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Abstract

The Euclidean first-passage percolation (FPP) model of Howard and Newman is a
rotationally invariant model of FPP which is built on a graph whose vertices are the
points of homogeneous Poisson point process. It was shown by Howard-Newman
that one has (stretched) exponential concentration of the passage time Tn from 0 to
ne1 about its mean on scale

√
n, and this was used to show the bound µn ≤ ETn ≤

µn+C
√
n(logn)a for a,C > 0 on the discrepancy between the expected passage time

and its deterministic approximation µ = limn
ETn
n

. In this paper, we introduce an
inductive entropy reduction technique that gives the stronger upper bound ETn ≤
µn+ Ckψ(n) log

(k) n, where ψ(n) is a general scale of concentration and log(k) is the
k-th iterate of log. This gives evidence that the inequality ETn − µn ≤ C

√
Var Tn may

hold.
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1 Introduction

In [8], C. D. Howard and C. M. Newman introduced the following Euclidean first-
passage percolation (FPP) model on Rd: Let Q ⊂ Rd be a rate one Poisson point process.
Denote by q(v), v ∈ Rd, the closest point to v in Q, breaking ties arbitrarily. Fix α > 1

and define, for k ≥ 1 and r = (q1, · · · ,qk), a finite sequence of points in Q,

T (r) =

k−1∑
i=1

‖qi − qi+1‖α,

where ‖ · ‖ is the Euclidean norm. Such a sequence r = (q1, · · · ,qk) is called a path
in Q. r can also be viewed as a subset of Q and we write r ⊂ Q. Define, for q,q′ ∈ Q,
T (q,q′) = inf{T (r)}, where the infimum is over all finite sequences r ⊂ Q with q1 = q

and qk = q′, and k is the length of r. (The condition α > 1 is imposed because if 0 ≤ α ≤ 1,
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Entropy reduction in FPP

then the straight line segment connecting any two Poisson points is a minimizing path
for T , and the analysis becomes trivial.) For v,y ∈ Rd, define T (v,y) = T (q(v), q(y))

and set Tn = T (0, ne1). By subadditivity, the time constant µ exists and is defined by the
formula

µ = lim
n

ETn
n

.

By the subadditive ergodic theorem, the convergence also holds almost surely, so that in
a certain sense, Tn = µn+ o(n).

In this and related models (lattice FPP and continuum analogues, for example), it is
customary to measure the rate of convergence in the definition of µ by splitting Tn − µn
into a random fluctuation and nonrandom fluctuation term:

Tn − µn = (Tn − ETn) + (ETn − µn).

Typically the random term is analyzed using concentration inequalities (for functions of
independent random variables), which lately have developed significantly. In FPP models,
current bounds on random fluctuations are still quite far away from the predictions,
and this presents an ongoing challenge to researchers. In contrast, there is no general
method for providing upper bounds on nonrandom fluctuations of subadditive ergodic
sequences. In recent years, though, techniques have been developed [1,12] to bound
these nonrandom errors for many lattice models in terms of the random ones. Specifically,
if one has a concentration inequality of the type

P(|Tn − ETn| ≥ λψ(n)) ≤ e−cλ
a

(1.1)

for λ ≥ 0 and a suitable function ψ(n) (so far, only results with ψ(n) at least of order
√
n

(in Euclidean FPP) or
√
n/ log n (in lattice FPP) have been proved), then one can derive

the bound

µn ≤ ETn ≤ µn+ Cψ(n) log n.

(In fact, only the lower tail inequality is usually needed.) A natural question emerges: in
these models, can one find C > 0 such that

ETn − µn ≤ C
√

Var Tn ?

If the answer is yes, it means that the difference Tn − µn (used to control geodesics, for
instance) can be reasonably well approximated by Tn − ETn. Furthermore, due to the
general lower bounds on nonrandom fluctuations proved in [4], it would suggest that the
nonrandom fluctuation term is of the same order as the random one (as is the case in
exactly solvable directed last-passage percolation [5, Corollary 1.3]).

This question is the focus of our paper. Although we cannot prove this inequality, we
show a weaker, but close one. Specifically, our main method is an inductive “entropy
reduction” technique which shows that for any k, there is a constant Ck such that for
large n,

µn ≤ ETn ≤ µn+ Ckψ(n) log(k) n,

where ψ(n) is from (1.1) and log(k) n is the k-th iterate of log (see Theorem 2.5). This
gives strong evidence that the answer to the above question is yes.

In the next section, we give some background on Euclidean FPP from [9] and sketch
the main strategy to prove general bounds on nonrandom fluctuations in the model.
In Section 2, we state our main assumptions on ψ and the four results (bounds on
nonrandom fluctuations, concentration estimates, and geodesic wandering estimates)
which come out of our inductive method.
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Entropy reduction in FPP

1.1 Background

A geodesic between two points v,y ∈ Rd is a path r ⊂ Q such that T (v,y) = T (r).
Since α > 1, geodesics exist and are unique almost surely [9, Proposition 1.1]. Denote
by M(v,y) the geodesic between v and y. Note that M(v,y) can also be viewed as a
subset of Q.

First we quote some results from [9]. Define

κ1 := min {1, d/α} , and κ2 := 1/(4α+ 3) (1.2)

and write e1, . . . , ed for the standard basis vectors of Rd.

Theorem 1.1 ([9], Theorem 2.1). Define Tn = T (0, ne1). Then there exist constants
C0, C1 > 0 such that Var(Tn) ≤ C1n and

P
(
|Tn − ETn| > x

√
n
)
≤ C1 exp(−C0x

κ1),

for all n ≥ 0 and 0 ≤ x ≤ C0n
κ2 .

Theorem 1.2 ([9], Eqn. (4.3)). There exists a constant C1 > 0 such that

nµ ≤ ETn ≤ nµ+ C1

√
n(log n)1/κ1 . (1.3)

Define, for A,B ⊂ Rd,

distmax(A,B) = sup
v∈A

inf
y∈B
‖v − y‖.

Denote by (0, ne1) the line segment between 0 and ne1.

Theorem 1.3 ([9], Theorem 2.4). For any ε ∈ (0, κ2/2), there exist constants C0, C1 > 0

such that

P
(

distmax(M(0, ne1), (0, ne1)) > n
3
4 +ε
)
≤ C1 exp(−C0n

3εκ1/4).

By a simple modification of the proof of [9, Theorem 2.4], one can show that for some
constant C1 > 0,

P
(

distmax(M(0, ne1), (0, ne1)) > C1n
3/4(log n)1/κ1

)
→ 0 as n→∞. (1.4)

The factor (log n)1/κ1 in (1.3) and (1.4) comes from the proof technique. Here we give
a sketch of the proof of Theorem 1.2, hinging on the following result, which is [9, Lemma
4.2].

Lemma 1.4. Suppose that the functions τ : [0,∞) → R and σ : [0,∞) → [0,∞) satisfy
the following conditions: τ(x)/x → ν ∈ R, σ(x)/x → 0 as x → ∞, τ(2x) ≥ 2τ(x) − σ(x)

and ζ := lim supx→∞ σ(2x)/σ(x) < 2. Then for any c > 1/(2− ζ), τ(x) ≤ νx+ cσ(x) for all
large x.

Proof: The proof is copied from [9] for completeness. It is easily verified that, for
c > 1/(2− ζ), τ̄(x) := τ(x)− cσ(x) satisfies τ̄(2x) ≥ 2τ̄(x) for all large x. Iterating this n
times yields τ̄(2nx) ≥ 2nτ̄(x) or τ̄(2nx)/(2nx) ≥ τ̄(x)/x. Under our hypotheses on τ and
σ, τ̄(x)/x→ ν as x→∞, so letting n→∞ shows that τ̄(x)/x ≤ ν for all large x.

Returning to the proof of (1.3), due to the previous lemma, it suffices to prove
ET2n ≥ 2ETn − C1

√
n(log n)1/κ1 . Now consider the geodesic M(0, 2ne1) and let q be the

first point in M(0, 2ne1) such that ‖q‖ ≥ n. Then we have T2n = T (0,q) + T (q, 2ne1).
Then the proof is completed once we show that with positive probability, both of the
following bounds hold:

|T2n − ET2n| ≤
C1

3

√
n,

min {T (0,q), T (q, 2ne1)} ≥ ETn −
C1

3

√
n(log n)1/κ1 .
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Entropy reduction in FPP

Since q is a random point, in order to prove the second bound, one needs to apply
Theorem 1.1 to all pairs of the form (0,v) where v satisfies ‖v‖ ≈ n. Because we
have to apply Theorem 1.1 at least O(n) times, if we use a union bound, we need the
probability in Theorem 1.1 to be at most of the order 1

nr for some large r > 0. Taking
x = C1(log n)1/κ1 in Theorem 1.1 will achieve this and thus complete the sketch of the
proof.

Our main goal is to improve the log n term in Theorem 1.2. This has been done
recently in a lattice FPP model and a directed polymer model in [2,3] by an entropy
reduction technique, showing that one can replace the log n term by log log n. Their
key idea is to exploit the dependence between passage times between nearby points to
reduce the number of times a concentration result like Theorem 1.1 is applied.

The improvement from log n to log log n is important, especially when a sub-gaussian
concentration bound for Tn is available. For the lattice FPP model, [7] proved sub-
gaussian concentration on the scale of

√
n/ log n (extending work in [6]). Using this, [2]

proved that for a directed FPP model, non-random fluctuations can be bounded by the
order √

n

log n
· log log n = o(

√
n).

These bounds have not yet been extended to Euclidean FPP. The strongest concentration
inequality to date is Theorem 1.1 of Howard and Newman.

A consequence of our main results is that one can replace the
√
n(log n)1/κ1 term in

Theorem 1.2 to
√
n(φ(n))1/κ1 where φ(n) can be an arbitrary iterate of log n. Our proof

works under a general framework which does not depend on any particular scale of
concentration. So if a sub-gaussian concentration result for Euclidean FPP is proved,
then our result would immediately imply a o(

√
n) bound in Theorem 1.2.

Notation: we use bold face letters (e.g. v, y, q) to denote elements in Rd or Rd−1.
Denote by ‖ · ‖ the corresponding `2-norm and ‖ · ‖∞ the `∞-norm. We use C0 > 0 to
denote a small constant and C1 > 0 a large constant, with values that may vary from
case to case. We use notation like D2.3 to denote constants whose values may depend on
k and/or r, but not on n. The subscript refers to the result number. For example, D2.3

denotes the constant in Theorem 2.3.

2 Main results

In this section, we state the main theorems. We state our results in a general way
which does not depend on any one particular concentration result. Let ψ : (0,∞)→ (0,∞)

be a real function. We assume that we have the following concentration on the scale
ψ(n).

Assumption 2.1. There exist constants C0 > 0, C1 > 0, κ1 > 0 and κ2 > 0 such that

P (|Tn − ETn| > λψ(n)) ≤ C1 exp (−C0λ
κ1)

for all n ≥ 1 and 0 ≤ λ ≤ C0n
κ2 .

We put the following assumptions on ψ.

Assumption 2.2. There exists n0 > 0 such that ψ(n) is increasing for n ≥ n0. In addition,
there exist constants D2.2 > 1 and κ3 ∈ (0, 1/2) such that for all n ≥ n0 and 1 ≤ c ≤ n1/2,
we have

1

c1−κ3
ψ(n) ≤ ψ(n/c) ≤ D2.2

cκ3
ψ(n).

Note that the above assumption implies that ψ(n) = O(n1−κ3) and ψ(n) = Ω(nε) for
any ε ∈ (0, κ3). In addition, the above assumption also implies the following simple
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bounds: For large n and 1 ≤ c ≤ n1/2,

ψ(cn) ≤ cψ(n) and ψ(n/c) ≥ 1

c
ψ(n).

We will assume Assumptions 2.1 and 2.2 through out the rest of the paper, and let
constants C0, C1, κ1, κ2 and κ3 be as in Assumptions 2.1 and 2.2. We further define three
constants γ, β, η > 0 as follows:

γ :=
1

κ1κ3
, β :=

1

2κ1
, and η := β + γ. (2.1)

These constants show up as exponents in our main theorems below, and reasons for the
choices will be clear in the proofs.

Define log(0) n = n and log(k) n = log(log(k−1) n) for k = 1, 2, 3, · · · , whenever this is
well-defined. Write v = (x1,v2) ∈ Rd where x1 ∈ R and v2 ∈ Rd−1. Define for n ≥ 1 and
k ≥ 0,

B(k)(n) :=

{
(x1,v2) ∈ Rd : |x1| ≤ ψ(n), ‖v2‖ ≤

n1/2ψ1/2(n)

(log(k) n)η

}
.

Theorem 2.3. Write B1 := B(k−1)(n) and B2 := ne1 + B(k−1)(n). For any k ≥ 2 and r > 0,
there exists a constant D2.3 = D2.3(k, r) > 0 such that for large n

P

(
sup

v,v′∈B1, y,y′∈B2

|T (v,y)− T (v′,y′)| > D2.3ψ(n)

)
≤ 1

(log(k−2) n)r
.

Note that the scale of concentration on Theorem 2.3 is smaller than that of the next
theorem (and is independent of k). This is the main reason why we can use estimates for
any value of k to give improved ones for k + 1.

One key ingredient in the proof of the above result is a simple bound on |ET (v,y)−
ET (v′,y′)| that reflects the fact that ET (v,y) is simply a function of ‖v−y‖2. This is not
true for general lattice models. Indeed, it is a standard technique (see [10,11], among
many others) to decompose a difference like that from the last theorem as

T (v,y)− T (v′,y′) = [T (v,y)− ET (v,y)] + [ET (v,y)− µy−v]

+ [T (v′,y′)− ET (v′,y′)] + [ET (v′,y′)− µy′−v′ ]

+ µy−v − µy′−v′ .

(Here we are writing µu for the limit limn
T (0,nu)

n , which in our model is simply ‖u‖µ.)
The idea then is to use information about the limiting shape for the model (for instance
curvature) to control µy−v − µy′−v′ directly, but then one must bound both the random
and nonrandom errors on the first two lines. The bounds available for nonrandom errors
are generally worse (by some logarithmic factor) than those available for random errors,
so one cannot obtain better concentration for T (v,y) − T (v′,y′) than the bounds on
nonrandom errors. In our case, we can directly decompose

T (v,y)−T (v′,y′) = [T (v,y)−ET (v,y)]+[T (v′,y′)−ET (v′,y′)]+[ET (v,y)−ET (v′,y′)],

and exploit the rotational invariance of ET (from the underlying Poisson process) to
obtain bounds without needing control of the nonrandom error.

Theorem 2.4. Write B1 := B(k−1)(n) and B2 := ne1 + B(k−1)(n). For any k ≥ 1 and r > 0,
there exists a constant D2.4 = D2.4(k, r) > 0 such that for large n

P

(
sup

v∈B1, y∈B2

|T (v,y)− ET (v,y)| > D2.4ψ(n)(log(k) n)1/κ1

)
≤ 1

(log(k−1) n)r
.
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Theorem 2.5. Let µ be the time constant. For any k ≥ 1, there exists a constant
D2.5 = D2.5(k) > 0 such that for large n

nµ ≤ ET (0, ne1) ≤ nµ+D2.5ψ(n)(log(k)(n))1/κ1 .

Define for any λ ∈ R and n ≥ 1

L(λ) = L(λ, n) :=
{

(x1,v2) ∈ Rd : |x1 − λ| ≤ ψ(n)
}
.

Define for n ≥ 1

B̄ = B̄(n) :=
{

(x1,v2) ∈ Rd : |x1| ≤ ψ(n), ‖v2‖ ≤ n1/2ψ1/2(n)
}
.

Recall that for A,B ⊂ Rd,

distmax(A,B) = sup
v∈A

inf
y∈B
‖v − y‖.

Theorem 2.6. Write B̄1 := B̄(n) and B̄2 := ne1 + B̄(n). For any k ≥ 1 and r >

0, there exists a constant D2.6 = D2.6(k, r) > 0 such that for all n large and λ ∈[
n/(log(k−1) n)γ , n− n/(log(k−1) n)γ

]
P

(
sup

v∈B̄1, y∈B̄2

distmax(L(λ) ∩M(v,y), (0, ne1)) > D2.6n
1/2ψ1/2(n)(log(k) n)β

)
≤ 1

(log(k−1) n)r
.

We will prove Theorems 2.3 to 2.6 by mathematical induction on k. Note that Theorem
2.3 is stated for k ≥ 2 while the other three theorems are stated for k ≥ 1. The framework
of the mathematical induction can be summarized in the following three steps:

• Step 1 (Initial): Prove Theorems 2.4, 2.5 and 2.6 for k = 1.

• Step 2 (Assumption): Assume that Theorems 2.4, 2.5 and 2.6 are true for
k = k0 ≥ 1. Denote these three assumptions by II, III and IV respectively.

• Step 3 (Induction): Prove that Theorems 2.3, 2.4, 2.5 and 2.6 are true for
k = k0 + 1. Denote these four statements by I∗, II∗, III∗ and IV∗ respectively. Then
they are proved in the following sequence:

II + III + IV⇒ I∗

I∗ ⇒ II∗

IV + II∗ ⇒ III∗

IV + II∗ + III∗ ⇒ IV∗.

Organization of the paper: In Section 3, we prove some basic results about the
Euclidean FPP model. In Section 4, we verify the initial step of the mathematical
induction. In Section 5, we complete the induction step of the mathematical induction,
and therefore complete the proofs of Theorems 2.3, 2.4, 2.5 and 2.6.

3 Preliminary results

In this section, we prove some basic properties about the Euclidean FPP model under
the Assumptions 2.1 and 2.2. The proof of these results are analogous to the ones when
ψ(n) =

√
n.

As a result of [9, Lemma 5.2], we have the following lemma. Define for v ∈ Rd and
n ≥ 1

B(v, n) =
{
y ∈ Rd : ‖y − v‖∞ ≤ n

}
.
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Lemma 3.1. Define the events Fn, for n = 1, 2, · · · , as follows:

Fn :=
{
∀v ∈ B(0, 4n), ‖v − q(v)‖ ≤ ψ1/α(n)

}
.

(i) There exist constants C0, C1 > 0 such that

P(F cn) ≤ C1 exp(−C0ψ
d/α(n)). (3.1)

(ii) Furthermore, there exists a constant D3.1 > 0 such that, restricted to Fn, we have

sup {‖q− q′‖ : (q,q′) is a geodesic between q,q′ ∈ Q ∩B(0, 4n)} ≤ D3.1ψ
1/α(n).

Proof. (The proof follows exactly from [9, Lemma 5.2], whose statement is similar but
with ψ1/α replaced by nγ for some γ ∈ (0, 1).) It is sufficient to prove (3.1). Note that

B(0, 4n) can be covered with O
(

nd

ψd/α(n)

)
balls of radius 1

2ψ
1/α(n). If F cn occurs, then the

intersection of Q and one of these balls must be empty. Therefore

P (F cn) ≤C1 ·
nd

ψd/α(n)
· exp

(
−2C0ψ

d/α(n)
)

≤
[
C1 ·

nd

ψd/α(n)
· exp

(
−C0ψ

d/α(n)
)]

exp
(
−C0ψ

d/α(n)
)

≤
[
C1n

d−κ3d2α · exp
(
−C0n

κ3d
2α

)]
exp

(
−C0ψ

d/α(n)
)
,

where the last line uses the fact that ψ(n) > nκ3/2 for large n. Then the proof is
completed.

For any v,y ∈ Rd define H(v,y) := ET (v,y). By the symmetry of the Poisson point
process, there is a function h : R+ → R+ such that H(v,y) = h(‖v − y‖) where ‖v − y‖
is the Euclidean norm. As a result of subadditivity, we have the following simple lemma.

Lemma 3.2. There exists a constant D3.2 > 0 such that, for all x, y ≥ 0, |h(x)− h(y)| ≤
D3.2|x− y|.

Proof. By subadditivity,

ET (0, ye1) ≤ ET (0, xe1) + ET (xe1, ye1).

Then since ET (xe1, ye1) = ET (0, (y − x)e1) = h(y − x),

h(y)− h(x) ≤ h(y − x).

Reversing the roles of x and y gives the same bound for |h(y)− h(x)|. Last, we note that
an immediate consequence of [8, Lemma 1] is that h(x) ≤ D3.2x for all x ≥ 0.

We also need the following simple lemma to control the difference of passage times
when the endpoints do not differ too much.

Lemma 3.3. There exists a constant D3.3 > 0 such that, restricted to Fn, for v,y,y′ ∈
B(0, 4n) such that ‖y − y′‖ ≤ (ψ(n))1/α,

|T (v,y)− T (v,y′)| ≤ D3.3ψ(n).

Proof. When restricted to Fn, we have ‖q(y) − y‖ ≤ ψ(n)1/α. The proof then follows
from the following bound from [9, (2.14)]:

|T (v,y)− T (v,y′)| ≤ (2‖q(y)− y‖+ 2‖y − y′‖)α.
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The last result in this section is a global concentration result which plays an important
role in verifying the initial cases for the mathematical induction.

Lemma 3.4. Define the set C ⊂ Rd ×Rd as follows:

C :=
{

(v,y) ∈ Rd ×Rd : v,y ∈ B(0, 4n) and ‖v − y‖ ≥ n1/2
}
.

For any r > 0, there exists a constant D3.4 = D3.4(r) > 0 such that for all large n

P(Gcn) ≤ 1

nr
,

where the events Gn, n = 1, 2, · · · are defined as follows:

Gn :=
{
|T (v,y)− ET (v,y)| ≤ D3.4ψ(n)(log n)1/κ1 for all (v,y) ∈ C

}
.

Proof. For any (v,y) ∈ C, there exists

(v′,y′) ∈ C′ :=
{

(v,y) : v,y ∈ B(0, 4n) ∩Zd and ‖v − y‖ ≥ n1/4
}

such that ‖v − v′‖ ≤
√
d and ‖y − y′‖ ≤

√
d. By Lemma 3.3, restricted to Fn, when n is

large,

|T (v,y)− T (v′,y′)| ≤ 2D3.3ψ(n).

By Lemma 3.2,

|ET (v,y)− ET (v′,y′)| ≤ 2D3.2

√
d.

In the rest of the proof we will replace D3.4 by D in the definition of Gn. Combining the
above two bounds, when n is large, Fn ∩Gcn implies that there exists (v′,y′) ∈ C′ such
that

|T (v′,y′)− ET (v′,y′)| > Dψ(n)(log n)1/κ1 − 2D3.3ψ(n)− 2D3.2

√
d ≥ D

2
ψ(n)(log n)1/κ1 .

when D is large. By Assumption 2.1, for any fixed pair (v′,y′) ∈ C′,

P (|T (v′,y′)− ET (v′,y′)| > λψ(‖v′ − y′‖)) ≤ C1 exp (−C0 min {λκ1 , (C0‖v′ − y′‖κ2)κ1}) .

Let λ = Dψ(n)(logn)1/κ1

2ψ(‖v′−y′‖) . Since ‖v′−y′‖∞ ≤ 8n and n is large, one has ψ(‖v′−y′‖) ≤ 8ψ(n)

and therefore when n is large,

min {λ,C0‖v′ − y′‖κ2} ≥ min

{
D

16
(log n)1/κ1 , C0n

κ2/4

}
=
D

16
(log n)1/κ1 .

Therefore

P

(
|T (v′,y′)− ET (v′,y′)| > D

2
ψ(n)(log n)1/κ1

)
≤ C1

nC0(D/16)κ1
.

Since |C′| ≤ C1n
2d, by a union bound,

P(Fn ∩Gcn) ≤ C1n
2d · C1

nC0(D/16)κ1
.

Combining this bound with Lemma 3.1 and taking D large complete the proof.
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4 The initial step

The goal of this section is to verify the initial step of the mathematical induction.
Precisely, we will prove the following three lemmas in this section. Lemmas 4.1, 4.3 and
4.4 imply the k = 1 cases of Theorems 2.4, 2.5, and 2.6 respectively. Note Lemmas 4.1
and 4.4 are actually stronger than the corresponding initial versions of the theorems.

Lemma 4.1. Define B1 =
{
v ∈ Rd : ‖v‖∞ ≤ ψ(n)

}
and B2 = ne1 + B1. For any r > 0,

there exists a constant D4.1 = D4.1(r) > 0 such that for large n

P

(
sup

v∈B1, y∈B2

|T (v,y)− ET (v,y)| > D4.1ψ(n)(log n)1/κ1

)
≤ 1

nr
.

In fact, one can take D4.1(r) = D3.4(r).

Proof. When n is large,

B1 ⊂ B(0, 4n) and B2 ⊂ B(0, 4n),

v ∈ B1 and y ∈ B2 implies ‖v − y‖ ≥ n− 2ψ(n) ≥ n1/2.

When D4.1(r) = D3.4(r), the event considered in this lemma implies Gcn. Therefore
Lemma 4.1 follows from Lemma 3.4 immediately.

Remark 4.2. Without loss of generality we can assume κ1 is so small that η > 1/2 (recall

η from (2.1)). Then n1/2ψ1/2(n)
nη ≤ ψ1/2(n) ≤ ψ(n), and B(0)(n) ⊂

{
v ∈ Rd : ‖v‖∞ ≤ ψ(n)

}
.

Therefore Lemma 4.1 implies Theorem 2.4 with k = 1.

Lemma 4.3. There exists a constant D4.3 > 0 such that for large n.

nµ ≤ ET (0, ne1) ≤ nµ+D4.3ψ(n)(log n)1/κ1 .

Proof. By Lemma 1.4, it is sufficient to show that there exists a constant D > 0 such
that for all large n

h(2n) ≥ 2h(n)−Dψ(n)(log n)1/κ1 . (4.1)

The proof follows from the proof of [9, Lemma 4.1] closely. Note that restricted to Fn,
there exists q ∈ Q∩

{
v ∈ Rd : n− ψ(n) < ‖v‖ < n+ ψ(n)

}
such that q is on the geodesic

M(0, 2ne1). Therefore
T (0,q) + T (q, 2ne1) = T (0, 2ne1).

Applying this to an outcome in Fn ∩Gn (which has positive probability), for such a q we
have

h(2n) = H(0, 2ne1) ≥ H(0,q) +H(q, 2ne1)− 3D3.4ψ(n)(log n)1/κ1 .

Then by Lemma 3.2, we have

min {H(0,q), H(q, 2ne1)} ≥ h(n)−D3.2ψ(n).

Combining the above two inequalities, we have

h(2n) ≥ 2h(n)− 3D3.4ψ(n)(log n)1/κ1 − 2D3.2ψ(n).

This implies (4.1) for large n.

Lemma 4.4. Write B̄1 := B̄ and B̄2 := ne1 + B̄. For any r > 0, there exists a constant
D4.4 = D4.4(r) > 0 such that for all large n,

P

(
sup

v∈B̄1, y∈B̄2

distmax(M(v,y), (0, ne1)) > D4.4n
1/2ψ1/2(n)(log n)β

)
≤ 1

nr
.
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Proof. Restricted to Fn, the event considered in Lemma 4.4 implies that there exist v ∈
B̄1, y ∈ B̄2 and q ∈ Q ∩ B(0, 4n) such that infz∈(0,ne1) ‖q− z‖ ≥ D4.4

2 n1/2ψ1/2(n)(log n)β

and q is on the geodesic from v to y, i.e.,

T (v,q) + T (q,y) = T (v,y). (4.2)

Meanwhile, elementary geometry shows that there exists a constant C0 > 0 such that for
large n, v ∈ B̄1, y ∈ B̄2 and q ∈ Q ∩B(0, 4n) as above,

‖v − q‖+ ‖q− y‖ − ‖v − y‖ ≥ C0
(D4.4n

1/2ψ1/2(n)(log n)β)2

n
= C0D

2
4.4ψ(n)(log n)1/κ1 .

Therefore by Lemma 4.3 and the fact that ‖v − y‖ ≤ 2n,

H(v,q) +H(q,y)−H(v,y)

≥ µ‖v − q‖+ µ‖q− y‖ − µ‖v − y‖ −D4.3ψ(‖v − y‖)(log ‖v − y‖)1/κ1

≥ µ‖v − q‖+ µ‖q− y‖ − µ‖v − y‖ −D4.3 · (2ψ(n)) · 2(log n)1/κ1

≥ (C0D
2
4.4 − 4D4.3)ψ(n)(log n)1/κ1 .

Comparing (4.2) and the above bound, we have

max {|T (v,q)−H(v,q)|, |T (q,y)−H(q,y)|, |T (v,y)−H(v,y)|}

≥ C0D
2
4.4 − 4D4.3

3
ψ(n)(log n)1/κ1 .

Taking D4.4 so large that C0D
2
4.4−4D4.3

3 > D3.4, the above argument implies that when n is
large

P

(
sup

v∈B̄1, y∈B̄2

distmax(M(v,y), (0, ne1)) > D4.4n
1/2ψ1/2(n)(log n)β

)
≤ P(F cn) + P(Gcn),

The proof is completed by applying Lemmas 3.1 and 3.4.

Remark 4.5. Theorem 2.6 restricts the geodesic M(0, ne1) to L(λ), while Lemma 4.4
removes this restriction in the case k = 1. Therefore Lemma 4.4 implies Theorem 2.6
with k = 1.

5 The induction step

In this section, we complete the mathematical induction step. We assume that
Theorems 2.4, 2.5 and 2.6 hold for k = k0 ≥ 1. Denote these three assumptions by II, III
and IV respectively.

The goal is to prove the k = k0 + 1 cases of Theorems 2.3, 2.4, 2.5 and 2.6. Denote
these four statements by I∗, II∗, III∗ and IV∗ respectively. Then these four statements
are proved in the following sequence:

II + III + IV⇒ I∗,

I∗ ⇒ II∗,

IV + II∗ ⇒ III∗,

IV + II∗ + III∗ ⇒ IV∗.

For the ease of reference, we state all assumptions precisely. For simplicity, define
φ(n) := log(k0−1) n. Recall the constants γ, β, η from (2.1). Define

u(n) :=
n1/2ψ1/2(n)

φη(n)
, v(n) := n1/2ψ1/2(n)(log φ(n))β , w(n) :=

n

φγ(n)
,
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and

u∗(n) :=
n1/2ψ1/2(n)

(log φ(n))η
, v∗(n) := n1/2ψ1/2(n)(log log φ(n))β , w∗(n) :=

n

(log φ(n))γ
.

Recall that B̄ =
{

(x1,v2) ∈ Rd : |x1| ≤ ψ(n), ‖v2‖ ≤ n1/2ψ1/2(n)
}

. Define

B = B(n) = B(k0−1)(n) =
{

(x1,v2) ∈ Rd : |x1| ≤ ψ(n), ‖v2‖ ≤ u(n)
}
,

B∗ = B∗(n) = B(k0)(n) =
{

(x1,v2) ∈ Rd : |x1| ≤ ψ(n), ‖v2‖ ≤ u∗(n)
}
.

Assumption 5.1 (II). Let B1 := B and B2 := ne1 + B. For any r > 0, there exists a
constant D5.1 = D5.1(r) > 0 such that for all large n

P

(
sup

v∈B1, y∈B2

|T (v,y)− ET (v,y)| > D5.1ψ(n)(log φ(n))1/κ1

)
≤ 1

φr(n)
.

Assumption 5.2 (III). Let µ be the time constant. There exists a constant D5.2 > 0 such
that for large n

nµ ≤ ET (0, ne1) ≤ nµ+D5.2ψ(n)(log φ(n))1/κ1 .

Recall the definition of L(λ) = L(λ, n) before Theorem 2.6.

Assumption 5.3 (IV). Define B̄1 = B̄ and B̄2 = B̄1 + ne1. For any r > 0, there exists
D5.3 = D5.3(r) > 0 such that for large n and λ ∈ [w(n), n− w(n)] we have

P

(
sup

v∈B̄1, y∈B̄2

distmax(L(λ) ∩M(v,y), (0, ne1)) > D5.3v(n)

)
≤ 1

φr(n)
.

Then we state the four statements that we need to prove in order to complete the
mathematical induction as follows.

Lemma 5.4 (I∗). Let B∗1 := B∗ and B∗2 := ne1 + B∗. For any r > 0 there exists a constant
D5.4 = D5.4(r) > 0 such that for all large n

P

(
sup

v,v′∈B∗1 , y,y′∈B∗2
|T (v,y)− T (v′,y′)| > D5.4ψ(n)

)
≤ 1

φr(n)
.

Lemma 5.5 (II∗). For any r > 0, there exists a constant D5.5 = D5.5(r) such that for
large n

P

(
sup

v∈B∗1 , y∈B∗2
|T (v,y)− ET (v,y)| > D5.5ψ(n)(log log φ(n))1/κ1

)
≤ 1

(log φ(n))r
.

Lemma 5.6 (III∗). There exists a constant D5.6 > 0 such that for large n

nµ ≤ ET (0, ne1) ≤ nµ+D5.6ψ(n)(log log φ(n))1/κ1 .

Lemma 5.7 (IV∗). For any r > 0 there exists a constant D5.7 = D5.7(r) > 0 such that for
large n and λ ∈ [w∗(n), n− w∗(n)]

P

(
sup

v∈B̄1, y∈B̄2

distmax(L(λ) ∩M(v,y), (0, ne1)) > D5.7v
∗(n)

)
≤ 1

(log φ(n))r
.

One main technique used in the proof is to apply Assumption 5.1 multiple times, and
use many transformed copies of B to cover a larger region. More precisely, for any
v ∈ Rd, let Tv : Rd → Rd be the linear transformation such that Tv rotates e1 to 1

‖v‖v in
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the plane spanned by e1 and v, and fixes all y such that y ⊥ v and y ⊥ e1. For v ∈ Rd,
define

θ(v) := arccos

(
v · e1

‖v‖

)
. (5.1)

For any v,y ∈ Rd, define

B̃(v,y) := Tv−yB(‖v − y‖). (5.2)

Note that B̃(v,y) is obtained by rotating B(‖v− y‖) by an angle of θ(v− y), which maps
e1 to the direction of v − y. By the symmetry of B(‖v − y‖), we have Tv−yB(‖v − y‖) =

Ty−vB(‖v − y‖). Similarly, define

B̃∗(v,y) := Tv−yB∗(‖v − y‖).

In the proof of Lemma 5.4, Assumption 5.1 is applied to many pairs of boxes of the form
v + B̃(v,y) and y + B̃(v,y). In the proof of Lemmas 5.6 and 5.7, we also apply Lemma
5.5 to pairs of the form v+ B̃∗(v,y) and y+ B̃∗(v,y). In the rest of this section, we prove
some results that control the effect of rotation on such boxes.

Lemma 5.8. Define, for b ≥ a > 0, Ba,b :=
{

(x1,v2) ∈ Rd : |x1| ≤ a, ‖v2‖ ≤ b
}
. Then for

z ∈ Rd,
1

| tan θ(z)| · b/a+ 1
Ba,b ⊂

a

| sin θ(z)| · b+ | cos θ(z)| · a
Ba,b ⊂ TzBa,b.

Note that the second “ ⊂′′ in Lemma 5.8 is optimal, in the sense that the constant
a

| sin θ(z)|·b+| cos θ(z)|·a can not be improved. The proof of this fact is elementary and there-
fore omitted. Lemma 5.8 immediately implies the following results for B and B∗.
Lemma 5.9. Suppose

√
n ≥ c ≥ 1 and K > 0. For any z ∈ Rd such that

| tan θ(z)| ≤ Kψ(n)

u∗(n)
=
Kψ1/2(n)(log φ(n))η

n1/2
, (5.3)

we have

1

(1 +K)c
B(n) ⊂ TzB(n/c), and

1

(1 +K)c
B∗(n) ⊂ TzB∗(n/c).

Proof. First we show that for
√
n ≥ c ≥ 1

1

c
B(n) ⊂ B(n/c). (5.4)

By Assumption 2.2 and monotonicity of φ(·), when n is large,

ψ(n/c) ≥1

c
ψ(n),

u(n/c) =
(n/c)1/2ψ1/2(n/c)

(φ(n/c))η
≥ (n/c)1/2(ψ(n)/c)1/2

(φ(n))η
=

1

c
u(n).

This proves (5.4). Next, by (5.3) and the fact log φ(n) ≤ φ(n), we have

| tan θ(z)| ≤ Kψ1/2(n)(φ(n))η

n1/2
= K · ψ(n)

u(n)
.

By Lemma 5.8, this implies that 1
K+1B(n) ⊂ TzB(n), which combined with (5.4) completes

the proof of the statement about B. The statement about B∗ can be proved similarly.
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Given C ⊂ Rd ×Rd, for n1/2 ≥ c ≥ 1 and K > 0, we say C is (c,K)-regular of order
n, (or simply (c,K)-regular) if for every pair (v,y) ∈ C, we have

‖v − y‖ ≥ n/c,

| tan θ(v − y)| ≤ Kψ(n)

u∗(n)
=
Kψ1/2(n)(log φ(n))η

n1/2
.

Note that in the above definition c and K may also depend on n. As a corollary of Lemma
5.9:

Corollary 5.10. If C is (c,K)-regular of order n for n1/2 ≥ c ≥ 1 and K > 0, then we
have, for every (v,y) ∈ C,

1

(1 +K)c
B(n) ⊂ B̃(v,y), and

1

(1 +K)c
B∗(n) ⊂ B̃∗(v,y).

Organization of the rest of this section: We will prove Lemmas 5.4, 5.5, 5.6
and 5.7 in Sections 5.1, 5.2, 5.3 and 5.4 respectively. This will complete the proof of
Theorems 2.3, 2.4, 2.5 and 2.6.

5.1 II + III + IV⇒ I∗

In this section we prove Lemma 5.4.

Proof of Lemma 5.4. Let r > 0. Recall that w∗(n) = n/(log φ(n))γ . Define L1 := L(w∗(n)),
L2 := L(n− w∗(n)). Consider the following events

Hn := { sup
v∈B̄1, y∈B̄2

distmax((L1 ∪ L2) ∩M(v,y), (0, ne1)) ≤ D5.3v(n)}

Since w∗(n) ∈ [w(n), n− w(n)], by Assumption 5.3, we have

P (Hc
n) ≤ 1

φr(n)
+

1

φr(n)
(5.5)

Define
L∗i := Li ∩ {(x1,v2) ∈ Rd : ‖v2‖ ≤ D5.3v(n)} for i = 1, 2. (5.6)

Recall Fn from Lemma 3.1. When n is so large that D3.1ψ
1/α(n) < 2ψ(n), the event

Fn ∩Hn implies that for any v,v′ ∈ B∗1 and y,y′ ∈ B∗2 , there exist q1 ∈M(v,y) ∩ L∗1 and
q2 ∈M(v,y) ∩ L∗2 such that

T (v,y) = T (v,q1) + T (q1,q2) + T (q2,y),

T (v′,q1) + T (q1,q2) + T (q2,y
′) ≥ T (v′,y′).

Summing up the above two expressions, we have

T (v,y)− T (v′,y′) ≥ [T (v,q1)− T (v′,q1)] + [T (q2,y)− T (q2,y
′)].

Similarly, there also exists q′1 ∈M(v′,y′) ∩ L∗1 and q′2 ∈M(v′,y′) ∩ L∗2 such that

T (v,y)− T (v′,y′) ≤ [T (v,q′1)− T (v′,q′1)] + [T (q′2,y)− T (q′2,y
′)].

See Figure 1 for an illustration of the above argument.
Therefore, restricted to Fn ∩Hn,

sup
v,v′∈B∗1 , y,y′∈B∗2

|T (v,y)− T (v′,y′)| ≤ sup
v,v′∈B∗1 , z∈L∗1

|T (v, z)− T (v′, z)|

+ sup
y,y′∈B∗2 , z∈L∗2

|T (y, z)− T (y′, z)|. (5.7)
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Figure 1: Illustration of the proof of Lemma 5.4. The path that follows points from x to
q1, then to q2, and last to y is a geodesic. One can construct a possibly suboptimal path
from x′ to y′ by taking a geodesic from x′ to q1, following the first geodesic from q1 to q2,
and then taking a geodesic from q2 to y′. Using a similar argument with x, y switched
with x′, y′ produces the main inequality (5.7).

Next, in Lemma 5.11 we will prove a tail bound for supv,v′∈B∗1 , z∈L∗1 |T (v, z) − T (v′, z)|.
By (5.7),

P

(
sup

v,v′∈B∗1 , y,y′∈B∗2
|T (v,y)− T (v′,y′)| > 2D5.11ψ(n)

)

≤P(F cn) + P(Hc
n) + 2P

(
sup

v,v′∈B∗1 , z∈L∗1
|T (v, z)− T (v′, z)| > D5.11ψ(n)

)

≤C1 exp(−C0ψ
d/α(n)) +

2

φr(n)
+

2

φr−2η(d−1)−1(n)
,

for any fixed r > 0 and large n, where the last line uses Lemma 3.1, (5.5) and Lemma
5.11. By Assumption 2.2, ψ(n) = Ω(nκ3/2), so the first two terms in the above display are
dominated by the third term. Therefore, for any fixed r and large n,

P

(
sup

v,v′∈B∗1 , y,y′∈B∗2
|T (v,y)− T (v′,y′)| > 2D5.11ψ(n)

)
≤ C1

φr−2η(d−1)−1(n)
.

Since r can be arbitrarily large, the proof of Lemma 5.4 is completed.

Lemma 5.11. For any r > 0, there exists a constant D5.11 = D5.11(r) > 0 such that for
large n,

P

(
sup

v,v′∈B∗1 , y∈L∗1
|T (v,y)− T (v′,y)| > D5.11ψ(n)

)
≤ 1

φr−2η(d−1)−1(n)
.
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Proof. First, we bound |ET (v,y) − ET (v′,y)|. Elementary geometry implies that for
large n

sup
v,v′∈B∗1 ,y∈L∗1

|‖v − y‖ − ‖v′ − y‖|

≤ 2ψ(n) +
D5.3v(n) · 2u∗(n)

w∗(n)− 2ψ(n)

= 2ψ(n) +
D5.3n

1/2ψ1/2(n)(log φ(n))β · 2n1/2ψ1/2(n)(log φ(n))−η

n(log φ(n))−γ − 2ψ(n)

≤ 2ψ(n) + 4D5.3ψ(n)(log φ(n))β+γ−η

= (2 + 4D5.3)ψ(n),

where the third line uses the fact that ψ(n) = o(n1−κ3) and so n(log φ(n))−γ − 2ψ(n) >

n(log φ(n))−γ/2 for large n, and the fourth line uses the definition η = γ + β. Combining
the above bound with Lemma 3.2, we have

sup
v,v′∈B∗1 ,y∈L∗1

|ET (v,y)− ET (v′,y)| ≤ (2 + 4D5.3)D3.2ψ(n). (5.8)

Second, we prove the following concentration result: For any r > 0 and large n,

P

(
sup

x′∈B∗1 ,y′∈L∗1
|T (v′,y′)− ET (v′,y′)| > 2κ3D2.2(r)D5.1(r)ψ(n)

)
≤ 1

φr−2η(d−1)−1(n)
.

(5.9)
To prove this, recall the definition of θ(v − y) and B̃(v,y) from (5.1) and (5.2). By
Assumption 5.1, for every (v,y) ∈ B∗1 × L∗1 and large n,

P

(
sup

v′∈v+B̃(v,y),y′∈y+B̃(v,y)

|T (v′,y′)− ET (v′,y′)| > D5.1ψ(‖v−y‖)[log φ(‖v − y‖)]1/κ1

)
≤ 1

φr(‖v − y‖)
. (5.10)

When n is large

‖v − y‖ ≥ w∗(n)− 2ψ(n) ≥ n

2(log φ(n))γ
=
w∗(n)

2
, (5.11)

| tan θ(v − y)| ≤ 2D5.3v(n)

w∗(n)− 2ψ(n)
≤ 4D5.3ψ

1/2(n) logβ+γ φ(n)

n1/2
.

Since β + γ = η, the set B∗1 × L∗1 is (2(log φ(n))γ , 4D5.3)-regular. By Corollary 5.10, we
have

B′ :=
1

(1 + 4D5.3) · 2(log φ(n))γ
B ⊂ B̃(v,y) for all (v,y) ∈ B∗1 × L∗1. (5.12)

On the other hand, since ‖v − y‖ ≤ 2w∗(n) = 2n
(log φ(n))γ ≤ n for large n, then

ψ(‖v − y‖)[log φ(‖v − y‖)]1/κ1 ≤D2.2

(
2

(log φ(n))γ

)κ3

ψ(n) · (log φ(n))1/κ1

=2κ3D2.2ψ(n), (5.13)

where the last line use the relation γ = 1
κ1κ3

. Since φ(‖v − y‖) ≥ φ(n)/(2 log φ(n))γ and
2(log φ(n))γ ≤

√
n for large n,

1

φr(‖v − y‖)
≤ 2r(log φ(n))γr

φr(n)
. (5.14)
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Combining (5.12), (5.13) and (5.14) in (5.10), we have for all (v,y) ∈ B∗1 × L∗1,

P

(
sup

v′∈v+B′,y′∈y+B′
|T (v′,y′)− ET (v′,y′)| > 2κ3D2.2D5.1ψ(n)

)
≤ 2r(log φ(n))γr

φr(n)
.

There exists a constant C1 > 0 such that B∗1 can be covered by

C1 ·
ψ(n)

ψ(n)/(log φ(n))γ
·
(

u∗(n)

u(n)/(log φ(n))γ

)d−1

= C1φ
η(d−1)(n)(log φ(n))γd−η(d−1)

copies of B′, and L∗1 can be covered by

C1 ·
ψ(n)

ψ(n)/(log φ(n))γ
·
(

v(n)

u(n)/(log φ(n))γ

)d−1

= C1φ
η(d−1)(n)(log φ(n))γd+β(d−1)

copies of B′. Therefore by a union bound we have

P

(
sup

x′∈B∗1 ,y′∈L∗1
|T (v′,y′)− ET (v′,y′)| > 2κ3D2.2D5.1ψ(n)

)

≤2r(log φ(n))γr

φr(n)
· C1φ

η(d−1)(n)(log φ(n))γd−η(d−1) · C1φ
η(d−1)(n)(log φ(n))γd+β(d−1)

=
C1(log φ(n))γr+2γd−η(d−1)+β(d−1)

φr−2η(d−1)(n)
≤ 1

φr−2η(d−1)−1(n)
,

when n is large. This proves (5.9). Combining (5.8) and (5.9), we complete the proof of
Lemma 5.11 with D5.11 = 2κ3D2.2D5.1 + (2 + 4D5.3)D3.2.

5.2 I∗ ⇒ II∗

In this section we prove Lemma 5.5. Recall that B∗1 = B∗ and B∗2 = ne1 + B∗.

Proof of Lemma 5.5. By the triangle inequality, we have

sup
v∈B∗1 , y∈B∗2

|T (v,y)− ET (v,y)|

≤ sup
v∈B∗1 , y∈B∗2

|T (v,y)− T (0, ne1)|+ |T (0, ne1)− ET (0, ne1)|

+ sup
v∈B∗1 , y∈B∗2

|ET (v,y)− ET (0, ne1)|. (5.15)

The first term above can be bounded directly by Lemma 5.4. The second term can
be bounded by the concentration bound in Assumption 2.1, which implies, for K =

((r + 1)/C0)
1/κ1 and large n,

P
(
|T (0, ne1)− ET (0, ne1)| > Kψ(n)(log log φ(n))1/κ1

)
≤ C1

(log φ(n))r+1
. (5.16)

To bound the last term in (5.15), note that for v ∈ B∗1 , y ∈ B∗2 and large n,

n− 2ψ(n) ≤ ‖v − y‖ ≤n+ 2ψ(n) +
(2u∗(n))

2

n+ 2ψ(n)

=n+ 2ψ(n) +
4
[
n1/2ψ1/2(n)/ logη φ(n)

]2
n+ 2ψ(n)

≤n+ 2ψ(n) +
4ψ(n)

log2η φ(n)
≤ n+ 6ψ(n).
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Then by Lemma 3.2, we have

sup
v∈B∗1 , y∈B∗2

|ET (v,y)− ET (0, ne1)| ≤ 6D3.2ψ(n). (5.17)

Combining Lemma 5.4, (5.16), (5.17) and (5.15), when n is large,

P

(
sup

v∈B∗1 , y∈B∗2
|T (v,y)− ET (v,y)| > (D5.4 +K + 6D3.2)ψ(n)(log log φ(n))1/κ1

)

≤ P

(
sup

v∈B∗1 , y∈B∗2
|T (v,y)− T (0, ne1)| > D5.4ψ(n)

)
+ P

(
|T (0, ne1)− ET (0, ne1)| > Kψ(n)(log log φ(n))1/κ1

)
≤ 1

φr(n)
+

C1

logr+1 φ(n)
≤ 1

logr φ(n)
.

The proof of Lemma 5.5 is completed.

5.3 IV + II∗ ⇒ III∗

In this section we prove Lemma 5.6.

Proof of Lemma 5.6. Write Tn = T (0, ne1) for n ≥ 1. By Lemma 1.4, it suffices to show
that there exists a constant D > 0 such that for all large n,

ET2n ≥ 2ETn −Dψ(n)(log log φ(n))1/κ1 . (5.18)

Define for n ≥ 1,

L∗ :=
{

(x1,v2) ∈ Rd : |x1 − n| ≤ ψ(2n), ‖v2‖ ≤ D5.3v(2n)
}
.

For some constant K > 0 to be decided later, consider the event E = E1 ∩ E2 ∩ E3 ∩ E4

where:

E1 = {M(0, 2ne1) ∩ L∗ 6= ∅} ,

E2 =

{
sup
v∈L∗

|T (0,v)− ET (0,v)| ≤ Kψ(n)(log log φ(n))1/κ1

}
,

E3 =

{
sup
v∈L∗

|T (2ne1,v)− ET (2ne1,v)| ≤ Kψ(n)(log log φ(n))1/κ1 ,

}
E4 =

{
|T2n − ET2n| ≤ Kψ(n)(log log φ(n))1/κ1

}
.

(For the definition of E1, recall that M(0, 2ne1) ⊂ Q.) Restricted to E1, there exists
q ∈ L∗ such that

T (0, 2ne1) = T (0,q) + T (q, 2ne1).

Recall that ET (v,y) = H(v,y) = h(‖v− y‖). Since min {‖q‖, ‖2ne1 − q‖} ≥ n− ψ(2n) ≥
n− 2ψ(n), by Lemma 3.2,

H(0,q)− ETn ≥ −2D3.2ψ(n) and H(q, 2ne1)− ETn ≥ −2D3.2ψ(n).

Then restricted to E,

ET2n − 2ETn ≥H(0, 2ne1)−H(0,q)−H(q, 2ne1)− 4D3.2ψ(n)

≥T (0, 2ne1)− T (0,q)− T (q, 2ne1)− 4D3.2ψ(n)− 3Kψ(n)(log log φ(n))1/κ1

=− 4D3.2ψ(n)− 3Kψ(n)(log log φ(n))1/κ1 .
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Therefore (5.18) holds with D = 2D3.2 + 3K as long as log log φ(n) > 1. To complete the
proof, it suffices to show that for some choice of K, the event E = ∩4

i=1Ei has positive
probability (and therefore is not empty) for all large n.

First we bound P(Ec1). Define L = {(x1,v2) : |x1 − n| ≤ ψ(2n)}. By Lemma 3.1 and
Assumption 5.3 with n replaced by 2n,

P (Fn ∩ Ec1) ≤P
(
distmax

(
L ∩M(0, 2ne1), (0, 2ne1)

)
> D5.3v(2n)

)
≤ 1

φr(2n)
→ 0 as n→∞.

Combining this and Lemma 3.1 we have P(Ec1)→ 0 as n→∞.
Next we bound P(Ec4). By Assumption 2.1, for K > 0 and large n

P
(
|T2n − ET2n| > Kψ(n)(log log φ(n))1/κ1

)
≤ P

(
|T2n − ET2n| >

K

2
ψ(2n)(log log φ(n))1/κ1

)
≤ C1 exp(−C0(K/2)κ1 log log φ(n))

=
C1

(log φ(n))C0(K/2)κ1
→ 0, as n→∞.

Finally, since P(Ec2) = P(Ec3), we only need to bound P(Ec2). Recall B̃∗(0,v) from (5.2).
By Lemma 5.5, for all v ∈ L∗

P

(
sup

v′∈v+B̃∗(0,v)

|T (0,v′)− ET (0,v′)| > D5.5ψ(‖v‖)(log log φ(‖v‖))1/κ1

)
≤ 1

(log φ(‖v‖))r
.

Since n/2 ≤ ‖v‖ ≤ 2n for all v ∈ L∗, then the above bound implies for large n

P

(
sup

v′∈v+B̃∗(0,v)

|T (0,v′)− ET (0,v′)| > 2D5.5ψ(n)(log log φ(n))1/κ1

)
≤ 2r

(log φ(n))r
.

(5.19)
Now we show that the set {0} × L∗ is (2, 8D5.5)-regular. Indeed, when n is large,

‖v‖ ≤ 2n and

v(2n) =(2n)1/2ψ1/2(2n)(log φ(2n))β

≤(2n)1/2 · (2ψ(n))1/2 · 2(log φ(n))β

<4v(n). (5.20)

Then for all v ∈ L∗, we have ‖v‖ ≥ n/2 and

tan θ(v) ≤ D5.3v(2n)

n− ψ(n)
≤ D5.3 · 4v(n)

n/2
≤ 8D5.3ψ

1/2(log φ(n))β

n1/2
.

Thus the set {0} × L∗ is (2, 8D5.3)-regular. Therefore by Corollary 5.10 we have, for all
v ∈ L∗ and when D5.5 > 1

B′ :=
1

(8D5.3 + 1) · 2
B∗ ⊂ B̃∗(0,v).

Then from (5.19), we have

P

(
sup

v′∈v+B′
|T (0,v′)− ET (0,v′)| > 2D5.5ψ(n)(log log φ(n))1/κ1

)
≤ 2r

(log φ(n))r
. (5.21)
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By (5.20), L∗ can be covered by at most

C1 ·
ψ(2n)

ψ(n)
·
(
v(2n)

u∗(n)

)d−1

≤ C1 ·
2ψ(n)

ψ(n)
·
(

4v(n)

u∗(n)

)d−1

≤ C1(log φ(n))(β+η)(d−1)

copies of B′. Then by the union bound and (5.21), we have

P

(
sup
v∈L∗

|T (0,v)− ET (0,v)| > 2D5.5ψ(n)(log log φ(n))1/κ1

)
≤ C1(log φ(n))(β+η)(d−1) 2r

(log φ(n))r
.

≤ C1

(log φ(n))r−(β+η)(d−1)
.

Taking K = 2D5.5 and let r > (β+ η)(d− 1), we have P(Ec2)→ 0 as n→∞. Therefore we
have proved that P(Ec) is small as n is large. The proof of Lemma 5.6 is completed.

5.4 IV + II∗ + III∗ ⇒ IV∗

In this section we prove Lemma 5.7.

Proof of Lemma 5.7. Let K be a constant whose value will be determined later. Define,
for any λ ∈ [w∗(n), n− w∗(n)],

L∗(λ) :=
{

(x1,v2) ∈ Rd : |x1 − λ| ≤ ψ(n), ‖v2‖ ≤ D5.3v(n)
}
,

L+(λ) :=
{

(x1,v2) ∈ Rd : |x1 − λ| ≤ ψ(n), ‖v2‖ > D5.3v(n)
}
,

L−(λ) :=
{

(x1,v2) ∈ Rd : |x1 − λ| ≤ ψ(n),Kv∗(n) < ‖v2‖ ≤ D5.3v(n)
}
,

Define the events E+(λ) and E(λ) for λ ∈ [w∗(n), n− w∗(n)] as follows:

E+(λ) :=
{
∃v ∈ B̄1,y ∈ B̄2 such that M(v,y) ∩ L+(λ) 6= ∅

}
.

E(λ) :=
{
∃v ∈ B̄1,y ∈ B̄2 such that M(v,y) ∩ L−(λ) 6= ∅

}
.

Then we have

Fn ∩

{
sup

v∈B̄1, y∈B̄2

distmax(L(λ) ∩M(v,y), (0, ne1)) > Kv∗(n)

}
⊂ E+(λ) ∪ E(λ). (5.22)

By Assumption 5.3, for large n,

P
(
E+(λ)

)
≤ 1

φr(n)
. (5.23)

In the rest of the proof, we will prove an upper bound for P(E(λ)). See Figure 2 for
configuration in the event E(λ).

Define

L̄− := {(x1,v2) ∈ Rd : w∗(n)− ψ(n) ≤ x1 ≤ n− w∗(n) + ψ(n),

Kv∗(n) ≤ ‖v2‖ ≤ D5.3v(n)}.

Further define

C̄ :=(B̄1 × B̄2) ∪ (B̄1 × L̄−) ∪ (B̄2 × L̄−).

C(λ) :=(B̄1 × B̄2) ∪ (B̄1 × L−(λ)) ∪ (B̄2 × L−(λ)), for λ ∈ [w∗(n), n− w∗(n)]
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Figure 2: Illustration of the event E(λ) in the proof of Lemma 5.7. The condition is that
there are points v ∈ B1 and y ∈ B2 such that the geodesic M(v,y) contains a Poisson
point in L−(λ). The overall strategy of the proof is to show that geodesics between such
points are unlikely to enter L+(λ) (from the event E+(λ)) and also unlikely to enter
L−(λ) (from the event E(λ), illustrated here).

In order to bound P(E(λ)), we first prove the following relationship: for any λ ∈
[w∗(n), n− w∗(n)], E(λ) is contained in

E1(λ) :=

{
sup

(v′,y′)∈C(λ)

|T (v′,y′)− ET (v′,y′)| > µK2 − 32D5.6

24
ψ(n)(log log φ(n))1/κ1

}
,

(5.24)
and then give a bound on P(E1(λ)) by Lemma 5.5. Now let us prove (5.24) first. Note
that for any v ∈ B̄1,y ∈ B̄2 and q ∈ L̄−, elementary geometry shows that when n is
large,

‖v − q‖+ ‖q− y‖ − ‖v − y‖

≥1

2
·
[
Kv∗(n)− n1/2ψ1/2(n)

]2
n/2 + ψ(n)

≥ 1

2
· [Kv∗(n)/2]

2

n

=
K2

8
ψ(n)(log log φ(n))2β =

K2

8
ψ(n)(log log φ(n))1/κ1 . (5.25)
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By Lemma 5.6 and ‖v − y‖ ≤ 2n,

h(‖v − y‖) ≤µ‖v − y‖+D5.6ψ(‖v − y‖)(log log φ(‖v − y‖))1/κ1

≤µ‖v − y‖+ 4D5.6ψ(n)(log log φ(n))1/κ1 .

Combining this and (5.25) we have

h(‖v − q‖) + h(‖q− y‖)− h(‖v − y‖)

≥ µ‖v − q‖+ µ‖q− y‖ −
(
µ‖v − y‖+ 4D5.6ψ(n)(log log φ(n))1/κ1

)
≥
(
µK2

8
− 4D5.6

)
ψ(n)(log log φ(n))1/κ1 . (5.26)

Since E(λ) implies that there exist v ∈ B̄1,y ∈ B̄2 and q ∈ L−(λ) such that

T (v,y) = T (v,q) + T (y,q).

Combining the above two displays proves (5.24), that E(λ) ⊂ E1(λ).
Next we prove an upper bound for P(E1(λ)). For any (v,y) ∈ C̄, define B̃1 :=

v + B̃∗(v,y) and B̃2 := y + B̃∗(v,y). Then by Lemma 5.5,

P

(
sup

v′∈B̃1, y′∈B̃2

|T (v′,y′)− ET (v′,y′)| > D5.5ψ(‖v − y‖)(log log φ(‖v − y‖))1/κ1

)
≤ 1

(log φ(‖v − y‖))r
. (5.27)

Since for large n we have ‖v − y‖ ≤ 2n and

ψ(‖v − y‖)(log log φ(‖v − y‖))1/κ1 ≤ 4ψ(n)(log log φ(n))1/κ1 ,

1

(log φ(‖v − y‖))r
≤ 2r

(log φ(n))r
.

Then (5.27) implies

P

(
sup

v′∈B̃1, y′∈B̃2

|T (v′,y′)− ET (v′,y′)| > 4D5.5ψ(n)(log log φ(n))1/κ1

)
≤ 2r

(log φ(n))r
.

(5.28)
In addition, when n is large, for all (v,y) ∈ C̄

‖v − y‖ ≥ w∗(n)− 2ψ(n) ≥ w∗(n)

2
=

n

2(log φ(n))γ
,

| tan θ(v − y)| ≤ 2D5.3v(n)

w∗(n)/2
=

4D5.3ψ
1/2(n)(log φ(n))β+γ

n1/2
.

Since β + γ = η, then C̄ is (2(log φ(n))γ , 4D5.3)-regular. Then by Corollary 5.10, for all
(v,y) ∈ C̄

B′ :=
1

4D5.3 + 1
· 1

2(log φ(n))γ
B∗ ⊂ B̃∗(v,y).

Using this fact in (5.28) we have

P

(
sup

v′∈v+B′, y′∈y+B′
|T (v′,y′)− ET (v′,y′)| > 4D5.5ψ(n)(log log φ(n))1/κ1

)
≤ 2r

(log φ(n))r
.

(5.29)
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Note that for λ ∈ [w∗(n), n− w∗(n)], C(λ) ⊂ C̄ and therefore the above bound holds
for (v,y) ∈ C(λ). Each of B̄1 and B̄2 can be covered by

C1
ψ(n)

ψ(n)/(log φ(n))γ
·
(

n1/2ψ1/2(n)

u∗(n)/(log φ(n))γ

)d−1

= C1(log φ(n))γd+η(d−1)

copies of B′. L−(λ) can be covered by

C1
ψ(n)

ψ(n)/(log φ(n))γ
·
(

Kv(n)

u∗(n)/(log φ(n))γ

)d−1

= C1(log φ(n))γd+(η+β)(d−1)

copies of B′. Then if we take K so large that (µK2 − 32D5.6)/24 ≥ 4D5.5 , by (5.29) and
the union bound,

P(E1(λ))

≤ C1

(log φ(n))r
· (log φ(n))2γd

[
(log φ)(β+2η)(d−1) + (log φ)(β+2η)(d−1) + (log φ)2η(d−1)

]
≤ C1

(log φ(n))r−2γd−(2η+β)(d−1)
.

Combine the above bound, (5.23) and (5.24) in (5.22), taking K =
√

(96D5.5 + 32D5.6)/µ,
we have

P

(
sup

v∈B̄1, y∈B̄2

distmax(L(λ) ∩M(v,y), (0, ne1)) > Kv∗(n)

)

≤ 1

φr(n)
+ C1 exp

(
−C0ψ

d/α(n)
)

+
C1

(log φ(n))r−2γd−(2η+β)(d−1)
.

Since r > 0 is arbitrary, the proof of Lemma 5.7 is then completed.
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