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Abstract

We study i.i.d. sums τk of nonnegative variables with index 0: this means P(τ1 = n) =

ϕ(n)n−1, with ϕ(·) slowly varying, so that E(τ ε1) = ∞ for all ε > 0. We prove a local
limit and local (upward) large deviation theorem, giving the asymptotics of P(τk = n)

when n is at least the typical length of τk. A recent renewal theorem in [22] is an
immediate consequence: P(n ∈ τ) ∼ P(τ1 = n)/P(τ1 > n)2 as n→∞. If instead we
only assume regular variation of P(n ∈ τ) and slow variation of Un :=

∑n
k=0 P(k ∈ τ),

we obtain a similar equivalence but with P(τ1 = n) replaced by its average over a
short interval. We give an application to the local asymptotics of the distribution of the
first intersection of two independent renewals. We further derive downward moderate
and large deviations estimates, that is, the asymptotics of P(τk ≤ n) when n is much
smaller than the typical length of τk.
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1 Introduction

It is classical to study renewal processes τ = {0 = τ0, τ1, τ2, . . . }, and in particular the
relation between the renewal mass function P(n ∈ τ) and the inter-arrival distribution
P(τ1 = n). We assume the inter-arrival distribution P(τ1 = n) is regularly varying: there
exists a positive slowly varying function ϕ(·) and α ≥ 0 such that

P(τ1 = n) = ϕ(n)n−(1+α) . (1.1)

In particular the process is aperiodic. The case receiving the least attention (under
the general assumption (1.1)) is α = 0, in which τ1 has no moments and is not in the
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Renewal theory with no moments

domain of attraction of a stable law, and that is our focus here. Tauberian theorems
are of less use here than in other cases, so our methods are primarily probabilistic. An
example with α = 0 is the return times of symmetric simple random walk (SSRW) on Z2,
τ = {n , S2n = 0}, for which P(τ1 = n)

n→∞∼ π/n(log n)2, from [19, Thm. 4].

The limiting distributions of τn and related quantities in the α = 0 case have been
studied in [8, 17, 20, 22, 24, 25, 26]. Defining r(n) := P(τ1 > n), Theorem 4.1 in [8]
states that if r(n) is slowly varying, then for any y > 0

P
(
n r(τn) < y

)
→ 1− e−y as n→ +∞. (1.2)

Recently in [22], Nagaev proved a strong renewal theorem:

P(n ∈ τ) n→∞∼ P(τ1 = n)

P(τ1 > n)2
, (1.3)

and for P(τk > n), some “upward” large deviation results (meaning for n much larger
than the typical size of τk) were proved in [24].

1.1 Renewal theorems

The assumption (1.1) is very natural: beyond the dimension-2 case, it includes the
case τ = {n , S2n = 0}, where (Sn)n≥0 is SSRW on Zd for any d. One has α = 1/2 and
ϕ(n)

n→∞→ (4π)−1/2 for d = 1 (see e.g. [14, Ch. III]); and α = d
2 − 1, ϕ(n)

n→∞→ cd for d ≥ 3

(see [12, Thm. 4]). Equation (1.1) also includes the case τ = {n , Sn = 0} where (Sn)n≥0
is an aperiodic random walk in the domain of attraction of a symmetric stable law, see
[21, Thm. 8].

The asymptotics of the renewal function P(n ∈ τ) under (1.1) have been widely
studied in the literature, including [10], [13], [15], [22], [27]. We recall briefly the
results.

First, when τ is transient and (1.1) holds, we have

P(n ∈ τ) n→∞∼ P(τ1 = n)

P(τ1 = +∞)2
. (1.4)

This is a consequence of Theorem 1 in [5], and is also proved in [16, App. A.5] with
elementary methods.

If τ is recurrent, then

• if E[τ1] < +∞, then the classical Renewal Theorem (see e.g. [2]) gives that

lim
n→∞

P(n ∈ τ) = 1

E[τ1]
; (1.5)

• if α = 1 in (1.1), and E[τ1] = +∞, Erickson [13, Eq. (2.4)] proved that

P(n ∈ τ) n→∞∼ 1

E [τ1 ∧ n]
; (1.6)

• if α ∈ (0, 1) in (1.1), Doney [10, Thm. B] proved that

P(n ∈ τ) n→∞∼ α sin(πα)

π
n−(1−α) ϕ(n)−1 ; (1.7)

• if α = 0 in (1.1), then Nagaev [22] showed

P(n ∈ τ) n→∞∼ P(τ1 = n)

P(τ1 > n)2
. (1.8)
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Renewal theory with no moments

The condition (1.1) is not best possible for the validity of these strong renewal
theorems with infinite mean. Assume simply that P(τ1 > n)

n→∞∼ α−1ϕ(n)n−α with
α ∈ (0, 1] (and E[τ1] = +∞ if α = 1), so that τ1 is in the domain of attraction of a stable
law with index α. Garsia and Lamperti [15] showed that (1.7) holds whenever α ∈ ( 12 , 1),
and Erickson proved (1.6) in the case α = 1. When α ∈ (0, 12 ], some additional conditions
on the distribution of τ1 are necessary for (1.7) to be valid, and sufficient ones were
given in [6], [7], [10], [27]. It is only recently that a complete necessary and sufficient
condition for the strong renewal theorem (1.7) was proved in simultaneous papers by
Caravenna [4] and Doney [11]. A necessary and sufficient condition remains to be found
in the case α = 0.

Throughout the paper, c1, c2, . . . are constants depending only on the distribution of
τ1. Also, we treat certain large quantities at times as if they were integers, to avoid the
clutter of integer-part notation; in all cases these can be treated as if the integer-part
notation were in use.

Our first result is a local limit and local (upward) large deviation theorem, proved
in Section 2, in the case of a recurrent τ . Define rn := r(n) := P(τ1 > n), which in the
α = 0 case is slowly varying and satisfies (see [3, Proposition 1.5.9a])

ϕ(n) = o(rn) as n→∞. (1.9)

In particular we have ϕ(n)→ 0.

In [24], it is proved that P(τk > n) ∼ krn as n, k →∞ with krn → 0. We improve here
this result by establishing a local limit theorem, and extending the range of validity to
kϕ(n)→ 0. This extension is significant because krn → 0 allows only values of n much
larger than the typical value of τk; see the remarks following the theorem.

Theorem 1.1. If τ is recurrent and (1.1) holds with α = 0, then uniformly for k such
that kϕ(n)→ 0, we have

P(τk = n)
n→∞∼ kP(τ1 = n)(1− rn)k. (1.10)

Further, there exists a constant c1 > 0 such that for n sufficiently large and all 1 ≤ k ≤ n,

P(τk = n) ≤ c1kP(τ1 = n)(1− rn)k. (1.11)

Note that, as soon as k � r−1n , we have P(τk ≤ n) ≤ (1 − rn)
k → 0, and n is

therefore much smaller than the typical size of τk. By (1.9), k � r−1n is consistent
with the hypothesis k � 1/ϕ(n). Equation (1.10) therefore includes n down to a size
much smaller than the typical size of τk. Heuristically, (1.10) says that even for much
smaller-than-usual n, when τk = n it is because there was a single gap of length very
close to n, among the first k gaps τj − τj−1; this is unique to α = 0.

In comparison, in the case where (1.1) holds with α ∈ (0, 1), Doney [10, Thm. A]
proved that P(τk = n) ∼ kP(τ1 = n) provided that krn → 0, and Denisov, Dieker and
Shneer [9, Section 9] proved a similar, more general, local large deviation theorem
that applies in the α > 0 case. If we consider the case krn → x ∈ (0,+∞), we have
that n/ak → x−1/α, where ak is such that P(τ1 > ak) ∼ k−1 (so that τk/ak converges to
an α-stable distribution with non-degenerate density g). Then, Gnedenko’s local limit
theorem (see [18, § 50] gives that P(τk = n) ∼ α−1x−(1+1/α)g(x−1/α)kP(τ1 = n), in
contrast with (1.10) when α = 0.

The strong renewal theorem (1.3) from [22] is an easy consequence of Theorem 1.1,
as follows. Assume (1.1) with α = 0 and let θn satisfy r−1n � θn � ϕ(n)−1. We write
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Renewal theory with no moments

P(n ∈ τ) =
∑n
k=1 P(τk = n), and decompose it according to whether k is smaller or

larger than θn. Thanks to (1.10), by our choice of θn we have∑
k≤θn

P(τk = n)
n→∞∼

∑
k≤θn

kP(τ1 = n)(1− rn)k
n→∞∼ r−2n P(τ1 = n) .

For the rest of the sum, we use (1.11) together with θn � r−1n , to get that, for n ≥ n0∑
k>θn

P(τk = n) ≤ c1
∑
k>θn

kP(τ1 = n)(1− rn)k = o(1)r−2n P(τ1 = n) as n→ +∞.

These two estimates give (1.3). Combining with (1.4), we obtain the following statement:
if (1.1) holds with α ≥ 0, and P(τ1 > n) is slowly varying (that is, either τ is transient, or
τ is recurrent with α = 0), then (1.3) holds.

The heuristic behind (1.3) may be seen by restating it as P(τ1 = n | n ∈ τ) ∼ P(τ1 >

n)2. This says that given n ∈ τ , in order to have τ1 = n (i.e. no renewals between
0 and n), the trajectory mainly needs to “escape” without renewals at each end, and
these two escapes are approximately independent, each with probability near P(τ1 > n).
This independence in the recurrent case is unique to α = 0, since in that case the only
renewals that typically occur given n ∈ τ are very close to 0 and n.

1.2 Large and moderate downward deviations

Theorem 1.1 may be viewed as both a local limit theorem and a local large deviation
theorem for the case α = 0, covering upward deviations (in the sense that n is much
larger than the typical size of τk) and downward deviations that are not too great. As a
complement we now consider estimates for downward deviations of the form P(τk ≤ n)
for n much smaller than the typical size of τk, that is krn →∞.

Let ϕ∗ denote a slowly varying function conjugate to ϕ, that is, such that x 7→ xϕ∗(x)

is an asymptotic inverse of y 7→ yϕ(y), see [3, §1.5.7] for more. For most common slowly
varying functions ϕ one has ϕ∗ ∼ 1/ϕ, but this is not true if ϕ is “barely slowly varying,”
for example ϕ(n) = n1/ log logn. We will prove the following in Section 1.2.

Theorem 1.2. Suppose τ is recurrent and (1.1) holds with α = 0. Let n ≥ k.
(i) Given M > 0 there exists aM , with aM → 1 as M → 0, such that if n is large and

kϕ(n) ≤M , then
aM (1− rn)k ≤ P(τk ≤ n) ≤ (1− rn)k. (1.12)

(ii) If k, n→ +∞ with kϕ(n)→ +∞ and n/k → +∞, then we have

P(τk ≤ n) = exp
{
−(1 + o(1)) k r

(n
k
ϕ∗
(n
k

))}
. (1.13)

(iii) For n = bk with b ≥ 1, the limit −I(b) = lim
n→∞

1
n logP(τk ≤ bk) exists, and it is

finite if b ≥ min{j : P(τ1 = j) > 0}. Moreover, it satisfies

I(b) ∼ r(bϕ∗(b)) as b→ +∞.

This theorem extends the result (1.2) of Darling [8] to the case y → +∞ as n→ +∞.
In particular, (i) allows to recover (1.2) by taking k = y/rn (since {τk ≤ n} = {r(τk) ≥
y/k}), and moreover extends it to P(k r(τk) ≥ y) ∼ e−y as k → ∞, uniformly for
y � rn/ϕ(n) (we recall (1.9)).

1.3 Reverse renewal theorems

Though (1.1) is very natural, verifying that it holds is often difficult, for example if
τ = {n, Sn = 0}, with (Sn)n≥0 an aperiodic random walk in the domain of attraction of
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a symmetric stable distribution, see [19]. But in that case, a local limit theorem (see
[18, § 50]) easily gives the asymptotic behavior of P(Sn = 0) = P(n ∈ τ). Therefore, one
would like to get a general result to infer from P(n ∈ τ) something about the behavior of
P(τ1 = n). We call such a result a reverse renewal theorem. An additional application of
such theorems is given in Section 1.4.

In general, it is not true that regular variation of P(n ∈ τ) implies regular variation
of P(τ1 = n), an example being given in Section 4.3. But the average of the values
P(τ1 = n) over a relatively short interval may be better behaved. In fact we can obtain a
reverse renewal theorem corresponding to (1.3) and (1.4) in the α = 0 case, as follows.

Define

Un :=

n∑
k=0

P(k ∈ τ), U∞ := E[|τ |] =
∞∑
k=0

P(k ∈ τ)
(
=

1

P(τ1 =∞)
if U∞ <∞

)
,

and note that
if Un is slowly varying, then Un

n→∞∼ P(τ1 > n)−1. (1.14)

This is trivial if τ is transient: |τ | is then a geometric random variable, and Un converges
to E[|τ |] = P(τ1 = +∞)−1. In the recurrent case, we refer to Theorem 8.7.3 in [3]; the
proof uses standard properties of convolution of Laplace transforms. Note that in the
following we do not assume (1.1).

Theorem 1.3. Assume that P(n ∈ τ) is regularly varying and Un is slowly varying. Then
there exist εn → 0 such that

1

εnn

∑
(1−εn)n<k≤n

P(τ1 = k)
n→∞∼ P(τ1 > n)2P(n ∈ τ) . (1.15)

If also P(τ1 = n) is regularly varying, then

P(τ1 = n)
n→∞∼ P(τ1 > n)2P(n ∈ τ). (1.16)

This theorem applies in the recurrent case when P(n ∈ τ) is regularly varying with
index −1, and in the case of a transient renewal τ . When τ is transient, we are able to
prove the following stronger statement.

Theorem 1.4. If P(n ∈ τ) is regularly varying and τ is transient, then

P(τ1 = n)
n→∞∼ P(τ1 =∞)2P(n ∈ τ) .

This theorem was proved in [12] in the case where τ1, τ2, · · · are the return times to
the origin of a transient aperiodic random walk, and can be proved via Banach Algebra
techniques, using [5, Theorem 1] as suggested in [12, Section 2]. However, we give here
an elementary probabilistic proof.

Section 4.1 is devoted to the proof of Theorem 1.4, and Section 4.2 to the proof of
Theorem 1.3. Finally, in Section 4.3, we give an example where P(τ1 = n) is not regularly
varying but P(n ∈ τ) is, and Un is slowly varying. This shows that (1.16) cannot hold in
the general case of a recurrent renewal, and our Theorem 1.3 is in that sense optimal.

In general, Theorem 1.3 reduces the problem of proving (1.16) to showing that
P(τ1 = k) is approximately constant over the interval ((1− εn)n, n].

1.4 Application of reverse renewal theorems: the intersection of two indepen-
dent renewals

Let τ and σ be independent renewal processes with inter-arrival distributions satisfy-
ing

P(τ1 = n) = ϕ(n)n−(1+α) , P(σ1 = n) = ϕ̃(n)n−(1+α̃) (1.17)
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Renewal theory with no moments

for some α, α̃ ≥ 0 and slowly varying functions ϕ(·), ϕ̃(·). We assume α ≤ α̃.
We denote the intersection ρ := τ ∩ σ, which is a renewal process with renewal mass

function and renewal function

P(n ∈ ρ) = P(n ∈ τ)P(n ∈ σ), U∗n =

n∑
k=0

P(k ∈ ρ).

These are regularly varying, and their asymptotic behavior is thus known from the results
for σ, τ in Section 1.1. In [1] our reverse renewal theorems, 1.3 and 1.4, are applied to
help establish the following. If ρ is transient (i.e. U∗∞ <∞) then

P(ρ1 = n)
n→∞∼ (U∗∞)−2P(n ∈ τ)P(n ∈ σ).

If ρ is recurrent and either (i) α, α̃ ∈ (0, 1) with α+ α̃ = 1, or (ii) α = 0, α̃ ≥ 1, then U∗n is
slowly varying, and

P(ρ1 = n)
n→∞∼ (U∗n)

−2P(n ∈ τ)P(n ∈ σ) n→∞∼ ψ∗(n)

n
(1.18)

for some (asymptotically known) slowly varying ψ∗. In [1], general 0 ≤ α ≤ α̃ are covered,
and Theorems 1.3 and 1.4 here are essential for the cases (i) and (ii). The key step to
get from (1.15) for ρ to (1.18) is to show that, due to the regularity (1.17) in σ and τ ,
P(ρ1 = k) is approximately constant over short intervals, so that the left side of (1.15)
(for ρ) is asymptotic to P(ρ1 = n).

2 Proof of Theorem 1.1

We first prove (1.10), and turn to (1.11) as a second step. We introduce some
notations: let

Gi := τi − τi−1 and Mk := max
1≤i≤k

Gi .

We also let Ĝ(m)
1 , . . . , Ĝ

(m)
k be i.i.d. with distribution P(τ1 ∈ · | τ1 ≤ m).

2.1 Proof of the local limit and local large deviation result (1.10)

The proof is divided into three steps, in which we control several contributions to
P(τk = n).

• Step 1. Contribution of the case of only one jump larger than (1− ε)n, all the other
ones being (necessarily) smaller than n/2. This gives the right order in Theorem
1.1 when k � ϕ(n)−1;

• Step 2. Contribution of the case when all jumps are smaller than n/2: it is negligible,
so there must be one jump larger than n/2 (and there can be only one such jump);

• Step 3. Contribution of the case when there is one jump larger than n/2, but
smaller than (1− ε)n. This is also negligible.

Step 1: We show that, for any fixed ε > 0, and provided that kϕ(n)
n→∞→ 0,

P
(
τk = n,Mk > (1− ε)n

)
= (1 +O(ε)) kP(τ1 = n)(1− rn)k, as n→∞. (2.1)

We have

P
(
τk = n,Mk > (1− ε)n

)
= k(1− rn)k−1

εn∑
m=1

P

(
k−1∑
i=1

Ĝ
(n)
i = m

)
P(τ1 = n−m). (2.2)
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This gives the upper bound

P (τk = n,Mk > (1− ε)n) ≤ k(1− rn)k−1 max
(1−ε)n≤j≤n

P(τ1 = j)

≤ (1 + 2ε)k(1− rn)kP(τ1 = n), (2.3)

provided that n is large enough.
In the other direction, (2.2) gives

P
(
τk = n,Mk > (1− ε)n

)
≥ k(1− rn)k−1P

(
k−1∑
i=1

Ĝ
(n)
i ≤ εn

)
min

(1−ε)n≤j≤n
P(τ1 = j) .

Then, using that E[Ĝ
(n)
1 ] = (1 − rn)−1

∑n
x=1 ϕ(x)

n→∞∼ nϕ(n), we have that for n large
enough

P

(
k−1∑
i=1

Ĝ
(n)
i ≤ εn

)
≥ 1− E[Ĝ

(n)
1 ]

εn
≥ 1− 2(k − 1)ϕ(n)

ε
.

Therefore, since kϕ(n)→ 0, we end up with

P
(
τk = n,Mk > (1− ε)n

)
≥ (1− 2ε)k(1− rn)kP(τ1 = n). (2.4)

provided that n is large enough.

Step 2: We want to show that the main contribution to P(τk = n) comes when
Mk ≥ n/2. We prove that there exists a constant c2 > 0 such that, if kϕ(n) is small
enough,

P (τk = n,Mk ≤ n/2) ≤ c2k2ϕ(n)P(τ1 = n)(1− rn)k , (2.5)

which is negligible compared to (2.1) when kϕ(n) → 0. It is sufficient to show that, if
kϕ(n) is small enough,

P

(
k∑
i=1

Ĝ
(n)
i = n ; Ĝ

(n)
i ≤ n/2 for all i ≤ k

)
≤ c2k2ϕ(n)P(τ1 = n) (2.6)

To prove this, we rely on the following lemma, which is a special case of the Fuk-
Nagaev inequality, see [23, Theorem 1.1]. We include a proof here since it is short and
elementary for our case.

Lemma 2.1. Suppose (1.1) holds with α = 0. There exist constants c3, c4 > 0 such that
for n large, for all 1 ≤ m ≤ n and k ≥ 0,

P

(
k∑
i=1

Ĝ
(m)
i ≥ n/2

)
≤
(
c3 kmϕ(m)

n

) n
2m

≤
(
c4kϕ(n)

) n
2m

. (2.7)

Proof. The second inequality is a consequence of the fact that mϕ(m) is asymptotically
increasing, so we prove the first inequality.

For any λ > 0 we have

P
( k∑
i=1

Ĝ
(m)
i ≥ n/2

)
≤ e−λn/2E

[
eλĜ

(m)
1

]k
. (2.8)

There exists a constant c5 such that for any j ≥ 1

E
[
(Ĝ

(m)
1 )j

]
≤ mj−1 E[τ1 | τ1 ≤ m] ≤ c5mjϕ(m) . (2.9)
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Hence
E
[
eλĜ

(m)
1

]
≤ 1 + c5ϕ(m)

(
emλ − 1

)
.

Now, let us define λ by

c5ϕ(m)
(
emλ − 1

)
=

n

km
,

so that

E
[
eλĜ

(m)
1

]k
≤ en/m

and

e−λn/2 =

(
1 +

n

c5mkϕ(m)

)−n/2m
≤
(
c5kmϕ(m)

n

)n/2m
.

Therefore, (2.8) yields

P
( k∑
i=1

Ĝ
(m)
i ≥ n/2

)
≤
(
c5kmϕ(m)

n

)n/2m
en/m ≤

(c5e2kmϕ(m)

n

) n
2m

. (2.10)

To control the probability on the left in (2.6), we decompose it according to the value
of the largest Ĝ(n)

i . Let us denote ms := 2−sn and Js = (ms+1,ms]. We have

P
( k∑
i=1

Ĝ
(n)
i = n ; Ĝ

(n)
i ≤ n/2 for all i ≤ k

)
=

∑
n/k≤m≤n/2

kP

(
Ĝ

(n)
1 = m, Ĝ

(n)
i ≤ m for all 2 ≤ i ≤ k ,

k∑
i=2

Ĝ
(n)
i = n−m

)

≤
∑

1≤s≤log2 k

∑
m∈Js

k

(
1− rm
1− rn

)k−1
P
(
Ĝ

(n)
1 = m

)
P

(
k∑
i=2

Ĝ
(m)
i = n−m

)

≤ 2k
∑

1≤s≤log2 k

∑
m∈Js

ϕ(m)

m
P

(
k−1∑
i=1

Ĝ
(m)
i = n−m

)

≤ 2c6k
∑

1≤s≤log2 k

ϕ(ms+1)

ms+1
P

(
k−1∑
i=1

Ĝ
(ms)
i ≥ n

2

)
, (2.11)

where in the last inequality we used that there exists c6 such that for sufficiently large
ms and all m ∈ Js, ϕ(m) ≤ c6 ϕ(ms+1). Since n/k � nϕ(n)→∞, all values ms in (2.11)
are sufficiently large in this sense, when n is large.

Since ϕ is slowly varying, given a ≤ 1 we have ϕ(an)/ϕ(n) ≤ 1/a for n large. With
(2.11) and Lemma 2.1 this shows that

P

(
k∑
i=1

Ĝ
(n)
i = n ; Ĝ

(n)
i ≤ n/2 for all i ≤ k

)
≤ 2c6k

∑
s≥1

2s+1ϕ(n)

2−(s+1)n

(
c4 kϕ(n)

) n
2ms

≤ 8c6 k
ϕ(n)

n

∑
s≥1

4s
(
c4 kϕ(n)

)2s−1

≤ c2k2ϕ(n)P(τ1 = n) , (2.12)

where we used in the last inequality that kϕ(n) is small. Hence, (2.6) is proved, and so is
(2.5).
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Step 3: We show that the main contribution to P(τk = n) comes when not only
Mk ≥ n/2, but when Mk ≥ (1− ε)n: we prove that for n large enough,

P
(
τk = n, n/2 < Mk ≤ (1− ε)n

)
≤ 6

ε
k2ϕ(n)P(τ1 = n) (1− rn)k. (2.13)

Indeed, we have that

P
(
τk = n, n/2 < Mk ≤ (1− ε)n

)
≤ k (1− rn)k−1 max

n/2≤j≤n
P(τ1 = j)P

(
k−1∑
i=1

Ĝ
(n)
i ≥ εn

)
.

Then, we use that maxn/2≤j≤nP(τ1 = j) ≤ 3P(τ1 = n) provided that n is large enough,

together with Markov’s inequality and the fact that E[Ĝ
(n)
1 ] ≤ 2nϕ(n) when n is large

enough. This yields (2.13).
Combining (2.3)-(2.4) with (2.5) and (2.13), since ε is arbitrary we get that, uniformly

for k such that kϕ(n)→ 0, (1.10) holds.

2.2 Proof of the uniform bound (1.11)

To prove the uniform bound, we rely on Lemma 2.1, and we decompose the probability
according to the value of Mk.

Let n ≥ n0 and define

`n = min{` : 2` ≥ n}, `n,k := max{` : c3k2`ϕ(2`) ≤ 1
2n},

where c3 is the constant from Lemma 2.1.
Then for some (large) `0, there exists a constant c7 > 0 such that for all `0 < ` ≤ `n−2,

P
(
τk = n,Mk ∈ (2`−1, 2`]

)
≤ kP

(
G1 ∈ (2`−1, 2`], max

2≤i≤k
Gi ≤ 2`, τk = n

)
≤ k(1− r2`)k−1 max

m∈(2`−1,2`]
P (τ1 = m)P

(
k−1∑
i=1

Ĝ
(2`)
i ∈ (n− 2`, n]

)

≤ c7k(1− r2`)k−1
ϕ(2`)

2`
P

(
k−1∑
i=1

Ĝ
(2`)
i >

n

2

)
. (2.14)

We now have 4 cases according to the value of `.

Case 1. For `0 ∨ `n,k < ` ≤ `n − 2 we bound the last probability in (2.14) by 1, and
observe that provided `0 is large enough, r2` − rn ≥ 1

2ϕ(2
`), which leads to

P
(
τk = n, 2`0∨`n,k < Mk ≤ 2`n−2

)
≤ 2c7 k(1− rn)k

`n−2∑
`=`0∨`n,k+1

ϕ(2`)

2`

(
1− r2` − rn

1− rn

)k

≤ 2c7 k(1− rn)k
`n−2∑

`=`0∨`n,k+1

ϕ(2`)

2`
e−kϕ(2

`)/4

≤ 2c7 k(1− rn)k
ϕ(n)

n

`n−2∑
`=1

n

2`
ϕ(2`)

ϕ(n)
e−n/8c32

`

, (2.15)

where we used that 2`ϕ(2`) is asymptotically increasing in `. We obtain easily that the
last sum remains bounded as n→∞. In the end, we have a constant c8 > 0 such that for
n ≥ n0

P
(
τk = n, 2`0∨`n,k < Mk ≤ 2`n−2

)
≤ c8k(1− rn)kP(τ1 = n). (2.16)
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Case 2. To handle ` = `n − 1, `n we have analogously to (2.14), for n ≥ n0

P
(
τk = n,Mk > 2`n−2

)
≤ k(1− rn)k−1 max

m∈(2`n−2,2`n ]
P (τ1 = m)

≤ c9k(1− rn)kP(τ1 = n). (2.17)

Case 3. We now deal with `0 < ` ≤ `n,k. We bound the last probability in (2.14) using
Lemma 2.1. We obtain, analogously to (2.15)

P
(
τk = n, 2`0 < Mk ≤ 2`n,k

)
≤ 2c7k

`n,k∧`n∑
`=`0+1

(1− r2`)k
ϕ(2`)

2`

(c3k2`ϕ(2`)
n

)n/2`+1

≤ 2c7k(1− rn)k
`n∑

`=`0+1

ϕ(2`)

2`

(1
2

)n/2`+1

≤ c10k(1− rn)k
ϕ(2`n+1)

2`n+1

(1
2

)n/2`n+1

≤ c11k(1− rn)k
ϕ(n)

n

= c11k(1− rn)kP(τ1 = n). (2.18)

Here the third inequality uses the fact that n/2`n+1 ≥ 1/4, and consequently the sum in
the second line of (2.18) is of the same order as the ` = `n term.

Case 4. Finally to handle ` ≤ `0 we have, using Lemma 2.1 and writing m0 := 2`0

P(τk = n,Mk ≤ 2`0) ≤ (1− rm0)
kP

(
k∑
i=1

Ĝ
(m0)
i = n

)

≤ (1− rn)k
(
1− rm0

1− rn

)k (
min

{c3m0ϕ(m0)k

n
, 1
})n/m0

≤ (1− rn)k e−c12k
(
min

{c13k
n

, 1
})n/m0

. (2.19)

Considering separately the cases k ≤ n/2c13 and n/2c13 < k ≤ n, we conclude that there
is some c14 > 0 such that for n large,

P(τk = n,Mk ≤ 2`0) ≤ (1− rn)ke−c14n ≤ c15k(1− rn)kP(τ1 = n). (2.20)

Collecting (2.16),(2.17),(2.18) and (2.20) concludes the proof of (1.11).

3 Large deviations: proof of Theorem 1.2

Recall that Gi = τi− τi−1, and Ĝ(m)
1 , Ĝ

(m)
2 , . . . are i.i.d. with distribution P(τ1 ∈ · | τ1 ≤

m).

Proof of (i). The second inequality is trivial, so we prove the first. Suppose kϕ(n) ≤
M . Given 0 < ε < 1,

rεn − rn ∼ ϕ(n) log
1

ε
as n→ +∞,

so for large n,

P

(
max
i≤k

Ĝ
(n)
i ≤ εn

)
=

(
1− rεn − rn

1− rn

)k
≥ exp

(
−2kϕ(n) log 1

ε

)
≥ ε2M . (3.1)
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On the other hand, since E[Ĝ
(m)
1 ]

m→∞∼ mϕ(m), given ε > 0 we have for n large enough

P

(
k∑
i=1

Ĝ
(εn)
i ≤ n

)
≥ 1− 1

n
kE
(
Ĝ

(εn)
1

)
≥ 1− 2εkϕ(n) ≥ 1− 2εM. (3.2)

If M ≤ 1/3, we apply (3.2) with ε = 1:

P(τk ≤ n) ≥ (1− rn)kP

(
n∑
i=1

Ĝ
(n)
i ≤ n

)
≥ (1− rn)k(1− 2M) . (3.3)

If M > 1/3, we take ε = 1/4M , and combining (3.1) with (3.2), we obtain for n large
enough

P(τk ≤ n) ≥ (1− rn)kP
(
max
i≤k

Ĝ
(n)
i ≤ εn

)
P

(
k∑
i=1

Ĝ
(εn)
i ≤ n

)
≥ 1

2

(
1

4M

)2M

(1− rn)k.

Proof of (ii). Define, for any λ > 0,

ν(λ) := 1−E
(
e−λτ1

)
,

so − log(1 − ν(·)) is non-decreasing and strictly concave. Moreover, it is standard to
obtain that

ν(λ) ∼ r
(
1

λ

)
→ 0, and ν′(λ) ∼ 1

λ
ϕ

(
1

λ

)
→ +∞ as λ↘ 0. (3.4)

We may view (1.13) as a combination of an upper and a lower bound, which we now
prove.

Upper bound in (1.13). Define

fn(λ) := −nλ− k log(1− ν(λ));

note the notation suppresses the dependence on k. We will use the standard exponential
bound

P(τk ≤ n) = P
(
e−λτk ≥ e−λn

)
≤ eλn(1− ν(λ))k = e−fn(λ) for all λ > 0 . (3.5)

Now, we define λn > 0 by f ′n(λn) = 0, or equivalently,

ν′(λn)

1− ν(λn)
=
n

k
, (3.6)

so that fn achieves its (positive) supremum at λn. Then λn → 0, since n/k → +∞.
Therefore, thanks to (3.4), we get that

n

k

n→∞∼ ν′(λn)
n→∞∼ 1

λn
ϕ

(
1

λn

)
, (3.7)

which is equivalent to
1

λn

n→∞∼ n

k
ϕ∗
(n
k

)
. (3.8)

Then, (3.4) gives that ν(λn)
n→∞∼ r(1/λn) � ϕ(1/λn), which with (3.7) shows that

nλn � kν(λn). In the end, we get

fn(λn) = (1 + o(1))kν(λn)
n→∞∼ k r

(
1

λn

)
n→∞∼ k r

(n
k
ϕ∗
(n
k

))
. (3.9)
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With (3.5) this lets us conclude

P(τk ≤ n) ≤ exp
[
−(1 + o(1))k r

(n
k
ϕ∗
(n
k

))]
. (3.10)

Lower bound in (1.13) As is standard, we will obtain a corresponding lower bound
using a tilted distribution. Let ε > 0, and let λ̃n satisfy (analogously to (3.6))

ν′(λ̃n)

1− ν(λ̃n)
= (1− ε)n

k
. (3.11)

Then, let P̃, Ẽ, Ṽar denote the probability, expectation and variance with respect to
the tilted distribution of the i.i.d. sequence (G1, G2, . . . ) given by

P̃(G1 ∈ ·) =
E
(
e−λ̃nτ11{τ1∈·}

)
E(e−λ̃nτ1)

.

We estimate

P(τk ≤ n) ≥
E(e−λ̃nτk)

e−(1−2ε)nλ̃n

E
(
e−λ̃nτk1{τk∈((1−2ε)n,n)}

)
E(e−λ̃nτk)

≥ exp

(
(1− 2ε)nλ̃n + k log(1− ν(λ̃n))

)
P̃
(
τk ∈ ((1− 2ε)n, n)

)
. (3.12)

Note that (3.8) translates here as

1

λ̃n

n→∞∼ (1− ε)n
k
ϕ∗
(n
k

)
,

so that ν(λ̃n)
n→∞∼ r(1/λ̃n)

n→∞∼ ν(λn). As in (3.9), we get that

P(τk ≤ n) ≥ exp
[
−(1 + o(1))k r

(n
k
ϕ∗
(n
k

))]
× P̃

(
τk ∈ ((1− 2ε)n, n)

)
, (3.13)

and it only remains to show that the last probability converges to 1 as n→ +∞.

It is standard that

Ẽ (G1) =
ν′(λ̃n)

1− ν(λ̃n)
= (1− ε)n

k
, (3.14)

so we only need to show that Ṽar (G1) = o(n2/k). In fact, we have

Ẽ
[
(G1)

2
]
=

1

1− ν(λ̃n)

∞∑
j=1

jϕ(j)e−λ̃nj n→∞∼ 1

(λ̃n)2
ϕ

(
1

λ̃n

)
n→∞∼ 1

λ̃n
(1− ε)n

k
, (3.15)

where the last equivalence is a slight variant of (3.7). Since kϕ(n) → ∞, by a similar
variant of (3.8) we have

1

λ̃n
ϕ

(
1

λ̃n

)
∼ (1− ε)n

k
� nϕ(n),

and therefore λ̃−1n = o(n). With (3.15) this shows that indeed Ṽar (G1) = o(n2/k).

Proof of (iii). The existence of I(b) is standard, and its asymptotics as b→∞ simply
follow from (ii).

EJP 21 (2016), paper 66.
Page 12/18

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP13
http://www.imstat.org/ejp/


Renewal theory with no moments

4 Reverse renewal theorems

4.1 Transient case, proof of Theorem 1.4

Denote p∞ := P(τ1 = +∞) > 0. We fix ε > 0, and A large enough so P(τ1 > A) ∈
[p∞, p∞ + ε], and hence P(A < τ1 < +∞) ≤ ε. We then define the events

A1 = {τ ∩ (0, A] = ∅} and A2 = {τ ∩ [n−A,n) = ∅}.

We claim that if n is large enough,

(1− ε)P(τ1 ≤ A) ≤ P(Ac1|n ∈ τ) ≤ (1 + ε)P(τ1 ≤ A) ,
(1− ε)P(τ1 ≤ A) ≤ P(Ac2|n ∈ τ) ≤ (1 + ε)P(τ1 ≤ A) , (4.1)

(1− ε)P(τ1 ≤ A)2 ≤ P(Ac1 ∩ Ac2|n ∈ τ) ≤ (1 + ε)P(τ1 ≤ A)2 .

Indeed, we can write

P(Ac1 ∩ Ac2|n ∈ τ) =
A∑
i=1

A∑
j=1

P(τ1 = i)P(τ1 = j)
P(n− i− j ∈ τ)

P(n ∈ τ)
. (4.2)

Since P(n ∈ τ) is regularly varying, for large n, the last ratio is close to 1 uniformly in
i, j ≤ A, and the third line in (4.1) follows. The first two lines are proved similarly.

It follows from (4.1) that

P(A1 ∩ A2|n ∈ τ) = 1−P(Ac1|n ∈ τ)−P(Ac2|n ∈ τ) +P(Ac1 ∩ Ac1|n ∈ τ)
≤ 1− 2P(τ1 ≤ A) +P(τ1 ≤ A)2 + 3ε

≤ P(τ1 > A)2 + 3ε

≤ (p∞ + ε)2 + 3ε . (4.3)

Therefore for large n,

P(τ1 = n) ≤ P(A1,A2, n ∈ τ) ≤
(
(p∞ + ε)2 + 3ε

)
P(n ∈ τ) . (4.4)

Similarly to (4.3), P(A1 ∩ A2|n ∈ τ) ≥ p2∞ − 3ε and hence

P(A1,A2, n ∈ τ) ≥ (p2∞ − 3ε)P(n ∈ τ) . (4.5)

To turn this into a lower bound on P(τ1 = n), we show that conditionally on
{A1,A2, n ∈ τ}, it is very likely that τ1 = n. More precisely, we claim that there
exists c16 such that, for n large,

P(τ1 6= n,A1,A2, n ∈ τ) ≤ c16εP(n ∈ τ). (4.6)

With (4.5), this shows that

P(τ1 = n) = P(τ1 = n,A1,A2, n ∈ τ) ≥
(
p2∞ − 3ε− c16ε

)
P(n ∈ τ) . (4.7)

Since ε is arbitrary, (4.4) and (4.7) complete the proof of Theorem 1.4.

To prove (4.6), we write

P(τ1 6= n,A1,A2, n ∈ τ) ≤
n/2∑

i=A+1

P(τ1 = i)P(n− i ∈ τ)

+

n−A−1∑
i=n/2+1

n−i∑
j=A+1

P(τ1 = i)P(τ1 = j)P(n− i− j ∈ τ) . (4.8)
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For the first sum in (4.8), since P(n ∈ τ) is regularly varying, there is a constant c17
such that, provided that n is large, P(n− i ∈ τ) ≤ c17P(n ∈ τ) for every i ≤ n/2. Hence

n/2∑
i=A+1

P(τ1 = i)P(n− i ∈ τ) ≤ c17P(n ∈ τ)P(A < τ1 < +∞) ≤ c17 εP(n ∈ τ) . (4.9)

For the second sum in (4.8), we use that P(τ1 = i) ≤ P(i ∈ τ) ≤ c17P(n ∈ τ) for n
large enough, since i ∈ (n/2, n). Therefore,

n−A−1∑
i=n/2+1

n−i∑
j=A+1

P(τ1 = i)P(τ1 = j)P(n− i− j ∈ τ)

≤ c17P(n ∈ τ)P(A < τ1 < +∞)×
+∞∑
k=0

P(k ∈ τ) ≤ c17
p∞

εP(n ∈ τ) , (4.10)

and the proof of (4.6) is complete.

4.2 Recurrent case, proof of Theorem 1.3

The assumptions imply that the index of regular variation of P(n ∈ τ) must be −1.
Hence we have P(n ∈ τ) = n−1`n with `n a slowly varying function. We can extend Un
and `n to slowly varying functions U(t) andf `(t) defined on [1,∞)

We now apply standard Tauberian arguments, in particular [3, Corollary 1.7.3] which
we use multiple times.

Set

f(s) :=

+∞∑
k=1

skP(τ1 = k), u(s) :=

+∞∑
k=0

skP(k ∈ τ), |s| < 1.

It is standard that, for |s| < 1

u(s)(1− f(s)) = 1 so f ′(s) =
u′(s)

u(s)2
.

Since Un is slowly varying, we have u(s) ∼ U((1 − s)−1) as s ↗ 1. Similarly, since
u′(s) is the generating function of (n + 1)P(n + 1 ∈ τ) ∼ `n as n → ∞, we have
u′(s) ∼ (1− s)−1`((1− s)−1) as s ↑ 1. We therefore conclude that

f ′(s) ∼ 1

1− s
`( 1

1−s )

U( 1
1−s )

2
as s↗ 1.

Since `(t)/U(t)2 is slowly varying, it follows that
∑n
k=0 kP(τ1 = k) ∼ n`n/U

2
n as n→∞.

This means that there is some εn decreasing to 0 sufficiently slowly so that

n∑
k=(1−εn)n

kP(τ1 = k)
n→∞∼ nεn

`n
U2
n

.

By [3, Theorem 8.7.3] we have Un
n→∞∼ P(τ1 > n)−1, and (1.15) follows. Equation (1.16)

is an immediate consequence.

4.3 Why not expect a stronger reverse renewal theorem?

In general, regular variation of P(n ∈ τ) (here with index of regular variation −1)
does not imply regular variation of P(τ1 = n). This shows that (1.16) cannot be true in
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general under the assumptions used to obtain (1.15). We give here only a description of
an example, without proof details.

Let σ be a recurrent renewal with inter-arrival distribution of form

P(σ1 = n) = ϕ(n)n−1. (4.11)

Now, let τ1 be 2σ1 or 1, with probability 1/2 each:

P(τ1 = 1) = 1
2 , P(τ1 = 2m) = 1

2P(σ1 = m) , P(τ1 = 2m− 1) = 0 for m ≥ 1.

Note that rn := P(τ1 > n) ∼ 1
2P(σ1 > n). Then P(τ1 = n) is not regularly varying, but we

will show that the gaps of length 1 have a smoothing effect, and make P(n ∈ τ) regularly
varying. More precisely, we claim that

P(n ∈ τ) n→∞∼ ϕ(n)

2r2nn

n→∞∼
P(τ1 = 2bn2 c)
2P(τ1 > n)2

, (4.12)

where b·c denotes the integer part.

Proof of (4.12). We choose θn, λn satisfying

r−1n � θn � ϕ(n)−1 and 1� λn � r−1/2n ,

and decompose P(n ∈ τ) into three sums:

P(n ∈ τ) =
∑

k≤(λnrn)−1

P(τk = n) +
∑

(λnrn)−1<k≤θn

P(τk = n) +
∑
k>θn

P(τk = n) . (4.13)

We will show that the main contribution comes from the middle sum, see (4.19), the first
and last sum being negligible.

Middle sum. We introduce Xk the number of gaps of length 1 in the first k gaps of τ .
For (λnrn)

−1 < k ≤ θn, note that λn ≤ kλ2nrn � k and k � n, and write

P(τk = n) = P
(
Xk − k

2 ∈ (−kλnr1/2n , kλnr
1/2
n ) ; τk = n

)
+P

(
|Xk − k

2 | ≥ kλnr
1/2
n ; τk = n) . (4.14)

The last probability is small. Indeed, there is a constant c33 such that

P
(
|Xk −

k

2
| ≥ kλnr1/2n

)
≤ e−c33λ

2
nrnk for all k ≥ 1;

conditioning on Xk we therefore get that

P
(
|Xk − k

2 | ≥ kλnr
1/2
n ; τk = n) ≤ e−c33λ

2
nrnk sup

1≤j≤k
sup

n−k
2 ≤m≤

n
2

P(σj = m) . (4.15)

Here the sups are over all possible values of j = k −Xk and m = (n−Xk)/2. Applying
(1.11) we see that for n large, for all m ≥ (n− k)/2 ≥ n/4 and j ≤ k, we have

P(σj = m) ≤ c34kP(σ1 = n).

Since e−c33λ
2
nrnk = o(1) e−krn as n→∞, uniformly in middle-sum values of k, we get that

P
(
|Xk − k

2 | ≥ kλnr
1/2
n ; τk = n

)
= o(1)ke−krn

ϕ(n)

n
as n→∞ , (4.16)

with the o(1) uniform over middle-sum values of k.
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For the first probability on the right in (4.14), we use (1.10). Uniformly for j in the
interval k2 + (−kλnr1/2n , kλnr

1/2
n ) with j ≡ n− k mod 2, and for middle-sum values of k

(which satisfy kϕ(n)
n→∞→ 0 and k → +∞), we have j ∼ k/2 and k � n, so

P
(
σj =

n− k + j

2

)
= (1 + o(1))k

(
1− 2r(n−k+j)/2

)j ϕ(n/2)
n/2

= (1 + o(1)) 2ke−krn(1+o(1))
ϕ(n)

n
, (4.17)

since P(σ1 > n)
n→∞∼ 2rn. Therefore, since

P
(
Xk − k

2 ∈ (−kλnr1/2n , kλnr
1/2
n ) ; Xk ≡ n mod 2

)
→ 1

2
as n→∞ ,

conditioning again on Xk we get that for middle-sum values of k,

P
(
Xk − k

2 ∈ (−kλnr1/2n , kλnr
1/2
n ) ; τk = n

)
= (1 + o(1)) ke−krn(1+o(1))

ϕ(n)

n
, (4.18)

with the o(1) uniform over middle-sum values of k.
Summing (4.16) and (4.18), we obtain straightforwardly that∑
(λnrn)−1<k≤θn

P(τk = n) =
∑

(λnrn)−1<k≤θn

(1 + o(1)) ke−krn(1+o(1))
ϕ(n)

n
= (1 + o(1))

ϕ(n)

2r2nn
.

(4.19)

We are therefore left with showing that the two other sums in (4.13) are negligible.

First sum. Using (1.11) and (4.11) and conditioning once more on Xk, we get that
there exists a constant c35 such that for n large enough, for any k ≤ (λnrn)

−1,

P(τk = n) ≤ sup
1≤j≤k

sup
n−k

2 ≤m≤
n
2

P(σj = m) ≤ c35 k
ϕ(n)

n
,

which gives ∑
k≤(λnrn)−1

P(τk = n) ≤ c35
(λnrn)2

ϕ(n)

n
= o(1)

ϕ(n)

r2nn
. (4.20)

Last sum. Similarly to (4.16)-(4.18) but using (1.11) in place of (1.10), we obtain
that there exists c36 such that for all θn < k ≤ n/2,

P(τk = n) ≤ c36ke−krn(1+o(1))
ϕ(n)

n
≤ ke−krn/2ϕ(n)

n
,

the last inequality being valid for n large, since krn → +∞.

For k ∈ (n/2, n], we use that

P(τk = n) ≤ (1− rn)k ≤ e−nrn/2 .

Since θn � r−1n , we therefore obtain that∑
k>θn

P(τk = n) ≤
∑
k>θn

ke−krn/2
ϕ(n)

n
+ ne−nrn/2 = o(1)

ϕ(n)

r2nn
. (4.21)

This completes the proof of (4.12).
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