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Abstract. In this paper, we extend Stein’s method to products of independent
beta, gamma, generalised gamma and mean zero normal random variables. In
particular, we obtain Stein operators for mixed products of these distributions,
which include the classical beta, gamma and normal Stein operators as special
cases. These operators lead us to closed-form expressions involving the Mei-
jer G-function for the probability density function and characteristic function
of the mixed product of independent beta, gamma and central normal random
variables.

1 Introduction

In 1972, Stein (1972) introduced a powerful method for deriving bounds for nor-
mal approximation. The method rests on the following characterisation of the nor-
mal distribution: W ∼ N(0, σ 2) if and only if

E
[
AZf (W)

]= 0 (1.1)

for all real-valued absolutely continuous functions f such that E|f ′(Z)| < ∞ for
Z ∼ N(0, σ 2), where the operator AZ , given by AZf (x) = σ 2f ′(x) − xf (x), is
often referred to as the Stein operator (see, for example, Ley et al. (2014)). This
gives rise to the following inhomogeneous differential equation, known as the Stein
equation:

AZf (x) = h(x) −Eh(Z), (1.2)

where Z ∼ N(0, σ 2), and the test function h is real-valued. For any bounded test
function, a solution fh to (1.2) exists (see Stein (1986)). Now, evaluating both sides
at any random variable W and taking expectations gives

E
[
AZfh(W)

]= Eh(W) −Eh(Z). (1.3)

Thus, the problem of bounding the quantity Eh(W) − Eh(Z) reduces to solving
(1.2) and bounding the left-hand side of (1.3). This is of interest because there are
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a number of probability distances (for example, Kolmogorov and Wasserstein) of
the form dH(L(W),L(Z)) = suph∈H |Eh(W) −Eh(Z)|. Hence

dH
(
L(W),L(Z)

)≤ sup
f ∈F(H)

∣∣E[AZf (W)
]∣∣,

where F(H) = {fh : h ∈ H} is the collection of solutions to (1.2) for functions
h ∈ H. This basic approach applies equally well to non-normal limits, although
different Stein operators are needed for different limit distributions. For a nice
account of the general approach, we refer the reader to Ley et al. (2014).

Over the years, Stein’s method has been adapted to many other distributions,
such as the Poisson (Chen (1975)), exponential (Chatterjee, Fulman and Röllin
(2011), Peköz and Röllin (2011)), gamma (Gaunt, Pickett and Reinert (2016),
Luk (1994), Nourdin and Peccati (2011)) and beta (Döbler (2015b), Goldstein
and Reinert (2013)). The first step in extending Stein’s method to a new proba-
bility distribution is to obtain a Stein equation. For the Beta(a, b) distribution with
density 1

B(a,b)
xa−1(1 − x)b−1, 0 < x < 1, where B(a, b) = �(a)�(b)/�(a + b)

is the beta function, a Stein operator commonly used in the literature (see Döbler
(2015b), Goldstein and Reinert (2013) and Schoutens (2001)) is

Abetaf (x) = x(1 − x)f ′(x) + (
a − (a + b)x

)
f (x). (1.4)

For the �(r, λ) distribution with density λr

�(r)
xr−1e−λx , x > 0, the Stein operator

Agammaf (x) = xf ′(x) + (r − λx)f (x) (1.5)

is often used in the literature (see Diaconis and Zabell (1991) and Luk (1994)).
In this paper, we extend Stein’s method to products of independent beta, gamma,
generalised gamma and central normal random variables. In particular, we obtain
natural generalisations of the operators (1.2), (1.4) and (1.5) to products of such
random variables.

1.1 Products of independent normal, beta and gamma random variables

The theory of products of independent random variables is far less well-developed
than that for sums of independent random variables, despite appearing naturally
in a various applications, such as the limits in a number of random graph and urn
models (Hermann and Pfaffelhuber (2016) and Peköz et al. (2013)). However, fun-
damental methods for the derivation of the probability density function of products
of independent random variables have been developed by Springer and Thompson
(1966). Using the Mellin integral transform (as suggested by Epstein (1948)), the
authors obtained explicit formulas for products of independent Cauchy and mean-
zero normal variables, and some special cases of beta variables. Building on this
work, Springer and Thompson (1970) showed that the p.d.f.s of the mixed product
of mutually independent beta and gamma variables, and the products of indepen-
dent central normal variables are Meijer G-functions (defined in Appendix B).
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The p.d.f. of the product Z = Z1Z2 · · ·ZN of independent normal random vari-
ables Zi ∼ N(0, σ 2

i ), i = 1,2, . . . ,N , is given by

p(x) = 1

(2π)N/2σ
G

N,0
0,N

(
x2

2Nσ 2

∣∣∣0), x ∈ R, (1.6)

where σ = σ1σ2 · · ·σN . If Z has density (1.6), we say Z has a product normal dis-
tribution, and write Z ∼ PN(N,σ 2). The density of the product X1 · · ·XmY1 · · ·Yn,
where Xi ∼ Beta(ai, bi) and Yj ∼ �(rj , λ) and the Xi and Yj are mutually inde-
pendent, is, for x > 0, given by

p(x) = KG
m+n,0
m,m+n

(
λnx

∣∣∣ a1 + b1 − 1, a2 + b2 − 1, . . . , am + bm − 1
a1 − 1, a2 − 1, . . . , am − 1, r1 − 1, . . . , rn − 1

)
, (1.7)

where

K = λn
m∏

i=1

�(ai + bi)

�(ai)

n∏
j=1

1

�(rj )
,

and we adopt the convention that the empty product is 1. A random variable with
density (1.7) is said to have a product beta-gamma distribution. If (1.7) holds with
n = 0, the random variable is said to have a product beta distribution, denoted
by PB(a1, b1, . . . , am, bm); if (1.7) holds with m = 0, then we call this a prod-
uct gamma distribution, denoted by PG(r1, . . . , rm,λ). We also say that a product
of mutually independent beta, gamma and central normal random variables has a
product beta-gamma-normal distribution.

For the product of two normals, (1.6) simplifies to

p(x) = 1

πσ1σ2
K0

( |x|
σ1σ2

)
, x ∈ R,

where K0(x) is a modified Bessel function of the second kind (defined in Ap-
pendix B). For the product of two gammas, (1.7) also simplifies (see Malik (1968)):

p(x) = 2λr1+r2

�(r1)�(r2)
x(r1+r2)/2−1Kr1−r2(2λ

√
x), x > 0.

Nadarajah and Kotz (2005) also give a formula, in terms of the Kummer function,
for the density of the product of independent beta and gamma random variables.
However, in general, for 3 or more (mixed) products of independent beta, gamma
and central normal random variables there are no such simplifications.

Peköz et al. (2016) extended Stein’s method to generalised gamma random vari-
ables, denoted by GG(r, λ, q), having density

p(x) = qλr

�( r
q
)
xr−1e−(λx)q , x > 0. (1.8)

For G ∼ GG(r, λ, q), we have EGk = λ−q�((r + k)/q)/�(r/q) and in particular
EGq = r

qλq . Special cases include GG(r, λ,1) = �(r, λ) and also GG(1, (
√

2σ)−1,
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2) = HN(σ 2), where HN(σ 2) denotes a half-normal random variable: |Z| where
Z ∼ N(0, σ 2) (see Döbler (2015a) for Stein’s method for the half normal distri-
bution). In this paper, we also extend Stein’s method to the product of generalised
gamma random variables, GG(ri, λ, q), denoted by PGG(r1, . . . , rn, λ, q).

1.2 Product distribution Stein operators

Recently, Gaunt (2016) extended Stein’s method to the product normal distribu-
tion, obtaining the following Stein operator for the PN(N,σ 2) distribution:

AZf (x) = σ 2ANf (x) − xf (x), (1.9)

where the operator AN is given by ANf (x) = x−1T Nf (x) and Tf (x) = xf ′(x).
The Stein operator (1.9) is a N th order differential operator that generalises the
normal Stein operator (1.2) in a natural manner to products. Such Stein operators
are uncommon in the literature with the only other example being the N th order
operators of Goldstein and Reinert (2005), involving orthogonal polynomials, for
the normal distribution. Very recently, Arras et al. (2016) have obtained a N th
order Stein operator for the distribution of a linear combination of N indepen-
dent gammas random variables, although their Fourier approach is very different
to ours. Also, in recent years, second order operators involving f , f ′ and f ′′ have
appeared in the literature for the Laplace (Pike and Ren (2014)), variance-gamma
distributions (Eichelsbacher and Thäle (2015), Gaunt (2014)), generalized hyper-
bolic distributions (Gaunt (2016a)) and the PRR family of (Peköz, Röllin and Ross
(2013)).

One of the main contributions of this paper is an extension of the product nor-
mal Stein operator (1.9) to mixed products of beta, gamma and normal random
variables (see Propositions 2.3, 2.4 and 2.5). The Stein operators for these product
distributions (given in Table 1) are higher order differential operators, which can-
not be readily be obtained via standard methods, such as the generator method of
Barbour (1990) and Götze (1991) and the density method of Stein et al. (2004).

To obtain our product Stein equations, we use a conditioning argument to de-
velop an algebra of Stein operators. In our proofs, we shall use the differential
operators Trf (x) = xf ′(x) + rf (x) and Br1,...,rnf (x) = Trn · · ·Tr1f (x) (note that
T0 ≡ T ). It should be noted that whilst we restrict our attention to mixed products
of betas, gammas and normals, we expect that the proofs techniques employed in
this paper could also be applied to obtain Stein operators for independent products
of a number of standard distributions.

It can be seen that the product beta and product gamma Stein operators reduce to
the classical beta and gamma Stein operators when m = 1 and n = 1, respectively,
as was so in the normal case. In Section 2.2.2, we see that for certain parameter
values the Stein operators for the products XZ and XYZ can be simplified to
differential operators of lower order. We give a precise criteria under which this
occurs.
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Table 1 Stein operators for product distributions. X ∼ PB(a1, b1 . . . , am,bm), Y ∼ PG(r1, . . . ,

rn, λ) and Z ∼ PN(N,σ 2) are mutually independent

Product P Stein operator AP f (x) Order

X Ba1,...,amf (x) − xBa1+b1,...,am+bm
f (x) m

Y Br1,...,rnf (x) − λnxf (x) n

Z σ 2ANf (x) − xf (x) N

XY Ba1,...,amBr1,...,rnf (x) − λnxBa1+b1,...,am+bm
f (x) m + n

XZ σ 2Ba1,...,amANBa1,...,amf (x) 2m + N

− xBa1+b1,...,am+bm
Ba1+b1−1,...,am+bm−1f (x)

YZ σ 2Br1,...,rnANBr1,...,rnf (x) − λ2nxf (x) 2n + N

XYZ σ 2Ba1,...,amBr1,...,rnANBr1,...,rnBa1,...,amf (x) 2m + 2n + N

− λ2nxBa1+b1,...,am+bm
Ba1+b1−1,...,am+bm−1f (x)

In Proposition 2.3, we also obtain a operator for the generalised gamma distri-
bution which leads to the following PGG(r1, . . . , rn, λ, q) Stein operator:

APGGf (x) = Br1,...,rnf (x) − (
qλq)nxqf (x). (1.10)

Taking q = 1 in (1.10) yields the product gamma Stein operator AY f (x). Taking
r1 = · · · = rN = 1, λ = (

√
2σ)−1 and q = 2 in (1.10) gives the following Stein op-

erator for the product of N independent half-normal random variables (|Z| where
Z ∼ PN(N,σ 2)):

APHNf (x) = σ 2T N
1 f (x) − x2f (x),

where x takes values in the interval [0,∞). By allowing x to takes values in R, we
obtain the following PN(N,σ 2) Stein operator

ÃZf (x) = σ 2T N
1 f (x) − x2f (x),

which differs from the PN(N,σ 2) operator (1.9). Although, making the changes
of variables g(x) = xf (x) we have that g′(x) = xf ′(x) + f (x), and so

ANg(x) = x−1T N
0 g(x) = T N

1 f (x),

from which we recover the Stein operator (1.9).
The product distribution Stein operators that are obtained in this paper have

a number of interesting properties which are discussed in Remark 2.6. However,
despite their elegance, it is in general difficult to solve the corresponding Stein
equation and bound the appropriate derivatives of the solution; further discussion
is given in Remark 2.10.

The classical normal, beta and gamma Stein equations are first order linear dif-
ferential equations, and one can obtain uniform bounds for their solutions via ele-
mentary calculations. Uniform bounds are available for the first four derivatives of
the solution of the PN(2, σ 2) Stein equation (Gaunt (2016)), and in Proposition 2.8
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we show that the kth derivative of the solution of the PG(r1, r2, λ) Stein equation
is uniformly bounded if the first k derivatives of the test function h are bounded.
Although, for all other cases of product distribution Stein equations we do not have
bounds for derivatives of the solution.

However, in Section 3, we consider a novel application of the product beta-
gamma-normal Stein operator. In Section 3.2, we use the operator to obtain a dif-
ferential equation that the product beta-gamma-normal p.d.f. must satisfy. This
allows us to “guess” a formula for the density function, which is then easily ver-
ified to be the correct formula via Mellin transforms. This formula is new, and
obtaining it directly using the inverse Mellin transform would have required some
quite involved calculations. From our formula, we are able to obtain an expression
for the characteristic function of the product normal-beta-gamma distribution, as
well as estimates for the tail behaviour of the distribution.

1.3 Outline of the paper

We begin Section 2 by establishing some properties of the operators AN and
Br1,...,rn . We then obtain characterising equations for mixed products of beta,
gamma and central normal random variables (Propositions 2.3, 2.4 and 2.5), which
lead to the operators of Table 1. In Section 2.2.2, we see that for certain parameter
values simpler operators can be obtained. In Section 2.3, we consider a Stein equa-
tion for the product of two independent gammas. We solve the equation and show
that the kth derivative of the solution is uniformly bounded if the first k derivatives
of the test function h are bounded.

In Section 3, we obtain formulas for the p.d.f. and characteristic function of the
product beta-gamma-normal distribution, as well as an asymptotic formula for the
tail behaviour of the distribution. We use the product beta-gamma-normal Stein op-
erator to propose a candidate formula for the p.d.f. and then verify it using Mellin
transforms.

In Appendix A, we prove some results that were stated in the main text without
proof. Finally, Appendix B lists some basic properties of the Meijer G-function
and modified Bessel functions that are used in this paper.

Notation. Throughout this paper, we shall let T denote the operator Tf (x) = x ×
f ′(x) and AN will denote the operator ANf (x) = x−1T Nf (x) = d

dx
(T N−1f (x)).

We also let Tr denote the operator Trf (x) = xf ′(x)+rf (x) and let Br1,...,rn denote
the operator Br1,...,rnf (x) = Trn · · ·Tr1f (x). We shall let Cn(I) be the space of
functions on the interval I with n continuous derivatives, and Cn

b (I ) will denote
the space of bounded functions on I with n continuous derivatives that are all
bounded.
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2 Stein operators for products of normal, beta and gamma random
variables

2.1 Preliminary results

We begin by presenting some useful properties of the operators AN and Br1,...,rn .

Lemma 2.1. The operators AN and Br1,...,rn have the following properties.

(i) The operators Tr and Ts are commutative, that is, TrTsf (x) = TsTrf (x)

for all f ∈ C2(R). Thus, for all f ∈ Cn(R), Br1,...,rnf (x) = Brσ(1),...,rσ(n)
f (x),

where σ is a permutation of the set {1,2, . . . , n}.
(ii) For all f ∈ Cn+N(R), the operators AN and Br1,...,rn satisfy

ANBr1,...,rnf (x) = Br1+1,...,rn+1ANf (x). (2.1)

Proof. (i) The first assertion follows since TrTsf (x) = x2f ′′(x) + (1 + r +
s)xf ′(x) + rsf (x) = TsTrf (x), and the second assertion now follows immedi-
ately.

(ii) As A1 ≡ d
dx

, we have A1Trf (x) = xf ′′(x) + (r + 1)f ′(x) = Tr+1A1f (x).

Thus, on recalling that ANf (x) = d
dx

(T N−1
0 f (x)) and using the fact that the op-

erators Tr and Ts are commutative, we have

ANBr1,...,rnf (x) = A1T
N−1

0 Tr1 · · ·Trnf (x)

= A1Tr1 · · ·TrnT
N−1

0 f (x)

= Tr1+1A1Tr2 · · ·TrnT
N−1

0 f (x)

= Tr1+1 · · ·Trn+1A1T
N−1
0 f (x)

= Br1+1,...,rn+1ANf (x),

where an iteration was applied to obtain the penultimate equality. �

The following fundamental formulas (Luke (1969), pp. 24–26) disentangle the
iterated operators AN and Br1,...,rn . For f ∈ Cn(R),

ANf (x) =
N∑

k=1

{
N

k

}
xk−1f (k)(x), (2.2)

Br1,...,rnf (x) =
n∑

k=0

ck,nx
kf (k)(x), (2.3)

where
{n
k

}= 1
k!
∑k

j=0(−1)k−j
(k
j

)
jn are Stirling numbers of the second kind (Olver

et al. (2010), Chapter 26) and

ck,m = (−1)k

k!
k∑

j=0

(−k)j

j ! (j + qa)

m−1∏
i=1

(j + qri), (2.4)

for (a)j = a(a + 1) · · · (a + j − 1), (a)0 = 1.
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Applying (2.1) and (2.3) gives that, for f ∈ Cm+n+N(R),

Ba1,...,amANBb1,...,bnf (x) = ANBa1−1,...,am−1Bb1,...,bnf (x)

= x−1T N
0 Ba1−1,...,am−1Bb1,...,bnf (x)

=
m+n+N∑

k=1

c̃k,m+n+Nxk−1f (k)(x),

(2.5)

where the c̃k,m+n+N can be computed using (2.4).

2.2 Stein operators

With the preliminary results stated, we are now in a position to obtain Stein
operators for mixed products of beta, gamma and central normal random vari-
ables, which give rise to the product distribution Stein operators of Table 1. From
here on, we shall suppose that the random variables X ∼ PB(a1, b1 . . . , am, bm),
Y ∼ PG(r1, . . . , rn, λ) and Z ∼ PN(N,σ 2) are mutually independent. We shall
also let AP f (x) be the operator for the product distribution P , as given in Table 1.

2.2.1 General parameters. We first consider the case of mixed products of beta,
gamma and central normal random variables with general parameter values. In
Section 2.2.2, we look at particular parameter values under which we can obtain
some slightly simpler formulas for product distribution Stein operators. We begin
by recalling the product normal Stein operator that was obtained by Gaunt (2016).

Proposition 2.2. Suppose Z ∼ PN(N,σ 2). Let the function f ∈ CN(R) be such
that E|Zf (Z)| < ∞ and E|Zk−1f (k)(Z)| < ∞, k = 1, . . . ,N . Then

E
[
AZf (Z)

]= 0. (2.6)

We now present Stein operators for the product beta and product generalised
gamma distributions; taking q = 1 gives a product gamma distribution Stein oper-
ator.

Proposition 2.3. Suppose G ∼ PGG(r1, . . . , rn, λ, q). Let f ∈ Cn(R) be such that
E|Gqf (G)| < ∞ and E|Gkf (k)(G)| < ∞, k = 0, . . . , n, where f (0) ≡ f . Then

E
[
Br1,...,rnf (G) − (

qλq)nGqf (G)
]= 0. (2.7)

Proof. We proceed by induction on n and begin by proving the base case n = 1.
The well-known characterisation of the gamma distribution, given in Luk (1994),
states that if U ∼ �(r/q,λ), then

E
[
Uf ′(U) + (r/q − λU)f (U)

]= 0 (2.8)
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for all differentiable functions f such that the expectation exists. Now, if

V ∼ GG(r, λ, q), then V
D= (λ1−qU)1/q . Making the change of variables V =

(λ1−qU)1/q in (2.8) leads to the following characterising equation for the
GG(r, λ, q) distribution:

E
[
Vf ′(V ) + (

r − qλqV q)f (V )
]= 0

for all differentiable functions f such that the expectation exists. This can be writ-
ten as E[Trf (V ) − qλqV qf (V )] = 0, and so the result is true for n = 1.

Let us now prove the inductive step. We begin by defining the product Wn =∏n
i=1 Vi where Vi ∼ GG(ri, λ, q) and the Vi are mutually independent. We ob-

serve that (Tpf )(ax) = Tpfa(x) where fa(x) = f (ax), and so (Bp1,...pl
f )(ax) =

Bp1,...pl
fa(x). By induction assume that (qλq)nEW

q
n g(Wn) = EBr1,...,rng(Wn) for

all g ∈ Cn(R) for some n ≥ 1. Then(
qλq)n+1

EW
q
n+1f (Wn+1)

= (
qλq)n+1

E
[
V

q
n+1E

[
Wq

n fVn+1(Wn) | Vn+1
]]

= qλq
E
[
V

q
n+1E

[
Br1,...,rnfVn+1(Wn) | Vn+1

]]
= qλq

E
[
V

q
n+1(Br1,...,rnf )(WnVn+1)

]
= qλq

E
[
E
[
V

q
n+1(Br1,...,rnfWn)(Vn+1) | Wn

]]
= E

[
E
[
WnVn+1(Br1,...,rnf )′(WnVn+1) + rn+1f (WnVn+1) | Wn

]]
= EBr1,...,rn+1f (Wn+1).

Thus, the result has been proved by induction on n. �

Proposition 2.4. Suppose X ∼ PB(a1, b1, . . . , am, bm). Let f ∈ Cm((0,1)) be
such that E|Xkf (k)(X)| < ∞ and E|Xk+1f (k)(X)| < ∞, k = 0, . . . ,m. Then

E
[
AXf (X)

]= 0. (2.9)

Proof. The proof is similar to that of Proposition 2.3, and we proceed by in-
duction on m. Define the product Wm = ∏m

i=1 Xi where Xi ∼ Beta(ai, bi) and
the Xi are mutually independent. The base case of the induction m = 1 is the
well-known characterisation (1.4) of the beta distribution. By induction assume
that EWmBa1+b1,...,am+bmg(Wm) = EBa1,...,amg(Wm) for all g ∈ Cm(R) for some
m ≥ 1. Then

EWm+1Ba1+b1,...,am+1+bm+1f (Wm+1)

= E
[
Xm+1E

[
WmBa1+b1,...,am+bmTam+1+bm+1fXm+1(Wm) | Xm+1

]]
= E

[
Xm+1E

[
Ba1,...,amTam+1+bm+1fXm+1(Wm) | Xm+1

]]
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= E
[
Xm+1(Tam+1+bm+1Ba1,...,amf )(WmXm+1)

]
= E

[
E
[
Xm+1(Tam+1+bm+1Ba1,...,amfWm)(Xm+1) | Wm

]]
= E

[
E
[
Xm+1Wm(Ba1,...,amfWm)′(Xm+1) + am+1f (WmXm+1) | Wm

]]
= EBa1,...,am+1f (Wm+1),

and so necessity has been proved by induction on m. �

We now use the above product beta, gamma and normal Stein operators to obtain
Stein operators for mixed products of such random variables.

Proposition 2.5. Let X ∼ PB(a1, b1 . . . , am, bm), Y ∼ PG(r1, . . . , rn, λ) and Z ∼
PN(N,σ 2) be mutually independent.

(i) Let f ∈ Cm+n(R+) be such that E|(XY)jf (j)(XY )| < ∞, j = 0, . . . ,m+
n, and E|(XY)k+1f (k)(XY )| < ∞, k = 0, . . . ,m. Then

E
[
AXY f (XY)

]= 0.

(ii) Let f ∈ C2m+N(R) be such that E|(XZ)j−1f (j)(XZ)| < ∞, j = 1, . . . ,

2m + N , and E|(XZ)k+1f (k)(XZ)| < ∞, k = 0, . . . ,2m. Then

E
[
AXZf (XZ)

]= 0. (2.10)

(iii) Let f ∈ C2n+N(R) be such that E|YZf (YZ)| < ∞ and additionally
E|(YZ)k−1f (k)(YZ)| < ∞, k = 1, . . . ,2n + N . Then

E
[
AYZf (YZ)

]= 0. (2.11)

(iv) Let f ∈ C2m+2n+N(R) be such that E|(XYZ)j−1f (j)(XYZ)| < ∞, j =
1, . . . ,2m + 2n + N , and E|(XYZ)k+1f (k)(XYZ)| < ∞, k = 0, . . . ,2m. Then

E
[
AXYZf (XYZ)

]= 0. (2.12)

Proof. In our proof, we use the Stein operators of the product normal, product
gamma and product beta distributions that were given in Propositions 2.2, 2.3
and 2.4, respectively. We consider the four assertions separately.

(i) Recall that (Tpf )(ax) = Tpfa(x) where fa(x) = f (ax), and therefore
(Bp1,...pl

f )(ax) = Bp1,...pl
fa(x). From (2.9) and (2.7) (with q = 1),we now have

λn
E
[
XYBa1+b1,...,am+bmf (XY)

]= λn
E
[
YE

[
XBa1+b1,...,am+bmfY (X) | Y ]]

= λn
E
[
YE

[
Ba1,...,amfY (X) | Y ]]

= λn
E
[
YBa1,...,amf (XY)

]
= λn

E
[
E
[
YBa1,...,amfX(Y ) | X]]

= E
[
E
[
Br1,...,rnBa1,...,amfX(Y ) | X]]

= E
[
Br1,...,rnBa1,...,amf (XY)

]
,

as required.
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(ii) We begin by noting that, since ANf (x) = d
dx

(T N−1
0 f (x)), we have

(AN)f (ax) = aANfa(x). So from, (2.9) and (2.6),

E
[
XZBa1+b1,...,am+bmBa1+b1−1,...,am+bm−1f (XZ)

]
= E

[
ZE

[
XBa1+b1,...,am+bmBa1+b1−1,...,am+bm−1fZ(X) | Z]]

= E
[
ZE

[
Ba1,...,amBa1+b1−1,...,am+bm−1fZ(X) | Z]]

= E
[
E
[
ZBa1,...,amBa1+b1−1,...,am+bm−1fX(Z) | X]]

= σ 2
E
[
E
[
XANBa1,...,amBa1+b1−1,...,am+bm−1fX(Z) | X]]

= σ 2
E
[
XANBa1,...,amBa1+b1−1,...,am+bm−1f (XZ)

]
.

From Lemma 2.1, we can obtain the equality ANBa1,...,amBa1+b1−1,...,am+bm−1 =
Ba1+b1,...,am+bmANBa1,...,am . Applying this formula and (2.9) yields

E
[
XZBa1+b1,...,am+bmBa1+b1−1,...,am+bm−1f (XZ)

]
= σ 2

E
[
XBa1+b1,...,am+bmANBa1,...,amf (XZ)

]
= σ 2

E
[
E
[
XBa1+b1,...,am+bmANBa1,...,amfZ(X) | Z]]

= σ 2
E
[
E
[
Ba1,...,amANBa1,...,amfZ(X) | Z]]

= σ 2
E
[
Ba1,...,amANBa1,...,amf (XZ)

]
,

as required.
(iii) By a similar argument,

λ2n
E
[
YZf (YZ)

]= λ2n
E
[
ZE

[
YfZ(Y ) | Z]]

= λn
E
[
ZE

[
Br1,...,rnfZ(Y ) | Z]]

= λn
E
[
E
[
ZBr1,...,rnfY (Z) | Y ]]

= σ 2λn
E
[
E
[
YANBr1,...,rnfY (Z) | Y ]]

= σ 2λn
E
[
E
[
YANBr1,...,rnfZ(Y ) | Z]]

= σ 2
E
[
E
[
Br1,...,rnANBr1,...,rnfZ(Y ) | Z]]

= σ 2
E
[
Br1,...,rnANBr1,...,rnf (YZ)

]
.

(iv) Applying (2.9) and (2.12) gives

λ2n
E
[
XYZBa1+b1,...,am+bmBa1+b1−1,...,am+bm−1f (XYZ)

]
= λ2n

E
[
YZE

[
XBa1+b1,...,am+bmBa1+b1−1,...,am+bm−1fYZ(X) | YZ

]]
= λ2n

E
[
YZE

[
Ba1,...,amBa1+b1−1,...,am+bm−1fYZ(X) | YZ

]]
= λ2n

E
[
E
[
YZBa1,...,amBa1+b1−1,...,am+bm−1fX(YZ) | X]]
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= σ 2
E
[
E
[
XBr1,...,rnANBr1,...,rnBa1,...,amBa1+b1−1,...,am+bm−1fX(YZ) | X]]

= σ 2
E
[
XBr1,...,rnANBr1,...,rnBa1,...,amBa1+b1−1,...,am+bm−1f (XYZ)

]
.

We now interchange the order of the operators using part (ii) of Lemma 2.1 and
then use (2.9) to obtain

λ2n
E
[
XYZBa1+b1,...,am+bmBa1+b1−1,...,am+bm−1f (XYZ)

]
= σ 2

E
[
XBa1+b1,...,am+bmBr1,...,rnANBr1,...,rnBa1,...,amf (XYZ)

]
= σ 2

E
[
E
[
XBa1+b1,...,am+bmBr1,...,rnANBr1,...,rnBa1,...,amfYZ(X) | YZ

]]
= σ 2

E
[
E
[
Ba1,...,amBr1,...,rnANBr1,...,rnBa1,...,amfYZ(X) | YZ

]]
= σ 2

E
[
Ba1,...,amBr1,...,rnANBr1,...,rnBa1,...,amf (XYZ)

]
.

This completes the proof. �

Remark 2.6. We could have obtained first order Stein operators for the product
normal, beta and gamma distributions using the density approach of Stein et al.
(2004) (see also Ley et al. (2014) for an extension of the scope of the density
method). However, this approach would lead to complicated operators involving
Meijer G-functions. We would expect that this would lead to various problems.
First, bounding the derivatives of the solution could still be a challenging problem,
and these derivatives might not even be bounded. Moreover, the coupling tech-
niques in the existing Stein’s method literature seem to be most effective when
the coefficients take a simple form. Our Stein equations, on the other hand, are
amenable to the use of couplings. Indeed, Gaunt (2016) used a generalised zero
bias coupling in conjugation with the product normal Stein equation to prove prod-
uct normal approximation theorems.

From the formulas (2.2) and (2.3) for the operators AN and Br1,...,rn , it follows
that the product Stein operators of Table 1 are linear ordinary differential operators
with simple coefficients. As an example, the Stein operator for the product XYZ

can be written as

AXYZf (x) = σ 2
2m+2n+N∑

k=1

αk,2m+2n+Nxk−1f (k)(x) − λ2n
2m∑
k=0

βk,2mxk+1f (k)(x),

where the αk,2m+2n+N and βk,2m can be computed using (2.4).
As discussed in the Introduction, Stein operators of order greater than two are

not common in the literature; however, our higher order product Stein operators
seem to be natural generalisations of the classical normal, beta and gamma Stein
operators to products. It is interesting to note that whilst the product beta, gamma
and normal Stein operators are order m, n and N , respectively, the operator for
their product is order 2m + 2n + N , whilst one might intuitively expect the order
to be m + n + N . The formula (3.1) of Theorem 3.1 below for the p.d.f. for the



Products of normal, beta and gamma random variables 449

product XYZ sheds light on this, and is discussed further in Remark 3.2. In Sec-
tion 2.2.2, we shall see that for certain parameter values one can obtain lower order
Stein operators for the product XYZ. For example, the operator decreases by m

when b1 = · · · = bm = 1, and this can also be understood from (3.1) and properties
of the Meijer G-function; this is also discussed in Remark 3.2. However, for gen-
eral parameter values, we expect that a Stein operator for XYZ with polynomial
coefficients will be of order 2m + 2n + N ; again, see Remark 3.2.

2.2.2 Reduced order Stein operators. By Lemma 2.1, we can write the Stein
operators for the products XZ and XYZ as

AXZf (x) = σ 2x−1Ba1,...,amBa1−1,...,am−1T
N

0 f (x)

− xBa1+b1,...,am+bmBa1+b1−1,...,am+bm−1f (x)

and

AXYZf (x) = σ 2x−1Ba1,...,amBa1−1,...,am−1Br1,...,rnBr1−1,...,rn−1T
N
0 f (x)

− λ2nxBa1+b1,...,am+bmBa1+b1−1,...,am+bm−1f (x).

With this representation, we can write down a simple criterion under which we can
obtain Stein operators for the products XZ and XYZ with orders less than 2m+N

and 2m + 2n + N , respectively. For simplicity, we only consider the case of the
product XYZ; we can treat the operator for product XZ similarly.

Define sets R and S by

R = {a1 + b1, . . . , am + bm,a1 + b1 − 1, . . . , am + bm − 1};
S = {a1, . . . , am, a1 − 1, . . . , am − 1, r1, . . . , rn, r1 − 1, . . . , rn − 1,0, . . . ,0},

where it is understood that there are N zeros in S. Then if |R ∩ S| = t , the Stein
operator AXYZf (x) can be reduced to one of order 2m + 2n + N − t .

To illustrate this criterion, we consider some particular parameter values.

(i) b1 = · · · = bm = 1: X is product of m independent U(0,1) random vari-
ables when also a1 = · · · = am = 1. Here the Stein operator is

AXYZf (x) = σ 2x−1Ba1−1,...,am−1Br1,...,rnBr1−1,...,rn−1T
N
0 Ba1,...,amf (x)

− λ2nxBa1+1,...,am+1Ba1,...,amf (x),
(2.13)

where we used the fact that the operators Tr and Ts are commutative. Taking
g(x) = Ba1,...,amf (x) then gives the (m + 2n + N)th order Stein operator

Ag(x) = σ 2x−1Br1,...,rnBr1−1,...,rn−1T
N

0 Ba1,...,amg(x)

− λ2nxBa1+1,...,am+1g(x)

= σ 2Ba1,...,amBr1,...,rnANBr1,...,rng(x)

− λ2nxBa1+1,...,am+1g(x).

(2.14)
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It should be noted that the Stein operator (2.14) acts on a different class of
functions to (2.13). To stress this point, we recall from part (iv) of Proposi-
tion 2.5 that the operator (2.13) acts on all functions f ∈ C2m+2n+N(R) such
that E|(XYZ)j−1f (j)(XYZ)| < ∞, j = 1, . . . ,2m+2n+N , and E|(XYZ)k+1 ×
f (k)(XYZ)| < ∞, k = 0, . . . ,2m. Whereas, (2.14) acts on all functions g ∈
Cm+2n+N(R) such that E|(XYZ)j−1g(j)(XYZ)| < ∞, j = 1, . . . ,m + 2n + N ,
and E|(XYZ)k+1g(k)(XYZ)| < ∞, k = 0, . . . ,m.

In the subsequent examples, we shall not write down the resulting lower order
Stein operators, although they can be obtained easily by similar calculations.

(ii) a1 + b1 = · · · = am + bm = 1: X is a product of m independent arcsine
random variables when also a1 = · · · = am = 1/2. A Stein operator of order m +
2n + N can again be obtained.

(iii) m = n = N , a1 + b1 = · · · = am + bm = 1 and r1 = · · · = rn = 1, so that
X and Y are products of m arcsine and Exponential(1) random variables, respec-
tively. A Stein operator of order 3m can again be obtained.

(iv) m = n = N , a1 + b1 = · · · = am + bm = 1 and r1 = · · · = rn = 2. A Stein
operator of order 3m can be obtained.

2.3 A Stein equation for the product of two gammas

In general, for the product distribution Stein equations that are obtained in this pa-
per, it is difficult to solve the equation and bound the appropriate derivatives of the
solution. However, for the product normal Stein equation, Gaunt (2016) obtained
uniform bounds for the first four derivatives of the solution in the case N = 2.
Here we show that, for the PG(r1, r2, λ) Stein equation, under certain conditions
on the test function h, all derivatives of the solution are uniformly bounded. With
a more detailed analysis than the one carried out in this paper, we could obtain
explicit constants; this is discussed in Remark 2.9 below. In Remark 2.10 below,
we discuss the difficulties of obtaining such estimates for more general product
distribution Stein equations.

Taking q = 1 in the characterisation of the product generalised gamma dis-
tribution given in Proposition 2.3 leads to the following Stein equation for the
PG(r1, r2, λ) distribution:

x2f ′′(x) + (1 + r1 + r2)xf
′(x) + (

r1r2 − λ2x
)
f (x) = h(x) − PGλ

r1,r2
h, (2.15)

where PGλ
r1,r2

h denotes the expectation Eh(Y ), for Y ∼ PG(r1, r2, λ). The two
functions x−(r1+r2)/2Kr1−r2(2λ

√
x) and x−(r1+r2)/2I|r1−r2|(2λ

√
x) (the modified

Bessel functions Iν(x) and Kν(x) are defined in Appendix B) form a fundamental
system of solutions to the homogeneous equation (this can readily be seen from
(B.12)). Therefore, we can use the method of variation of parameters (see Collins
(2006) for an account of the method) to solve (2.15). The resulting solution is given
in the following lemma and its derivatives are bounded in the next proposition. The
proofs are given in Appendix A.
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Lemma 2.7. Suppose h : R+ → R is bounded and let h̃(x) = h(x) − PGλ
r1,r2

h.
Then the unique bounded solution f : R+ → R to the Stein equation (2.15) is
given by

f (x) = −2Kr1−r2(2λ
√

x)

x(r1+r2)/2

∫ x

0
t (r1+r2)/2−1I|r1−r2|(2λ

√
t)h̃(t)dt

(2.16)

+ 2I|r1−r2|(2λ
√

x)

x(r1+r2)/2

∫ x

0
t (r1+r2)/2−1Kr1−r2(2λ

√
t)h̃(t)dt

= −2Kr1−r2(2λ
√

x)

x(r1+r2)/2

∫ x

0
t (r1+r2)/2−1I|r1−r2|(2λ

√
t)h̃(t)dt

(2.17)

− 2I|r1−r2|(2λ
√

x)

x(r1+r2)/2

∫ ∞
x

t(r1+r2)/2−1Kr1−r2(2λ
√

t)h̃(t)dt.

Proposition 2.8. Suppose h ∈ Ck
b(R+) and let f denote the solution (2.16). Then

there exist non-negative constants C0,k,C1,k, . . . ,Ck,k such that

‖f ‖ ≤ C0,0‖h̃‖ and
∥∥f (k)

∥∥≤ C0,k‖h̃‖ +
k∑

j=1

Cj,k

∥∥h(j)
∥∥, k ≥ 1. (2.18)

Remark 2.9. The solution f can be bounded by∣∣f (x)
∣∣≤ 2‖h̃‖ 1

x(r1+r2)/2

∫ x

0
t (r1+r2)/2−1∣∣Kr1−r2(2λ

√
x)I|r1−r2|(2λ

√
t)

− I|r1−r2|(2λ
√

x)Kr1−r2(2λ
√

t)
∣∣dt,

useful for “small” x, and∣∣f (x)
∣∣≤ 2‖h̃‖Kr1−r2(2λ

√
x)

x(r1+r2)/2

∫ x

0
t (r1+r2)/2−1I|r1−r2|(2λ

√
t)dt

+ 2‖h̃‖I|r1−r2|(2λ
√

x)

x(r1+r2)/2

∫ ∞
x

t(r1+r2)/2−1Kr1−r2(2λ
√

t)dt,

useful for “large” x. In the proof of Lemma 2.7, we use asymptotic formulas for
modified Bessel functions to show that the above expressions involving modified
Bessel functions are bounded for all x > 0. A more detailed analysis (see Gaunt
(2016b) for an analysis that yields bounds for similar expressions involving inte-
grals of modified Bessel functions) would allow one to obtain an explicit bound,
uniform in x, for these quantities, which would yield an explicit value for the con-
stant C0,0. By examining the proof of Proposition 2.8, we would then be able to
determine explicit values for all Cj,k by a straightforward induction. However,
since we do not use the product gamma Stein equation to prove any approximation
results in this paper, we omit this analysis.
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Remark 2.10. For the PN(2, σ 2) and PG(r1, r2, λ) Stein equations, one can obtain
a fundamental system of solutions to the homogeneous equation in terms of modi-
fied Bessel functions. These functions are well-understood, meaning that the prob-
lem of bounding the derivatives of the solution is reasonably tractable. However,
for product distribution Stein equations in general, it is more challenging to bound
the derivatives, because the Stein equation is of higher order and a fundamental
system for the homogeneous equation is given in terms of less well-understood
Meijer G-functions (this can be seen from (B.8)), which do not in general reduce
to simpler functions. See Gaunt (2016), Section 2.3.2 for a detailed discussion of
this problem for the product normal case. Obtaining bounds for other product dis-
tribution Stein equations is left as an interesting open problem, which if solved
would mean that the Stein equations of this paper could be utilised to prove prod-
uct, beta, gamma and normal approximation results.

3 Distributional properties of products of beta, gamma and normal
random variables

3.1 Distributional theory

Much of this section is devoted to proving Theorem 3.1 below which gives a for-
mula for the p.d.f. of the product beta-gamma-normal distribution. Throughout this
section we shall suppose that the random variables X ∼ PB(a1, b1, . . . , am, bm),
Y ∼ PG(r1, . . . , rn, λ) and Z ∼ PN(N,σ 2) are mutually independent, and denote
their product by W = XYZ.

Theorem 3.1. The p.d.f. of W is given by

p(x) = KG
2m+2n+N,0
2m,2m+2n+N

⎛⎜⎝ λ2nx2

22n+Nσ 2

∣∣∣∣∣
a1 + b1

2
, . . . ,

am + bm

2
,

a1

2
, . . . ,

am

2
,
a1 − 1

2
, . . . ,

am − 1

2
,

· · ·

(3.1)

· · ·
a1 + b1 − 1

2
, . . . ,

am + bm − 1

2
r1

2
, . . . ,

rn

2
,
r1 − 1

2
, . . . ,

rn − 1

2
,0, . . . ,0

⎞⎟⎠ ,

where

K = λn

22n+N/2π(n+N)/2σ

m∏
i=1

�(ai + bi)

2bi�(ai)

n∏
j=1

2rj

�(rj )
.

We prove this theorem in Section 3.3 by verifying that the Mellin transform of
the product XYZ is the same as the Mellin transform of the density (3.1). How-
ever, a constructive proof using the Mellin inversion formula would require more
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involved calculations. In Section 3.2, we use the product beta-gamma-normal char-
acterisation (Proposition 2.5, part (iv)) to motivate the formula (3.1) as a candidate
for the density of the product W . As far as the author is aware, this is the first time
a Stein characterisation has been applied to arrive at a new formula for the p.d.f.
of a distribution.

Before proving Theorem 3.1, we note some simple consequences. The product
normal p.d.f. (1.6) is an obvious special case of the master formula (3.1), and by
using properties of the Meijer G-function one can also obtain the product beta-
gamma density (1.7).

Remark 3.2. Let us now recall the sets R and S of Section 2.2.2:

R = {a1 + b1, . . . , am + bm,a1 + b1 − 1, . . . , am + bm − 1};
S = {a1, . . . , am, a1 − 1, . . . , am − 1, r1, . . . , rn, r1 − 1, . . . , rn − 1,0, . . . ,0},

where there are N zeros in set S. By property (B.1) of the Meijer G-function,
it follows that the order of the G-function in the density (3.1) decreases by t if
|R ∩ S| = t . This is precisely the same condition under which the order of the
Stein operator AXYZf (x) decreases by t . The reason for this becomes apparent in
Section 3.2 when we note that the density (3.1) satisfies the differential equation
A∗

XYZp(x) = 0, where A∗
XYZ is an adjoint operator of AXYZ with the same order.

Hence, the order of the Stein operator decreases precisely when the degree of the
G-function in the density (3.1) decreases.

As an example of this simplification, taking b1 = · · · = bm = 1 in (3.1) and
simplifying using (B.2), gives the following expression for the density:

p(x) = K̃G
m+2n+N,0
m,m+2n+N

⎛⎜⎝ λ2nx2

22n+Nσ 2

∣∣∣∣∣
a1 + 1

2
, . . . ,

am + 1

2
a1 − 1

2
, . . . ,

am − 1

2
,
r1

2
, . . . ,

rn

2
,
r1 − 1

2
, . . . ,

rn − 1

2
,0, . . . ,0

⎞⎟⎠ ,

where K̃ is the normalizing constant. It is instructive to compare this with Example
(i) of Section 2.2.2, in which a (m + 2n + N)th order Stein operator was obtained
for this distribution.

The connection between the differential equation A∗
XYZp(x) = 0 and the Stein

operator AXYZf (x) also suggests that, for general parameter values, a Stein op-
erator for XYZ with polynomial coefficients will be a (2m + 2n + N)th order
differential operator. This is because the density (3.1) is a Meijer G-function that,
for general parameter values, satisfies the (2m + 2n + N)th order G-function dif-
ferential equation (B.8). We expect this to be the case unless the sets R and S share
at least one element.
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Finally, we record two simple corollaries of Theorem 3.1: a formula for the
characteristic function of W and tail estimates for its density. We note that these
formulas are new, but that there is quite an extensive literature on tail asymptotics
for product distributions; see Hashorva and Pakes (2010) and references therein;
see also Pitman and Racz (2015) for a recent neat derivation of the tail asymptotics
for the density of the product of a beta random variable and an independent gamma
random variable.

Corollary 3.3. The characteristic function of W is given by

φ(t) = MG
2m+2n+N−1,1
2m+1,2m+2n+N−1

⎛⎜⎝ λ2n

22n+N−2σ 2t2

∣∣∣∣∣
1,

a1 + b1 + 1

2
, . . . ,

am + bm + 1

2
,

a1 + 1

2
, . . . ,

am + 1

2
,
a1

2
, . . . ,

am

2
,

· · ·

· · ·
a1 + b1

2
, . . . ,

am + bm

2
r1 + 1

2
, . . . ,

rn + 1

2
,
r1

2
, . . . ,

rn

2
,

1

2
, . . . ,

1

2

⎞⎟⎠ ,

where

M = 1

π(n+N−1)/2

m∏
i=1

�(ai + bi)

2bi�(ai)

n∏
j=1

2rj−1

�(rj )
.

Proof. Since the distribution of W is symmetric about the origin, it follows that
the characteristic function φ(t) is given by

φ(t) = E
[
eitW ]= E

[
cos(tW)

]= 2
∫ ∞

0
cos(tx)p(x)dx.

Evaluating the integral using (B.5) gives

φ(t) = MG
2m+2n+N,1
2m+2,2m+2n+N

⎛⎜⎝ λ2n

22n+N−2σ 2t2

∣∣∣∣∣
1

2
,
a1 + b1

2
, . . . ,

am + bm

2
,

a1

2
, . . . ,

am

2
,
a1 − 1

2
, . . . ,

am − 1

2
,

· · ·

· · ·
a1 + b1 − 1

2
, . . . ,

am + bm − 1

2
,0

r1

2
, . . . ,

rn

2
,
r1 − 1

2
, . . . ,

rn − 1

2
,0, . . . ,0

⎞⎟⎠ ,

where

M = 2K
√

π

|t | = 1

π(n+N−1)/2

�(ai + bi)

2bi�(ai)

n∏
j=1

2rj−1

�(rj )
· λn

2n+N/2−1σ |t | ,
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and simplifying the above expression using (B.2) and then (B.1) completes the
proof. �

Corollary 3.4. The density (3.1) of the random variable W satisfies the asymptotic
formula

p(x) ∼ N |x|α exp
{
−(2n + N)

(
λ2nx2

22n+Nσ 2

)1/(2n+N)}
, as |x| → ∞,

where

N = (2π)(2n+N−1)/2

(2n + N)1/2

(
λ2n

22n+Nσ 2

)α/2
K,

with K defined as in Theorem 3.1, and

α = 2

2n + N

{
1 − 3n + N

2
+

n∑
j=1

rj −
m∑

j=1

bj

}
.

Proof. Apply the asymptotic formula (B.3) to the density (3.1). �

3.2 Discovery of Theorem 3.1 via the Stein characterisation

Here we motivate the formula (3.1) for the density p of the product random vari-
able W . We do so by using the product beta-gamma-normal Stein characterisation
to find a differential equation satisfied by p.

By part (iv) of Proposition 2.5, we have that

E
[
σ 2Ba1,...,amBr1,...,rnANBr1,...,rnBa1,...,amf (W)

− λ2nWBa1+b1,...,am+bmBa1+b1−1,...,am+bm−1f (W)
]= 0

(3.2)

for all f ∈ C2m+2n+N(R) such that E|Wk−1f (k)(W)| < ∞ for 1 ≤ k ≤ 2m+2n+
N , and E|Wk+1f (k)(W)| < ∞ for 0 ≤ k ≤ 2m. By using part (ii) of Lemma 2.1
and that ANf (x) = d

dx
(T N−1

0 f (x)) and d
dx

T k
r f (x) = T k

r+1f
′(x), we can write

ANBr1,...,rnBa1,...,amf (x) = Br1+1,...,rn+1Ba1+1,...,am+1T
N−1
1 f ′(x).

On substituting into (3.2), we see that the density p(x) of W satisfies the equation∫ ∞
−∞

{
σ 2Ba1,...,amBr1,...,rnBr1+1,...,rn+1Ba1+1,...,am+1T

N−1
1 f ′(x)

− λ2nxBa1+b1,...,am+bmBa1+b1−1,...,am+bm−1f (x)
}
p(x)dx = 0

(3.3)

for all functions f in the class Cp , which is defined by

(i) f ∈ C2m+2n+N(R);
(ii) E|Wk−1f (k)(W)| < ∞ for 1 ≤ k ≤ 2m+ 2n+N and E|Wk+1f (k)(W)| <

∞ for 0 ≤ k ≤ 2m;
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(iii) xi+j+2p(i)(x)f (j)(x) → 0 as x → ±∞ for all i, j such that 0 ≤ i + j ≤
2m − 1;

(iv) xi+jp(i)(x)f (j)(x) → 0 as x → ±∞ for all i, j such that 0 ≤ i + j ≤
2m + 2n + N − 1.

It will later become apparent as to why it is helpful to have the additional condi-
tions (iii) and (iv). Note that Cp contains the set of all functions on R with compact
support that are 2m + 2n + N times differentiable.

We now note the following integration by parts formula. Let γ ∈ R and suppose
that φ and ψ are differentiable. Then∫ ∞

−∞
xγ φ(x)Trψ(x)dx

=
∫ ∞
−∞

xγ φ(x)
{
xψ ′(x) + rψ(x)

}
dx

=
∫ ∞
−∞

xγ+1−rφ(x)
d

dx

(
xrψ(x)

)
dx

= [
xγ+1φ(x)ψ(x)

]∞
−∞ −

∫ ∞
−∞

xrψ(x)
d

dx

(
xγ+1−rφ(x)

)
dx

= [
xγ+1φ(x)ψ(x)

]∞
−∞ −

∫ ∞
−∞

xγ ψ(x)Tγ+1−rφ(x)dx,

(3.4)

provided the integrals exist.
We now return to equation (3.3) and use (3.4) to obtain a differential equation

that is satisfied by p(x). Using (3.4), we obtain∫ ∞
−∞

xp(x)Ba1+b1,...,am+bmBa1+b1−1,...,am+bm−1f (x)dx

= [
x2p(x)Ba1+b1,...,am−1+bm−1Ba1+b1−1,...,am+bm−1f (x)

]∞
−∞

−
∫ ∞
−∞

xT2−am−bmp(x)Ba1+b1−1,...,am+bm−1f (x)dx

= −
∫ ∞
−∞

xT2−am−bmp(x)Ba1+b1−1,...,am+bm−1f (x)dx,

where we used condition (iii) to obtain the last equality. By a repeated application
of integration by parts, using formula (3.4) and condition (iii), we arrive at∫ ∞

−∞
xp(x)Ba1+b1,...,am+bmBa1+b1−1,...,am+bm−1f (x)dx

=
∫ ∞
−∞

xf (x)B3−a1−b1,...,3−am−bmB2−a1−b1,...,2−am−bmp(x)dx.
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By a similar argument, using (3.4) and condition (iv), we obtain∫ ∞
−∞

p(x)Ba1,...,amBr1,...,rnBr1+1,...,rn+1Ba1+1,...,am+1T
N−1
1 f ′(x)dx

= (−1)N
∫ ∞
−∞

f (x)

× d

dx

(
T N−1

0 B−a1,...,−amB−r1,...,−rnB1−r1,...,1−rnB1−a1,...,1−amp(x)
)

dx.

Putting this together, we have that∫ ∞
−∞

{
(−1)Nσ 2x−1T N

0 B−a1,...,−amB−r1,...,−rnB1−r1,...,1−rnB1−a1,...,1−amp(x)

− λ2nxB3−a1−b1,...,3−am−bmB2−a1−b1,...,2−am−bmp(x)
}
f (x)dx = 0

for all f ∈ Cp . Since the integral in the above display is equal to zero for all f ∈
Cp , it follows by a slight variation of the fundamental lemma of the calculus of
variations (here we have restrictions on the growth of f (x) in the limits x → ±∞)
that p(x) satisfies the differential equation

T N
0 B−a1,...,−amB−r1,...,−rnB1−r1,...,1−rnB1−a1,...,1−amp(x)

− (−1)Nσ−2λ2nx2B3−a1−b1,...,3−am−bmB2−a1−b1,...,2−am−bmp(x)

= 0.

(3.5)

We now make a change of variables to transform this differential equation to a
Meijer G-function differential equation (see (B.8)). To this end, let y = λ2nx2

22n+Nσ 2 .

Then, x d
dx

= 2y d
dy

and p(y) satisfies the differential equation

T N
0 B− a1

2 ,...,− am
2

B− r1
2 ,...,− rn

2
B 1−r1

2 ,..., 1−rn
2

B 1−a1
2 ,..., 1−am

2
p(y)

− (−1)NyB 3−a1−b1
2 ,..., 3−am−bm

2
B 2−a1−b1

2 ,..., 2−am−bm
2

p(y) = 0.
(3.6)

From (B.8), it follows that a solution to (3.6) is

p(y) = CG
2m+2n+N,0
2m,2m+2n+N

⎛⎜⎝y

∣∣∣∣∣
a1 + b1

2
, . . . ,

am + bm

2
,

a1

2
, . . . ,

am

2
,

a1 + b1 − 1

2
, . . . ,

am + bm − 1

2
a1 − 1

2
, . . . ,

am − 1

2
,
r1

2
, . . . ,

rn

2
,
r1 − 1

2
, . . . ,

rn − 1

2
,0, . . . ,0

⎞⎟⎠ ,
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where C is a constant. Therefore, on changing variables, a solution to (3.5) is given
by

p(x) = C̃G
2m+2n+N,0
2m,2m+2n+N

⎛⎜⎝ λ2nx2

22n+Nσ 2

∣∣∣∣∣
a1 + b1

2
, . . . ,

am + bm

2
,

a1

2
, . . . ,

am

2
,
a1 − 1

2
, . . . ,

am − 1

2
,

· · ·

· · ·
a1 + b1 − 1

2
, . . . ,

am + bm − 1

2
r1

2
, . . . ,

rn

2
,
r1 − 1

2
, . . . ,

rn − 1

2
,0, . . . ,0

⎞⎟⎠ ,

where C̃ is an arbitrary constant. We can use the integration formula (B.6) to deter-
mine a value of C̃ such that

∫
R

p(x)dx = 1. With this choice of C̃, p(x) ≥ 0 and
so p is a density function. However, there are 2m + 2n + N linearly independent
solutions to (3.5) and whilst our solution p is indeed a density function, a more
detailed analysis would be required to rigorously prove that it is indeed the density
function of the product beta-gamma-normal distribution. Since a simple proof that
p is indeed the density function is now available to us via Mellin transforms, we
decide to omit such an analysis.

3.3 Proof of Theorem 3.1

First, we define the Mellin transform and state some properties that will be useful
to us. The Mellin transform of a non-negative random variable U with density p

is given by

MU(s) = EUs−1 =
∫ ∞

0
xs−1p(x)dx,

for all s such that the expectation exists. If the random variable U has density p

that is symmetric about the origin then we can define the Mellin transform of U

by

MU(s) = 2
∫ ∞

0
xs−1p(x)dx.

The Mellin transform is useful in determining the distribution of products of inde-
pendent random variables due to the property that if the random variables U and
V are independent then

MUV (s) = MU(s)MV (s). (3.7)

Proof of Theorem 3.1. It was shown by Springer and Thompson (1970) that the
Mellin transforms of X, Y and Z are

MX(s) =
m∏

j=1

�(aj + bj )

�(aj )

�(aj − 1 + s)

�(aj + bj − 1 + s)
,
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MY (s) = 1

λn(s−1)

n∏
j=1

�(rj − 1 + s)

�(rj )
,

MZ(s) = 1

πN/2 2N(s−1)/2σ s−1
[
�

(
s

2

)]N

.

Then, as the random variables are independent, it follows from (3.7) that

MXYZ(s) =
m∏

j=1

�(aj + bj )

�(aj )

�(aj − 1 + s)

�(aj + bj − 1 + s)
× 1

λn(s−1)

n∏
j=1

�(rj − 1 + s)

�(rj )

(3.8)

× 1

πN/2 2N(s−1)/2σ s−1
[
�

(
s

2

)]N

.

Now, let W be a random variable with density (3.1). Since the density of W is
symmetric about the origin, we have

MW(s) = 2
∫ ∞

0
xs−1p(x)dx

= λn

22n+N/2π(n+N)/2σ

m∏
j=1

�(aj + bj )

2bj �(aj )

n∏
j=1

2rj

�(rj )

(3.9)

×
(

2n+N/2σ

λn

)s

×
[
�

(
s

2

)]N

×
m∏

j=1

�(
aj+s

2 )�(
aj−1+s

2 )

�(
aj+bj+s

2 )�(
aj+bj−1+s

2 )

n∏
j=1

�

(
rj + s

2

)
�

(
rj − 1 + s

2

)
,

where we used (B.6) to compute the integral. On applying the duplication formula
�(x

2 )�(x
2 + 1

2) = 21−x
√

π�(x) to (3.9) we can deduce that the expressions (3.8)
and (3.9) are equal. Hence, the Mellin transforms of W and XYZ are equal and
therefore W and XYZ are equal in distribution. �

Appendix A: Further proofs

Proof of Lemma 2.7. We begin by proving that there is at most one bounded
solution to the PG(r1, r2, λ) Stein equation (2.15). Suppose u and v are bounded
solutions to (2.15). Define w = u − v. Then w is bounded and is a solution to the
homogeneous equation

x2w′′(x) + (1 + r1 + r2)xw′(x) + (
r1r2 − λ2x

)
w(x) = 0. (A.1)

We now obtain the general solution to (A.1). We begin by noting that the general
solution to the homogeneous equation

x2s′′(x) + xs′(x) − (
x2 + (r1 − r2)

2)s(x) = 0



460 R. E. Gaunt

is given by s(x) = CKr1−r2(x)+DI|r1−r2|(x) (see (B.12)). Here, we have used the
fact that K−ν(x) = Kν(x) for any ν ∈ R and all x > 0, which can be seen imme-
diately from (B.9). Thus, K|r1−r2|(x) = Kr1−r2(x). A simple change of variables
now gives that t (x) = CKr1−r2(2λ

√
x) + DI|r1−r2|(2λ

√
x) is the general solution

to

x2t ′′(x) + xt ′(x) − (
λ2x + (r1 − r2)

2/4
)
t (x) = 0. (A.2)

Substituting t (x) = x(r1+r2)/2w(x) into (A.2) now shows that w satisfies the dif-
ferential equation (A.1), and we have that the general solution to (A.1) is given
by

w(x) = Aw1(x) + Bw2(x),

where

w1(x) = x−(r1+r2)/2Kr1−r2(2λ
√

x) and w2(x) = x−(r1+r2)/2I|r1−r2|(2λ
√

x).

From the asymptotic formulas for modified Bessel functions (B.10) and (B.11), it
follows that in order to have a bounded solution we must take A = B = 0, and thus
w = 0 and so there is at most one bounded solution to (2.15).

Since (2.15) is an inhomogeneous linear ordinary differential equation, we can
use the method of variation of parameters (see Collins (2006) for an account of the
method) to write down the general solution of (2.15):

f (x) = −w1(x)

∫ x

a

w2(t)h̃(t)

t2W(t)
dt + w2(x)

∫ x

b

w1(t)h̃(t)

t2W(t)
dt, (A.3)

where a and b are arbitrary constants and W(t) = W(w1,w2) = w1w
′
2 − w2w

′
1 is

the Wronskian. From the formula W(Kν(x), Iν(x)) = x−1 (Olver et al. (2010), for-
mula 10.28.2) and a simple computation we have W(w1(x),w2(x)) = 1

2x−1−r1−r2 .
Substituting the relevant quantities into (A.3) and taking a = b = 0 yields the
solution (2.16). That the solutions (2.16) and (2.17) are equal follows because
t (r1−r2)/2−1Kr1−r2(2λ

√
t) is proportional to the PG(r1, r2, λ) density function.

Finally, we show that the solution (2.16) is bounded if h is bounded. If r1 �= r2,
then it follows from the asymptotic formulas for modified Bessel functions (see
Appendix B.2.3) that the solution is bounded (here we check that the solution is
bounded as x ↓ 0 using (2.16), and to verify that it is bounded as x → ∞ we use
(2.17)). If r1 = r2, the same argument confirms that the solution is bounded as
x → ∞. To deal with the limit x ↓ 0, we use the asymptotic formulas I0(x) ∼ 1
and K0(x) ∼ − log(x), as x ↓ 0, to obtain

lim
x↓0

∣∣f (x)
∣∣= lim

x↓0

2

x(r1+r2)/2

∣∣∣∣∫ x

0
t (r1+r2)/2−1[K0(2λ

√
x)I0(2λ

√
t)

− I0(2λ
√

x)K0(2λ
√

t)
]
h̃(t)dt

∣∣∣∣
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= lim
x↓0

1

x(r1+r2)/2

∫ x

0
t (r1+r2)/2−1[log(x) − log(t)

]
h̃(t)dt

≤ ‖h̃‖ lim
x↓0

1

x(r1+r2)/2

∫ x

0
t (r1+r2)/2−1[log(x) − log(t)

]
dt

= ‖h̃‖ lim
x↓0

1

((r1 + r2)/2)2 = 4‖h̃‖
(r1 + r2)2 .

Therefore the solution is bounded when h is bounded. This completes the proof. �

Proof of Proposition 2.8. In this proof, we make use of an iterative approach
that first appeared Döbler (2015b), and was then developed further in Döbler
et al. (2015). Denote the Stein operator for the PG(r1, r2, λ) distribution by
Ar1,r2,λf (x), so that the PG(r1, r2, λ) Stein equation is given by

Ar1,r2,λf (x) = h̃(x).

Now, from the Stein equation (2.15) and a straightforward induction on k, we have
that

x2f (k+2)(x) + (r1 + r2 + 2k + 1)xf (k+1)(x)

+ (
(r1 + k)(r2 + k) − λ2x

)
f (k)(x) = h(k)(x) + kλ2f (k−1)(x),

which can be written as

Ar1+k,r2+k,λf
(k)(x) = h(k)(x) + kλ2f (k−1)(x).

Now, by Lemma 2.7, there exists a constant Cr1,r2,λ such that

‖f ‖ ≤ Cr1,r2,λ‖h̃‖.
We also note that the test function h′(x) + λ2f (x) has mean zero with respect
to the random variable Y ∼ PG(r1 + 1, r2 + 1, λ), since by the product gamma
characterisation of Proposition 2.3,

E
[
h′(Y ) + λ2f (Y )

]= E
[
Ar1+k,r2+k,λf

′(Y )
]= 0.

With these facts we therefore have that∥∥f ′∥∥≤ Cr1+1,r2+1,λ

∥∥h′(x) + λ2f (x)
∥∥≤ Cr1+1,r2+1,λ

(∥∥h′∥∥+ λ2‖f ‖)
≤ Cr1+1,r2+1,λ

(∥∥h′∥∥+ λ2Cr1,r2,λ‖h̃‖).
Repeating this procedure then yields the bound (2.18), as required. �

Appendix B: Properties of the Meijer G-function and modified Bessel
functions

Here we define the Meijer G-function and modified Bessel functions and state
some of their properties that are relevant to this paper. For further properties of
these functions, see Luke (1969) and Olver et al. (2010).
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B.1 The Meijer G-function

B.1.1 Definition. The Meijer G-function is defined, for z ∈ C \ {0}, by the con-
tour integral:

Gm,n
p,q

(
z
∣∣∣a1, . . . , ap

b1, . . . , bq

)

= 1

2πi

∫ c+i∞
c−i∞

z−s

∏m
j=1 �(s + bj )

∏n
j=1 �(1 − aj − s)∏p

j=n+1 �(s + aj )
∏q

j=m+1 �(1 − bj − s)
ds,

where c is a real constant defining a Bromwich path separating the poles of �(s +
bj ) from those of �(1 − aj − s) and where we use the convention that the empty
product is 1.

B.1.2 Basic properties. The Meijer G-function is symmetric in the parameters
a1, . . . , an; an+1, . . . , ap; b1, . . . , bm; and bm+1, . . . , bq . Thus, if one the aj ’s, j =
n + 1, . . . , p, is equal to one of the bk’s, k = 1, . . . ,m, the G-function reduces to
one of lower order. For example,

Gm,n
p,q

(
z
∣∣∣a1, . . . , ap−1, b1

b1, . . . , bq

)
= G

m−1,n
p−1,q−1

(
z
∣∣∣a1, . . . , ap−1

b2, . . . , bq

)
,

m,p, q ≥ 1.

(B.1)

The G-function satisfies the identity

zcGm,n
p,q

(
z
∣∣∣a1, . . . , ap

b1, . . . , bq

)
= Gm,n

p,q

(
z
∣∣∣a1 + c, . . . , ap + c

b1 + c, . . . , bq + c

)
. (B.2)

B.1.3 Asymptotic expansion. For x > 0,

Gq,0
p,q

(
x
∣∣∣a1, . . . , ap

b1, . . . , bq

)
∼ (2π)(σ−1)/2

σ 1/2 xθ exp
(−σx1/σ ), as x → ∞, (B.3)

where σ = q − p and

θ = 1

σ

{
1 − σ

2
+

q∑
i=1

bi −
p∑

i=1

ai

}
.

B.1.4 Integration.∫ ∞
0

eωxGm,n
p,q

(
αx
∣∣∣a1, . . . , ap

b1, . . . , bq

)
dx = ω−1G

m,n+1
p+1,q

(
α

ω

∣∣∣0, a1, . . . , ap

b1, . . . , bq

)
. (B.4)

For the conditions under which this formula holds see Luke (1969), pp. 166–167.
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For α > 0, γ > 0, aj < 1 for j = 1, . . . , n, and bj > −1
2 for j = 1, . . . ,m, we

have ∫ ∞
0

cos(γ x)Gm,n
p,q

(
αx2

∣∣∣a1, . . . , ap

b1, . . . , bq

)
dx

= √
πγ −1G

m,n+1
p+2,q

(
4α

γ 2

∣∣∣ 1
2 , a1, . . . , ap,0

b1, . . . , bq

)
.

(B.5)

The following formula follows from Luke (1969), formula (1) of Section 5.6
and a change of variables:∫ ∞

0
xs−1Gm,n

p,q

(
αx2

∣∣∣a1, . . . , ap

b1, . . . , bq

)
dx (B.6)

= α−s/2

2

∏m
j=1 �(bj + s

2)
∏n

j=1 �(1 − aj − s
2)∏q

j=m+1 �(1 − bj − s
2)
∏p

j=n+1 �(aj + s
2)

. (B.7)

For the conditions under which this formula is valid see Luke, pp. 158–159. In
particular, the formula is valid when n = 0, 1 ≤ p + 1 ≤ m ≤ q and α > 0.

B.1.5 Differential equation. The G-function f (z) = Gm,n
p,q (z|a1,...,ap

b1,...,bq
) satisfies

the differential equation

(−1)p−m−nzB1−a1,...,1−apf (z) − B−b1,...,−bq f (z) = 0, (B.8)

where Br1,...,rnf (z) = Trn · · ·Tr1f (z) for Trf (z) = zf ′(z) + rf (z).

B.2 Modified Bessel functions

B.2.1 Definitions. The modified Bessel function of the first kind of order ν ∈ R

is defined, for all x ∈R, by

Iν(x) =
∞∑

k=0

1

�(ν + k + 1)k!
(

x

2

)ν+2k

.

The modified Bessel function of the second kind of order ν ∈ R is defined, for
x > 0, by

Kν(x) =
∫ ∞

0
e−x cosh(t) cosh(νt)dt. (B.9)

B.2.2 Representation in terms of the Meijer G-function.

Iν(x) = i−νG
2,0
0,2

(
−x2

4

∣∣∣ν
2
,−ν

2

)
, x ∈ R,

Kν(x) = 1

2
G

2,0
0,2

(
x2

4

∣∣∣ν
2
,−ν

2

)
, x > 0.
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B.2.3 Asymptotic expansions.

Iν(x) ∼ 1

�(ν + 1)

(
x

2

)ν

, x ↓ 0,

Kν(x) ∼
{

2|ν|−1�
(|ν|)x−|ν|, x ↓ 0, ν �= 0,

− logx, x ↓ 0, ν = 0,
(B.10)

Iν(x) ∼ ex

√
2πx

, x → ∞, (B.11)

Kν(x) ∼
√

π

2x
e−x, x → ∞.

B.2.4 Differential equation. The modified Bessel differential equation is

x2f ′′(x) + xf ′(x) − (
x2 + ν2)f (x) = 0. (B.12)

The general solution is f (x) = AIν(x) + BKν(x).
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