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Abstract

We prove results for random walks in dynamic random environments which do not
require the strong uniform mixing assumptions present in the literature. We focus
on the “environment seen from the walker"-process and in particular its invariant
law. Under general conditions it exists and is mutually absolutely continuous to the
environment law. With stronger assumptions we obtain for example uniform control
on the density or a quenched CLT. The general conditions are made more explicit by
looking at hidden Markov models or Markov chains as environment and by providing
simple examples.
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1 Introduction and main results

1.1 Background and motivation

We study the asymptotic behaviour of a class of random walks (Xt) on Zd whose
transition probabilities depend on another process, the random environment. Such
models play an important role in the understanding of disordered systems and serve
as natural generalisations of the classical simple random walk model for describing
transport processes in inhomogeneous media.

These types of random walks, which are called random walks in random environment,
can be split into two broad areas, static and dynamic environments. In static environ-
ments the environment is created initially and then stays fixed in time. In dynamic
environments the environment instead evolves over time. Note that a dynamic environ-
ment in Zd can always be reinterpreted as a static environment in Zd+1 by turning time
into an additional space dimension.

A major interest in dynamic environments are their often complicated space-time
dependency structure. Typically, in order to show that the random walk is diffusive, one
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Absolute continuity and weak uniform mixing of RWDRE

looks for some way to guarantee that the environment is “forgetful” and random walk
increments are sufficiently independent on large time scales.

One approach to this are various types of mixing assumptions on the environment.
By now, general results are known for Markovian environments which are uniformly
mixing with respect to the starting configuration (see Avena, den Hollander, and Redig
[3] and Redig and Völlering [25]). For this, the rate at which the dynamic environment
converges towards its equilibrium state plays an important role.

On the other hand, models where the dynamical environment has non-uniform mixing
properties serve as a major challenge and are still not well understood. Opposite to the
diffusive behaviour known for uniform mixing environments, it has been conjectured that
(Xt) may be sub- or super-diffusive for certain non-uniform mixing environments, see
Avena and Thomann [2]. Though some particular examples yielding diffusive behaviour
have recently been studied by rigorous methods, e.g. Deuschel, Guo, and Ramirez [12],
Hilário, den Hollander, Sidoravicius, dos Santos, and Teixeira [17], Huveneers and
Simenhaus [19] and Mountford and Vares [23], these results are model specific and/or
perturbative in nature. No general theory has so far been developed.

In this article we provide a new approach for determining limiting properties of
random walks in dynamic random environment, in particular about the invariant law of
the “environment as seen from the walker”-process. Under general mixing assumptions,
we prove the existence of an invariant measure mutually absolutely continuous with
respect to the random environment (Theorems 1.2 and 1.5). Our mixing assumptions are
considerably weaker than the uniform mixing conditions present in the literature (e.g.
cone mixing) and do not require the environment to be Markovian.

An important feature of our approach is that it can also be applied to dynamics with
non-uniform mixing properties. Examples include an environment given by Ornstein-
Uhlenbeck processes and the supercritical contact process.

Knowledge about the invariant measures for the “environment as seen from the
walker”-process yield limit laws for the random walk itself. One immediate application of
our approach is a strong law of large numbers for the random walk. Further applications
include a quenched CLT based on Dolgopyat, Keller, and Liverani [15], Theorem 1,
considerably relaxing its requirements.

Our key observation is an expansion of the “environment as seen from the walker”-
process (Theorem 3.1). This expansion enables us to separate the contribution of the
random environment to the law of the “environment as seen from the walker”-process
from that of the transition probabilities of the random walk.

We also show stability under perturbations of the environment or of the jump kernel
of the random walk. Under a strong uniform mixing assumption, we obtain uniform
control on the Radon-Nikodym derivative of the law of the “environment as seen from
the walker”-process with respect to the environment, irrespective of the choice of the
jump kernel of the random walker.

Outline

In the next two subsections we give a precise definition of our model and present our
main results, Theorem 1.2 and Theorem 1.5. Section 2 is devoted to examples and
applications thereof. In Section 3 we derive the aforementioned expansion, and present
results on stability and control on the Radon-Nikodym derivative. Proofs are postponed
until Section 4.
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1.2 The model

In this subsection we give a formal definition of our model. In short, (Xt) is a random
walk in a translation invariant random field with a deterministic drift in a fixed coordinate
direction.

The environment

Let d ∈ N and let Ω := EZ
d+1

where E is assumed to be a finite set. We assign to
the space Ω the standard product σ-algebra F generated by the cylinder events. For
Λ ⊂ Zd+1, we denote by FΛ the sub-σ-algebra generated by the cylinders of Λ. For the
forward half-space H := Zd ×Z≥0 we write F≥0 for FH.

By M1(Ω) we denote the set of probability measures on (Ω,F). We call η ∈ Ω the
environment and denote by P ∈ M1(Ω) its law. A particular class of environments
contained in our setup are path measures of a stochastic process (ηt) whose state space

is Ω0 := EZ
d

. To emphasise this, for η ∈ Ω and (x, t) ∈ Zd×Z, we often write ηt(x) for
the value of η at (x, t).

We assume throughout that P is measure preserving with respect to translations,
that is, for any x ∈ Zd, t ∈ Z,

P(·) = P(θx,t·), (1.1)

where θx,t denotes the shift operator θx,tηs(y) = ηs+t(y + x). Furthermore, we assume
that P is ergodic in the time direction, that is, all events B ∈ F for which θo,1B := {ω ∈
Ω: θo,−1ω ∈ B} = B are assumed to satisfy P(B) ∈ {0, 1}. Here, o ∈ Zd denotes the
origin.

Remark 1.1. By considering the environment as a hidden Markov model, we present in
Subsection 2.2-2.4 an approach where E is allowed to be a general Polish space.

The random walk

The random walk (Xt) is a process on Zd. We assume w.l.o.g. that X0 = o. The transition
probabilities of (Xt) is assumed to depend on the state of the environment as seen from
the random walk. That is, given η ∈ Ω, then the evolution of (Xt) is given by

Pη(X0 = o) = 1

Pη(Xt+1 = y + z | Xt = y) = α(θy,tη, z),
(1.2)

where α : Ω×Zd → [0, 1] satisfies
∑
z∈Zd α(η, z) = 1 for all η ∈ Ω. The law of the random

walk, Pη ∈M1((Zd)Z≥0), where we have conditioned on the entire environment, is called
the quenched law. We denote its σ-algebra by G. Further, for P ∈M1(Ω), we denote by
PP ∈M1

(
Ω× (Zd)Z≥0

)
the joint law of (η,X), that is,

PP(B ×A) =

∫
B

Pη(A)dP(η), B ∈ F , A ∈ G. (1.3)

The marginal law of PP on (Zd)Z≥0 is the annealed (or averaged) law of (Xt).
We assume that the transition probabilities of (Xt) only depend on the environment

within a finite region around its location. That is, there exist R ∈ N such that for all
z ∈ Zd

α(η, z)− α(σ, z) = 0 whenever σ ≡ η on [−R,R]d × {0}. (1.4)
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Further, define

R := {y ∈ Zd : sup
η∈Ω

α(η, y) > 0} (1.5)

as the jump range of the random walker, which we assume to be finite and to contain o.
By possibly enlarging R we can guarantee that

sup
y∈Zd
{‖ y ‖1 : y ∈ R} ≤ R. (1.6)

Lastly, we say that (Xt) is elliptic in the time direction if

α(η, o) > 0, ∀ η ∈ Ω. (1.7)

If, after replacing o with y, (1.7) holds for all y ∈ R, then we say that (Xt) is elliptic.

The environment process

“The environment as seen from the walker”-process is of importance for understanding
the asymptotic behaviour of the random walk itself, but it is also of independent interest.
This process, which is given by

(ηEPt ) := (θXt,tη), t ∈ Z≥0, (1.8)

is called the environment process. Note that (ηEPt ) is a Markov process on Ω under Pη,
η ∈ Ω, with initial distribution P.

1.3 Main results

In this subsection we present our main results about the asymptotic behaviour of
(Xt) and (ηEPt ). However, before stating our first theorem we need to introduce some
more notation.

Recall (1.5) and let

Γk :=
{

(γ−k, γ−k+1, ..., γ0) : γi ∈ Zd, γi − γi−1 ∈ R,−k ≤ i < 0, γ0 = o
}

(1.9)

be the set of all possible backwards trajectories from (o, 0) of length k. For γ ∈ Γk and
σ ∈ Ω, denote by

A−m−k (γ, σ) :=

−m⋂
i=−k

{
θγi,−iη ≡ σi on [−R,R]d × {0}

}
, 1 ≤ m ≤ k, (1.10)

the event that an element η ∈ Ω equals σ in the R-neighbourhood along the path
(γk, . . . , γ−m). A−1

−k(γ, σ) is the event that the path of the environment observed by the
random walk equals σ if the random walk moves along the path γ. Given γ ∈ Γk, denote
by

A−m−k (γ) :=
{
A−m−k (γ, σ) : σ ∈ Ω and P(A−m−k (γ, σ)) > 0

}
(1.11)

the set of all possible observations along the path (γk, . . . , γ−m). We write A−m−∞ for the
set of events

⋃
k≥m,γ∈Γk

A−m−k (γ). If m = 1 we simply write A−∞.

Further, denote by C := {(x, t) ∈ H : ‖x ‖1 ≤ (R+ 1)t} the forward cone with centre
at (o, 0) and slope proportional to R + 1. For j ∈ Z, denote by C(j) := C ∩ θo,jH and let
F∞∞ :=

⋂
j∈N FC(j) be the tail-σ-algebra with respect to FC.
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Theorem 1.2 (Existence of an ergodic measure for the environment process). Assume
that P ∈M1(Ω) satisfies

lim
l→∞

sup
B∈FC(l)

sup
A∈A−∞

|P(B | A)− P(B)| = 0. (1.12)

Then there exists PEP ∈M1(Ω) invariant under (ηEPt ) satisfying PEP = P on F∞∞ .
If (Xt) is elliptic in the time direction and P is ergodic in the time direction, then

PEP is ergodic with respect to (ηEPt ). Moreover, for any Q� P on F∞∞ ,

1

t

t−1∑
s=0

PQ(ηEPs ∈ ·) converges weakly towards PEP as t→∞. (1.13)

Remark 1.3. There is a certain freedom in the ellipticity and the ergodicity assumptions
in Theorem 1.2. For instance, the statement still holds if, for some k ∈ N, the walker has
a positive probability to return to o after k time steps, uniformly in the environment. The
definitions can also be modified to require ellipticity and ergodicity with respect other
directions (y, 1) ∈ Zd+1, with y ∈ R (instead of in direction (o, 1)). On the other hand,
both ellipticity and ergodicity in the time direction are natural assumptions if P is the
path measure of some stochastic process.

Corollary 1.4 (Law of large numbers). Assume that P ∈ M1(Ω) is ergodic in the time
direction and satisfies (1.12), and that (Xt) is elliptic in the time direction. Then there
exists v ∈ Rd such that limt→∞

1
tXt = v, PP − a.s.

Condition (1.12) is a considerably weaker mixing assumption than the cone mixing
condition introduced by Comets and Zeitouni [11] (see Condition A1 therein) and used
in Avena, den Hollander, and Redig [3] in the context of random walks in dynamic
random environment. For comparison, note that cone mixing is equivalent to taking the
supremum over events A ∈ F<0 := FZd+1\H in (1.12). That Condition (1.12) is strictly
weaker can already be seen in the case where P is i.i.d. with respect to space; see
Theorem 2.1. Further examples where Condition (1.12) improve on the classical cone
mixing condition are given in Section 2 and include dynamic random environments with
non-uniform mixing properties.

Under a slightly stronger mixing assumption on the environment we obtain more
information about PEP . For this, denote by Λ(l) := {x ∈ H : ‖x ‖1 ≥ l}, l ∈ N, where
‖ · ‖1 denotes the l1 distance from (o, 0), and let F∞≥0 :=

⋂
l∈N FΛ(l) be the tail-σ-algebra

with respect to F≥0.

Theorem 1.5 (Absolute continuity). Let φ : N→ [0, 1] be such that

sup
B∈FΛ(l)

sup
A∈A−∞

|P(B | A)− P(B)| ≤ φ(l), (1.14)

with liml→∞ φ(l) = 0. Then PEP = P on F∞≥0 (with PEP as in Theorem 1.2) and

sup
B∈FΛ(l)

|P(B)− PEP (B)| ≤ φ(l). (1.15)

Furthermore, if (Xt) in addition is elliptic, then P and PEP are mutually absolutely
continuous on (Ω,F≥0).

Knowing that the environment process converges toward an ergodic measure, it is
well known how to apply martingale technics in order to deduce an annealed functional
central limit theorem. However, it may happen that the covariance matrix is trivial.
In Redig and Völlering [25] it was shown that the covariance matrix is non-trivial in a
rather general setting when the environment is given by a Markov process satisfying a
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certain uniform mixing assumption. It is an interesting question whether (Xt) satisfies
an annealed functional central limit theorem with non-trivial covariance matrix under
the weaker mixing assumption of (1.12).

To obtain a quenched central limit theorem is a much harder problem and is only
known in a few cases for random walks in dynamic random environment, see e.g.
Bricmont and Kupiainen [9], Deuschel, Guo, and Ramirez [12], Dolgopyat and Liverani
[14] and Dolgopyat, Keller, and Liverani [15]. In [15], Theorem 1, a quenched central
limit theorem was proven under technical conditions on both the environment and the
environment process. One important condition there was that the environment process
has an invariant measure mutually continuous with respect to the invariant measure of
the environment. By Theorem 1.5 above this condition is fulfilled. Combining this result
with rate of convergence estimates obtained in [25], we conclude a quenched central
limit theorem for a large class of uniformly mixing environments.

Corollary 1.6 (Quenched central limit theorem). Assume that (ηt) is a Markov chain on

EZ
d

. For σ, ω ∈ Ω0 let P̂σ,ω be a coupling of (ηt) started from σ, ω ∈ Ω0 respectively and
satisfying, for some c, C ∈ (0,∞),

sup
σ,ω∈Ω

P̂σ,ω(η
(1)
t (o) 6= η

(2)
t (o)) ≤ Ce−ct. (1.16)

Furthermore, assume that (ηt) satisfies Conditions (A3)-(A4) in [15] and that (Xt) is
elliptic. Then, there is a non-trivial d × d matrix Σ such that for Pµ-a.e. environment
history (ηt)

XN −Nv√
N

converges weakly towards N (0,Σ) P(ηt)−a.s., (1.17)

where µ ∈M1(Ω0) is the unique ergodic measure with respect to (ηt).

Conditions (A3)-(A4) in [15] are mixing assumptions on the dynamic random environ-
ment (ηt). Condition (A3) is a (weak) mixing assumption on µ, whereas Condition (A4)
ensures that (ηt) is “local”. For the precise definitions we refer to [15], page 1681.

In [15], Theorem 2, the statement of Corollary 1.6 was proven in a perturbative
regime. Corollary 1.6 extends their result as there are no restrictions (other than
ellipticity) on the transition probabilities of the random walk. We expect that Corollary
1.6 can be further improved to a functional CLT assuming only a polynomial decay in
(1.16).

2 Examples and applications

In this section we present examples of environments which satisfy the conditions of
Theorem 1.2 and Theorem 1.5. Particular emphasis is put on environments associated to
a hidden Markov model for which we can improve on the necessary mixing assumptions.

2.1 Environments i.i.d. in space

The influence of the dimension on required mixing speeds is somewhat subtle. On the
one hand, the random walk observes only a local area, and, in the case of conservative
particle systems like the exclusion process, one can expect that in high dimensions
information about observed particles in the past diffuses away. On the other hand, the
higher dimension, the more sites the random walk can potentially visit in a fixed time.
Furthermore, a comparison with a contact process or directed percolation gives an
argument that information can spread easier in higher dimensions, hence observations
along the path of the random walk could have more influence on future observations if
the dimension increases.
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This problem becomes significantly easier when the environment is assumed to be
i.i.d. in space, that is P =×x∈Zd Po, and Po ∈ M1(EZ) is the law of (ηt(x))t∈Z for any

x ∈ Zd.
Theorem 2.1. Assume that P =×x∈Zd Po and that∑

t≥1

sup
B∈G≥t,A∈G<0

|Po(B | A)− Po(B)| <∞, (2.1)

where G≥t (G<0) is the σ-algebra of EZ generated by the values after time t (before time
0) with respect to Po. Then (1.14) holds.

Observe that (2.1) does not depend on the dimension. This is in contrast to the cone
mixing condition of Comets and Zeitouni [11], where an additional factor td inside the
sum of (2.1) is required. In Subsection 2.3 we present a class of environments which
have arbitrary slow polynomial mixing, thus showing that Theorem 2.1 yields an essential
improvement.

2.2 Hidden Markov models

When P is the path measure of a stochastic process (ηt) evolving on Ω0, the results of
Subsection 1.3 can be improved. In this subsection we discuss in detail the case where
the random environment is governed by a hidden Markov model.

The environment (ηt) is a hidden Markov model if it is given via a function of a Markov

chain (ξt). To be more precise, let Ẽ be a Polish space, Ω̃0 = ẼZ
d̃

with d̃ ≥ d, and Ω̃ = Ω̃Z0 .
Denote by F̃ the corresponding σ-algebra. We assume that the Markov chain (ξt) is
defined on Ω̃ with law P̃ξ and is ergodic with law µ̃ ∈M1(Ω̃0). Here ξ ∈ Ω̃0 denotes the

starting configuration. Let Φ : Ω̃0 → Ω0 = EZ
d

be a translation invariant map and let
ηt = Φ(ξt). We call (ηt) a hidden Markov model, which has µ as the induced measure on
Ω0 as invariant measure. We assume throughout that Φ is of finite range, that is, the

function Φ(·)(o) is F̃Λ-measurable for some Λ ⊂ Zd̃ finite.

Remark 2.2. When Ẽ is finite, the canonical choice of Φ is the identity map. However,
our setup opens for more sophisticated choices. One example is the projection map.
For instance, if d̃ > 1 and d = 1, one can consider the hidden Markov model given by
ηt(x) = ξt(x, 0, . . . , 0). In other words, the random walk only observes the environment in
one coordinate.

Condition (1.14) in Theorem 1.5 is an infinite volume condition which can be hard
to verify by direct computation. The next result yields a sufficient condition which only
needs to be checked for single site events. For its statement, we first introduce the
concept of P ∈M1(Ω) having finite speed of propagation.

Definition 2.3. We say that P ∈M1(Ω) has finite speed of propagation if the following
holds: for some α > 0, and for each A ∈ F<0 and A′ ∈ FΛ(αt,t), where Λ(αt, t) := {(x, s) ∈
H : ‖x ‖1 ≥ αt, 0 < s ≤ t}, there is a coupling P̂A,A′ of P(· | A,A′) and P(· | A) such that∑

t≥1

td sup
A∈F<0,A′∈FΛ(αt,t)

P̂A,A′
(
η1
t (o) 6= η2

t (o)
)
<∞. (2.2)

Furthermore, any such coupling satisfies P̂A,A′(·) = P̂θx,sA,θx,sA′(θx,s·) for all (x, s) ∈
Zd+1, where ω ∈ θx,sA if and only if θ−x,−sω ∈ A.

Finite speed of propagation is a natural assumption for many physical applications.
Note that, for many interacting particle systems there is a canonical coupling given by
the so-called graphical representation coupling.
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Corollary 2.4. Assume that (ξt) has finite speed of propagation and that∑
t≥1

td sup
A∈A−t−∞

P̂Ω,A

(
Φ(ξ1)0(o) 6= Φ(ξ2)0(o)

)
<∞. (2.3)

Then (1.14) holds for (ηt) = Φ(ξt).

Remark 2.5. The measure P̂Ω,A denotes the coupling of P(·) and P(· | A).

Corollary 2.4 follows by a slightly more general statement, see Theorem 4.4. This
approach can also be used in cases where (ξt) does not have finite speed of propagation.
In such cases, (2.3) is sufficient for (1.12) to hold. Observe also that, by applying the
projection map introduced in Remark 2.2, the dimensionality dependence in Condition
(2.3) can be replaced by the dimensionality of the range of the random walk.

Markovian environment

If P is the path measure of a Markov chain (ηt), we can weaken the mixing assumption.
In such cases, we consider α as a function from Ω0 ×Zd. Because the Markov property
allows us to look at the invariant measure of the environment process just at a time 0

instead of in the entire upper half-space H, we have the following mixing condition. Here
we denote by F∞=0 the tail-σ-algebra of F=0 := FZd×{0}.
Theorem 2.6. Assume that (ηt) is a Markov chain with ergodic invariant measure
µ ∈ M1(Ω0). Further, assume that the path measure Pµ ∈ M1(Ω) has finite speed of
propagation and that ∑

t≥1

td−1 sup
A∈A−t−∞

P̂Ω,A

(
η1

0(o) 6= η2
0(o)

)
<∞. (2.4)

Then there exists µEP ∈ M1(Ω0) invariant for the Markov chain (ηEPt ) such that µEP

agrees with µ on F∞=0. If in addition (Xt) is elliptic, then µEP and µ are mutually
absolutely continuous and µEP is ergodic with respect to (ηEPt ).

It is important to note that (2.4) (as well as (2.3)) does not require (ηt) to be uniquely
ergodic. However, if for every σ, ξ ∈ Ω0, there is a coupling P̂σ,ξ of Pσ and Pξ which
satisfies the finite speed of propagation property and

∞∑
t=1

td−1 sup
σ,ξ∈Ω̃0

P̂σ,ξ(η
1
t (o) 6= η2

t (o)) <∞, (2.5)

then it follows, under the assumptions of Theorem 2.6, that (ηEPt ) is uniquely ergodic.
Equation (2.5) should be compared with Assumption 1a in [25], that is;∫ ∞

0

t(d) sup
η,ξ
Êη,ξρ(η1

t (o), η2
t (o))dt <∞, (2.6)

where ρ : E × E → [0, 1] is the distance function. Their assumption was used to show
(among others) the existence of µEP ∈ M1(Ω0) invariant and ergodic for the Markov
chain (ηEPt ), see Lemma 3.2 therein. Note in particular that Assumption (2.6) has t(d)

inside the integral, whereas (2.5) only requires t(d−1) inside the sum.

2.3 Polynomially mixing environments

As example of environments which fully utilise the polynomial mixing assumption of
Theorem 2.1 and Corollary 2.4, we consider layered environments. These were already
considered in [25] for the same purpose, but since we are in a different setting we use
the setting of hidden Markov models.
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The idea of layered environments is that, given a summable sequence (bn) ⊂ (0, 1), for
each layer n, the process (ξt(·, n))t∈Z≥0

is an uniform exponentially mixing Markov chain
on [−1, 1] with an exponential relaxation rate bn, and independent layers. For simplicity,

in this example, we choose ξt(·, n) to be i.i.d. spin flips, that is, for each x ∈ Zd̃,

ξt+1(x, n) =

{
ξt(x, n), with probability 1− bn;

Unif[−1, 1], with probability bn;
(2.7)

independent for all x, n, t. In other words, at each time step the spin retains its old value
with probability 1− bn and chooses uniformly on [−1, 1] with probability bn.

In the context of the previous subsection we thus have Ẽ := [−1, 1]N. We further
choose d̃ = d ≥ 1, E = {0, 1} and set, for a summable sequence (an) ⊂ (0, 1),

Φ(ξ)(x) = 1
∑∞
n=1 anξ(x,n)>0. (2.8)

The behaviour of this kind of processes is then determined by the two sequences (an)

and (bn). When an = 1
2n
−α, bn = 1

2n
−β for some α, β > 1, we have the following bound

on the mixing of (ηt).

Theorem 2.7. There are constants 0 < c1 < c2 <∞ so that

c1t
−α+1
β ≤ sup

ξ,σ
‖Pξ(ηt(0) ∈ ·)− Pσ(ηt(0) ∈ ·) ‖TV ≤ c2t

−α+1
β (log t)

α−1
β . (2.9)

Here ‖ · ‖TV is the total variation distance between the two distributions. In particular, if
α > β + 1, then (1.14) holds.

2.4 Independent Ornstein-Uhlenbeck processes

With the approach of environments as hidden Markov models, we can also allow
for unbounded state spaces where the environment does not mix uniformly, as long as
the random walk transition function is simple enough. Here we choose an underlying
environment of independent Ornstein-Uhlenbeck processes (ξxt )t∈R for each site x ∈ Zd,
and the jump rates depend only on the signs, that is,

ηt(x) = sign(ξxt ) := 1− 21ξxt <0, t ∈ Z . (2.10)

To state the example more formally, we have Ẽ = R and E = {−1, 1}, and

dξxt = −ξxt dt+ dW x
t , (2.11)

where (W x
t )t∈R, x ∈ Zd, are independent two-sided Brownian motions. The station-

ary measure of ξxt is a normal distribution, and µ̃ is the product measure of normal
distributions.

Theorem 2.8. Let (ξt)t∈R be an Ornstein-Uhlenbeck process and P̃ the two-sided path
measure in stationarity. There are constants c, C > 0 so that∥∥∥ P̃(ξt ∈ · | A)− P̃(ξt ∈ ·)

∥∥∥
TV
≤ Ce−ct (2.12)

for all t ≥ 0 and any A of the form A = {sign(ξ−tk) = ak, 1 ≤ k ≤ n}, (tk) increasing
sequence with t1 = 0 and ak ∈ {−1, 1}, n arbitrary. In particular, (1.14) holds for (ηt).

2.5 The contact process

As a second example of an environment with non-uniform space-time correlations and
which do not satisfy the cone mixing property of [11], we consider the contact process
(ηt) on {0, 1}Zd with infection parameter λ ∈ (0,∞).
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The contact process is one of the simplest interacting particle systems exhibiting
a phase transition. That is, there is a critical threshold λc(d) ∈ (0,∞), depending on
the dimension d, such that the following holds: if λ ≤ λc(d), then the contact process is
uniquely ergodic with the measure concentrating on the configuration where all sites
equal to 0 as invariant measure. On the other hand, for all λ > λc(d), the contact process
is not uniquely ergodic. In particular, it has a non-trivial ergodic invariant measure,
denoted here by ν̄λ, also known as the upper invariant measure. As a general reference,
and for a precise description of the contact process, we refer to Liggett [20].

Random walks on the contact process have recently been studied by den Hollander
and dos Santos [18] and Mountford and Vares [23], where the one-dimensional random
walk (i.e. on Z) was shown to behave diffusively for all λ > λc(1). See also Bethuelsen
and Heydenreich [8] for some results in general dimensions.

The next theorem sheds new light on the behaviour of the environment process and
the random walk for this model on Zd with d ≥ 2. In the theorem we make use of the
projection map, as introduced in Remark 2.2. That is, we assume d̃ ≥ 2 and denote by
(ηt) = φ((ξt)) the projection of (ξt) onto the 1-dimensional lattice such that, for x ∈ Z and
t ∈ Z, we set ηt(x) = ξt(x, 0, . . . , 0).

Theorem 2.9. Let d̃ ≥ 2 and let (ξt) be the contact process with parameter λ > λc(d̃)

started from ν̄λ. Further, let (ηEPt ) be the environment process corresponding to the
process (ηt) = φ ((ξt)). Then (1.14) holds for (ηt).

Theorem 2.9 can be extended to higher dimensional projections by following the
same approach. The proof strategy of Theorem 2.9 also applies to a larger class of
models which satisfy the so-called downward FKG property; see Theorem 4.5.

3 Understanding the environment process

3.1 Expansion of the environment process

In this subsection, we present a key observation for understanding the environment
process and for the proofs of Theorem 1.2 and Theorem 1.5.

Intuitively, the distribution of (ηEPt ) should converge to an invariant measure, say
PEP ∈ M1(Ω), which describes asymptotic properties. To obtain PEP and show that
it is absolutely continuous with respect to P, we start by interpreting the law of ηEPt ,
PP(ηEPt ∈ ·), as an approximation. With this point of view, t becomes the present time.
Going from t to t+ 1 thus means that we look one step further into the past. To reinforce
this point of view, we denote by P−k := P−kP ∈ M1(Ω × (Zd)Z≥−k) the joint law of the
environment P and random walk (Xt)t≥−k so that X0 = o. That is, for k ∈ N,

P−k ((η,X) ∈ (B1, B2)) := PP
(
ηEPk+· ∈ B1, (Xk+· −Xk) ∈ B2

)
. (3.1)

For events B ∈ F , we use the shorthand notation P−k(B) for the probability that
P−k((η,X) ∈ (B, (Zd)Z≥−k)).

Theorem 3.1 (Expansion of the environment process). For any k ≥ 1 and B ∈ F ,

P−k(B) =
∑
γ∈Γk

∑
A−1
−k∈A

−1
−k(γ)

P
(
B,A−1

−k
)
P
(
X−k,...,0 = γ | A−1

−k
)
, (3.2)

where P
(
X−k,...,0 = γ | A−1

−k
)

:=
∏−1
i=−k α(σ̂i, γi+1 − γi), and σ̂ ∈ Ω is any environment so

that A−1
−k(γ, σ̂) = A−1

−k.
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Proof. We can rewrite P−k(B) as follows;

P−k(B) =
∑
γ∈Γk

∑
A−1
−k∈A

−1
−k(γ)

P−k(B, X−k,...,0 = γ,A−1
−k)

=
∑
γ∈Γk

∑
A−1
−k∈A

−1
−k(γ)

[
P−k(B | A−1

−k, X−k,...,0 = γ)

P−k(X−k,...,0 = γ,A−1
−k)
]
.

By definition,

P−k(X−k,...,0 = γ,A−1
−k) = PP(X0,...,k = γ − γ−k, ηEPk ∈ A−1

−k)

= PP(X0,...,k = γ − γ−k, θ−γ−k,kη ∈ A
−1
−k)

= P (X−k,...,0 = γ | A−1
−k)P(θ−γ−k,kη ∈ A

−1
−k)

= P (X−k,...,0 = γ | A−1
−k)P(A−1

−k),

where the last equality holds since first the law of the environment is translation invariant.
Similarly,

P−k(B | A−1
−k, X−k,...,0 = γ) = P(B | A−1

−k).

The sum in Expansion (3.2) represents all the possible pasts of the random walk
and the corresponding observed environments from time −k to −1. There are two key
features with this expansion.

First, it separates the contribution to (ηEPt ) of the random walk from that of the
random environment. Indeed, the rightmost term in the sum, i.e. P

(
X−k,...,0 = γ | A−1

−k
)
,

can be calculated directly from the transition probabilities of (Xt). On the other hand,
the leftmost term in the sum, i.e. P

(
B,A−1

−k
)
, only involves the random environment P.

A second key feature of (3.2) is that it serves as a (formal) expression for the Radon-
Nikodym derivate of PP(ηEPk ∈ ·) with respect to P. Indeed, (3.2) yields that for any
B ∈ F with P(B) > 0,

PP(ηEPk ∈ B)

P(B)
=
∑
γ∈Γk

∑
A−1
−k∈A

−1
−k(γ)

P
(
B,A−1

−k
)

P(B)
P
(
X−k,...,0 = γ | A−1

−k
)
. (3.3)

3.2 Stability

It is also of interest to compare the effect of changing the environment P or the
transition probabilities α : Ω×Zd → [0, 1] on the behaviour of the environment process.
Our next result gives sufficient conditions for the environment process to be stable
with respect to perturbations of both these parameters. This result follows as another
consequence of the expansion in Theorem 3.1.

To state the theorem precisely, denote by (Pn)n≥1 a family of measures on M1(Ω)

and let
(
αn : Ω×Zd → [0, 1]

)
n≥1

be a collection of transition probabilities. Consider for

each n ∈ N the corresponding environment process, (η
EP (n)
t ), and let PEP (n) ∈ M1(Ω)

be a measure invariant under (η
EP (n)
t ).

Theorem 3.2. Assume that the following holds.

a) ε(n) = supm>n supη∈Ω,y∈Zd |αm(η, y)− αn(η, y)| ↓ 0 as n→∞.

b) Pn =⇒ P ∈M1(Ω) weakly as n→∞.
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c) PPn(η
EP (n)
t ∈ ·) =⇒ PEP (n) weakly as t→∞, uniformly in n.

Then both PEP (n) and PP(ηEPt ) converge weakly towards PEP ∈ M1(Ω). In particular,
PEP is invariant with respect to (ηEPt ).

Condition c) in Theorem 3.2 is a strong uniform assumption. If the Pn’s are path
measures of Markov chains (η

(n)
t ), this condition can be replaced by the assumption that

the environment process (ηEPt ), i.e., after taking n→∞, is uniquely ergodic. For this,
recall notation from Section 2.2 and let µEP (n) ∈M1(Ω0) be an invariant measure with

respect to (η
EP (n)
t ).

Theorem 3.3. Let (ηt) be a Markov chain and assume that the following holds.

a) ε(n) = supm>n supη∈Ω,y∈Zd |αm(η, y)− αn(η, y)| ↓ 0 as n→∞.

b’) Pnσ =⇒ Pσ ∈M1(Ω) for every starting configuration σ ∈ Ω0.

c’) (ηEPt ) is uniquely ergodic with invariant measure µEP ∈M1(Ω0).

Then µEP (n) =⇒ µEP weakly.

Remark 3.4. Theorem 3.3 does only require that the limiting process (ηEPt ) is uniquely

ergodic. In particular, the processes (η
EP (n)
t ) do not need to be uniquely ergodic. As an

example of the latter, one can consider the case where (η
(n)
t ) is the contact process with

parameter λ(n) ↓ λc and infη∈Ω αn(η, o) ↑ 1.

Theorem 3.3 gives a generalisation of Theorem 3.3 in [25]. There they showed conti-
nuity for the environment process with respect to changes of the transition probabilities
of the random walk, assuming that Assumption 1a therein to hold (which we also stated
in (2.6)). Theorem 3.3 yields a similar continuity result which in addition allow for
changes in the dynamics of the environment (ηt). Moreover, unique ergodicity is a
weaker assumption than the mixing assumption given by (2.5), as we have already seen
in Subsection 2.1 and Subsection 2.2.

3.3 Estimating the Radon-Nikodym derivative

We end this section with an alternative route for proving the existence of an invariant
measure for the environment process which is absolutely continuous with respect to the
underlying environment. An advantage of this approach is that it implies bounds on the
Radon-Nikodym derivative.

Theorem 3.5. Assume that, for some M1 ∈ (0,∞),

sup
B∈F≥0

sup
Al∈A−1

−l

∣∣∣∣P(B | Al)
P(B)

− 1

∣∣∣∣ ≤M1, ∀ l ∈ N . (3.4)

Then there is a PEP ∈ M1(Ω), invariant under (ηEPt ), and PEP � P on (Ω,F≥0).
Moreover, the corresponding Radon-Nikodym derivative is bounded by M1 in the L∞-
norm. Furthermore, if for some M2 ∈ (0,∞),

sup
B∈F≥0

sup
Al∈A−1

−l

∣∣∣∣ P(B)

P(B | Al)
− 1

∣∣∣∣ ≤M2, ∀ l ∈ N . (3.5)

Then P� PEP and the corresponding Radon-Nikodym derivative is bounded by M2 in
the L∞-norm.

Remark 3.6. Mutually absolute continuity can also be shown without requiring (3.5) to
hold. In particular, if (3.4) holds and (Xt) is elliptic in the time direction, it can be shown
that P � PEP . Under these assumptions it moreover follows that PEP is ergodic and

that
(
t−1

∑t
k=1 PP(ηEPk ∈ ·)

)
t≥1

converges weakly towards PEP .
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Mixing assumptions of the type (3.4) and (3.5) are typically much stronger than
mixing assumptions as in Theorems 1.2 and 1.5. Nevertheless, we believe that Theorem
3.5 is applicable to a wide range of models and is not restricted to the uniform mixing
case. However, it seems difficult to verify (3.4) and (3.5) for concrete examples unless
strong mixing assumptions are made.

One class of examples to which Theorem 3.5 applies are Gibbs measures in the
high-temperature regime satisfying the Dobrushin-Shlosman strong mixing condition
(as considered in Rassoul-Agha [24] for RWRE models); see Theorem 1.1 (in particular,
Condition IIId) in Dobrushin and Shlosman [13]. Another class of environments are
certain monotone Gibbs measures for which Alexander [1] proved (see Theorems 3.3 and
3.4 therein) that weak mixing implies ratio mixing. In particular, the models considered
there satisfy (3.4) and (3.5) throughout the uniqueness regime. We also mention the
method of disagreement percolation, which is particularly useful for models with hard-
core constraints, see van den Berg and Maes [6].

In the case of dynamic random environments which in addition are reversible with
respect to time, typically, the methods described above for random fields can be adapted
to yield similar bounds. In Section 4.5 we introduce a new class of dynamic random
environments satisfying (3.4), allowing for non-reversible dynamics. We comment next
on the scope of this approach.

Our approach is by means of disagreement percolation and applies to discrete-time
finite-range Markov chain (ηt). In fact, we shall need more than subcriticality of the
ordinary disagreement process. For what we believe to be technical reasons, we will
introduce what we call the strong disagreement percolation coupling. This is a triple
(η1
t , η

2
t , ξt) where (η1

t , η
2
t ) is a coupling of Pη1

0
and Pη2

o
, ξt(x) = 0 implies η1

t (x) = η2
t (x),

and η1 and ξ are independent. That is, the disagreement process ξ and the process η1

are independent. This independence is a stronger assumption than regular disagreement
percolation and the strong disagreement percolation process is subcritical for models at
“very high-temperature”. We refer to Section 4.5 for a precise construction of the strong
disagreement percolation coupling and a proof of the following theorem.

Theorem 3.7 (Strong disagreement percolation). Suppose the strong disagreement
percolation process is subcritical. Then there exists δ < 1 and C > 0 so that for any
B ∈ F=0,

sup
A−1
−(k+1)

∈A−1
−(k+1)

,A−1
−k∈A

−1
−k

A−1
−k⊂A

−1
−(k+1)

sup
B∈F=0

∣∣∣∣∣∣
[
P
(
B
∣∣ A−1
−k−1

)
P
(
B
∣∣ A−1
−k
) ]±1

− 1

∣∣∣∣∣∣ ≤ Cδk. (3.6)

Theorem 3.7 implies that the environment process (ηEPt ) has a unique invariant
distribution, µEP ∈M1(Ω0). In particular, µEP is absolutely continuous with respect to
the (necessarily unique) invariant measure of (ηt), denoted by µ ∈M1(Ω0). As a further
consequence, we obtain uniform control on the Radon-Nikodym derivative.

Corollary 3.8 (Uniform control on the Radon-Nikodym derivative). Assume that the en-
vironment (ηt) has a strong disagreement percolation coupling which is subcritical.
Then µEP and µ are mutually absolutely continuous. Moreover, there exists a con-

stant M ∈ (0,∞), depending only on the environment, such that
∥∥∥ dµEPdµ

∥∥∥
∞
≤ M and∥∥∥ dµ

dµEP

∥∥∥
∞
≤M .

Subcriticality of the strong disagreement coupling is a much stronger assumption
than the uniform mixing assumption in (2.5). For comparison with other coupling
methods, consider for concreteness the stochastic Ising model with inverse temperature
β > 0 (see e.g. [10] for a definition). This model satisfies (2.5) for all β < βc, where
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βc is the critical inverse temperature. On the other hand, it has a subcritical strong
disagreement coupling whenever

β <
1

4d
log
( 2d

2d− 1

)
< βc. (3.7)

For comparison, this condition is better (with a factor 2) compared with the disagreement
percolation coupling introduced in [10] (see Equation (11) therein).

Remark 3.9. The estimate in (3.7) is valid for antiferromagnetic models and models
with a magnetic field, as also considered in [10]. In particular, the strong disagreement
percolation method is not restricted to monotone environments.

4 Proofs

In this section, we present the proofs of the theorems given in the previous sections.
In Subsection 4.1 we give the proofs of theorems in Section 1.3. Proofs of theorems
in Section 2 are given in Subsection 4.2. In the remaining subsections we present
proofs of theorems from Section 3. In particular, Subsection 4.5 introduces the strong
disagreement coupling and contains the proof Theorem 3.7.

4.1 Proof of main results

The main application of the expansion in Theorem 3.1 for the proofs of Theorems 1.2
and 1.5 is the following lemma.

Lemma 4.1. Let Λ ⊂ Zd+1. For B ∈ FΛ and k ∈ N we have that

|PP(ηEPk ∈ B)− P(B)| ≤ sup
A∈A−∞

|P(B | A)− P(B)|. (4.1)

Proof. Let l ∈ N and consider any B ∈ FΛ. From Theorem 3.1 we have that for every
k ∈ N, ∣∣PP (ηEPk ∈ B

)
− P (B)

∣∣
=
∣∣ ∑
γ∈Γk

∑
A−1
−k∈A

−1
−k(γ)

P
(
B,A−1

−k
)
P
(
X−k,...,0 = γ | A−1

−k
)
− P (B)

∣∣
=
∣∣ ∑
γ∈Γk

∑
A−1
−k∈A

−1
−k(γ)

P
(
B | A−1

−k
)
P−k

(
X−k,...,0 = γ,A−1

−k
)
− P (B)

∣∣
≤
∑
γ∈Γk

∑
A−1
−k∈A

−1
−k(γ)

∣∣P (B | A−1
−k
)
− P (B)

∣∣P−k (X−k,...,0 = γ,A−1
−k
)

≤ sup
A∈A−∞

∣∣P (B | A)− P (B)
∣∣,

where in the second last and the last inequality we used the fact that∑
γ∈Γk

∑
A−1
−k∈A

−1
−k(γ)

P−k
(
X−k,...,0 = γ,A−1

−k(γ, σ)
)

= 1.

Proof of Theorem 1.2. Consider a sequence (tk) and a sequence of measures given
by Qk := 1

tk

∑tk−1
t=0 PP(ηEPt ∈ ·) that converges weakly to Q ∈ M1(Ω). By standard

compactness arguments such a sequence exists and, moreover, any such limiting measure
Q is invariant for (ηEPt ). A proof of the last claim is e.g. given in [24]; see page 1457 in
the proof of Theorem 3 therein.
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Since (1.12) is assumed to hold, it follows by Lemma 4.1 that for any l ∈ N and
B ∈ FC(l),

|Qk(B)− P(B)| ≤ φ(l), (4.2)

for some φ : N → [0, 1] such that liml→∞ φ(l) = 0. As this estimate is uniform in k, we
claim that (4.2) also holds when Qk is replaced by Q. To see this, consider the space of
measures measurable with respect to (Ω,FC(l)). The ball of radius φ(l) around P (in the
total variation sense) is compact in the topology of weak convergence by the Banach-
Alaoglu-Theorem. Here we use that the space is compact, the dual of the continuous
bounded functions are finite signed measures equipped with the total variation norm, and
the weak convergence of measures is the weak-* convergence in this functional-analytic
setting. Since the ball is compact it is closed, and any limit point Q of the sequence Qk
is also inside the ball. Hence |Q(B)− P(B)| ≤ φ(l) for any B ∈ FC(l) and consequently,
since liml→∞ φ(l) = 0, we have Q = P on F∞∞ .

We continue with the proof that Q is ergodic with respect to (ηEPt ), by following the
proof of Theorem 2ii) in [24]. Denote by I ⊂ F the σ-algebra consisting of those events
invariant under the evolution of (ηEPt ). Further, let f be any local bounded function on Ω

and define g = EQ (f | I). Birkhoffs ergodic theorem implies that,

Pη

(
lim
n→∞

n−1
n∑

m=1

f(ηEPm ) = g(η)

)
= 1, for Q-a.e. η ∈ Ω.

Using that Q is invariant and that g is harmonic, we have∑
|x|≤R

∫
α(η, x)(g(η)− g(θx,1η))2Q(dη)

=

∫
g2(η)Q(dη)− 2

∫
g(η)

∑
|x|≤R

α(η, x)g(θx,1η)Q(dη)

+

∫ ∑
|x|≤R

α(η, x)(g(θx,1η))2Q(dη)

=0.

In particular, since (Xt) is elliptic in the time direction, g = g ◦ θo,1, Q-a.s.
Next, for each t ∈ N, denote by Bt ⊂ {Xi = o for all i ∈ {0, . . . , t}} the event that the

random walk does not move in the time-interval [0, t], irrespectively of the environment.
Since (Xt) is elliptic in the time direction, Bt has strictly positive probability and can be
taken independently of the environment. Further, define

ḡ(η) := lim sup
n→∞

1

Q(Bt)

∫
Bt

n−1
n∑

m=1

f(ηEPm )dPη. (4.3)

Then, because of (4.1), we know that g = ḡ, Q-a.s. Further, using the above mentioned
independence property, and by possibly taking t large, we note that ḡ is C(k)-measurable
for any k ∈ N. Consequently, the same holds for g, and hence g is F∞∞ -measurable.
Furthermore, since Q = P on F∞∞ , this implies that (4.1) holds P-a.s., and that g = g◦θo,1,
P-a.s. As P is ergodic with respect to θo,1, it moreover follows that g is constant P-a.s.,
and hence also Q-a.s. Since f was an arbitrary local bounded function, we conclude from
this that I is trivial and thus that Q is ergodic with respect to (ηEPt ).

To conclude the proof we also note that (1.13) holds. Indeed, since Q was an arbitrary
(sub) sequence of (Qk), all the estimates above are valid for any such limiting measure.
In particular, each of these limiting measures equal P on F∞∞ , and consequently, they
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are all ergodic and equal on I. Thus, they are the same, and we conclude that (1.13)
holds with respect to P, where we call the limiting measure PEP . Initialising (ηEPt ) with
any other probability measure, absolute continuous with respect to P on F∞∞ , the exact
same argument as outlined above applies, from which we conclude (1.13) and the proof
of Theorem 1.2.

Proof of Corollary 1.4. The claim is an (almost direct) application of ergodicity and that
P = PEP on F∞∞ . Indeed, let D(η) :=

∑
z∈Zd zα(η, z) be the local drift of the random

walker in environment η. A direct consequence of Theorem 1.2 is that

PPEP

(
lim
n→∞

n−1
n∑
k=1

D(θXk,kη) = v

)
= 1, (4.4)

where v =
∫
D(η)PPEP (dη). By using that P = PEP on F∞∞ , it follows that this also holds

with respect to PP. Now, note that Mn = Xn −
∑n−1
m=0D(θXk,kη) is a martingale with

bounded increments under Pη. Therefore Pη(limn→∞ n−1Mn = 0) = 1 which together
with (4.4) implies the law of large numbers.

We next turn to the proof of Theorem 1.5. The following lemma is essentially copied
from [7].

Lemma 4.2. Assume PEP is invariant with respect to (ηEPt ) and that PEP and P

restricted to (Ω,F≥0) are not singular. Assume (Xt) is elliptic. Then there exists
PEPc ∈M1(Ω), invariant for (ηEPt ) and mutually absolutely continuous to P on (Ω,F≥0).

Proof of Lemma 4.2. Consider the (unique) Lebesgue decomposition of PEP with respect
to P restricted to (Ω,F≥0). That is, let

PEP (B) = αPEPc (B) + (1− α)PEPs (B), ∀B ∈ F≥0, (4.5)

where PEPc � P and PEPs ⊥P on (Ω,F≥0). By assumption, we know that α > 0. If
α = 1, the statement is immediate. Thus, assume α ∈ (0, 1). In a first step, observe that
(θy,1 ◦PEP )c = θy,1 ◦PEPc for every y ∈ R. This follows from translation invariance of P
which implies that taking the continuous part with respect to P is the same as taking the
continuous part with respect to θy,1 ◦ P. The same is true for the singular part PEPs .

Note that, since E is finite and (Xt) is finite range, we have that ellipticity in fact
implies uniform ellipticity. That is, there is an ε > 0 such that

inf
y∈R

inf
η∈Ω

α(η, y) ≥ ε > 0. (4.6)

In particular, by invariance of PEP ,

PEP =
∑
y∈R

α(·, y)θy,1 ◦ PEP ≥ ε
∑
y∈R

θy,1 ◦ PEP (4.7)

and therefore θy,1 ◦ PEP � PEP for every y ∈ R. By using first ellipticity and then
(θy,1 ◦ PEP )c = θy,1 ◦ PEPc we have

PEPc =

∑
y∈R

α(·, y)θy,1 ◦ PEP

c

=
∑
y∈R

α(·, y)
(
θy,1 ◦ PEP

)
c

=
∑
y∈R

α(·, y)θy,1 ◦ PEPc ,

(4.8)

which means that PEPc is invariant for (ηEPt ).
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Let f =
dPEPc
dP and define B = {η ∈ Ω: f(η) > 0}. As a consequence of (4.8) we have

f(η) ≥ ε
∑
y∈R

f(θy,1η), (4.9)

and, in particular, η ∈ B implies θy,1η ∈ B, y ∈ R. In particular, B is invariant under θo,1,
and by ergodicity of P this is a 0− 1 event. Since by assumption α > 0 we have P(B) = 1

and therefore P� PEPc on (Ω,F≥0).

Lemma 4.3. Let Λ ⊂ Zd+1 finite and fix σ ∈ EΛc . Let P(· | σ) and P−k(· | σ) be the
regular conditional probabilities of P and P−k on EΛ given σ. Then, for B ∈ FΛ and
k ≥ 1,

P−k(B | σ) =
∑
γ∈Γk

∑
A−1
−k∈A

−1
−k(γ)

P
(
B,A−1

−k | σ
)
P
(
X−k,...,0 = γ | A−1

−k
)
. (4.10)

Proof. The proof is mostly as for the unconditional expansion. Additionally we use the
following equalities:

P−k(B | A−1
−k, X−k,...,0 = γ, σ) = PP(θ−γ−k,kB | θ−γ−k,kA

−1
−k, θ−γ−k,kσ)

= P(B | A−1
−k, σ)

and

P−k(X−k,...,0 = γ,A−1
−k | σ)

=PP(ηEPk ∈ A−1
−k, X0,...,k = γ − γ−k | θXk,kσ)

=P (X0,...,k = γ − γ−k | A−1
−k)P(θ−γ−k,kη ∈ A

−1
−k | θ−γ−k,kσ)

=P (X0,...,k = γ − γ−k | A−1
−k)P(η ∈ A−1

−k | σ).

Take also note that summation should only include events A−1
−k which have positive

probability with respect to the conditional law given σ.

Proof of Theorem 1.5. By applying the same line of reasoning as in the proof of Theorem
1.2, it easy to see that (1.15) holds as a consequence of (1.14) and Lemma 4.1. In
particular, there is a measure Q invariant under (ηEPt ) such that (1.15) holds, and
consequently Q = P on F∞≥0. We focus on the proof that Q and P are mutually absolutely
continuous under the additional assumption that (Xt) is elliptic.

Since (1.15) holds, there is an l ∈ N such that supB∈FΛ(l)
|Q(B) − P(B)| < 1. In

particular, P and Q are not singular on FΛ(l). In order to conclude that Q and P are not
singular on F≥0 we make use of Lemma 4.3 and the assumption that |E| <∞. Indeed,
for any σ ∈ EΛ(l) we have by Lemma 4.3 that P−k(· | σ)� P(· | σ). Further, since E is
finite any local function is continuous and hence we also have Q(· | σ)� P(· | σ). And
since Q is non-singular on Λ(l) with respect to P it has non-trivial continuous part and
corresponding density on Λ(l). Thus, we now also have shown that conditioned on Λ(l)

the measure Q has a density inside H \ Λ(l). It hence follows that Q is not singular with
respect to P on H. As a consequence of Lemma 4.2 and that Q and P are not singular on
H we conclude that, when (Xt) is elliptic, there is a measure PEP ∈ M1(Ω) invariant
under (ηEPt ) such that PEP and P are mutually absolutely continuous on F≥0.

Proof of Corollary 1.6. Corollary 1.6 is an application of Theorem 1 in [15]. In order to
fulfil the requirements of their theorem six conditions needs to be satisfied, i.e. (A0)-(A5)
therein. Our main contribution is that Condition (A1) is satisfied when (1.16) holds. This
follows as a direct consequence of Theorem 1.5 (see also Theorem 2.6). Furthermore,
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that Conditions (A0) holds under (1.16) follows partly by the mixing assumptions on µ.
Moreover, that also µEP and µ are mixing is a consequence of Theorem 3.4 in [25] which
yields exponential rate of convergence for environment process under the assumption
that (1.16) holds. By the same reasoning, Theorem 3.4 in [25] also implies that Condition
(A2) holds true. Lastly, we note that Conditions (A3) and (A4) are true by assumption
and Condition (A5) is satisfied since (Xt) is elliptic.

4.2 Proof of examples

4.2.1 Proof of Theorem 2.1

Proof. For k ∈ N, let γ ∈ Γk and consider A ∈ A−1
−k(γ). Since A consists of a fixed

observation of the environment along the path γ we can write A =
⋂
x∈Zd Ax, where Ax

is the observation on the line {(x, s) : s ∈ Z}. Without change of notation we also treat
Ax as an event on the space EZ. Denote by P̂x the optimal coupling (in the sense of total
variation distance) of Po(· | Ax) and Po(·), and by P̂ =×x∈Zd P̂x. The product structure

of P plus the fact that A is given by the intersection of the events Ax gives us that P̂ is a
coupling of P(· | A) and P(·).

For l ∈ N, let B ∈ FΛ(l). We have that

|P(B | A)− P(B)| ≤ P̂
(
∃(x, s) ∈ Λ(l) : η1

s(x) 6= η2
s(x)

)
≤
∑
x∈Zd

P̂
(
∃s ≥ 0: (x, s) ∈ Λ(l) and η1

s(x) 6= η2
s(x)

)
≤
∑
t<0

∑
(x,t)∈γ+[−R,R]d×{0}

sup
B∈G≥0∨(l−|x|)

|Po(B|Ax)− P(B)| .

The last line follows from the fact that η1(x) and η2(x) can only differ if the site x is part
of the observation A, since otherwise Ax = EZ. Condition (2.1) thus ensures that the
sum in the last line is finite. In particular, the sum converges to 0 as l→∞. This shows
that P satisfies (1.14).

4.2.2 Proof of Corollary 2.4

Corollary 2.4 follows by a slightly stronger statement, which we state and prove first.

Theorem 4.4. Assume that P ∈M1(Ω) has finite speed of propagation and that∑
t≥1

td sup
A′∈A−t−∞

P̂Ω,A′
(
η1

0(o) 6= η2
0(o)

)
<∞. (4.11)

Then P satisfies the conditions of Theorem 1.5.

Proof of Theorem 4.4. Let l ∈ N and consider B ∈ FΛ(l). By Theorem 1.5, it is sufficient
to obtain uniform estimates of the form |P(B | A)− P(B)| ≤ φ(l), where A ∈ A−∞, and
where φ(l) approaches 0 as l→∞. For this, we first note that

|P (B | A)− P (B)| ≤ P̂A,Ω
(
η1
t (x) 6= η2

t (x) for some (x, t) ∈ Λ(l)
)

≤
∑

(x,t)∈Λ(l)

P̂A,Ω
(
η1
t (x) 6= η2

t (x)
)
.

Thus, it suffices to control P̂A,Ω
(
η1
t (x) 6= η2

t (x)
)

for each (x, t) ∈ Λ(l). For this, fix
(x, t) ∈ Λ(l) such that ‖ (x, t) ‖1 ≥ αs for some s ≥ 0. Further, let A′ ∈ A−s−∞ be such that
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A′ ∩A = A, and denote by P̃A,A′,Ω a measure on Ω× Ω× Ω such that

P̃A,A′,Ω(η1 ∈ ·, η2 ∈ ·,Ω) = P̂A,A′(η
1 ∈ ·, η2 ∈ ·);

P̃A,A′,Ω(η1 ∈ ·,Ω, η3 ∈ ·) = P̂A,Ω(η1 ∈ ·, η3 ∈ ·);

P̃A,A′,Ω(Ω, η2 ∈ ·, η3 ∈ ·) = P̂A′,Ω(η2 ∈ ·, η3 ∈ ·).

We then have that

P̂A,Ω
(
η1
t (x) 6= η2

t (x)
)

=P̃A,A′,Ω(η1
t (x) 6= η3

t (x))

≤P̃A,A′,Ω(η1
t (x) 6= η2

t (x) or η2
t (x) 6= η3

t (x))

≤P̃A,A′,Ω(η1
t (x) 6= η2

t (x)) + P̃A,A′,Ω(η2
t (x) 6= η3

t (x))

=P̂A,A′
(
η1
t (x) 6= η2

t (x)
)

+ P̂A′,Ω
(
η1
t (x) 6= η2

t (x)
)
,

Furthermore, it holds that

P̂A,A′
(
η1
t (x) 6= η2

t (x)
)

+ P̂Ω,A′
(
η1
t (x) 6= η2

t (x)
)

≤ sup
A∈F<0,A′∈FΛ(αs,s)

P̂A,A′
(
η1
s(o) 6= η2

s(o)
)

+ sup
A′′∈A−αs−∞

P̂Ω,A′′
(
η1

0(o) 6= η2
0(o)

)
,

since the finite speed of propagation coupling is invariant with respect to translations of
the conditioning and the argument. Thus, by the analysis above, we obtain that

|P(B | A)− P(B)| ≤

 ∑
(x,t)∈Λ(l)
‖ (x,t) ‖1=αs

sup
A∈F<0,A′∈FΛ(αs,s)

P̂A,A′
(
η1
s(o) 6= η2

s(o)
)

+

 ∑
(x,t)∈Λ(l)
‖ (x,t) ‖1=αs

sup
A′′∈A−αs−∞

P̂A′′,Ω
(
η1

0(x) 6= η2
0(x)

) . (4.12)

To conclude the proof, we note that the number of site in H at distance αs from the origin
is of order sd. Thus, due to (2.2) the first sum on the r.h.s. of (4.12) converges towards
0 as l approaches∞. Similarly, by applying (4.11), also the second sum on the r.h.s. of
(4.12) converges towards 0 as l approaches∞. From this we conclude the proof.

Proof of Corollary 2.4. The proof of Corollary 2.4 follows along the lines of the proof of
Theorem 4.4, by making use of the finite speed of propagation property and (2.3). First
note that, for any B ∈ FΛ(l) and A ∈ A−∞,

|P (B | A)− P (B)| =
∣∣∣P̃(Φ(ξ) ∈ B | ξ ∈ Φ−1A)− P̃(Φ(ξ) ∈ B)

∣∣∣
≤ P̂Ω,Φ−1A

(
η1
t (x) 6= η2

t (x) for some (x, t) ∈ Λ(l)
)

≤
∑

(x,t)∈Λ(l)

P̂Ω,Φ−1A

(
η1
t (x) 6= η2

t (x)
)
.

Thus, it suffices control P̂Ω,Φ−1A

(
η1
t (x) 6= η2

t (x)
)

for each (x, t) ∈ Λ(l). and to show that
the latter term above approaches 0 as l →∞. For this, since Φ is assumed to be finite
range, we note that the finite speed of propagation property (ξt) transfers to events of
the form Φ−1A. Thus, by considering a coupling P̃Φ−1A,Φ−1A′,Ω, similar to the coupling
in the proof of Theorem 4.4, and where A′ ∈ A−s−∞ and A′ ∩A = A. Further, by applying
the estimates (2.2) and (2.3), we may proceed by the same line of reasoning as in the
proof of Theorem 4.4, from which we conclude the proof.
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4.2.3 Proof of Theorem 2.6

Proof of Theorem 2.6. Denote by µEP any limiting measure of the Cesaro means µEPn :=
1
n

∑n
k=1Pµ(ηEPk ∈ ·) ∈ M1(Ω0) (by possibly taking subsequential limits) and note that

µEP is invariant with respect to (ηEPt ).
We first show that µEP agrees with µ on F∞=0. Let l ∈ N and consider any B ∈ FΛ0(l)

with Λ0(l) := {(x, 0) : ‖ (x, 0) ‖1 ≥ l}. Similar to the proof of Theorem 4.4, it follows that,
for any A ∈ A−∞,

|P(B | A)− P(B)| ≤

 ∑
x∈Λ0(l)

sup
A∈F<0,A′∈FΛ(αs,s)

P̂A,A′
(
η1
αs(o) 6= η2

αs(o)
)

+

 ∑
x∈Λ0(l)

sup
A′′∈A−αs−∞

P̂A′′,Ω
(
η1

0(o) 6= η2
0(o)

) .

Since P has finite speed of propagation, the first term converges to 0 as l approaches∞.
For the second term, note that the number of sites in Zd at distance t from the origin is
of order td−1. Thus, by (2.4), also the second term converges to 0 as l→∞. This yields
that µEP agrees with µ on F∞=0, and that µEP and µ are non-singular on (Ω,FΛ0(l)) for all
l ∈ N sufficiently large.

Next, assume in addition that (Xt) is elliptic. By Lemma 4.3 and an argument as
in the proof of Theorem 1.5, we conclude that µ and µEP are non-singular on (Ω,F=0).
From this, we conclude that there is probability measure µ̂EP , invariant under µ and
such that µ and µ̂EP are mutually absolutely continuous. This follows analogous to
the proof of Theorem 1.5 by making use of (a slight adaptation of) Lemma 4.2 and the
assumption that (Xt) is elliptic. Consequently, the path measure of (ηEPt ) initialised from
µ̂EP , denoted by PEP ∈ M1(Ω,F), is mutually absolutely continuous to P on (Ω,F≥0).
Thus, since ellipticity implies ellipticity in the time direction, and since µ is ergodic
under (ηt) we conclude that µ̂EP is ergodic under (ηEPt ), as follows similar to the proof
of ergodicity in Theorem 1.2.

4.2.4 Proof of Theorem 2.7

We next prove that the environments constructed in Subsection 2.3 have arbitrary slow
polynomial mixing.

Proof of Theorem 2.7. First we will show the upper bound, by choosing a particular
coupling. The natural coupling of Pξ and Pσ is that ξ1

t (x, n) and ξ2
t (x, n) share the

resampling events of probability bn, so that after the first resampling, the spins are
identical. Note that this coupling can naturally be extended to an arbitrary number of
initial configurations. If we denote by ξσt the configuration at time t when started in σ,
we have under this coupling

ξ−1t (x, n) ≤ ξσt (x, n) ≤ ξ+1
t (x, n)

and hence η−1t (x) ≤ ησt (x) ≤ η+1
t (x) for all t, x, n, σ. In particular it follows that

P̂ξ,σ(η1
t (0) 6= η2

t (0)) ≤ P̂1,−1(η1
t (0) = 1)− P̂1,−1(η2

t (0) = 1).

Let Rt := {n ∈ N : ξ1
t (0, n) = ξ2

t (0, n)}. We have

P±1(ηt(0) = 1) = P̂1,−1

∑
n∈Rt

anξ
1
t (0, n) > ∓

∑
n∈Rct

an

 , (4.13)
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and hence,

P̂ξ,σ(η1
t (0) 6= η2

t (0)) ≤ Ê
∫ ∑

n∈Rct
an

−
∑
n∈Rct

an

fRt(x)dx (4.14)

= Ê
∑
n∈Rct

an

∫ 1

−1

fRt(
∑
n∈Rct

anx)dx,

where fR is the density of
∑
n∈R anYn and (Yn)n are i.i.d. uniform [−1, 1] distributed. A

simple convolution of the individual densities shows that fR ≤ minn∈R(2an)−1, hence the
above is bounded by

Ê

( min
n∈Rt

an)−1
∑
n∈Rct

an

 =
∑
k∈N

P̂(minRt = k)a−1
k

(∑
n<k

an

)
Ê

(∑
n>k

1n∈Rctan

)

=
∑
k∈N

(∏
n<k

(1− bn)t

)(
1− (1− bk)t

)
a−1
k

(∑
n<k

an

)(∑
n>k

an(1− bn)t

)
. (4.15)

To obtain polynomial decay, we choose an = 1
2n
−α and bn = 1

2n
−β. Then we can find

some constant C > 0 so that

∑
k∈N

(∏
n<k

(1− bn)t

)(
1− (1− bk)t

)
a−1
k

(∑
n<k

an

)
≤ C.

With this and 1− bn ≤ e−bn ,

(4.15) ≤ C
∑
n∈N

an(1− bn)t ≤
∑

n≤(t/ log t2)
1
β

ane
−bnt +

∑
n>(t/ log t2)

1
β

ane
−bnt

≤
∑

n≤(t/ log t2)
1
β

ant
− log t +

∑
n>(t/ log t2)

1
β

an

≤ c2t
−α+1
β (log t)

α−1
β . (4.16)

For a lower bound, we use (4.13) plus the fact that (4.14) is an equality for ξ = +1

and σ = −1, so that we have

sup
ξ,σ
‖Pξ(ηt(0) ∈ ·)− Pσ(ηt(0) ∈ ·) ‖TV = Ê

∑
n∈Rct

an

∫ 1

−1

fRt(
∑
n∈Rct

anx)dx.

The density fR has a unique local maximum at 0 and its support is [−
∑
n∈R an,

∑
n∈R an],

so that we can lower bound the integral by replacing fRt with (2
∑
n∈Rt an)−1:

(4.16) ≥ Ê1,−1(
∑
n∈Rt

an)−1
∑
n∈Rct

an ≥ (
∑
n∈N

an)−1
∑
n∈N

an(1− bn)t

≥ (
∑
n∈N

an)−1
∑
n≥t−β

an(1− 1

2
t−1)t ≥ c1t

−α+1
β .

4.2.5 Proof of Theorem 2.8

We continue with the proof of Theorem 2.8 and study random walks on an Ornstein-
Uhlenbeck process.
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Proof of Theorem 2.8. Fix n, a sequence tk and a ∈ {−1, 1}n. Define the additional
events A1 = {sign(ξ−tk) = 1, 1 ≤ k ≤ n} and A = {sign(ξt) = 1, t ≤ 0}.

We will use the following sequence of stochastic domination:

P(ξ0 ∈ · | A) 4 P(ξ0 ∈ · | A1) 4 P(ξ0 ∈ · | A). (4.17)

Here P(ξ0 ∈ · | A) is the limit of P(ξ0 ∈ · | sign(ξs) = 1,−T ≤ s ≤ 0) as T → ∞, which
exists and has Lebesgue-density x exp(− 1

2x
2) on [0,∞) (see [22]). The argument for the

stochastic domination in (4.17) is based on the following fact: Let Y 1 and Y 2 be two
diffusions given by dY it = bit(Y

i
t )dt+ σdWt. If b1t ≤ b2t and L(Y 1

0 ) 4 L(Y 2
0 ), then

L(Y 1
t ) 4 L(Y 2

t ) ∀ t ≥ 0. (4.18)

To apply this to the first stochastic domination in (4.17) holds, let −tl is the biggest
time point with al = −1. Clearly P(ξ−tl ∈ ·|A) 4 P(ξ−tl ∈ ·|A1). Furthermore, after −tl
the events A and A1 agree past −tl, that means that after tl we condition on the same
event. This conditioning changes the drift to some new and time-inhomogeneous drift,
for which only the initial law varies, and by (4.18) we obtain the stochastic domination.

For the second stochastic domination, we use (4.18) and the fact that conditioning
the Ornstein-Uhlenbeck process on A further increases the drift compared to condition
on A1 (with the convention that the drift is +∞ for x ≤ 0 when conditioning on A).

An analogous bound to (4.17) holds in the other direction when we condition the
process to be negative, and P(ξ0 ∈ ·|A) = P(−ξ0 ∈ ·|A). Together this implies

P(| ξ0 | ∈ · | A) 4 P(ξ0 ∈ · | A). (4.19)

A bound on the total variation is then given by a coupling:

‖P(ξt ∈ · | A)− P(ξt ∈ ·) ‖TV ≤
∫
P̂x,y(τ > t)πA(dx, dy),

where P̂x,y is a coupling of two OU-processes ξ1
t and ξ2

t starting in x and y and πA is any
coupling of P(ξ0 ∈ · | A) with a normal distribution, and τ is the coupling time.

We take P̂x,y to be the coupling where the driving Brownian motions are perfectly
negatively correlated until the processes are coupled. Then the difference Dt is an
OU-process satisfying

dDt = −Dtdt+ 2dWt and D0 = x− y.

The coupling time τ is τ0, the first hitting time of 0 of Dt. Note that the coupling time
increases if |x− y | increases, in particular when we replace |x− y | by |x |+ | y |. With
this fact, choosing πA to be the independent coupling, and (4.19) we get∫

P̂x,y(τ > t)πA(dx, dy) ≤
∫ ∞

0

∫ ∞
0

Px+y(τ0 > t)xe−
x2

2
2√
2π
e−

y2

2 dxdy.

To conclude the proof we use the fact that that Px+y(τ0 > r + log(x+ y)) is exponentially
small in r.

The claim that this example satisfies the conditions of Theorem 1.5 is now a simple
computation by telescoping over all sites in B and using the fact that the last time a site
x ∈ Zd could be observed is −|x|/R, where R is the interaction range of the jump kernel
α.
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4.2.6 Proof of Theorem 2.9

In this subsection we present the proof of Theorem 2.9. Before doing so, we first
introduce some definitions and prove a general theorem, Theorem 4.5, from which
Theorem 2.9 follows.

Let E = {0, 1} and associate to the space Ω the partial ordering such that ξ ≤ η if
and only if ξ(x) ≤ η(x) for all x ∈ Zd+1. An event B ∈ F is said to be increasing if ξ ≤ η
implies 1B(ξ) ≤ 1B(η). If ξ ≤ η implies 1B(ξ) ≥ 1B(η) then B is called decreasing. For
P,Q ∈ M1(Ω), we say that P stochastically dominates Q if Q(B) ≤ P(B) for all B ∈ F
increasing. Furthermore, a measure P ∈ M1(Ω) is positively associated if it satisfies
P(B1 ∩B2) ≥ P(B1)P(B2) for any two increasing events B1, B2 ∈ F . Following [21], we
say that P is downward FKG if, for every finite Λ ⊂ Zd+1, the measure P(· | η ≡ 0 on Λ)

is positively associated.

Theorem 4.5. Let P ∈M1(Ω) be downward FKG and assume that there exists φ : N→
[0, 1] such that for all (x, s) ∈ Λ(l) and all γ ∈

⋃
k≥1 Γk,

P (ηs(x) = 1 | η ≡ 0 along γ) ≥ P (η0(o) = 1)− φ(l), (4.20)

P(ηs(x) = 1 | η ≡ 1 along γ) ≤ P(η0(o) = 1) + φ(l). (4.21)

If
∑
l≥1 l

dφ(l) <∞, then the conditions of Theorem 1.5 are satisfied.

Remark 4.6. In the above theorem, and throughout this section, we write “η ≡ i along
γ”, where i ∈ {0, 1} and γ ∈ Γ :=

⋃
k≥1 Γk, for the event that {ηs(x) = i ∀ (x, s) ∈

γ + [−R,R]d × {0}}.

Proof of Theorem 4.5. Let B ∈ F . For any k ∈ N, we have similar to the proof of Lemma
4.1 that ∣∣PP (ηEPk ∈ B

)
− P (B)

∣∣
≤
∑
γ∈Γk

∑
A−1
−k∈A

−1
−k(γ)

[ ∣∣P (B | A−1
−k
)
− P (B | η ≡ 0 along γ)

∣∣
+ |P (B)− P (B | η ≡ 0 along γ)|

]
P−k

(
X−k,...,0 = γ,A−1

−k
)
.

We next show that, under (4.20) and (4.21),

sup
B∈Λ(l)

∣∣P (B | A−1
−k
)
− P (B | η ≡ 0 along γ)

∣∣→ 0, as l→∞.

Fix γ ∈ Γk and A−1
−k ∈ A

−1
−k(γ). Since P is downward FKG, it is the case that

P(· | η ≡ 0 along γ) is stochastically dominated by P(· | A−1
−k). Hence, by Strassens

Theorem, there exists a coupling P̂0,1 of P(· | η ≡ 0 along γ) and P(· | A−1
−k) such that

P̂0,1

(
η1 ≤ η2

)
= 1. We moreover have that, for all B ∈ FΛ(l), l ∈ N,

|P(B | η ≡ 0 along γ)− P(B | A−1
−k)|

≤P̂0,1

(
η1 6= η2 on Λ(l)

)
≤

∑
(x,s)∈Λ(l)

P̂0,1

(
η1
s(x) 6= η2

s(x)
)

=
∑

(x,s)∈Λ(l)

P̂0,1

(
η1
s(x) = 0, η2

s(x) = 1
)

=
∑

(x,s)∈Λ(l)

(
P̂0,1(η1

s(x) = 0)− P̂0,1(η2
s(x) = 0)

)
.
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Furthermore, since P is downward FKG, we know that

P̂0,1

(
η1
s(x) = 0

)
− P̂0,1

(
η2
s(x) = 0

)
=P (ηs(x) = 0 | η ≡ 0 along γ)− P

(
ηs(x) = 0 | A−1

−k
)

≤P (ηs(x) = 0 | η ≡ 0 along γ)− P (ηs(x) = 0 | η ≡ 1 along γ)

As a consequence, by using (4.20) and (4.21), we obtain by the derivations above that

sup
B∈FΛ(l)

|P(B | η ≡ 0 along γ)− P(B | A−1
−k)| ≤ C

∑
t≥l

tdφ(t), (4.22)

for some constant C ∈ (0,∞). By a word by word adaptation of this argument, replacing
P
(
B | A−1

−k
)

by P (B), it can similarly be shown that

sup
B∈Λ(l)

|P (B)− P (B | η ≡ 0 along γ)| ≤ C
∑
t≥l

tdφ(t). (4.23)

Substituting the estimates from (4.22) and (4.23) into the first inequality of this proof,
and using that liml→∞

∑
t≥l t

dφ(t) = 0, we obtain that the conditions of Theorem 1.5 are
satisfied.

We continue with the proof of Theorem 2.9.

Proof of Theorem 2.9. Let (ξt) be the contact process on Zd̃ with d̃ ≥ 1 and λ > λc(d̃).
This process is known to satisfy the downward FKG property, as shown by [5], Theorem
3.3 (see also Lemma 2.1 in [4]). Thus, for the proof of Theorem 2.9, it is sufficient to show
that (4.20) and (4.21) holds. In fact, it is sufficient to show that the estimates of Theorem
4.5 hold for sites (o, s) with s ∈ Z≥0. To see this, recall the graphical representation of
the contact process (see p. 32-34 in [20]). Since the spread of information is bounded
by a Poisson process with rate 2dλ, it is evident that the finite speed of propagation
property holds, and thus that Corollary 2.4 applies.

That (4.21) holds for the contact process is now a simple application of the graphical
representation and the fact that the contact process started from all sites equal to 1

converges exponentially fast towards the upper invariant measure. See [20], Theorem
1.2.30, and the remark directly after for estimates of the latter. In particular, (4.21)
holds with φ(l) exponentially decaying in l. Note that, this estimate holds for (ξt), that is,
without applying the projection map.

In order to conclude a similar estimate for (4.20), on the other hand, we restrict to
the projection of (ξt) onto the one dimensional lattice. In this case, (4.20), again with
φ(l) exponentially decaying in l, is a direct application of [4], Theorem 1.7. Thus, by
Theorem 4.5, we conclude that the conditions of Theorem 1.5 are satisfied.

Remark 4.7. The statement of Theorem 2.9 can be extended to projection maps from

Zd̃ to Zd̃
d̃−1

:= Zd̃−1×{0} for any d̃ ≥ 2 and λ > λc(d̃). Indeed, Theorem 1.7 in [4] still
holds in this generality.

4.3 Proof of Theorem 3.2 and Theorem 3.3

Proof of Theorem 3.2. We first show continuity with respect to
(
PEP (n)

)
. Let ε > 0, and

let m ≤ n with n,m ∈ N. For Λ ⊂ Zd+1 finite and B ∈ FΛ we have that, for every t ∈ N,

|PEP (m)(B)− PEP (n)(B)| ≤ |PEP (m)(B)− PPm(η
EP (m)
t ∈ B)|

+ |PEP (n)(B)− PPn(η
EP (n)
t ∈ B)|

+ |PPn(η
EP (n)
t ∈ B)− PPm(η

EP (m)
t ∈ B)|.
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By Assumption c) we can fix t such that the sum of the first two terms is less than ε/2. By
the uniformity assumption, this bound holds irrespectively of m and n. It thus remains to
show that also the third term can be made smaller than ε/2 by possibly taking m large.
To this end, we use the expansion in (3.2), and note that

PPm(η
EP (m)
t ∈ B)

=
∑
γ∈Γt

A−1
−t∈A

−1
−t (γ)

Pm
(
B,A−1

−t
)
Pm
(
X−t,...,0 = γ | A−1

−t
)

=
∑
γ∈Γt

A−1
−t∈A

−1
−t (γ)

(
Pn(B,A−1

−t )± δ1,m(t)
) (
Pn(X−t,...,0 = γ | A−1

−t )± δ2,m(t)
)
,

where, due to a) and b), the error terms δ1,m(t) and δ2,m(t) approaches 0 as m→∞. In
particular, again since

PPn(η
EP (n)
t ∈ B) =

∑
γ∈Γt

A−1
−t∈A

−1
−t (γ)

Pn
(
B,A−1

−t
)
Pn
(
X−t,...,0 = γ | A−1

−t
)
,

by taking m large enough we can guarantee that

|PPn(η
EP (n)
t ∈ B)− PPm(η

EP (n)
t ∈ B)| < ε/2.

Since this bound holds for all n ≥ m it follows that (PEP (m)(B)) is a Cauchy sequence
and hence converges to a limit. Moreover, since B and Λ were arbitrary, this is true for
any local local event B ∈ F . This implies that PEP (m) converges weakly to PEP for some
PEP ∈M1(Ω).

We next proceed with the proof of PP(ηEPt ·) =⇒ PEP , where PEP is the limiting
measure above. Let ε > 0 and B ∈ F local. For any n ∈ N, we have that

|PEP (B)− PP(ηEPt ∈ B)| ≤ |PEP (B)− PEP (n)(B)|

+ |PEP (n)(B)− PPn(η
EP (n)
t ∈ B)|

+ |PPn(η
EP (n)
t ∈ B)− PP(ηEPt ∈ B)|.

Fix t such that the second term is smaller than ε/3. This we can do by applying Assump-
tion c). Next, by taking n large the first term can be made smaller then ε/3 as well
since PEP (n) =⇒ PEP , as we have shown above. For the third term we can proceed
as in for the proof of PEP (n) =⇒ PEP above. Indeed, since t is fixed, we can use that
Pn =⇒ P and that ε(n) ↓ 0 together with the finite range assumption of the random
walk. Hence we may take n so large that also the third term is less that ε/3. Since ε > 0

was taken arbitrary, this shows that PP(ηEPt ∈ B) → PEP (B) as t → ∞. Since B ∈ F
was an arbitrary local event, we conclude that PP(ηEPt ∈ ·) converges weakly towards
PEP (·). As a necessary consequence, it also follows that by standard arguments that
PEP is invariant with respect to (ηEPt ).

Proof of Theorem 3.3. Let Pσ be the path measure of (ηt) when started from σ ∈ Ω0 and
assume that (ηEPt ) is uniquely ergodic with invariant measure µEP ∈M1(Ω). We have
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that, for any B ∈ FΛ, Λ ⊂ Zd × {0} finite, and any t ∈ N,

∣∣∣µEP (B)− µEP (n)(B)
∣∣∣ =

∣∣∣∣∣t−1
t∑

k=1

[
PµEP (ηEPk ∈ B)− PµEP (n)(η

EP (n)
k ∈ B)

]∣∣∣∣∣
≤

∣∣∣∣∣t−1
t∑

k=1

[
PµEP (ηEPk ∈ B)− PµEP (n)(η

EP (n)
k ∈ B)

]∣∣∣∣∣
+

∣∣∣∣∣t−1
t∑

k=1

[
PµEP (n)(ηEPk ∈ B)− PµEP (n)(η

EP (n)
k ∈ B)

]∣∣∣∣∣ .
(4.24)

Since (ηEPt ) is uniquely ergodic, it follows by classical arguments that

sup
σ,ω∈Ω0

∣∣∣∣∣t−1
t∑

k=1

[
Pσ(ηEPk ∈ B)− Pω(ηEPk ∈ B)

]∣∣∣∣∣→ 0

as t approaches ∞ (see e.g. Theorem 4.10 in [16]). Hence, by taking t large we can
assure that the first term of the r.h.s. of (4.24) is less than ε/2. Next, for the second term,
we have that, for any fixed t > 0,

t−1
t∑

k=1

∣∣∣PµEP (n)(ηEPk ∈ B)− PµEP (n)(η
EP (n)
k ∈ B)

∣∣∣→ 0 as n→∞.

This follows similarly as in the proof of Theorem 3.2. Indeed, for each k ∈ {1, . . . , t}, we
have that

PµEP (n)(ηEPk ∈ B)

=
∑
γ∈Γk

A−1
−k∈A

−1
−k(γ)

PµEP (n)

(
B,A−1

−k
)
Pn
(
X−k,...,0 = γ | A−1

−k
)

=
∑
γ∈Γk

A−1
−k∈A

−1
−k(γ)

(
PµEP (B,A−1

−t )± δ1,n(t)
)

·
(
P (X−k,...,0 = γ | A−1

−k)± δ2,n(t)
)
,

where both the error terms δ1,n(t) and δ2,n(t) approaches 0 as n→∞. Thus, by taking n
sufficiently large we can assure that the second term on the r.h.s. of (4.24) is less than
ε/2. From this we conclude that

∣∣µEP (B)− µEP (n)(B)
∣∣ < ε for all n large. Since B and Λ

were arbitrary chosen, we hence conclude the proof.

4.4 Proof of Theorem 3.5

Proof of Theorem 3.5. The main part of the proof goes along the same lines as the proof
of Theorem 1.2. The main difference is an estimate which is similar to Lemma 4.1 and
which we present next. Let B ∈ F≥0. We have that, for any k ∈ N,∣∣PP (ηEPk ∈ B

)
− P (B)

∣∣
=
∣∣ ∑
γ∈Γk

∑
A−1
−k∈A

−1
−k(γ)

P
(
B,A−1

−k
)
P
(
X−k,...,0 = γ | A−1

−k
)
− P (B)

∣∣
≤
∑
γ∈Γk

∑
A−1
−k∈A

−1
−k(γ)

∣∣P (B | A−1
−k
)
− P (B)

∣∣P−k (X−k,...,0 = γ,A−1
−k
)
,
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where in the last equality we used the fact that,∑
γ∈Γk

∑
A−1
−k∈A

−1
−k(γ)

P−k
(
X−k,...,0 = γ,A−1

−k(γ, σ)
)

= 1.

Consequently, by the bound in (3.4), we conclude that, for any k ∈ N,∣∣PP (ηEPk ∈ B
)
− P (B)

∣∣ ≤M1P(B), ∀B ∈ F≥0. (4.25)

In particular, PP
(
ηEPk ∈ ·

)
� P on F≥0 and

dPP(ηEPk ∈·)|F≥0

dP(·)|F≥0

≤M1.

Let Q ∈ M1(Ω) be a limiting measure of the sequence
(
t−1

∑t
k=1 PP(ηEPk ∈ ·)

)
t>0

,

by possibly taking sub-sequential limits. Then, by means of weak convergence, since
the space of M1-bounded functions on a compact space form a compact space, and the
limit of bounded measurable functions is measurable, (4.25) immediately transfers to Q.

Consequently, we have Q� P on F≥0 and
dQ|F≥0

dP|F≥0

≤M1. This concludes the first part.

Next, assume that (3.5) holds from which it follows that, for every B ∈ F≥0,

|P(B)− P(B | Ak)| ≤M2P(B | Ak), ∀Ak ∈ A−1
−kl, k ∈ N,

Similarly to how we obtained (4.25), we hence conclude that, for any k ∈ N,∣∣PP (ηEPk ∈ B
)
− P (B)

∣∣ ≤M2PP
(
ηEPk ∈ B

)
, ∀B ∈ F≥0.

From this estimate, and using the same argument as for the proof of the first part, we

hence conclude that P� Q and that
dP|F≥0

dQ|F≥0

≤M2.

4.5 Strong disagreement percolation

4.5.1 Basic disagreement percolation

For simplicity we assume that E = {0, 1} and that the environment (ηt) is a translation
invariant nearest neighbour probabilistic cellular automaton (PCA). Further, let ci(η) :=

Pη(η1(o) = i), i = 0, 1. By the nearest neighbour property, ci(η) = ci(ξ) if η(x) = ξ(x) for
all |x | ≤ 1.

The evolution of the PCA can be constructed by a sequence (Ut(x))x∈Zd,t≥1 of i.i.d.
[0, 1]-uniform variables in an iterative way: given ηt, ηt+1(x) := 1Ut+1(x)≤c1(θxηt), x ∈ Zd.
Here θx is the shift on Zd, that is, for η ∈ Ω0 we have (θxη)(y) = η(y + x), y ∈ Zd

This construction allows for coupling of Pη1 and Pη2 , the graphical construction
coupling, by using the same set of [0, 1]-uniform i.i.d. variables (Ut(x)). The starting point
of disagreement percolation is the observation that the value of ηt+1(x) is sometimes
independent of ηt, namely if either Ut+1(x) < c− := infη∈Ω c1(η) or Ut+1(x) > c+ :=

supη∈Ω c1(η). This allows the environment to forget information, which can be encoded
in the coupling. The disagreement percolation is then the triple (η1

t , η
2
t , ξt)t≥0, where

ηit is constructed from the initial configuration ηi and the (Ut(x)), and ξt is given by
ξ0(x) = 1η1(x) 6=η2(x) and for t > 0;

ξt(x) =

{
1, Ut(x) ∈ [c−, c+] and ∃ y, | y − x | ≤ 1 : ξt−1(y) = 1;

0, otherwise.
(4.26)

The name disagreement percolation comes from the fact that ξt(x) = 0 implies η1
t (x) =

η2
t (x) and (ξt) is a directed site percolation process with percolation parameter p =

c+ − c−. We denote the law of this so constructed triple (η1
t , η

2
t , ξt)t≥0 by P̂η1,η2 .
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Definition 4.8. If p = c+ − c− < pc, where pc is the critical value of directed site
percolation in Zd, then we say that the disagreement percolation P̂ is subcritical.

Remark 4.9. This coupling can be improved by looking at more information. For
example the site percolation model does not use the total number of neighbours which
satisfy ξt−1(y) = 1, only that the indicator that this number is positive. By taking this
information into account when deciding based on whether ξt(x) should be 1 or 0 the
range of PCA where the disagreement percolation is subcritical can be extended.

Remark 4.10. If the disagreement percolation coupling is subcritical, then necessarily
there is a uniquely ergodic measure for the process (ηt), as follows by standard coupling
arguments and comparison with subcritical directed site percolation.

4.5.2 Disagreement percolation and backward cones

The disagreement percolation we introduced in the previous subsection is a way to
control the influence of the initial configuration on the future, by giving an upper bound
on the space-time points which depend on differences in the initial configurations. In
the context of this article we want something slightly different, namely to control the
influence of a backwards cone. With this in mind we construct a different version of the
disagreement percolation coupling.

Denote by P−∞µ the law of (ηt)t∈Z under the stationary law µ and by (Ut(x))t∈Z,x∈Zd

the i.i.d. uniform [0, 1] variables of the corresponding graphical construction. Denote
by Cb := {(x, t) ∈ Zd × {...,−1, 0} : |x | ≤ | t |} the infinite backward cone with tip at (0, 0)

and by Cb := σ(ηt(x) : (x, t) ∈ Cb) = σ(Ut(x) : (x, t) ∈ Cb) the σ-algebra generated by the
sites which lie in the cone Cb.

Let A,B ∈ Cb. We now construct the disagreement percolation process (η1
t , η

2
t , ξt)t∈Z

with law P̂A,B, where η1 has law P−∞µ (·|A) and η2 has law P−∞µ (·|B). The idea is almost
the same as in Subsection 4.5.1, the only difference is on the cone Cb. On Cb, we
draw (η1

t (x))(x,t)∈Cb from P−∞µ (·|A), independently (η2
t (x))(x,t)∈Cb from P−∞µ (·|B), and

set ξt(x) = 1 for (x, t) ∈ Cb. Outside Cb, (η1
t , η

2, ξ) evolves like the basic disagreement
percolation coupling by using the same (Ut(x))(x,t)∈Ccb . As the evolution outside Cb is the
same as the basic disagreement percolation, the definition of subcriticality remains the
same.

Lemma 4.11. Suppose the disagreement percolation is subcritical. Then the environ-
ment satisfies (1.14).

Proof. Let A ∈ Cb be arbitrary and let P̂A be the disagreement percolation coupling of
P−∞µ (·|A) and P−∞µ . We then have for any B ∈ FΛ(l), l ≥ 1,∣∣P−∞µ (B|A)− P−∞µ (B)

∣∣ ≤ P̂A(∃(x, t) ∈ Λ(l) : ξt(x) = 1), (4.27)

which is exponentially small in l and independent of the choice of B and A.

4.5.3 Strong disagreement percolation

We say that (η1
t , η

2
t , ξt) is a strong disagreement percolation coupling if ξt(x) = 0 implies

η1
t (x) = η2

t (x) and η1 and ξ are independent. This independence is a stronger assumption
than regular disagreement percolation.

Lemma 4.12. Suppose p∗ := max((c+ − c−)/c+, (c+ − c−)/(1 − c−)) < pc. Then there
exist strong versions of the disagreement percolation couplings in Sections 4.5.1 and
4.5.2.
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Proof. The basic concept of the construction is similar to the regular disagreement
percolation. The difference is that we no longer use a single Ut(x) to build the pro-
cesses (η1

t (x), η2
t (x), ξt(x)) from (η1

t−1, η
2
t−1, ξt−1). Instead we take three [0, 1]-uniform i.i.d

random variables (Ut(x)1, Ut(x)2, Ut(x)3). We then set

η1
t (x) = 1U1

t (x)≤c1(θ−xη1
t−1);

ξt(x) = 1U3
t (x)≤p∗1∃y,| y−x |≤1:ξt−1(y)=1;

η2
t (x) =


η1
t (x), ξt(x) = 0;

1, U2
t (x) ≤ c1(θ−xη

2
t−1)−(1−p∗)c1(θ−xη

1
t−1)

p∗ and ξt(x) = 1;

0, otherwise.

(4.28)

The choice of p∗ guarantees that
c1(θ−xη

2
t−1)−(1−p∗)c1(θ−xη

1
t−1)

p∗ ∈ [0, 1], and a direct compu-

tation shows that the probability that η2
t (x) = 1 is c1(θ−xη

2
t−1).

4.5.4 Proof of Theorem 3.7 and Corollary 3.8

Proof of Theorem 3.7. The proof is based on a coupling argument. Let

C−k := {(x, t) ∈ Zd × {...,−k − 1,−k} : |x− γ−k | ≤ | t− k |} (4.29)

be the infinite backwards cone with tip at (γ−k,−k). We construct iteratively the random
variables (ηt(x)1,m, ηt(x)2,m, ξt(x)m) ∈ E×E×{0, 1}, (x, t) ∈ C−k−1+m, and Hm ∈ N, and
denote their law by P̃m. We start with ηt(x)1,0 and ηt(x)2,0, ξt(x)0 chosen independently
from P−∞µ (·) and P−∞µ

(
·
∣∣ A−k−1
−k−1

)
restricted to the cone C−k−1+m and set ξ0

t (x) = 1 for
(x, t) ∈ C−k−1, and H0 = 0.

Given P̃m, let P̃m,∗ be the extension of P̃m to the cone C−k+m based on the strong
disagreement percolation coupling, that is

(η1,m
t (x), η2,m

t (x), ξmt (x))(x,t)∈C−k+m\C−k−1+m
(4.30)

are distributed according to the evolution described in (4.28).
The general strategy is as follows: We want to condition the measure P̃m,∗ on the

event {η1,m ∈ A−k+m
−k , η2,m ∈ A−k+m

−k−1 }. Observe that, on ξ−k+m(γ−k+m) = 0, the events

η1,m ∈ A−k+m
−k+m and η2,m ∈ A−k+m

−k+m are equivalent. This is the good case. The bad case is
when ξ−k(γ−k) = 1. In this event, we simply restart the coupling procedure by coupling
P−∞µ

(
·
∣∣ A−k−k−1

)
and P−∞µ

(
·
∣∣ A−k−k) independently. The role of Hm is to keep track of the

number of iterations since the last time we had to reset and try again.
Define

qm(h) :=P̃m,∗
(
ξm−k+m(γ−k+m) = 0

∣∣ η1,m ∈ A−k+m
−k , Hm = h

)
∧ P̃m,∗

(
ξm−k+m(γ−k+m) = 0

∣∣ η2,m ∈ A−k+m
−k−1 , H

m = h
)

;

Q1
m :=P̃m,∗

(
ξm−k+m(γ−k+m) = 0

∣∣ η1,m ∈ A−k+m
−k

)
−
∑
h≥0

qm(h);

Q2
m :=P̃m,∗

(
ξm−k+m(γ−k+m) = 0

∣∣ η2,m ∈ A−k+m
−k−1

)
−
∑
h≥0

qm(h).

Let B1, B2, D ∈ σ(C−k+m). We now define P̃m+1 based on P̃m by

P̃m+1
(
η1,m+1 ∈ B1, η2,m+1 ∈ B2, ξm+1 ∈ D,Hm+1 = h+ 1

)
:= qm(h)P̃m,∗

(
η1,m ∈ B1, η2,m ∈ B2, ξm ∈ D,Hm = h |
η1,m ∈ A−k+m

−k+m, η
2,m ∈ A−k+m

−k+m, ξ
m
−k+m(γ−k+m) = 0

)
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and

P̃m+1
(
η1,m+1 ∈ B1, η2,m+1 ∈ B2, ξm+1 ∈ D,Hm+1 = 0

)
:=
[
P̃m,∗

(
η1,m ∈ B1 | η1

−k+m ∈ A−k+m
−k , ξm−k+m(γ−k+m) = 0

)
Q1
m

+ P̃m,∗
(
η1,m ∈ B1, ξm−k+m(γ−k+m) = 1

∣∣ η1,m ∈ A−k+m
−k

)] 1

1−
∑
h≥0 qm(h)

·
[
P̃m,∗

(
η2,m ∈ B2

∣∣∣ η1,m
−k+m ∈ A

−k+m
−k , ξm−k+m(γ−k+m) = 0

)
Q2
m

+ P̃m,∗
(
η2,m ∈ B2, ξm−k+m(γ−k+m) = 1

∣∣ η2,m ∈ A−k+m
−k

)]
11 on C−k+m∈D.

A direct computation shows that we have P̃m+1(η1,m+1 ∈ B1) = P−∞µ (B1 | A−k+m
−k ) and

P̃m+1(η2,m+1 ∈ B2) = P−∞µ (B2 | A−k+m
−k ), assuming that P̃m satisfies the corresponding

properties. Therefore P̃k extended to all space-time points using the strong disagreement
percolation construction (4.28) is a coupling of P−∞µ (·|A−1

−k) and P−∞µ (·|A−1
−k−1). We call

this coupling P̃∗ and drop the super-index k from the random variables. By construction
of the coupling,

P̃∗(·|H = h) = P̂A−1−h
−k ,A−1−h

−k−1

(
·
∣∣ η1 ∈ A−1

−h, ξ−i(γ−i) = 0, i = 1, ..., h
)

where P̂A−1−h
−k ,A−1−h

−k−1
is the strong disagreement percolation coupling starting from the

cone C−1−h. In particular, η1 and ξ are independent. Denote byG := {ξ0(x) = 0 ∀ x ∈ Zd}
the good event that the disagreement process has become extinct by time 0. We have

P
−(k+1)
µ

(
B
∣∣ A−1
−k−1

)
P−kµ

(
B
∣∣ A−1
−k
) ≥

P̃∗
(
η2

0 ∈ B,G
)

P̃∗ (η1
0 ∈ B)

=
P̃∗
(
η1

0 ∈ B,G
)

P̃∗ (η1
0 ∈ B)

= P̃∗(G).

Reversing the roles of η1 and η2, we also have

P
−(k+1)
µ

(
B
∣∣ A−1
−k−1

)
P−kµ

(
B
∣∣ A−1
−k
) ≤ P̃∗(G)−1.

Since P̃(Gc|H = h) is exponentially small in h, we have completed the proof once we show
that P̃∗(H ≤ h) is exponentially small in k for a fixed h. To see this, we look atHm in more
detail. Since Hm either increases by one or is reset to 0, (Hm) is a time-inhomogeneous
house-of-cards process with transition probability P(Hm+1 = h + 1|Hm = h) = qm(h).
We have that qm(h) equals

P̃m,∗
(
ξm−k+m(γ−k+m) = 0, η1,m ∈ A−k+m

−k+m

∣∣ Hm = h
)

max
(
P̃m,∗(η1,m ∈ A−k+m

−k+m

∣∣∣ Hm = h), P̃m,∗(η2,m ∈ A−k+m
−k+m

∣∣∣ Hm = h)
)

=
P̃m,∗

(
ξm−k+m(γ−k+m) = 0

∣∣ Hm = h
)

max
(

1, P̃m,∗(η2,m ∈ A−k+m
−k+m

∣∣∣ Hm = h)(P̃m,∗(η1,m ∈ A−k+m
−k+m

∣∣∣ Hm = h))−1
)

=
P̃m,∗

(
ξm−k+m(γ−k+m) = 0

∣∣ Hm = h
)

max
(

1, P̃m,∗(ξm−k+m(γ−k+m) = 0
∣∣∣ Hm = h) + P̃m,∗(η2,m/η1,m)

)
≥

P̃m,∗
(
ξm−k+m(γ−k+m) = 0

∣∣ Hm = h
)

1 + (infi,η ci(η))−1
(

1− P̃m,∗ (ξ−k+m(γ−k+m) = 0 | Hm = h)
) ,
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where in the last equality before the inequality we denoted by

P̃m,∗
(
η2,m/η1,m

)
:=
P̃m,∗

(
η2,m ∈ A−k+m

−k+m, ξ
m
−k+m(γ−k+m) = 1

∣∣ Hm = h
)

P̃m,∗
(
η1,m ∈ A−k+m

−k+m

∣∣ Hm = h
) .

Note that infi,η ci(η) > 0, since infi,η ci(η) = 0 implies p∗ = 1 > pc. Conditioned on
Hm = h the probability of ξm−k+m(γ−k+m) = 0 is larger than the probability that there is
no percolation path from C−k+m−h−1 to (γ−k+m,−k+m), which converges exponentially
fast to 1 in h. Therefore there are constants c1, c2 > 0 so that 1−qm(h) ≤ c1e−c2h. We also
have qm(h) ≥ (1 − p∗) infi,η ci(η). Those two facts imply that P̃∗(H ≤ h) ≤ c3e

−c4(k−c5h)

for some constants c3, c4, c5 > 0.

Corollary 3.8 follows as a direct consequence of Theorems 3.5 and 3.7.

Proof of Corollary 3.8. Let l ∈ N and consider Al ∈ A−1
−l . By telescoping, for any B ∈

F=0, we have by Theorem 3.7 that∣∣∣∣∣Pµ(B | Al)
µ(B)

±
− 1

∣∣∣∣∣ ≤
[
k∏
i=1

(1 + Cδi)

]
. (4.31)

Setting M :=
∏∞
i=1(1 + Cδi), and noting that the statement (and proof) of Theorem 3.5

holds when F≥0 is replaced by F=0, we conclude the proof.
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