all x ∈ Zd. We also write (η′, h′) ≥ (η, h) if
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η′ ≥ η and h′ = h. Let η, η′ be two configurations, x be a site in Zd and τ be a realization
of the set of instructions. Let V be a finite subset of Zd. A configuration η is said to be
stable in V if all the sites x ∈ V are stable. We say that α is contained in V if all its
elements are in V and we say that α stabilizes η in V if every x ∈ V is stable in Φαη. For
the proof of the following Lemmas we refer to [9].

Lemma 1. (Abelian Property) If α and β are both legal sequences for η that are contained
in V and stabilize η in V , then mα = mβ . In particular, Φαη = Φβη.

By Lemma 2, mV,η,τ = mα and ξV,η,τ = Φαη are well defined.

Lemma 2. (Monotonicity) If V ⊂ V ′ and η ≤ η′, then mV,η,τ ≤ mV ′,η′,τ .

By monotonicity, the limit
mη,τ = lim

V ↑Zd
mV,η,τ ,

exists and does not depend on the particular sequence V ↑ Zd.
We now introduce a probability measure on the space of instructions and of particle

configurations. We denote by P the probability measure according to which, for any
x ∈ Zd, j ∈ N, P(τx,j = τxy) = p(y−x)

1+λ and P(τx,j = τxρ) = 1
1+λ independently. Finally we

denote by Pν the joint law of η and τ , where η has distribution ν and it is independent
from τ . The following lemma relates the dynamics of ARW to the stability property of
the representation.

Lemma 3. Let ν be a translation-invariant, ergodic distribution with finite density
ν(η(0)). Then Pν( ARW fixates locally ) = Pν(mη,τ (0) <∞) ∈ {0, 1}.

The next lemma states that by replacing an instruction “sleep” by a neutral instruction
the number of instructions used at the origin for stabilization cannot decrease. Thus,
besides the τxy and τxρ, consider in addition the neutral instruction I, given by I η = η.
Given two arrays τ =

(
τx,j

)
x, j

and τ̃ =
(
τ̃x,j

)
x, j

, we write τ ≤ τ̃ if for every x ∈ Zd and

j ∈ N, either τ̃x,j = τx,j or τ̃x,j = I and τx,j = τxρ.

Lemma 4. (Monotonicity with enforced activation) Let τ and τ̃ be two arrays of instruc-
tions such that τ ≤ τ̃ . Then, for any finite V ⊂ Zd and η ∈ NZd

0ρ , mV,η,τ ≤ mV,η,τ̃ .

4 Proof of Theorem 1.1

Without loss of generality we assume m > 0 and we consider the set BL = [−2L, 0].
The case m < 0 can be recovered by reflection symmetry. We stabilize only particles in
[−L, 0], but we consider the site −2L− 1 as the outer boundary of the set, i.e., once a
particle is on a site ≤ −2L− 1 it is “lost”.

Let ÑL
0 be the number of particles in [−L, 0]. First, we “move” every particle starting

in [−L, 0] until every site of [−L, 0] is either empty or it hosts only one active particle. This
means that if the site hosts initially n > 1 particles, we move n− 1 particles until each of
them fills an empty site. By “moving”, we mean that we always use the instruction on
the site where the particle is located until the particle reaches an empty site. Now, every
site in [−L, 0] either hosts one particle or is empty. Let NL

0 be the number of particles in
[−L, 0]. The next proposition states that with uniformly positive probability we loose a
number of particles that is bounded from above by a number that not depend on L.

Proposition 4.1. There exist two positive constants c and K such that for all L ∈ N,

Pν ( ÑL
0 −NL

0 ≤ c ) ≥ K. (4.1)

Proof of Proposition 4.1. Since we are only moving particles that are not alone, this is
equivalent to the model with λ =∞. By [3][Theorem 4], at λ =∞, there is fixation for
any µ < 1. Therefore, m[−L,0],η,τ (z) is a finite random variable for any z ∈ [−L, 0], and
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thus the sum
∑
zm[−L,0],η,τ (z) for z on the inner boundary of an interval [−L, 0] is tight

with respect to L. Since each particle leaving [−L, 0] must perform a jump from a site of
its inner boundary, the result follows.

Now every site in [−L, 0] hosts at most one particle, which is necessarily active. We
stabilize the set [−L, 0] according to the following rule. Let z0 = −L. If the site is empty,
we do not do anything. If z0 hosts one particle, then we move it until one of the following
events occurs: (1) the particle sleeps somewhere in [−2L, z0], (2) the particle reaches
a site x ≤ −2L − 1, (3) the particle reaches the first empty site in [z0 + 1, 0], (4) the
particle reaches a site x ≥ 0. If (3) or (4) occur, we say that a successful jump has been
performed.

As the random walk is biased to the right, we can uniformly bound from below by
a constant FL the probability of a successful jump. Indeed, consider now a random
walk (Z(j))j∈N starting from Z(0) = z0 in the following environment. Namely, if y > z0
then the walker located at y jumps to y + z with probability p(z). If y ≤ z0, then the
walker jumps to y + z with probability p(z)

1+λ and it sleeps with probability λ
1+λ . As the

random walk (Z(j))j∈N can sleep on any site in (z0−L, z0] and as z0−L ≥ −2L, then the
probability of a successful jump in the activated random walk model cannot be smaller
than FL.

Now let z1 = z0 + 1 and observe that every site in [z1, 0] is either empty or it hosts
one active particle. Let NL

1 be the number of particles in [z1, 0]. If z1 hosts no particles,
we do not do anything. Instead, if z1 hosts one particle, we move such a particle as
before, until one of the four events above occurs. Again, a successful jump occurs with
probability at least FL. We then define z2 = z1 + 1 and we continue in this way until we
reach zL. We observe that, at every step i, NL

i+1 = NL
i with probability at least FL and

NL
i+1 = NL

i − 1 with probability at most 1− FL.
Now we define F := lim

L→∞
FL, which corresponds to the constant (1.1) defined before

the statement of the theorem. We observe that for any positive real ε, NL
0 ≥ (µ − ε)L

and NL
L ≥ NL

0 − (1 − F + ε)L = (µ − 1 + F − 2 ε)L with high probability as L is large
enough. Thus, for any positive δ such that µ = 1− F + δ, we let ε := δ

3 and we conclude
that NL

L ≥ δ
3L with high probability. Now, observe that NL

L corresponds to the number
of particles that left the set [−2L, 0] from the right boundary. In case of jumps on nearest
neighbours, each of these particles must have crossed the origin. In case of biased
distribution with general (finite) support, the same conclusion does not hold. Thus, let
QL := {z ∈ [−L, 0] : ∃x ∈ Z \ [−L, 0] s.t. p(x− z) > 0} be the inner boundary of BL and
let K2 be a constant such that |QL| ≤ K2 for every L. Thus, as at least NL

L particles left
the set [−2L, 0], then ∃z ∈ QL such that m[−2L,0],η,τ (z) ≥ δ

3K2
L with high probability. By

the union bound, this implies that there exists a site z ∈ QL such that for every L large
enough,

Pν
(
m[−2L,0],η,τ (z) ≥ δ

3K2
L

)
≥ 1

2K2
. (4.2)

Thus, by using translation invariance and by Lemma 3 we conclude that ARW stays
active almost surely.

5 Proof of Theorem 1.2

We present the proof in the case of two dimensions. The same arguments can be
adapted to the case of more than two dimensions. We assume that m · e1 > 0 and we
introduce the set BL = {(x, y) ∈ Z2 : x ∈ [−L+ 1, 0], y ∈ [−L3, L3]}. We order the sites
of BL by writing BL = {z1, z2, . . . z|BL|}, requiring that sites with smaller x appear first.
We stabilize the set B2L, but we “move” only particles which start from sites in BL, as
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we want them to be “far” from the boundary of the set. By “moving”, we mean that we
always use the instruction on the site where the particle is located until a certain event
occurs. In our stabilization procedure, we say that a particle is “good” if it occupies one
of the sites that is empty for the initial configuration or if it leaves BL by crossing the
line x = 0. Because of the bias and of the order according to which particles are moved,
we can provide a positive uniform lower bound for the probability of a particle being
good. The general goal of the proof is to show that, if the density of empty sites for the
initial configuration is less than the density of good particles, then a positive density of
particles must leave BL by crossing the line x = 0. We use translation invariance then
to show that at least cL particles cross the origin with high probability for some c > 0,
which in turn implies almost sure activity by Lemma 3.

The stabilization procedure is defined as follows. We consider the first site in the
order, z1 = (x1, y1), and we move one of its particles until one of the following events
occurs. Namely,

(1) either the particles reaches one empty site (x, y) such that x > x1
(2) either the particle leaves BL,

(3) or the particles uses an instruction “sleep” on a site (x, y) such that x ≤ x1.

Then, we consider the other particles on the same site and for each of them we employ
the same procedure. At the next step, we consider the second site z2 in the order we
repeat the same procedure for all its particles. We proceed in this way until all the
particles have been moved one time.

We let NL be the number of particles that visit the origin at least one time. Clearly,
mBL,η,τ (0) ≥ NL. In order to estimate NL, we adapt the idea of “ghost” explorers [8, 12]
to our setting. Namely, every time a particle starting from zi = (xi, yi) stops at an empty
site (x, y) (which, by definition of stabilization procedure, must satisfy x > xi), we let a
ghost start from (x, y) and perform a random walk until it reaches the inner boundary of
B2L, i.e., ∂iB2L := {x ∈ B2L s.t. ∃ y ∈ Z2 \B2L and y ∼ x}. Ghosts do not interact with
other particles. We let WL be the number of particles visiting the origin as a ghost or as
an original particle and we let RL be the number of particles visiting the origin only as a
ghost. Then,

NL
d
=WL −RL. (5.1)

The variables WL and RL are of course dependent. We first provide sufficient conditions
for E[WL]− E[RL] ≥ cL for some c > 0 and we then prove that such a condition implies
that NL ≥ c

3L with high probability.
We now provide an estimation of the expectations of WL and RL. For any z ∈ B2L

and for any j ∈ N, we introduce the sequence {Sz,j(t), Y z,j(t)}t∈N, where Sz,j(t) is a
random walk with jump distribution p( · ) and starting from z and {Y z,j(t) }t∈N is an
infinite sequence of independent and identically distributed random variables such that
Y z,j(0) = 1 with probability λ

1+λ and Y z,j(0) = 0 with probability 1
1+λ . We start with the

estimation of E[WL]. Thus, we let from every particle (z, j), z = (x, y) ∈ BL, 1 ≤ j ≤ η(z),
a simple random walk start and we count the number of them visiting the origin before
leaving B2L and before using any instruction sleep on the set Hx := {(x′, y′) ∈ Z2 :

x′ ≤ x}, i.e.,

WL

d
≥ W̃L :=

∑
z∈BL

∑
1≤j≤η(z)

1({Sz,j(τ∂iB2L
) = 0} (5.2)

∩ {@t ≤ τz,j∂iB2L
s.t. Y z,j(t) = 1 and Sz,j(t) ∈ Hx}) (5.3)

where 1( · ) is the indicator function, η is the initial particle configuration and z = (x, y),
τz,j{ · } is the hitting time of {·} for the random walk Xz,j . The (stochastic) inequality holds
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as on the right-hand side we count only the walks that hit the inner boundary of B2L for
the first time at the origin and as, once the particle starting from (x, y) turns to a ghost
somewhere, it can explore the region Hx without any restriction related to the outcome
of the instructions sleep. Thus, the condition on the right-hand side is more restrictive.

The term RL is more difficult to handle. However, note that every ghost necessarily
starts its walk from a site of BL that is empty in the initial configuration η, due to the
order according to which particles are moved. Thus, we provide a (stochastic) upper
bound for RL by letting for every empty site a random walk start and by counting the
number of them hitting the inner boundary of BL at the origin, without any further
restriction. We denote such a number by R̃L. Therefore,

RL
d
≤ R̃L =

∑
z∈BL

1
(
Xz,j(τ∂iB2L

) = 0
)
1 (η(z) = 0) (5.4)

We let now GK = {(x, y) ∈ Z2 s.t. x = k} and Dk = {(x, y) ∈ Z2 s.t. y = k}. By using
independence and translation invariance,

E[W̃L] = µ
∑

(x,y)∈BL

P ({S(x,y)(τ∂iB2L
) = 0}

∩ {@t ≤ τ (x,y)∂iB2L
s.t. Y (x,y)(t) = 1 and S(x,y)(t) ∈ Hx})

≥ µ
∑

x=−L+1

L2∑
y=−L2

P ({S(x,y) reaches G0 at 0 before reaching y +DL2 , y +D−L2

and x+G−L }

∩ {@t ∈ N s.t. Y (x,y)(t) = 1 and S(x,y)(t) ∈ Hx})

= µ
∑

x=−L+1

L2∑
y=−L2

P ({S reaches G−x at (-x,- y) before reaching DL2 , D−L2

and G−L }
∩ {@t ∈ N s.t. Y (t) = 1 and S(t) ∈ H0})

≥ LµP ({S reaches GL before reaching DL2 , D−L2 , and G−L }
∩ {@t ∈ N s.t. Y (t) = 1 and S(t) ∈ H0}).

Note that we omitted any superscript for the random walk starting from the origin.
Observe that the last inequality holds as the sum is over the probability of disjoint
events and as the condition on the right-hand side is more restrictive. By the law
of large numbers and as the random walk spends only a finite amount of time in H0,
the probability of the event in the right-hand side of the last inequality converges to
F (λ, p( · )) as L→∞, which is defined before the statement of the theorem. By using the
same arguments, we obtain the corresponding equation for E[R̃L],

E[R̃L] = (1− µ)
∑

(x,y)∈BL

P ({S(x,y)(τ
(x,y)
∂iB2L

) = 0})

≤ (1− µ)

0∑
x=−L+1

L3∑
y=−L3

P ({S(x,y) hits G0 at the origin })

= (1− µ)

0∑
x=−L+1

L3∑
y=−L3

P ({S hits G−x at (−x,−y) })

≤ (1− µ)

0∑
x=−L+1

∞∑
y=−∞

P ({S hits G−x at (−x,−y) }})
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≤ (1− µ)L.

Thus, if µ > 1
1+F (λ) , then for all L large enough, E[W̃L]−E[R̃L] ≥ [µF (λ,p( · ))−(1−µ)]

2 L. By
using the union bound, the Chebyshev inequality and by observing tha the variance of
W̃L and R̃L can be bounded by their expectation, we prove that NL ≥ [µF (λ,p( · ))−(1−µ)]

6 L

with high probability, which in turn implies that at ARW stays active almost surely by
Lemma 3. Indeed, let c = [µF (λ)−(1−µ)]

2 ,

P (WL −RL <
c

3
L) ≤ P (W̃L − R̃L <

E[W̃L − R̃L]

3
)

≤P (W̃L − E[W̃L] >
E[W̃L − R̃L]

3
) + P (R̃L − E[R̃L] >

E[W̃L − R̃L]

3
)

≤P (W̃L − E[W̃L] >
E[W̃L − R̃L]

3
) + P (R̃L − E[R̃L] >

E[W̃L − R̃L]

3
)

(5.5)

For the second inequality we used the union bound. We now use the Chebyshev inequality
and the inequalities V ar[W̃L] ≤ E[W̃L] and V ar[R̃L] ≤ E[R̃L], which hold as W̃L and R̃L
are the sum of random variables taking values 0 or 1. Thus, from (5.5),

P (WL −RL <
c

3
L) ≤ 9

V ar[W̃L]

E[W̃L − R̃L]2
+ 9

V ar[R̃L]

E[W̃L − R̃L]2

≤ 9
E[W̃L]

E[W̃L − R̃L]2
+ 9

E[R̃L]

E[W̃L − R̃L]2

≤ 18

c2L
.

(5.6)

and, by taking the limit L→∞, this concludes the proof of the theorem.

6 Lower bound

Proof of Theorem 1.3. We provide a new lower bound for µc(λ, q) and we show that
µc(λ, q) >

λ
1+λ if q 6∈ {0, 1}. This implies the statement of the theorem, as from [7] it is

known that µc(1, λ) = µc(0, λ) = λ
1+λ .

Our goal is to estimate under which conditions on µ, λ and q the next condition holds,

∃ c > 0 s.t.∀L ∈ N, Pν(mVL,η,τ (0) = 0) > c, (6.1)

where VL = [−L,L]. Indeed, from Lemma 3, (6.1) implies that ARW fixates almost surely.
In order to prove 6.1, we consider the stabilization of [−L, 0] and of [0, L] separately.
Indeed, observe that, by independence of instructions,

Pν(m[−L,L],η, τ (0) = 0) ≥ Pν(m[−L,−1],η,τ (0) = 0)Pν(m[1,L],η, τ (0) = 0) ν(η(0) = 0), (6.2)

as for any instruction array τ and η ∈ Σ,

m[−L,−1],η,τ (−1) = 0, m[1,L],η,τ (1) = 0, and η(0) = 0 =⇒ m[−L,L],η,τ (0) = 0.

Without loss of generality, we consider q ≤ 1/2. Indeed, the case of q ≥ 1/2 can be
recovered by reflection symmetry. First, we consider the stabilization of [−L,−1]. If
q < 1

2 and VL = [−L,−1], it is easy to prove that, for any value of µ and λ, (6.1) holds.
Indeed, recall that, by Lemma 4, by erasing from the instruction array all the instructions
“sleep” on sites x ≤ 0, the number of instructions used at the origin for stabilization can
only increase. Then, we move the particles in x ≤ 0 one by one, until each of them leaves
the set [−L,−1]. The trajectory of each of them follows a simple random walk without
any interaction, as the instructions “sleep” have been erased. As the bias is to the left,
the probability that no particle hits the origin is uniformly positive in L.
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It remains to prove that (6.1) holds with VL = [1, L] and q ≤ 1
2 . For this, we modify

the stabilization procedure that has been developed by Rolla and Sidoravicius [9], which
is sketched in Section 6.1. Our stabilization algorithm is presented in Section 6.2.

6.1 The stabilization procedure of Rolla and Sidoravicius

In this section we briefly describe the stabilization procedure that has been developed
by Rolla and Sidoravicius [9]. The procedure explores a certain set of instructions of
τ and identifies a suitable trap for every particle. The trap is a site where the particle
finds an instruction “sleep” and turns to the S-state. The trap is chosen in such a way
that, when a particle is moved to its trap, it does not wake up any of the particles that
have already turned to the S-state. In the absence of a suitable trap, the algorithm fails.
If a suitable trap is found for every particle, then we say that the algorithm is successful
and this implies that m[0,L],η,τ (0) = 0. The goal is to prove that the probability of success
is uniformly positive in L.

We let X1 ≤ X2 ≤ . . . ≤ XNL be the position of the particles in [0, L] at time 0,
ordered from the left to the right, where NL is the total number of particles in [0, L].
We assume X1 > 0, which occurs with positive probability. We start from the leftmost
particle in the set and we “explore” its putative trajectory until the origin is reached. As
the exploration starts from a site which is on the right of the origin, the last “explored”
instruction at any site must be “go left”. The trap is defined as the leftmost instruction
“sleep” among those right below the last instructions “go left”. We denote the site where
the trap is located as T 1. Then, the particle is moved until such an instruction “sleep” is
reached. For this, all the instruction “sleep” belonging to the set of explored instructions
and which are not the trap are ignored. Lemma 4 guarantees that, if instructions “sleep”
of τ are ignored, then the total number of instructions that must be used at 0 to stabilize
[0, L] cannot be smaller than m[0,L],η,τ (0). This is important, as we need to provide
sufficient conditions for m[0,L],η,τ (0) = 0.

At the second step, we consider the second leftmost particle in [0, L]. Starting from
X2, we explore its putative trajectory until the site T 1 is reached. As before, we let the
trap be the leftmost instruction “sleep” among those right below the last instructions
“go left”. We let T 2 be the site where the trap of the second particle is located. We move
such a particle to its trap ignoring all the instructions sleep on the way to the trap.

Moving from the left to the right, we repeat this procedure for every particle in [0, L].
The algorithm fails when no suitable trap is found for one particle. This might occur only
in two cases. Namely, when we explore the putative trajectory of the particle starting
from Xi, if no instruction “sleep” is found right below the last instruction “go left” at
any of the explored sites or if such instruction “sleep” is found, but it is not located on
the left of Xi+1, then the algorithm fails.

Note that not all the instructions belonging to the explored path are “used” by the
particle. Successful algorithm means that no particle ever visits sites hosting instructions
that belong to previous explorations and that have not been used (corrupted region).
Indeed, for all i, the region of explored sites for Xi is always on the right of the trap
T i−1, while the corrupted region is on sites ≤ T i−1. This is necessary to have a control
on the joint distribution of the outcome of different explorations by using independence
of instructions.

6.2 Our algorithm

The difference between our stabilization algorithm and the one developed by Rolla
and Sidoravicius involves the criterion according to which the trap is chosen. By looking
only at the instructions located right below the last instruction “go left”, as in the
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Figure 3: Representation of the first exploration. Left: instructions belonging to the first
exploration. Right: representation of the first exploration as a simple random walk path.
Red circles represent the steps of such a path that are related to the presence of an
instruction “sleep”. In the example in the figure, the trap and the barrier are identified
with the same site.

algorithm by Rolla and Sidoravicius, one ignores most of the instructions “sleep” which
belong to the set of explored instructions. In order to save space, we provide a different
definition of traps by taking into account for such instructions “sleep” as well. This
allows to stabilize particles closer one to the other than in [9].

We move from the leftmost particle in [0, L] to the right and we explore the putative
trajectory of every particle, as before. Our traps are defined as the last instruction
“sleep” that has been discovered during the whole exploration (without requiring for it to
be right below the last instruction “go left”). In order to separate the region of corrupted
sites from the region of unexplored sites, we introduce barriers. The barrier is defined
as the rightmost site on the explored path that has been visited after the last instruction
sleep (see Figure 3 and 4). We let T i and Ai be the site where the trap and the barrier
of the i-th exploration are located respectively. Every exploration is carried on until the
barrier that has been identified at the previous step is reached. The barrier Ai must
always be on the left of Xi+1. If during the exploration no instruction “sleep” is found or
if such an instruction is found, but Ai ≥ Xi+1, then we declare the algorithm to have
failed. Thus, the barrier separates the corrupted region from the space that is available
for the next exploration.

Our stabilization procedure is sensitive to the bias of the jump distribution as, the
weaker is the bias, the larger is the number of times the exploration visits the same
site. This in turn implies that, the weaker is the bias, the higher is the chance of finding
instructions “sleep” close to the previous barrier.

Probability of successful stabilization: We let X1 ≤ X2 ≤ . . . ≤ XNL be the posi-
tions of the particles at time 0, ordered from the left to the right. We let Ai and T i be
the position of the barrier and of the trap for the particle Xi respectively.

As success of the algorithm is a sufficient condition for m[0,L],η,τ (0) = 0, then

Pν
(
m[0,L],η,τ (0) = 0

)
≥ Pν

(
1 ≤ ∀i ≤ NL, Ai ≤ Xi

)
. (6.3)

We now prove that if µ < B(λ, q), where B(λ, q) is a function such that for every λ,
q ∈ {0, 1}, B(λ, q) > λ

1+λ , then the right-hand site of (6.3) is uniformly positive in L.
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Figure 4: Representation of the second step of the stabilization procedure. Left: the
dark region represents the first exploration. The instructions below the continuous line
in the non-dark region represent the second exploration. Right: representation of the
second exploration as a simple random walk path. Red circles represent the steps of the
path that are related to the presence of an instruction “sleep”. Referring to the path in
the figure as an example, according to the criterion employed in [9] the trap would be
taken as the site hosting the rightmost instruction “sleep” between the two. Instead in
our algorithm the trap is identified as the site denoted by T 2 in the figure. Furthermore,
the barrier is identified as the site denoted by A2.

The probability of success of the algorithm cannot increase with L, as particles are
“killed” at the boundary. Thus, for a lower bound for (6.3), we refer to the stabilization
of the set [0,∞). We claim that the position A1 of the first barrier follows a distribution
having expectation E[A1] which is such that E[A1] < 1+λ

λ if q 6∈ {0, 1}. To be more precise,
the same as in [9], the claim is that the probability space can be enlarged so that we can
define a random variable Y 1 independent of η whose expectation E[Y 1] has the property
above and such that the first step of the construction is successful only if Y 1 ≤ X1, in
which case the position A1 of the first barrier is given by A1 = Y 1. Indeed, if at least
an instruction sleep has been found in [0, X1] before hitting the barrier A0 = 0, we take
Y 1 as the rightmost site that has been visited starting from the last instruction sleep
that has been found before hitting A0. Namely, we let Sy(t) be a random walk starting
from y ∈ N and we let {R(t) }t∈N be a sequence of i.i.d. random variables such that
R(0) = 1 with probability λ

1+λ and R(0) = 0 with probability 1
1+λ . As after any exploration

step the probability to “discover” an instruction “sleep” is λ
1+λ independently, from the

considerations above we conclude that, for any k ∈ N,

Pν
(
Y 1 = k |Y 1 ≤ X1

)
= Pν

(
max{x ∈ N s.t. SX

1

(t) = x for some t s.t. τ̃X
1

≤ t < τX
1

0 }

= k | ∃t ≤ τX
1

0 s.t. RX
1

(t) = 1 and SX
1

(t) ≤ X1
)

= lim
y→∞

Pν
(

max{x ∈ N s.t. Sy(t) = x, τ̃y ≤ ∃t < τy0 }

= k | ∃t ≤ τy0 s.t. Ry(t) = 1 and Sy(t) ≤ X1
)
,

where τy0 is the hitting time of the origin for the random walk Sy, τ̃y0 = max{t ≤ τy0 :

R(t) = 1} is the last time an instruction sleep has been found before hitting the barrier
A0 and the last equality follows from the Markov property. Instead, if no instructions
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sleep have been found in [0, X1], we sample Y 1 as,

Pν
(
Y 1 = k |Y 1 > X1

)
= lim
y→∞

Pν (max{x ∈ N s.t. Sy(t) = x for some t s.t. τ̃y ≤ t < τy0 }

= k | @t ≤ τy0 s.t. R(t) = 1 and Sy(t) ≤ X1
)
.

Thus, for any k ∈ N,

Pν
(
Y 1 = k

)
= lim
y→∞

Pν (max{x ∈ N s.t. Sy(t) = x for some t s.t. τ̃y ≤ t < τy0 } = k ) .

By symmetry, Y 1 is distributed as maximum of {S0(0), S0(1), . . . S0(G)}, where the ran-
dom walk S0 is conditioned to be positive at all times t ≥ 1 and G follows a geometric
distribution with parameter 1+λ

λ . Thus, if q = 0 then E[Y 1] = 1+λ
λ , whereas if q ∈ (0, 12 ]

then E[Y 1] < 1+λ
λ .

The proof proceeds now the same as in [9, Proof of Theorem 2]. Namely, there is
a sequence of i.i.d. variables Y 1, Y 2, Y 3, . . . with the property that the n-th step is
successful if and only if the previous steps are successful and Ak−1 + Y k < Xk, in which
case Ak = Ak−1 + Y k. The algorithm succeeds with positive probability if E[Y 1] < 1

µ . By

defining B(λ, q) := 1
E[Y 1] and by recalling the above-mentioned properties of E[Y 1], the

proof of the theorem follows.
In particular, by using standard probability tools, one can prove that for any λ ∈ (0,∞),

B(λ, q) is strictly increasing with respect to q in [0, 12 ) and can derive its analytical
expression, which is plotted in Figure 1 and 2 for some values of λ and q.

7 Concluding remarks

We shall end this article with few comments related to our work. First of all, our
results show that in the case of biased jump distribution, by “stabilizing” the interval
[−L,L], the expected number of visits at the origin is at least linear in L for any µ > µ1,
where µ1 is some number µ1 ≥ µc. On the other hand, such a number is bounded from
above by the number of visits in the case of no interaction (λ = 0), which is linear in L
for any µ ∈ (0,∞). Hence, it is reasonable to conjecture that Eν [m[−L,L],η,τ (0)] = O(L)

for any µ > µc.
The question whether µc < 1 has received considerable attention recently. In their

recent article [10], Rolla and Tournier consider ARW with biased jump distribution on
Zd and they prove that µc(λ) → 0 as λ → 0 even when d ≥ 2. Concerning the case of
unbiased jumps, the question whether µc < 1 for any λ is still open in wide generality.
The only positive answer to such a question has been provided by Stauffer and Taggi [11]
on graphs where the random walk has a positive speed. The simpler question of µc < 1

for λ small enough has been positively answered by Basu, Kanguly and Hoffman [2] on Z
and by Stauffer and Taggi [11] on all transient graphs. Remarkably, even such a simpler
question remains open for Z2.
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