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Abstract. In this article we propose a multiple-inflation Poisson regres-
sion to model count response data containing excessive frequencies at more
than one non-negative integer values. To handle multiple excessive count re-
sponses, we generalize the zero-inflated Poisson regression by replacing its
binary regression with the multinomial regression, while Su et al. [Statist.
Sinica 23 (2013) 1071–1090] proposed a multiple-inflation Poisson model
for consecutive count responses with excessive frequencies. We give several
properties of our proposed model, and do statistical inference under the fully
Bayesian framework. We perform simulation studies and also analyze the
data related to the number of infections collected in five major hospitals in
Turkey, using our methodology.

1 Introduction

The Poisson distribution is used to analyze count data under the generalized lin-
ear model. However, the count data often contain an excessive zeros and are over
dispersed relative to the Poisson distribution (Cox, 1983). To properly handle the
problem of excessive zeros several flexible methods have been proposed, including
the following three methods. The first method is to use zero-inflated Poisson (ZIP)
models which use the mixture of binomial and Poisson distributions, see Lambert
(1992), Li (2012). The second method is to use the negative binomial distribution
instead of Poisson distribution which is referred to as the zero-inflated negative
binomial (ZINB) models (Greene, 1994). The third method is to separate the ze-
ros from the data and to apply an incomplete Poisson distribution to the non-zero
data in hurdle models (Mullahy, 1986). See Hu, Pavlicova and Nunes (2011) for
comparison of ZIP, ZINB and hurdle models.

All models assume the count data containing a single value, specifically zero,
with high frequency. However, there are situations that count data contain exces-
sive frequencies at multiple values. See, for example, Huang and Chin (2010). In
this paper, we consider a multiple-inflation Poisson (MIP) model to account for the

Key words and phrases. Bayesian generalized linear model, EM algorithm, excessive count re-
sponse, likelihood function, zero-inflated poisson model.

Received March 2016; accepted October 2016.

239

http://imstat.org/bjps/
https://doi.org/10.1214/16-BJPS340
http://www.redeabe.org.br/


240 Ryu, Bilgili, Ergönül and Ebrahimi

excessive frequencies in several responses. Specifically, if the excessive frequen-
cies occur consecutively, for example, the consecutive numbers from zero to some
integer, then we treat them as ordinal outcomes. MIP with ordinal responses also
considered by Su et al. (2013). If the excessive frequencies occur randomly on any
non-negative integer, then we treat them as nominal outcomes. Using a mixture
distribution of multinomial and Poisson distributions, we propose an MIP model
for both ordinal and nominal responses.

This research was motivated by a need to assess the relationship between the
number of infections per week, which includes excessive zeros and ones, and sev-
eral covariates using the infection data collected by five hospitals in Turkey. We
develop MIP regression models under Bayesian framework and apply them to the
infection data analysis. It should be noted that Su et al. (2013) based their inference
on Frequentists approaches.

The paper is organized as follows. Section 2 describes the multiple-inflation
Poisson distribution, gives several properties and discusses Bayesian analysis of
our model. In Section 3, we perform simulation studies to compare the MIP re-
gression models with the ZIP regression model and apply our method to infection
data. Finally, Section 4 gives conclusions.

2 Multiple-inflation Poisson distribution, its properties and statistical
inference

Consider a non-negative discrete random variable Y that takes excessive probabili-
ties at multiple values, say c1, . . . , cm, comparing to the Poisson distribution. Then
we say Y has a multiple-inflation Poisson (MIP) distribution, at c1, . . . , cm, de-
noted as MIP[c1, . . . , cm;π1, . . . , πm;λ], if its probability mass function is given
by

P(Y = y) =
m∑

j=1

I {y = cj }πj

(2.1)

+
(

1 −
m∑

j=1

πj

)
λy

y! e
−λ, y = 0,1,2, . . . ,

for 0 ≤ πj ≤ 1, j = 1, . . . ,m,
∑m

j=1 πj ≤ 1 and λ > 0, as an extension of zero-
inflated Poisson (ZIP) distribution (Lambert, 1992).

Now, based on the feature of c1, . . . , cm we propose two types of MIP: (Type 1)
when c1, . . . , cm are consecutive integers, and (Type 2) when they are any non-
negative integers. They are referred to as an ordinal MIP, see Su et al. (2013), and
a nominal MIP, respectively.

Several comments are in order with regard to (2.1):

(A) In the equation (2.1), if m = 1 and c1 = 0, then we get ZIP distribution.
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(B) The random variable Y follows a mixture of the multinomial distribution and
the Poisson distribution. While ZIP model only considers the excessive prob-
ability at zero as a mixture of Binomial and Poisson distributions (Lambert,
1992), MIP model allows excessive probabilities at several non-negative inte-
ger values and can be considered as a mixture of the multinomial distribution
with one trial and the Poisson distribution.

(C) The first and the second moments of Y are

E(Y ) =
∞∑

y=0

yP (Y = y) =
m∑

j=1

cjπj +
(

1 −
m∑

j=1

πj

)
λ,

E
(
Y 2) =

∞∑
y=0

y2P(Y = y) =
m∑

j=1

c2
jπj +

(
1 −

m∑
j=1

πj

)
λ(λ + 1).

Consequently,

var(Y ) = E
(
Y 2) − {

E(Y )
}2

= λ2

(
1 −

m∑
j=1

πj

)
m∑

j=1

πj + λ

(
1 −

m∑
j=1

πj

)(
1 − 2

m∑
j=1

cjπj

)

+
m∑

j=1

c2
jπj −

(
m∑

j=1

cjπj

)2

.

As a special case when c1 = 0, c2 = 1 and m = 2 we have

E(Y ) = π2 + (1 − π1 − π2)λ and

var(Y ) = λ2(1 − π1 − π2)(π1 + π2) + λ(1 − π1 − π2)(1 − 2π2) + π2 − π2
2 .

To calculate general moments of Y , we use the Stirling number of the second
kind defined by

S(r, t) = 1

t !
t∑

s=0

(−1)s

(
t

s

)
(t − s)r ,

which is the number of ways of partitioning a set of r elements into t non-empty
sets. See Dobiński (1877) for more detail. We may have the triangle of S(r, t)

shown in Table 1. The S(r, t) has the following property (generating function)

yr =
r∑

t=0

S(r, t)y(y − 1) · · · (y − t + 1).

Now, using S(r, t), the following lemma gives the r th moment of MIP[c1, . . . , cm;
π1, . . . , πm;λ].
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Table 1 Values for S(r, t)

t

r 1 2 3 4 5 6

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1

Lemma 1. For MIP[c1, . . . , cm;π1, . . . , πm;λ] the r th moment is

E
(
Y r) =

m∑
j=1

cr
jπj +

(
1 −

m∑
j=1

πj

) ∞∑
y=0

yr λy

y! e
−λ

=
m∑

j=1

cr
jπj +

(
1 −

m∑
j=1

πj

)
r∑

t=1

λtS(r, t).

An interesting application of Lemma 1 is that one can use it to come up
with estimates of unknown parameters. For example, suppose we start with
MIP[0,1;π1, π2;λ], where (π1, π2, λ) are the parameters needed to be estimated
from a sample {y1, . . . , yn}. Using the method of moments, we can estimate the
parameters from their first three sample moments by solving the followings

1

n

n∑
i=1

yi = π2 + (1 − π1 − π2)λ,

1

n

n∑
i=1

y2
i = π2 + (1 − π1 − π2)λ(λ + 1) and

1

n

n∑
i=1

y3
i = π2 + (1 − π1 − π2)λ

(
λ2 + 3λ + 1

)
.

2.1 Models with MIP

We first consider the ordinal MIP for count data with excessive frequencies at
consecutive m non-negative integers. For notational convenience, we consider the
integers from 0 to m − 1, and assume Y ∼ MIP[0,1, . . . ,m − 1;π1, . . . , πm;λ].
Let

Pj = log
{

P(Y ≤ j)

P (Y > j)

}
= log

( ∑j
k=1 πk

1 − ∑j
k=1 πk

)
, j = 1, . . . ,m, (2.2)



Bayesian MIP 243

then, in terms of p covariates we assume the following models for the cumulative
logit, Pj , j = 1, . . . ,m, and a logistic model for λ:

Pj (xi ) = xiβj , j = 1, . . . ,m, i = 1, . . . , n (2.3)

and

log
{
λ(xi )

} = xiγ , i = 1, . . . , n, (2.4)

where n is the number of observations, xi = (1, xi1, . . . , xip) and xil is the ith ob-
servation on the lth covariate, l = 1, . . . , p, βj is (p + 1) regression coefficients
corresponding to Pj , j = 1, . . . ,m, and γ is (p + 1) regression coefficients cor-
responding to λ. In this paper, as in Hedger and Gibbons (2006), we model the
cumulative logit with common slopes, β∗

1 , . . . , β∗
p , for p covariates over different

categories of integers with excessive frequencies under the ordinal MIP such that

βj = (β0j , β1j , . . . , βpj )
T

(2.5)
= (

β0j , β
∗
1 , . . . , β∗

p

)T
, j = 1, . . . ,m,

where β0j is the threshold for Pj . It should be noted that, under the cumulative
logit link function, the thresholds β0j are in ascending order, that is, β01 ≤ β02 ≤
· · · ≤ β0m.

For non-consecutive and non-negative integers, c1, . . . , cm, with excessive fre-
quencies, we assume the nominal MIP denoted by Y ∼ MIP[c1, . . . , cm;π1,
. . . , πm;λ] and let

Fj = log
(

πj

π0

)
, j = 1,2, . . . ,m, (2.6)

where π0 = 1 − ∑m
j=1 πj . That is, in the mixture of Poisson and multinomial dis-

tributions, we denote the portion of the Poisson distribution as the reference proba-
bility π0. As before, we assume the following models for Fj , j = 1, . . . ,m, and λ:

Fj (xi ) = xiβj , j = 1, . . . ,m, i = 1, . . . , n (2.7)

and

log
{
λ(xi )

} = xiγ , i = 1, . . . , n, (2.8)

where n, xi and γ are the same as in equations (2.3) and (2.4), βj is (p + 1)

regression coefficients corresponding to Fj .
It is worth noting that the nominal MIP model is more general than the ordinal

MIP model, in the sense that (i) the nominal MIP allows different regression co-
efficients, βj , j = 1, . . . ,m, in all their components, while the ordinal MIP allows
different coefficients only in their first component and (ii) the nominal MIP model
can handle the consecutive non-negative integers with excessive frequencies.
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2.2 Likelihoods of MIP models

Let Y1, . . . , Yn be independent random samples from MIP[c1, . . . , cm;π1,

. . . , πm;λ] and let hj denote the frequency of cj , j = 1, . . . ,m. We first consider
the ordinal MIP, i.e. (c1, . . . , cm) = (0,1, . . . ,m − 1). Without loss of generality,
for n0 = 0 and nj = h1 + · · · + hj , we rearrange samples such that

Yi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, i = 1, . . . , n1,

1, i = n1 + 1, . . . , n2,
...

m − 1, i = nm−1 + 1, . . . , nm, and

yi, i = nm + 1, . . . , n,

(2.9)

where yi’s are integers greater than or equal to m. When the covariates xi are
available (dim(xi ) = p + 1 < min{h1, . . . , hm,n − nm}), under the models (2.3)–
(2.5) the log-likelihood is given by

l(β1, . . . ,βm,γ ) =
m∑

j=1

nj∑
i=nj−1+1

logP(Yi = j − 1|xi )

+
n∑

i=nm+1

logP(Yi = yi |xi ),

where

P(Yi = j − 1|xi ) = πj (xi )

+
{

1 −
m∑

k=1

πk(xi )

}
λ(xi )

j−1

(j − 1)! e−λ(xi ), j = 1, . . . ,m,

P (Yi = yi |xi ) =
{

1 −
m∑

k=1

πk(xi )

}
λ(xi )

yi

yi ! e−λ(xi ), yi ≥ m,

and π1(xi) = 1
1+e−P1(xi )

, πj (xi ) = 1
1+e

−Pj (xi )
− 1

1+e
−Pj−1(xi )

, j = 2, . . . ,m, and

λ(xi ) can be obtained from the equations (2.3) and (2.4), respectively.
Since the probabilities of integer values with excessive frequencies are given by

P(Yi = 0|xi ) = 1

1 + ePm(xi )

(
1 + ePm(xi )

1 + e−P1(xi )
+ e−λ(xi )

)
and

P(Yi = j − 1|xi )

= 1

1 + ePm(xi )

(
1 + ePm(xi )

1 + e−Pj (xi )
− 1 + ePm(xi )

1 + e−Pj−1(xi )
+ λ(xi )

j−1

(j − 1)! e−λ(xi )

)
,
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j = 2, . . . ,m, the log-likelihood becomes

l(β1, . . . ,βm,γ )

= −
n∑

i=1

log
(
1 + exiβm

) +
n1∑
i=1

log
{

1 + exiβm

1 + e−xiβ1
+ exp

(−exiγ
)}

+
m∑

j=2

nj∑
i=nj−1+1

log
(

1 + exiβm

1 + e−xiβj
− 1 + exiβm

1 + e−xiβj−1
(2.10)

+ exp{(j − 1)(xiγ )}
exp[exiγ + log{(j − 1)!}]

)

+
n∑

i=nm+1

{
yixiγ − exiγ − log(yi !)}.

Now, for the nominal MIP and for any non-negative integers c1, . . . , cm, we
rearrange the sample like ordinal MIP and define

Yi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c1, i = 1, . . . , n1,

c2, i = n1 + 1, . . . , n2,
...

cm, i = nm−1 + 1, . . . , nm, and

yi, i = nm + 1, . . . , n.

(2.11)

Here yi ’s are integers different from c1, . . . , cm.
As before, with respect to the models (2.7) and (2.8), the log-likelihood is given

by

l(β1, . . . ,βm,γ ) =
m∑

j=1

nj∑
i=nj−1+1

logP(Yi = cj |xi ) +
n∑

i=nm+1

logP(Yi = yi |xi ),

where

P(Yi = cj |xi ) = πj (xi) + π0(xi )
λ(xi )

cj

cj ! e−λ(xi ), j = 1, . . . ,m,

P (Yi = yi |xi ) = π0(xi )
λ(xi)

yi

yi ! e−λ(xi ), yi �= c1, . . . , cm,

and πj (xi ), j = 1, . . . ,m, and λ(xi ) can be obtained from the equations (2.7) and
(2.8), respectively.

Considering the following reformulation

P(Yi = cj |xi ) = π0(xi )

[
πj (xi )

π0(xi )
+ λ(xi )

cj

cj ! e−λ(xi )

]
, j = 1, . . . ,m,
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and using 1 = 1
π0(xi )

− ∑m
j=1

πj (xi )

π0(xi )
, πj (xi )

π0(xi )
= exiβj from equations (2.6) and (2.7),

and λ(xi ) = exiγ from the equation (2.8), the log-likelihood reduces to

l(β1, . . . ,βm,γ ) = −
n∑

i=1

log

(
1 +

m∑
j=1

exiβj

)

+
m∑

j=1

nj∑
i=nj−1+1

log
{
exiβj + 1

cj ! exp
(
cjxiγ − exiγ

)}
(2.12)

+
n∑

i=nm+1

{
yixiγ − exiγ − log(yi !)}.

When m = 1 and c1 = 0 we observe that both ordinal MIP and nominal MIP reduce
to ZIP model

l(β1,γ ) =
n∑

i=1

log
{
1 − π1(xi )

} +
n1∑
i=1

log
{

π1(xi )

1 − π1(xi )
+ e−λ(xi )

}

+
n∑

i=n1+1

{
yi logλ(xi ) − λ(xi ) − logyi !},

where π1(xi ) = P(Yi = 0|xi ) and λ(xi ) is the mean of Poisson distribution.
It should be noted that the log-likelihood of the nominal MIP (2.12) allows

excessive frequencies at non-consecutive as well as consecutive non-negative inte-
gers and models the ratio of Poisson distribution and nominal multinomial distri-
bution, while the log-likelihood of the ordinal MIP (2.10) deals with the Poisson
distribution and excessive frequencies at consecutive non-negative integer values.

2.3 Bayesian inference

By utilizing available prior information about unknown parameters we seek a fully
Bayesian approach. To avoid computational difficulties, we conveniently use latent
variables for the link functions of the models and use multivariate Gaussian priors
for regression coefficients.

Specifically, under the ordinal MIP model we consider latent variables U and
V for (2.3) and (2.4) with (h1, . . . , hm) numbers of observations corresponding to
the responses (0, . . . ,m − 1), respectively, such that

Uij = xiβj + εij , i = nj−1 + 1, . . . , nj+1, j = 1, . . . ,m − 1,

Uim = xiβm + εij , i = 1, . . . , n, (2.13)

Vi = xiγ + δi, i = 1, . . . , n,

where nj = ∑j
k=1 hk are the numbers of excessive integers less than j and

n0 = h0 = 0 as in (2.9), εij and δi are mutually independent jittering variables and
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follow normal distributions with zero mean and small variances, εij
ind∼ N(0, σ 2

uj
)

and δi
ind∼ N(0, σ 2

v ). Here, by the cumulative logit link function, we consider a
constraint Uij ≤ Uij ′ , for j < j ′.

Under the nominal MIP, we use latent variables Z for (2.7) as well as W for (2.8)

Zij = xiβj + ξij , i = 1, . . . , n, j = 1, . . . ,m,
(2.14)

Wi = xiγ + ηi, i = 1, . . . , n,

where ξij and ηi are mutually independent jittering variables and follow nor-

mal distributions with zero mean and small variances, ξij
ind∼ N(0, σ 2

zj
) and ηi

ind∼
N(0, σ 2

w).
For regression coefficients β1, . . . ,βm and γ in (2.3) and (2.4) for ordinal MIP

and in (2.7) and (2.8) for nominal MIP, we use multivariate Gaussian priors ex-
pressed as

βj

ind∼ MVN
[
0,B2

bI
]
, j = 1, . . . ,m and γ ∼ MVN

[
0,B2

c I
]
,

where 0 is the zero vector of size (p + 1) and I is (p + 1) × (p + 1) identify
matrix. We consider large values for B2

b and B2
c to get flexible priors. Further,

hierarchically, we assign conjugate inverse gamma hyperpriors on the variances of

latent variables: σ 2
uj

ind∼ IG[Auj
,Buj

], σ 2
v ∼ IG[Av,Bv], σ 2

zj

ind∼ IG[Azj
,Bzj

] and

σ 2
w ∼ IG[Aw,Bw].

Now, using the log-likelihoods in (2.10) and (2.12) and specified priors we can
find the full conditional distributions of parameters as well as latent variables. Un-
der the ordinal MIP, in the Appendix we have the full conditional distributions of
latent variables U and V are presented in (A.1), the full conditional distributions of
regression coefficients are presented in (A.2) and the full conditional distributions
of nuisance parameters are presented in (A.3).

Under the nominal MIP presented the full conditional distributions of latent
variables Z and W are in (A.4), the full conditional distributions of regression
coefficients are presented in (A.5) and the full conditional distributions of nuisance
parameters are presented in (A.6).

Now, using the full conditional distributions and the Metropolis-within-Gibbs
algorithm one can collect Markov Chain Monte Carlo (MCMC) samples of pa-
rameters and latent variables from their joint posterior distribution. More details
are given the next section.

3 Simulation and application to infection data

3.1 Simulation studies

We carried out simulations to compare the performance of multiple-inflation Pois-
son (MIP) regression model with zero-inflated Poisson (ZIP) regression model.
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With a covariate (p = 1) which is randomly selected number between zero and
one, that is, xi ∈ [0,1], i = 1, . . . , n. Using the cumulative logistic distribution
function H(v) = 1/(1 + e−v), we also generated the corresponding response Yi

according to the following three true models.

M0. Excessive frequency of response only at 0:

Yi |xi
ind∼ MIP

[
0, π1(xi), λ(xi)

]
,

H−1{
π1(xi)

} = −(log 4) − (log 4)xi,

log
{
λ(xi)

} = −(log 3) + (log 6)xi .

M1. Excessive frequencies at 0 and 1 with parallel logistic functions:

Yi |xi
ind∼ MIP

[
0,1;π1(xi),π2(xi);λ(xi)

]
,

H−1{
π1(xi)

} = −(log 4) − (log 4)xi,

H−1{
π2(xi)

} = −(log 4)xi,

log
{
λ(xi)

} = −(log 3) + (log 6)xi .

M2. Excessive frequencies at 0 and 1 with non-parallel logistic functions:

Yi |xi
ind∼ MIP

[
0,1;π1(xi),π2(xi);λ(xi)

]
,

H−1{
π1(xi)

} = −(log 4)xi,

H−1{
π2(xi)

} = −(log 4) + (log 2)xi,

log
{
λ(xi)

} = −(log 2) + (log 6)xi .

Here 200 simulation data sets with 100 sample size (n = 100) under each model
were generated. Figure 1 shows a set of simulated data under M1 with the true
regression function m(x) = E(Y |x).

To fit the simulated data, we used the ordinal and nominal MIP regressions
under the Bayesian framework, and as a golden standard used the ZIP regression
by considering the excessive frequency only at 0 such that

• ZIP model:

Yi |xi
ind∼ MIP

[
0, π1(xi), λ(xi)

]
, i = 1, . . . , n,

where log( π1(xi )
1−π1(xi )

) = β0,1 + β1,1xi and log(λ(xi)) = γ0 + γ1xi .
• Ordinal MIP model:

Yi |xi
ind∼ MIP

[
0,1, π1(xi),π2(xi), λ(xi)

]
, i = 1, . . . , n,

where log( π1(xi )
1−π1(xi )

) = β0,1 +β1,1xi , log( π1(xi )+π2(xi )
1−π1(xi )−π2(xi )

) = β0,2 +β1,2xi , β1,1 =
β1,2 and log{λ(xi)} = γ0 + γ1xi .
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Figure 1 Simulation data. The red solid line indicates regression function m(x); the pink blocked
line and light blue dotted line show the excess frequency probabilities, π1(x) and π2(x), respectively;
the blue block-dotted line describes the Poisson mean function λ(x); and the blue dots indicate the
count responses. The figure shows that λ(x) is adjusted by π1(x) and π2(x) to produce m(x).

• Nominal MIP model:

Yi |xi
ind∼ MIP

[
c1, c2, π1(xi),π2(xi), λ(xi)

]
, i = 1, . . . , n,

where c1 and c2 are responses with excessive frequencies, log(π1(xi )
π0(xi )

) =
β0,1 + β1,1xi , log(π2(xi )

π0(xi )
) = β0,2 + β1,2xi , π0(xi) = 1 − π1(xi) − π2(xi) and

log{λ(xi)} = γ0 + γ1xi .

We considered the independent non-informative prior distributions for regression

coefficients with large variances βi,j
i.i.d.∼ N(0,100), i = 0,1; j = 1,2, and γi

i.i.d.∼
N(0,100), i = 0,1, and assigned conjugate inverse gamma prior distributions for
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the variance of the latent variables in (2.13) and (2.14) such that σ 2
uj

∼ IG[10,10],
σ 2

v ∼ IG[10,10], σ 2
zj

∼ IG[10,10] and σ 2
w ∼ IG[10,10], for j = 1,2.

From Lemma 1, it is clear that, for π0(x) = 1 − π1(x) − π2(x),

m(x) = E(Y |x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
1 − π1(x)

}
λ(x) = 4x+16x

3(1 + 4x+1)
,

under M0,

π2(x) + π0(x)λ(x) = 3(1 + 4x+1) + 6x(42x+1 − 1)

3(1 + 4x+1)(1 + 4x)
,

under M1,

π2(x) + π0(x)λ(x) = 2(1 + 4x) + 6x(2x+2 − 1)

2(1 + 4x)(1 + 2−x+2)
,

under M2.

Using the Bayes estimates of regression coefficients, we can estimate π1(x),
π2(x) and λ(x) in the ZIP and MIP models. The estimates of the rate of Pois-
son distribution is directly calculated by λ̂(x) = eγ̂0+γ̂1x . The estimates of π1(x)

and π2(x) vary in the model considered. Let p̂j (xi) = β̂0,j + β̂1,j xi , j = 1,2,
denote the estimated regression lines by the estimated coefficients. Under the
ZIP model, the estimate of the excessive frequency is directly calculated by
π̂1(x) = 1/{1 + e−p̂1(x)} with the assumption of π̂2(x) ≡ 0. Under the ordinal
MIP model, the estimate π̂1(x) is calculated as in ZIP model and the estimate of
the second excessive frequency is calculated by π̂2(x) = 1/{1 + e−p̂2(x)} − π̂1(x).
Under the nominal MIP model, the first excessive frequency is estimated by
π̂1(x) = ep̂1(x)/{1 + ep̂1(x) + ep̂2(x)} and the second excessive frequency is esti-
mated by π̂2(x) = ep̂2(x)/{1 + ep̂1(x) + ep̂2(x)}, respectively. The estimated regres-
sion lines m̂(x) are evaluated by the estimated λ̂(x), π̂1(x) and π̂2(x), for each
model. Figure 2 presents the convergence of MCMC samples for regression coef-
ficients in a simulation.

Now to see how good our method of estimation is we computed the mean inte-
grated square error (MISE),

MISE =
∫ 1

0

{
m̂(x) − m(x)

}2
dx.

Table 2 shows the resulted MISEs and squared biases of the simulations, Bias2 =∫ 1
0 { ¯̂m(x)−m(x)}2 dx, where ¯̂m(x) is the mean curve of estimated regression lines

m̂(x) over simulations. From Table 2, we observe that ZIP has the minimum MISE
under M0, ordinal MIP has the minimum MISE under M1 and nominal MIP has
the minimum MISE under M2, respectively. In addition, we find that ordinal and
nominal MIP regressions have comparable MISE with ZIP regression, while they
have smaller biases than ZIP regression. This is not surprising, because MIP re-
gressions use more parameters to interpret the data. Also, the ordinal MIP regres-
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Figure 2 MCMC samples for regression coefficients in a simulation. After 10,000 burning itera-
tions, 1000 MCMC samples show convergence. In (a), the ZIP model only has one excessive frequency
and the plots in the first row display the MCMC samples of regression coefficients. In (b), the ordinal
MIP model shares the slope with different intercepts and three plots in the first two rows present
the MCMC samples of corresponding regression coefficient. In (c), the nominal MIP model allows
different intercepts and different slope and the four plots in the first two row are the MCMC samples
for regression coefficients. In (a), (b) and (c), two plots in the last row are regression coefficients for
the rate of Poisson distribution.

sion showed slightly less bias than the nominal MIP regression. This is again un-
derstandable because the ordinal MIP model shares the slope of excess probabili-
ties of zeros and ones and the ZIP model does not have excess probability of ones.

3.2 Application to infection data

Acinetobacter baumannii bacteria (A. baumannii) infection is an important prob-
lem in intensive care units in the hospitals as a leading agent of hospital infection.
Among many studies related to A. baumannii, there was a large prospective co-
hort study conducted to explain its contamination routes of infections at five large
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Table 2 Simulation results for MISEs and variances of regression lines

Method M0 M1 M2

MISE ZIP 0.0418 0.0382 0.0957
Oridnal MIP 0.0450 0.0360 0.0938
Nominal MIP 0.0465 0.0372 0.0692

Bias2 ZIP 0.0087 0.0196 0.0619
Oridnal MIP 0.0018 0.0033 0.0398
Nominal MIP 0.0087 0.0052 0.0312

Table 3 Weekly number of infections and covariates for 10 weeks

Infection(Yi ) Age(xi1) Apache(xi2) Gender(xi3) IMV(xi4) ANT(xi5)

1 0.6296 0.4444 0.5185 0.4074 0.1111
0 0.6774 0.3871 0.4839 0.4194 0.0968
0 0.6571 0.3714 0.4571 0.4571 0.1143
0 0.6410 0.3590 0.4872 0.4103 0.1026
1 0.6279 0.3256 0.4651 0.4419 0.0930
2 0.6531 0.3673 0.4898 0.4082 0.0816
3 0.6316 0.3860 0.5088 0.4386 0.0702
1 0.6190 0.3968 0.4762 0.4286 0.0794
1 0.6119 0.4328 0.4925 0.4179 0.0746
0 0.6234 0.4545 0.5195 0.4416 0.0779

medical centers in Turkey namely Hacettepe University Hospital, Istanbul Univer-
sity Cerrahpaşa Medical School, GATA Haydarpasa Hospital, Marmara University
Hospital and Uludaǧ University Medical School.

The infection data consist of the response, the number of infected individuals
per week, as well as several covariates, including Age (ratio of patients older than
or equal to 65), Gender (ratio of female patients), Apache (ratio of patients with
higher than or equal to 20 Apache score, where the higher the score higher the risk
for an infection), IMV (ratio of patients with invasive mechanical ventilation) and
ANT (ratio of patients with antibiotic use three months before admission). The
number of infected patients and the covariate values are recorded for 49 weeks. In
Table 3, we only give the data for the 10 weeks.

Let Yi , i = 1, . . . , n = 49, denote the weekly number of infected patients. We as-
sume that Yi is affected by the 5 ratios during the week, that is, we have (p+1)×1
vector of covariates xi with p = 5. For example, in the first row in Table 3, we as-
sume that one infection recorded during a week can be interpreted by the situation
of intensive care unit where 62.96% of patients were older than or equal to 65,
44.44% had their Apache score more than or equal to 20, 51.85% of patients were
female, 40.74% had IMV and 11.11% had antibiotic three months before admis-
sion. Comparing the histogram of infection data in Figure 3 and the probability
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Figure 3 Matrix plot for infection data. Plots in diagonal are histograms of variables and plots in
off-diagonal are scatterplots of corresponding pairs of variables with the sample Pearson correlation
coefficients denoted inside of plots.

mass function of Poisson distribution which has the similar probabilities at values
2, 3 and 4 with the histogram, we observe excessive zeros and ones in infection
data, and highly correlated covariates. In the sense of Higdon et al. (2008), we use
principal components as predictors instead of highly correlated covariates. We first
perform the principal component analysis, and take the first principal axis φi which
explains 87.13% of total variation with the following loading equation:

φi = −0.3758xi1 + 0.5893xi2 − 0.1266xi3 + 0.6396xi4 + 0.2939xi5,

for i = 1, . . . , n.
With φi , we fitted ZIP model by assuming the excessive frequency only at

zero, the ordinal MIP model by assuming the excessive frequencies at zero and
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one and the nominal MIP model which is applicable to both consecutive and
non-consecutive values with excessive frequencies. More specifically, denoting
H(v) = 1/(1 + e−v) as the cumulative distribution function of the logistic dis-
tribution, and using the principal axis instead of 5 covariates, three models for the
infection data are reduced to the followings.

• ZIP model for data:

Yi |φi
ind∼ MIP

[
0, π1(φi), λ(φi)

]
, i = 1, . . . , n,

where log(
π1(φi)

1−π1(φi)
) = β0,1 + β1,1φi and log{λ(φi)} = γ0 + γ1φi .

• Ordinal MIP model for data:

Yi |φi
ind∼ MIP

[
0,1;π1(φi),π2(φi);λ(φi)

]
, i = 1, . . . , n,

where log(
π1(φi)

1−π1(φi)
) = β0,1 + β1,1φi , log(

π1(φi)+π2(φi)
1−π1(φi)−π2(φi)

) = β0,2 + β1,1φi and
log{ λ(φi)} = γ0 + γ1φi .

• Nominal MIP model for data:

Yi |φi
ind∼ MIP

[
0,1;π1(φi),π2(φi);λ(φi)

]
, i = 1, . . . , n,

where c1 and c2 are responses with excessive frequencies, log(
π1(φi)
π0(φi)

) =
β0,1 + β1,1φi , log(

π2(φi)
π0(φi)

) = β0,2 + β1,2φi , π0(φi) = 1 − π1(φi) − π2(φi) and
log{λ(φi)} = γ0 + γ1φi .

We assign flat Gaussian priors for regression coefficients with large variances

such that βi,j
i.i.d.∼ N(0,100) and γi

i.i.d.∼ N(0,100), for i = 0,1 and j = 1,2, and
conjugate inverse Gamma priors for the variance of the latent variables in (2.13)
and (2.14) such that σ 2

uj
∼ IG[10,10], σ 2

v ∼ IG[0.1,0.1], σ 2
zj

∼ IG[10,10] and

σ 2
w ∼ IG[0.1,0.1], j = 1,2. Now, through the Metropolis-within-Gibbs algorithm

we collect 10,000 Markov Chain Monte Carlo samples from the joint posterior dis-
tribution after 50,000 burn-in iterations. Denoting the standard errors as the small
numbers in parentheses under the estimated coefficients, the estimated models are

• Estimated ZIP model for data:

Yi |φi
ind∼ MIP

[
0, π̂1(φi), λ̂(φi)

]
,

log
(

π̂1(φi)

1 − π̂1(φi)

)
= −0.0008

(0.0231)
− 2.5157φi

(0.0970)
,

log
{̂
λ(φi)

} = −0.3508
(1.1028)

+ 0.6894φi

(2.8411)
.
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• Estimated ordinal MIP model for data:

Yi |φi
ind∼ MIP

[
0,1; π̂1(φi), π̂2(φi); λ̂(φi)

]
,

log
(

π̂1(φi)

1 − π̂1(φi)

)
= −0.0078

(0.0391)
− 2.8041φi

(0.1267)
,

log
(

π̂1(φi) + π̂2(φi)

1 − π̂1(φi) − π̂2(φi)

)
= 0.0238

(0.0282)
− 2.8041φi

(0.1267)
,

log
{̂
λ(φi)

} = −0.4549
(1.1636)

+ 0.8339φi

(3.0293)
.

• Estimated nominal MIP model for data:

Yi |φi
ind∼ MIP

[
0,1; π̂1(φi), π̂2(φi); λ̂(φi)

]
,

log
(

π̂1(φi)

π̂0(φi)

)
= 0.5001

(0.1827)
− 4.5883φi

(0.3792)
,

log
(

π̂2(φi)

π̂0(φi)

)
= −0.9605

(0.2337)
+ 2.2203φi

(0.5532)
,

log
{̂
λ(φi)

} = −0.5762
(1.7326)

+ 1.0656φi

(4.5291)
,

where π̂0(φi) = 1 − π̂1(φi) − π̂2(φi).

As shown in Figure 4, the estimated regression coefficients and mean curves of
three models indicate that there may be an increasing trend of number of infec-
tions on the principal axis φ, which has positive loadings on Apache, IMV and
ANT and has negative loadings on Age and Gender, without statistical signifi-
cance. Whereas, the excess probability of zeros is significantly decreasing on all
tree model along with φ. Interestingly, the excess probability of ones is signifi-
cantly increasing in the nominal MIP model while its excess probability of zeros
is more rapidly decreased than other two models.

4 Conclusion and discussion

In this article, we have proposed and studied properties of multiple-inflation Pois-
son (MIP) distributions and MIP regression models that incorporate covariates.
Our proposed models are the generalization of zero inflated Poisson by consider-
ing the mixture of multinomial and Poisson distributions.

We describe a Bayesian approach to make statistical inference on parame-
ters of MIP regression models. In a Frequentist approach, using the expectation-
maximization (EM) algorithm would confront computational difficulties to deter-
mine multiple sets of indicators which present the data from the zero state or from
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Figure 4 Fitted mean curves for infection data. Circles denote the number of infections on the
principal component axis φ. Dotted lines are fitted components in the ZIP or MIP models; red dotted
lines for Poisson components, light blue dotted lines for probability for excess zeros, and dark blue
dotted lines for the excess probability for excess ones. The solid red lines are estimated mean curves
by aggregating the components.

the Poisson state. However, by utilizing a data augmentation method in Bayesian
models, we can successfully made statistical inference feasible.

Appendix: Full conditional distributions

In this Appendix, we present full conditional distributions for the latent variables
and parameters in MIP models. Using the Bayes rule, the likelihood of data, dis-
tribution of latent variables and the prior distributions for parameters in the model
lead to a joint posterior distribution of parameters and latent variables. By virtue
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of the Gibbs sampler, we generate Markov Chain Monte Carlo (MCMC) samples
for parameters and latent variables from the joint posterior distribution by using
the full conditional distributions of parameters and latent variables instead of us-
ing the joint posterior distribution. Considering the full conditional distribution of
the latent variables we have m + 1 building blocks of log-likelihood according to
the responses with excessive frequencies as the two blocks in the ZIP regression
models (Lambert, 1992).

Under the ordinal MIP, the likelihood of data (2.10), distributions of latent
variables (2.13) and the prior distributions for parameters in the MIP model
lead to the joint posterior distribution of parameters and latent variables. Let
θO = (β1, . . . ,βm, γ , σ 2

u1
, . . . , σ 2

um
, σ 2

v ) denote all parameters in the model, then
the joint posterior distribution is expressed by

P
(
θO,U11, . . . , . . . ,Unm,V1, . . . , Vn|Y1, . . . , Yn,x1, . . . ,xn

)
∝ P

(
θO) n∏

i=1

P
(
Yi |xi ,Ui1, . . . ,Uim,Vi, θ

O)
P

(
Vi |σ 2

v ,γ ,xi

)

×
m∏

j=1

P
(
Uij |σ 2

uj
,βj ,xi

)
,

where P(θO) is the prior distribution of parameters. Denoting U∗
ij = eUij and

V ∗
i = eVi in the models (2.13), we have the following logarithms of full condi-

tional distributions of latent variables Uij and Vi , i = 1, . . . , n, j = 1, . . . ,m, from
the joint posterior distribution such that

logP(Ui1|·)
∝ logN

(
xiβ1, σ

2
u1

)
, i = 1, . . . , n2,

+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
log

(
1 + U∗

im

1 + U∗
i1

−1 + e−V ∗
i

)
, i = 1, . . . , n1,

log
(

1 + U∗
im

1 + U∗
i2

−1 − 1 + U∗
im

1 + U∗
i1

−1 + V ∗
i

eV ∗
i

)
, i = n1 + 1, . . . , n2,

logP(Uij |·)
∝ logN

(
xiβj , σ

2
uj

)
, i = nj−1 + 1, . . . , nj+1,

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
(

1 + U∗
im

1 + U∗
ij

−1 − 1 + U∗
im

1 + U∗
i,j−1

−1 + V ∗
i

j−1

eV ∗
i (j − 1)!

)
,

i = nj−1 + 1, . . . , nj ,

log
(

1 + U∗
im

1 + U∗
i,j+1

−1 − 1 + U∗
im

1 + U∗
ij

−1 + V ∗
i

j

eV ∗
i j !

)
,

i = nj + 1, . . . , nj+1, j = 2, . . . ,m − 1,

(A.1)
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logP(Uim|·)
∝ logN

(
xiβm,σ 2

um

) − log
(
1 + U∗

im

)
, i = 1, . . . , n,

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
(

1 + U∗
im

1 + U∗
i1

−1 + e−V ∗
i

)
,

i = 1, . . . , n1,

log
(

1 + U∗
im

1 + U∗
ij

−1 − 1 + U∗
im

1 + U∗
i,j−1

−1 + V ∗
i

j−1

eV ∗
i (j − 1)!

)
,

i = nj−1 + 1, . . . , nj , j = 2, . . . ,m,

logP(Vi |·)
∝ logN

(
xiγ , σ 2

v

)
, i = 1, . . . , n,

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
(

1 + U∗
im

1 + U∗
i1

−1 + e−V ∗
i

)
,

i = 1, . . . , n1,

log
(

1 + U∗
im

1 + U∗
ij

−1 − 1 + U∗
im

1 + U∗
i,j−1

−1 + V ∗
i

j−1

eV ∗
i (j − 1)!

)
,

i = nj−1 + 1, . . . , nj , j = 2, . . . ,m,

yiVi − V ∗
i ,

i = nm + 1, . . . , n,

where N(μ,σ 2) indicate the density of Normal distribution with mean μ and vari-
ance σ 2.

For the full conditional distributions of regression coefficients, we assume dif-
ferent thresholds β0j and common slopes β∗ = (β∗

1 , . . . , β∗
p)T for j = 1, . . . ,m

in (2.5). Denoting U j = (Unj−1+1,j , . . . ,Unj+1,j )
T , x∗

i = (xi1, . . . , xip), X∗
j =

(x∗T
nj−1+1, . . . ,x

∗T
nj+1

)T , j = 1, . . . ,m − 1, Um = (U1m, . . . ,Unm)T , X∗
m = (x∗T

1 ,

. . . ,x∗T
n )T , X = (xT

1 , . . . ,xT
n )T and V = (V1, . . . , Vn)

T we have the full condi-
tional distributions

β0j |· ∼ N

[( h∗
j

σ 2
uj

+ 1

B2
b

)−1
1T
h∗

j

(
U j − X∗

jβ
∗)

,

( h∗
j

σ 2
uj

+ 1

B2
b

)−1]
,

j = 1, . . . ,m,

β∗|· ∼ N

[(
m∑

j=1

X∗T
j X∗

j

σ 2
uj

+ Ip

B2
b

)−1(
m∑

j=1

X∗T
j (U j − 1h∗

j
β0j )

σ 2
uj

)
, (A.2)

(
m∑

j=1

X∗T
j X∗

j

σ 2
uj

+ Ip

B2
b

)−1]
,
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γ |· ∼ N

[(
1

σ 2
v

XT X + 1

B2
c

Ip+1

)−1(
1

σ 2
v

XT V

)
,

(
1

σ 2
v

XT X + 1

B2
c

Ip+1

)−1]
,

where h∗
j = nj+1 − nj−1 = hj + hj+1, j = 1, . . . ,m − 1, h∗

m = n, 1h∗
j

is the col-
umn vector of h∗

j ones and Ip is the p × p identity matrix. The full conditional
distributions of nuisance parameters are also given by

σ 2
uj

|· ∼ IG
[h∗

j

2
+ Auj

,

(RSSuj

2
+ 1

Buj

)−1]
, j = 1, . . . ,m,

(A.3)

σ 2
v |· ∼ IG

[
n

2
+ Av,

(
RSSv

2
+ 1

Bv

)−1]
,

where RSSuj
= (U j −1h∗

j
β0j −X∗

jβ
∗)T (U j −1h∗

j
β0j −X∗

jβ
∗) and RSSv = (V −

Xγ )T (V − Xγ ).
Similarly, under the nominal MIP, the likelihood of data (2.12), distributions of

latent variables (2.14) and the prior distributions for parameters in the MIP model
bring the joint posterior distribution of parameters and latent variables. Denoting
θN = (β1, . . . ,βm,γ , σ 2

z1
, . . . , σ 2

zm
, σ 2

w) as all parameters in the model, then the
joint posterior distribution is given by

P
(
θN,Z11, . . . , . . . ,Znm,W1, . . . ,Wn|Y1, . . . , Yn,x1, . . . ,xn

)
∝ P

(
θN ) n∏

i=1

P
(
Yi |xi ,Zi1, . . . ,Zim,Wi, θ

N )
× P

(
Wi |σ 2

w,γ ,xi

)
×

m∏
j=1

P
(
Zij |σ 2

zj
,βj ,xi

)
,

where P(θN) is the prior distribution of parameters. Denoting Z∗
ij = eZij and

W ∗
i = eWi in the models (2.14), the logarithms of full conditional distributions

of latent variables Zij and Wi , i = 1, . . . , n, j = 1, . . . ,m are given by

logP(Zij |·) ∝ logN
(
xiβj , σ

2
zj

) − log

(
1 +

m∑
j=1

Z∗
ij

)
, i = 1, . . . , n,

+ log
{
Z∗

ij + 1

cj !W
∗
i

cj e−W ∗
i

}
,

i = nj−1 + 1, . . . , nj , j = 1, . . . ,m, (A.4)
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logP(Wi |·) ∝ logN
(
xiγ , σ 2

w

)

+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log
(
Z∗

ij + 1

cj !W
∗
i

cj e−W ∗
i

)
,

i = nj−1 + 1, . . . , nj , j = 1, . . . ,m,

yiWi − Wi∗,
i = nm + 1, . . . , n,

where N(μ,σ 2) indicates the density of Normal distribution with mean μ and
variance σ 2. For the full conditional distribution of regression coefficients, denote
Zj = (Z1j , . . . ,Zhj )

T , X = (xT
1 , . . . ,xT

n )T and W = (W1, . . . ,Wn)
T . Then we

have the following full conditional distributions

βj |· ∼ N

[(
XT X

σ 2
zj

+ 1

B2
b

Ip+1

)−1(
XT Zj

σ 2
zj

)
,

(
XT X

σ 2
zj

+ 1

B2
b

Ip+1

)−1]
,

j = 1, . . . ,m, (A.5)

γ |· ∼ N

[(
1

σ 2
w

XT X + 1

B2
c

Ip+1

)−1(
1

σ 2
w

XT W

)
,

(
1

σ 2
w

XT X + 1

B2
c

Ip+1

)−1]
.

The full conditional distributions of nuisance parameters are given by

σ 2
zj

|· ∼ IG
[
n

2
+ Azj

,

(RSSzj

2
+ 1

Bzj

)−1]
, j = 1, . . . ,m,

(A.6)

σ 2
w|· ∼ IG

[
n

2
+ Aw,

(
RSSw

2
+ 1

Bw

)−1]
,

where RSSzj
= (Zj − Xβj )

T (Zj − Xβj ) and RSSw = (W − Xγ )T (W − Xγ ).
Notice that the full conditional distributions of latent variables do not follow

specific distributions, while the full conditional distributions of regression coef-
ficients and variances follow Normal distributions and Inverse Gamma distribu-
tions, respectively. Using Metropolis-within-Gibbs algorithm we collect MCMC
samples for parameters from the joint posterior distribution after some burn-in it-
erations and perform statistical inferences based on MCMC samples.
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