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Abstract. We define and study a new generalization of the complementary
Weibull geometric distribution introduced by Tojeiro et al. (J. Stat. Comput.
Simul. 84 (2014) 1345–1362). The new lifetime model is referred to as the
Kumaraswamy complementary Weibull geometric distribution and includes
twenty three special models. Its hazard rate function can be constant, in-
creasing, decreasing, bathtub and unimodal shaped. Some of its mathematical
properties, including explicit expressions for the ordinary and incomplete mo-
ments, generating and quantile functions, Rényi entropy, mean residual life
and mean inactivity time are derived. The method of maximum likelihood
is used for estimating the model parameters. We provide some simulation
results to assess the performance of the proposed model. Two applications
to real data sets show the flexibility of the new model compared with some
nested and non-nested models.

1 Introduction

The use of new generators of continuous distributions from classic ones has be-
come very common in recent years. The procedure of expanding a class of distri-
butions by adding new shape parameters is well-known in the statistical literature.
In many applied sciences such as medicine, engineering and finance, among oth-
ers, modeling and analyzing lifetime data are crucial. Several lifetime distributions
have been adopted to model different types of survival data. The quality of the
procedures used in a statistical analysis depends heavily on the generated family
of distributions and considerable effort has been directed to define new statistical
models. However, there still remain many important problems involving real data,
which do not follow any of the popular statistical models. The chief motivation
of the generalized distributions for modeling lifetime data lies in the flexibility
to model both monotonic and non-monotonic failure rates even though the base-
line failure rate may be monotonic. The role of the extra shape parameters is to
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introduce skewness and to vary tail weights. Further, various models have been
constructed by extending some useful lifetime distributions and investigated them
with respect to different characteristics.

Several distributions have been proposed to model real lifetime data. The
Weibull distribution is one of the most commonly used distributions for this pur-
pose. In practice, it has been shown to be very flexible in modeling various types
of lifetime data with monotone failure rates but it is not useful for modeling the
bathtub shaped and the unimodal failure rates, which are common in reliability
and biological studies. It is of utmost interest because of its great number of spe-
cial features and its ability to fit data from various fields, ranging from life data
to observations made in economics and business administration, meteorology, hy-
drology, quality control, acceptance sampling, statistical process control, inventory
control, physics, chemistry, geology, geography, astronomy, medicine, psychology,
material science, engineering, biology, see, for example, Rinne (2009).

Louzada et al. (2011) proposed the complementary exponential geometric dis-
tribution as the complementary of the exponential geometric model (Adamidis and
Loukas, 1998). Their model is based on a complementary risk problem in pres-
ence of latent risks in the sense that there is no information about which factor is
responsible for the component failure but only the maximum lifetime value among
all risks is observed. Further, Louzada et al. (2013) studied the complementary
exponentiated exponential geometric model by extending the complementary ex-
ponential geometric distribution. Tojeiro et al. (2014) studied the complementary
Weibull geometric (CWG) model as the complementary distribution to the Weibull
geometric (WG) model (Barreto-Souza et al., 2011). Afify et al. (2014) defined the
transmuted complementary Weibull geometric (TCWG) distribution and studied
its various structural properties.

The cumulative distribution function (cdf) of the CWG distribution (for x > 0)
is given by

G(x) = α{1 − exp[−(γ x)β]}
α + (1 − α) exp[−(γ x)β] , (1)

where γ > 0 is a scale parameter and 0 < α < 1 and β > 0 are shape parameters.
The corresponding probability density function (pdf) is given by

g(x) = αβγ (γ x)β−1 exp[−(γ x)β]
{α + (1 − α) exp[−(γ x)β]}2 . (2)

The aim of this paper is to study a new lifetime model called the Kumaraswamy
complementary Weibull geometric (Kw–CWG) distribution. The main feature of
this model is that two additional shape parameters inserted in (2) can give greater
flexibility in the form of the generated density. By using the Kumaraswamy-
generalized (Kw–G) family proposed by Cordeiro and de Castro (2011), we con-
struct the five-parameter Kw–CWG model. We provide a comprehensive descrip-
tion of some of its mathematical properties with the hope that it will attract wider
applications in reliability, engineering and other areas of research.
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Figure 1 Plots of the hrf for some parameter values.

For an arbitrary parent cdf G(x), Cordeiro and de Castro (2011) defined the
Kw–G class of distributions by the cdf F(x) and pdf f (x)

F (x) = 1 − [
1 − G(x)a

]b (3)

and

f (x) = abg(x)G(x)a−1[
1 − G(x)a

]b−1
, (4)

respectively, where g(x) = dG(x)/dx and a and b are two extra positive shape
parameters. Clearly, for a = b = 1, we obtain the baseline distribution. If X is a
random variable with pdf (4), we write X ∼ Kw–G(a, b), where a and b govern
the skewness and tail weights. An attractive feature of this model is that these
parameters can afford greater control over the weights in both tails and in its center.
Equation (4) does not involve any special function, such as the incomplete beta
function, as is the case of the beta-G class of distributions (Eugene et al., 2002).
The generalization (4) contains distributions with unimodal and bathtub shaped
hazard functions. It also contemplates several models with monotonic and non-
monotonic hazard rate functions (hrfs) as shown in the plots of Figures 1 and 2.

Next, we define the new model by inserting (1) in equation (3). Then, the cdf
(for x > 0) of the Kw–CWG model, say F(x) = F(x;α,β, γ, a, b), reduces to

F(x) = 1 − {
1 − αa(

1 − exp
[−(γ x)β

])a{
α + (1 − α) exp

[−(γ x)β
]}−a}b

. (5)

The Kw–CWG pdf follows by inserting (1) and (2) in equation (4)

f (x) = αaβγ ab(γ x)β−1 exp
[−(γ x)β

] {1 − exp[−(γ x)β]}a−1

{α + (1 − α) exp[−(γ x)β]}a+1

(6)

×
{

1 − αa[1 − exp[−(γ x)β]]a
{α + (1 − α) exp[−(γ x)β]}a

}b−1

.
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Figure 2 Plots of the hrf for some parameter values.

Henceforth, let X be a random variable having the pdf (6), that is, X ∼Kw–
CWG(α,β, γ, a, b). We derive linear representations for the pdf and cdf of the
Kw–CWG model in the Appendix.

The survival function (sf), hrf, cumulative hazard rate function (chrf) and re-
versed hazard rate function (rhrf) of X are given by

S(x) = {
1 − αa[

1 − exp
[−(γ x)β

]]a{
α + (1 − α) exp

[−(γ x)β
]}−a}b

, (7)

h(x) = αaβγ ab(γ x)β−1{
α + (1 − α) exp

[−(γ x)β
]}−a−1 exp

[−(γ x)β
]

× {
1 − exp

[−(γ x)β
]}a−1

(
1 − αa{1 − exp[−(γ x)β]}a

{α + (1 − α) exp[−(γ x)β]}a
)−1

,

H(x) = −b log
{
1 − αa[

1 − exp
[−(γ x)β

]]a{
α + (1 − α) exp

[−(γ x)β
]}−a}

and

r(x) = αaβγ ab(γ x)β−1 exp[−(γ x)β]{1 − exp[−(γ x)β]}a−1

{α + (1 − α) exp[−(γ x)β]}a+1

×
(

1 − αa{1 − exp[−(γ x)β]}a
{α + (1 − α) exp[−(γ x)β]}a

)b−1

×
[
1 −

(
1 − αa{1 − exp[−(γ x)β]}a

{α + (1 − α) exp[−(γ x)β]}a
)b]−1

,

respectively. The Kw–CWG distribution is a very flexible model having several
special cases. It contains 23 sub-models listed in Table 1. It also includes eight
important special models, namely: the Kumaraswamy complementary exponential
geometric (Kw–CEG), Kumaraswamy complementary Rayleigh geometric (Kw–
CRG), generalized complementary Weibull geometric (GCWG), generalized com-
plementary exponential geometric (GCEG), generalized complementary Rayleigh
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Table 1 Special models of the Kw–CWG distribution

Parameters

No. Reduced model α β γ a b Author

1 Kw–CEG α 1 γ a b New
2 Kw–CRG α 2 γ a b New
3 Kw–W 1 β γ a b Cordeiro et al. (2010)
4 Kw–E 1 1 γ a b –
5 Kw–R 1 2 γ a b Gomes et al. (2014)
6 GCWG α β γ 1 b New
7 GCEG α 1 γ 1 b New
8 GCRG α 2 γ 1 b New
9 GW 1 β γ 1 b Mudholkar et al. (1996)

10 GE 1 1 γ 1 b Gupta and Kundu (1999)
11 GR 1 2 γ 1 b Kundu and Raqab (2005)
12 ECWG α β γ a 1 New
13 ECEG α 1 γ a 1 New
14 ECRG α 2 γ a 1 New
15 EW 1 β γ a 1 Nassar and Eissa (2003)
16 EE 1 1 γ a 1 Gupta and Kundu (2001)
17 ER 1 2 γ a 1 Kundu and Raqab (2005)
18 CWG α β γ 1 1 Tojeiro et al. (2014)
19 CRG α 2 γ 1 1 –
20 CEG α 1 γ 1 1 Louzada et al. (2011)
21 W 1 β γ 1 1 Weibull (1951)
22 E 1 1 γ 1 1 –
23 R 1 2 γ 1 1 Rayleigh (1880)

geometric (GCRG), exponentiated complementary Weibull geometric (ECWG),
exponentiated complementary exponential geometric (ECEG) and exponentiated
complementary Rayleigh geometric (ECRG) distributions.

Figures 3(a), (b), 4(a), (b) and 5(a), (b) display some plots of the Kw–CWG den-
sity for some values of the parameters α,β, γ, a and b. Further, the hrf of the new
distribution is very flexible in accommodating all different forms (see Figures 1
and 2) and thus it becomes an important model to fit real lifetime data.

The paper is organized as follows. In Section 2, we obtain the quantile function
(qf), ordinary and incomplete moments, moment generating function (mgf), Rényi
and q-entropies, mean residual life (MRL) and mean inactivity time (MIT) of X.
In Section 3, the moments of the order statistics are determined. In Section 4,
we obtain the maximum likelihood estimates (MLEs) of the model parameters. In
Section 5, some simulation results investigate the performance of these estimates.
In Section 6, we illustrate the potentiality of the new distribution by means of two
real data analyzes. Finally, in Section 7, we offer some concluding remarks.
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Figure 3 Plots of the Kw–CWG density function for some parameter values.

Figure 4 Plots of the Kw–CWG density function for some parameter values.

Figure 5 Plots of the Kw–CWG density function for some parameter values.
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2 Mathematical properties

Established algebraic expansions to determine some structural quantities of the
Kw–CWG distribution can be more efficient than computing those directly by nu-
merical integration of its density function.

2.1 Quantile and random number generation

The qf of X, say Q(u), is obtained by inverting (5)

Q(u) = γ −1
{

log
[
α + (1 − α)

a
√

1 − b
√

1 − u

α(1 − a
√

1 − b
√

1 − u)

]}1/β

, 0 < u < 1.

Simulating the Kw–CWG random variable is straightforward. If U is a uniform
variate on the unit interval (0,1), then the random variable X = Q(U) has den-
sity (6).

2.2 Moments

Henceforth, let Z be a random variable having the Weibull distribution with scale
γ > 0 and shape β > 0. Then, the pdf of Z is given by

f (z) = βγ βzβ−1{
1 − exp

[−(γ z)β
]}

.

The r th ordinary and incomplete moments of Z are given by

μ′
r,Z = γ −r�

(
1 + r

β

)
and ϕr,Z(t) = γ −rγ

(
1 + r

β
, (γ t)β

)
,

respectively, where γ (s, t) = ∫ t
0 xs−1e−x dx is the lower incomplete gamma func-

tion.
Then, the r th ordinary moment of X, say μ′

r , can be expressed from equation
(19) (see Appendix) as

μ′
r = γ −r

∞∑
k,i=0

sk,i(k + i + 1)−r/β�(1 + r/β). (8)

Using the relation between the central and non-central moments, we obtain the nth
central moment of X, say μn, as follows

μn = γ −r
n∑

r=0

∞∑
k,i=0

(
n

r

)
sk,i(−μ′

1)
n−r

(k + i + 1)r/β
�(1 + r/β).

The skewness and kurtosis measures of X can be determined from the central
moments using well-known relationships.
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2.3 Generating function

First, we provide the generating function of the Weibull model as discussed by
Nadarajah et al. (2013). We can write the mgf of Z as

M(t;γ,β) = βγ β
∫ ∞

0
exp(tx)xβ−1 exp

[−(γ x)β
]
dx.

By expanding the first exponential and determining the integral, we obtain

M(t;γ,β) =
∞∑

m=0

(t/γ )m

m! �(β + m/β).

Consider the Wright generalized hypergeometric function defined by

p�q

[
(γ1,A1), . . . , (γp,Ap)

(β1,B1), . . . , (βq,Bq)
;x

]
=

∞∑
n=0

∏p
j=1 �(γj + Ajn)∏q
j=1 �(βj + Bjn)

xn

n! .

Then, we can write M(t;γ,β) as

M(t;γ,β) = 1�0

[(
1,−β−1)

− ;
(

t

γ

)]
.

Combining the last expression and equation (19), the mgf of X reduces to

MX(t) =
∞∑

k,i=0

sk,i1�0

[(
1,−β−1)

− ; (k + i + 1)−1/βt/γ

]
.

2.4 Rényi and q-entropies

The Rényi entropy of a random variable represents a measure of variation of the
uncertainty. The Rényi entropy X is defined by

Iδ = 1

1 − δ
log

(∫ ∞
−∞

f δ(x) dx

)
, δ > 0 and δ �= 1.

We can write from equation (6)

f δ(x) = K

∞∑
k,i=0

dk,iα
2aj−δ

(
1 − 1

α

)k

xδ(β−1) exp
[−(k + i + δ)(γ x)β

]
,

where K = (abβγ β)δ and

dk,i =
∞∑

j=0

(−1)j+i�(aj + aδ + δ + k)�(aj + aδ − δ + 1)

j !k!i!�(δb − δ − j + 1)�(aj + aδ + δ)

× �(δb − δ + 1)(ab)δ(βγ )δ−1

αδ�(aj + aδ − δ − i + 1)

(
1 − 1

α

)k

.
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Then, Iδ reduces to

Iδ = 1

1 − δ
log

{
K

∞∑
k,i=0

dk,iα
2aj−δ

(
1 − 1

α

)k

×
∫ ∞

0
xδ(β−1) exp

[−(k + i + δ)(γ x)β
]
dx

}
.

Further, ∫ ∞
0

xδ(β−1) exp
[−(k + i + δ)(γ x)β

]
dx

= γ δ(1−β)−1

β
(k + i + δ)(δ(1−β)−1)/β�

(
δ(β − 1) + 1

β

)
and then

Iδ = (1 − δ)−1 log

{
K

∞∑
k,i=0

dk,i(k + i + δ)−n�

(
δ(β − 1) + 1

β

)}
. (9)

The q-entropy, say Hq , is defined by

Hq = 1

q − 1
log(1 − Jq),

where Jq = ∫
� f q(x) dx (q > 0 and q �= 1), follows from (9) as Jq = (1 − q)Iq .

2.5 Mean residual life and mean inactivity time

The MRL has many applications in biomedical sciences, life insurance, mainte-
nance and product quality control, economics and social studies, demography and
product technology (see Lai and Xie, 2006). Guess and Proschan (1988) gave an
extensive coverage of possible applications this quantity. The MRL (or the life
expectancy at age t) is given by mX(t) = E(X − t | X > t), for t > 0, and it repre-
sents the expected additional life length for a unit, which is alive at age t .

The MRL of X can be obtained as

mX(t) = [
1 − ϕ1(t)

]/
R(t) − t, (10)

where ϕ1(t) = ∫ t
0 xf (x) dx is the first incomplete moment of X.

By using equation (19), we obtain

ϕ1(t) =
∞∑

k,i=0

(k + i + 1)−1/βsk,i

γ
γ

(
1 + 1

β
, (k + i + 1)(γ t)β

)
.

By substituting this equation in (10), we can write

mX(t) = 1

γR(t)

∞∑
k,i=0

sk,i

(k + i + 1)1/β
γ

(
1 + 1

β
, (k + i + 1)(γ t)β

)
− t.
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The MIT defined by MX(t) = E(t − X | X ≤ t) (for t > 0) represents the waiting
time elapsed since the failure of an item on condition that this failure had occurred
in (0, t).

The MIT of X is given by

MX(t) = t − [
ϕ1(t)/F (t)

]
. (11)

By inserting the first incomplete moment in equation (11), the MIT of X is given
by

MX(t) = t − 1

γF(t)

∞∑
k,i=0

sk,i

(k + i + 1)1/β
γ

(
1 + 1

β
, (k + i + 1)(γ t)β

)
.

3 Order statistics

The order statistics and their moments have great importance in many statistical
problems and applications in reliability analysis and life testing. Let X1, . . . ,Xn be
a random sample of size n from the Kw–CWG(α,β, γ, a, b) with cdf (5) and pdf
(6), respectively. Let X1:n, . . . ,Xn:n be the corresponding order statistics. Then, the
pdf of r th order statistic, say Xr:n,1 ≤ r ≤ n, denoted by fr:n(x), can be expressed
as

fr:n(x) = Cr:nαaβγ ab(γ x)β−1 exp
[−(γ x)β

]
da−1
x l−(a+1)

x

× [
1 − (

1 − αada
x l−a

x

)b]r−1(
1 − αada

x l−a
x

)b(n−r+1)−1
,

where Cr:n = n!
(r−1)!(n−r)! , dx = {1 − exp[−(γ x)β]} and lx = {α + (1 − α) ×

exp[−(γ x)β]}.
The pdf of Xr:n can also be expressed as

fr:n(x) = f (x)

B(r, n − r + 1)

n−1∑
s=0

(−1)s

(
n − 1

s

)
F s+r−1(x). (12)

Further, we can write

F s+r−1(x) =
∞∑

m=0

(−1)m

(
s + r − 1

m

)(
1 − αa{1 − exp[−(γ x)β]}a

{α + (1 − α) exp[−(γ x)β]}a
)b

. (13)

By inserting (6) and (13) in equation (12) and, after some simplification, we obtain

fr:n(x) =
∞∑

k,i=0

bk,ihk+i+1(x), (14)
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where hk+i+1(x) denotes to the Weibull pdf with shape parameter β and scale
parameter γ (k + i + 1)1/β and

bk,i =
r−1∑
s=0

∞∑
m,j=0

(−1)j+i+m+sb�(bm + b)�(aj + a + k + 1)

(j + 1)!k!i!α�(bm + m − j)�(aj + a − i)

× B(r,n − r + 1)

(
1 − 1

α

)k
(
s + r − 1

m

)(
n − 1

s

)
.

Equation (14) reveals that the pdf of the Kw–CWG order statistics is a mix-
ture of Weibull densities. So, some of their mathematical properties can also be
obtained from those of the Weibull distribution. For example, the pth moment of
Xr:n can be expressed as

E
(
Xp

r:n
) = γ −p�(1 + p/β)

n−1∑
s=0

(−1)s
(n−1

s

)
B(r, n − r + 1)

∞∑
k,i=0

bk,i

(k + i + 1)p/β
.

The joint pdf of X(r:n) and Y(j :n),1 ≤ r ≤ j ≤ n, is given by

fr:j :n(x, y) = Cr:j :n
(
αaβab

)2
γ 2β(xy)β−1

× exp
[−(γ x)β

]
e−(γy)β (dxdy)

a−1(lxly)
−a−1

× [(
1 − αada

x l−a
x

)(
1 − αada

y l−a
y

)]b−1[
1 − (

1 − αada
x l−a

x

)b]r−1

× [(
1 − αada

x l−a
x

)b]n−j [(
1 − αada

y l−a
y

)b − (
1 − αada

x l−a
x

)b]j−r−1
,

where Cr:j :n = n!/(r − 1)!(j − r − 1)!(n − j)!.

4 Maximum likelihood estimation

Several approaches for parameter estimation were proposed in the literature but the
maximum likelihood method is the most commonly employed. The MLEs enjoy
desirable properties and can be used for constructing confidence intervals for the
model parameters. The normal approximation for these estimators in large sample
distribution theory is easily handled either analytically or numerically.

Let Xi be a random variable following (6) with vector of parameters θ =
(α,β, γ, a, b)T . The data encountered in survival analysis and reliability studies
are often censored. A very simple random censoring mechanism that is often real-
istic is one in which each individual i is assumed to have a lifetime Xi and a cen-
soring time Ci , where Xi and Ci are independent random variables. Suppose that
the data consist of n independent observations xi = min(Xi,Ci) for i = 1, . . . , n.
The distribution of Ci does not depend on any of the unknown parameters of Xi .
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Let F and C be the sets of individuals for which xi is the lifetime or censor-
ing, respectively. Parametric inference for such data is usually based on likelihood
methods and their asymptotic theory.

The log-likelihood function for the vector of parameters θ from model (6) has
the form l(θ) = ∑

i∈F li(θ) + ∑
i∈C l

(c)
i (θ), where li(θ) = log[f (xi)], l

(c)
i (θ) =

log[S(xi)], f (xi) is the density (6) and S(xi) is survival function (7) of Xi . The
total log-likelihood function for θ is given by

l(θ) = r log
(
αaβγ ab

) + (β − 1)
∑
i∈F

log(γ xi) + ∑
i∈F

log(1 − ui)

+ (a − 1)
∑
i∈F

log(ui) − (a + 1)
∑
i∈F

log(zi) (15)

+ (b − 1)
∑
i∈F

log
[
1 − αa

(
ui

zi

)a]
+ b

∑
i∈C

log
[
1 − αa

(
ui

zi

)]
,

where r is the number of uncensored observations (failures),

zi = α + (1 − α) exp
[−(γ xi)

β]
and ui = 1 − exp

[−(γ xi)
β]

.

The MLE θ̂ of θ can be determined by maximizing the log-likelihood (15). We
can use the MATHCAD program, R (optim function), SAS (NLMixed procedure),
Ox program (sub-routine MaxBFGS) or, alternatively, by solving the nonlinear
equations obtained by differentiating the log-likelihood.

The score vector U(θ) = (U(α),U(β),U(γ ),U(a),U(b))T has components
given by

U(α) = ar

α
− (a + 1)

∑
i∈F

ui

zi

+ bαa−1
∑
i∈C

αu2
i z

−2
i − auiz

−1
i

1 − αauiz
−1
i

+ aαa−1(b − 1)

n∑
i∈F

αua+1
i z−a−1

i − ua
i z

−a
i

1 − αaua
i z

−a
i

,

U(β) = ∑
i∈F

log(γ xi) − aαa(b − 1)
∑
i∈F

piu
a−1
i z−a

i + (1 − α)piu
a
i z

−a−1
i

1 − αaua
i z

−a
i

− ∑
i∈F

pi

1 − ui

+ r

β
− bαa

∑
i∈C

piz
−1
i + (1 − α)piuiz

−2
i

1 − αauiz
−1
i

+ (a − 1)
∑
i∈F

pi

ui

+ (a + 1)(1 − α)
∑
i∈F

pi

zi

,

U(γ ) = ∑
i∈F

(β − 1)

γ
+ (a − 1)

∑
i∈F

qi

ui
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− aαa(b − 1)
∑
i∈F

qi[(1 − α)ua
i z

−a−1
i + ua−1

i z−a
i ]

1 − αaua
i z

−a
i

+ r

γ
− ∑

i∈F

qi

1 − ui

+ (a + 1)
∑
i∈F

(1 − α)qi

zi

− bαa
∑
i∈C

qi[z−1
i + (1 − α)uiz

−2
i ]

1 − αauiz
−1
i

,

U(a) = r

a

[
1 + a log(α)

] + ∑
i∈F

log(ui) − ∑
i∈F

log(zi) − ∑
i∈C

bαaui

zi − αaui

+ (b − 1)αa
∑
i∈F

ua
i [log(zi) − log(ui) − log(α)]

za
i − αaua

i

and

U(b) = r

b
+ ∑

i∈F

log
(
1 − αaua

i z
−a
i

) + ∑
i∈C

log
(
1 − αauiz

−1
i

)
,

where

pi = (γ xi)
β exp

[−(γ xi)
β]

log(γ xi) and qi = β

γ
(γ xi)

β exp
[−(γ xi)

β]
.

Initial values for β and γ are usually taken from the fit of the Weibull model
with a = 1, b = 1 and α = 1. Then, the estimated survival function for Xi is given
by

Ŝ(xi; α̂, β̂, γ̂ , â, b̂) = {
1 − α̂â[

1 − exp
[−(γ̂ x)β

]]â
× {

α̂ + (1 − α̂) exp
[−(γ x)β̂

]}−â}b̂
.

Under general regularity conditions, the asymptotic distribution of (̂θ − θ) is
multivariate normal Np+3(0,K(θ)−1), where K(θ) is the expected information
matrix. The asymptotic covariance matrix K(θ)−1 of θ̂ can be approximated
by the inverse of the 5 × 5 observed information matrix −L̈(θ). The elements
of the observed information matrix −L̈(θ), namely −Lαα ,−Lαβ , −Lαγ ,−Lαa ,
−Lαb,−Lββ , −Lβγ ,−Lβa , −Lβb, −Lγ γ , −Lγ a , −Lγ b, −Laa , −Lab and −Lbb

can be evaluated numerically.
The approximate multivariate normal distribution N5(0,−L̈(θ)−1) for θ̂ can

be used in the classical way to construct approximate confidence intervals for
the parameters in θ . Further, we can use the likelihood ratio (LR) statistic for
comparing some special models with the Kw–CWG model. We consider the par-
tition θ = (θT

1 , θT
2 )T , where θ1 is a subset of parameters of interest and θ2 is

a subset of remaining parameters. The LR statistic for testing the null hypoth-
esis H0 : θ1 = θ

(0)
1 versus the alternative hypothesis H1 : θ1 �= θ

(0)
1 is given by

w = 2{	(̂θ)− 	(̃θ)}, where θ̃ and θ̂ are the estimates under the null and alternative
hypotheses, respectively. The statistic w is asymptotically (as n → ∞) distributed
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as χ2
k , where k is the dimension of the subset of parameters θ1 of interest. For

example, we can compute the maximum values of the unrestricted and restricted
log-likelihoods to construct LR statistics for testing some sub-models such as those
listed in Table 1 of the Kw–CWG distribution.

5 Simulation study

We obtain some frequentist properties of the MLEs by means of a simulation study
for n = 50, 100, 200 and 300, each one with 1,000 generated data sets. We simulate
the Kw–CWG model under two setups for the model parameters: α = 0.25, β =
0.5, γ = 0.25, a = 0.5 and b = 0.75 (setup 1) and α = 0.5, β = 2.0, γ = 0.75,
a = 1.25 and b = 1.5 (setup 2).

The censoring times Ci are sampled from the uniform distribution in the interval
(0, τ ), where τ denotes the proportion of censored observations. In this study,
the proportions of censored observations are approximately equal to 20% in both
setups.

Table 2 lists the averages of the MLEs (Mean), the biases and the mean square
errors (MSEs) and 95% coverage probabilities (PCs). The figures in this table in-
dicate that the MSEs increase when the censoring percentage increases. Further,
the MSEs of the MLEs of α, β , γ , a and b decay toward zero as the sample size
increases, as expected under standard asymptotic theory. In fact, the biases of the
estimates tend to be closer to the true parameter values if n increases. This fact
supports that the asymptotic normal distribution provides an adequate approxima-
tion to the finite sample distribution of the MLEs. The normal approximation can
be oftentimes improved by using bias adjustments to these estimators. Approxima-
tions to their biases in simple models may be obtained analytically. Bias correction
typically does a very good job for correcting the MLEs. We do not encounter any
non-identifiability problems in the simulation study.

6 Applications

In this section, we provide two applications to real data to prove empirically the
flexibility of the Kw–CWG distribution.

6.1 Application 1: The gauge lengths data

The first data set refers to the gauge lengths of 20 mm (Kundu and Raqab, 2009)
and consists of n = 74 observations. These data were previously analyzed by No-
fal et al. (2017). For these data, we compare the fits of the new model with some
sub-models and other non-nested competitive models, namely: Kw–CRG, Kw–
CEG, CWG, beta Weibull (BW), Kumaraswamy transmuted log-logistic (Kw–
TLL), McDonald Weibull (McW), modified beta Weibull (MBW) and exponen-
tiated transmuted generalized Rayleigh (ETGR) distributions.
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Table 2 Summaries of the estimates for the Kw–CWG model

Mean of censored
observation (in %)

Summaries of parameters

Setup Sample size (n) Parameter Mean Bias MSE

α 0.2748 0.0248 0.0249
β 0.5623 0.0623 0.0201

50 γ 0.3748 0.1248 0.2614
a 0.4951 −0.0049 0.0379
b 0.8401 0.0901 0.1449

α 0.2575 0.0075 0.0176
β 0.5336 0.0336 0.0112

100 γ 0.3462 0.0962 0.1468
a 0.4945 −0.0055 0.0173
b 0.8501 0.1001 0.1159

α 0.2605 0.0105 0.0146
0% β 0.5162 0.0162 0.0063

200 γ 0.3012 0.0512 0.0612
a 0.5020 0.0020 0.0103
b 0.8515 0.1015 0.0980

α 0.2608 0.0108 0.0117
β 0.5107 0.0107 0.0050

300 γ 0.2793 0.0293 0.0394
Setup 1 a 0.5102 0.0102 0.0074

b 0.8593 0.1093 0.0802
α 0.2453 −0.0047 0.0194
β 0.5497 0.0497 0.0262

50 γ 0.5419 0.2919 0.5019
a 0.4975 −0.0025 0.0505
b 0.7445 −0.0055 0.1303

α 0.2595 0.0095 0.0141
β 0.5278 0.0278 0.0139

100 γ 0.4755 0.2255 0.3739
a 0.5007 0.0007 0.0252
b 0.7556 0.0056 0.1008

α 0.2609 0.0109 0.0085
20% β 0.5183 0.0183 0.0082

200 γ 0.3772 0.1272 0.1244
a 0.4976 −0.0024 0.0122
b 0.7535 0.0035 0.0697

α 0.2586 0.0086 0.0056
β 0.5136 0.0136 0.0064

300 γ 0.3644 0.1144 0.1146
a 0.4969 −0.0031 0.0081
b 0.7503 0.0003 0.0642
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Table 2 (Continued)

Mean of censored
observation (in %)

Summaries of parameters

Setup Sample size (n) Parameter Mean Bias MSE

α 0.3797 −0.1203 0.0549
β 2.3339 0.3339 0.4965

50 γ 0.9356 0.1856 0.1145
a 1.0077 −0.2423 0.2282
b 1.0124 −0.4876 0.4806

α 0.4114 −0.0886 0.0466
β 2.1955 0.1955 0.3007

100 γ 0.8913 0.1413 0.0799
a 1.0853 −0.1647 0.1517
b 1.1878 −0.3122 0.3975

α 0.4637 −0.0363 0.0354
0% β 2.1244 0.1244 0.1714

200 γ 0.843 0.0930 0.0514
a 1.1536 −0.0964 0.0932
b 1.3105 −0.1895 0.3486

α 0.4763 −0.0237 0.0322
β 2.1157 0.1157 0.1561

300 γ 0.8245 0.0745 0.0441
a 1.1713 −0.0787 0.0828

Setup 2 b 1.3631 −0.1369 0.3158

α 0.3683 −0.1317 0.0567
β 2.4279 0.4279 0.6717

50 γ 0.9443 0.1943 0.1237
a 0.9656 −0.2844 0.2483
b 0.9688 −0.5312 0.6026

α 0.4247 −0.0753 0.0472
β 2.2651 0.2651 0.3602

100 γ 0.8901 0.1401 0.0849
a 1.0714 −0.1786 0.1637
b 1.1563 −0.3437 0.4604

α 0.4480 −0.0520 0.0354
20% β 2.1430 0.1430 0.2130

200 γ 0.8716 0.1216 0.0665
a 1.1450 −0.1050 0.1044
b 1.2367 −0.2633 0.3738

α 0.4673 −0.0327 0.0313
β 2.1276 0.1276 0.1812

300 γ 0.8449 0.0949 0.0528
a 1.1586 −0.0914 0.0837
b 1.2937 −0.2063 0.3233
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The density functions (for x > 0) corresponding to these alternative models are
presented below.

• The BW density function (Lee et al., 2007 and Cordeiro et al., 2013) is given by

f (x) = βαβ

B(a, b)
xβ−1 exp

[−b(αx)β
]{

1 − exp
[−(αx)β

]}a−1
.

• The Kw–TLL density function (Afify et al., 2016) is given by

f (x) = abβxβ−1

αβ[1 + ( x
α
)β]2

{
1 −

[
1 +

(
x

α

)β]−1}a−1(
1 − λ

{
1 − 2

[1 + ( x
α
)β]

})

×
{

1 + λ

[1 + ( x
α
)β]

}a−1(
1 −

{
1 + λ

[1 + ( x
α
)β]

}a

×
{

1 −
[
1 +

(
x

α

)β]−1}a)b−1

.

• The McW density function (Cordeiro et al., 2014) is given by

f (x) = βcαβ

B(a/c, b)
xβ−1e−(αx)β 1

{− exp
[−(αx)β

]}a−1

× {
1 − [

1 − exp
[−(αx)β

]]c}b−1
.

• The MBW density function (Khan, 2015) is given by

f (x) = βca

αβB(a, b)
xβ−1 exp

[
−b

(
x

α

)β]{
1 − exp

[
−

(
x

α

)β]}a−1

×
(

1 − (1 − c)

{
1 − exp

[
−

(
x

α

)β]})−a−b

.

• The ETGR density function (Afify et al., 2015) is given by

f (x) = 2αδβ2x exp
[−(βx)2]{

1 + λ − 2λ
[
1 − exp

[−(βx)2]]α}
× {

1 − exp
[−(βx)2]}αδ−1{

1 + λ − λ
[
1 − exp

{−(βx)2}]α}δ−1
.

The parameters of the densities above are all positive real numbers except for
the Kw–TLL and ETGR distributions, where |λ| ≤ 1.

In order to compare these distributions, we consider the goodness-of-fit mea-
sures including −2	̂, where 	̂ is the maximized log-likelihood, the Cramér–von
Mises (W ∗) and Anderson–Darling (A∗) statistics. The statistics W ∗ and A∗ are
described in details in Chen and Balakrishnan (1995). In general, the smaller their
values, the better the fit to the data.
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Table 3 MLEs, their SEs (in parentheses) and −2	̂, W∗ and A∗ statistics for the gauge length data

Model Estimates −2	 W∗ A∗

Kw–CWG(α,β, γ, a, b) 0.5297 2.0499 0.4097 3.3854 7.2202 102.26 0.026 0.204
(1.54) (3.355) (0.544) (4.722) (31.678)

Kw–CRG(α,γ, a, b) 0.1963 0.5774 2.6483 2.6155 102.32 0.026 0.191
(0.412) (0.278) (1.963) (3.957)

Kw–CEG(α,γ, a, b) 0.0244 1.4785 2.9423 5.4372 102.43 0.026 0.193
(0.053) (0.708) (1.737) (2.995)

BW(α,β, a, b) 0.417 4.575 1.563 0.835 102.30 0.027 0.214
(0.367) (2.461) (1.195) (4.334)

CWG(α,β, γ ) 0.0965 3.2134 0.5239 104.69 0.042 0.327
(0.166) (1.374) (0.17)

Kw–TLL(α,β, a, b,λ) 0.4909 1.0608 73.3394 100.0885 0.6761 104.53 0.066 0.44
(0.448) (0.223) (87.092) (91.115) (0.439)

Mc–W(α,β, a, b, c) 1.438 0.583 83.720 14.428 3.460 108.80 0.119 0.779
(1.447) (0.211) (78.890) (15.870) (9.663)

MBW(α,β, a, b, c) 1.765 1.426 36.336 3.361 3.096 109.10 0.124 0.811
(1.097) (1.488) (4.439) (6.695) (4.714)

ETGR(α,β,λ, γ ) 2.121 0.698 0.320 7.790 113.40 0.207 1.340
(0.315) (0.040) (0.228) (1.727)

Table 3 provides the MLEs of the model parameters, their corresponding stan-
dard errors (SEs) and the values of −2	̂, W ∗ and A∗. The plots of the fitted Kw–
CWG pdf and other fitted pdfs defined before, for the current data, are displayed in
Figure 6. Figure 7 displays the estimated cdf and estimated survival function of the
Kw–CWG distribution. The QQ-plots of the fitted models are given in Figure 8.
They reveal that the Kw–CWG, Kw–CRG and Kw–CEG distributions provide the
best fits and they can be considered very competitive models to other distributions
with positive support.

6.2 Application 2: Serum reversal data-censored

Aids is a pathology that mobilizes its sufferers because of the implications for their
interpersonal relationships and reproduction. Therapeutic advances have enabled
seropositive women to bear children safely. Here, we analyze a data set on the time
to serum reversal of 148 children exposed to HIV by vertical transmission, born
at Hospital das Clínicas (Ribeirão Preto School of Medicine) from 1995 to 2001,
where the mothers were not treated (Silva, 2004; Perdoná, 2006). Vertical HIV
transmission can occur during gestation in around 35% of cases, during labor and
birth itself in some 65% of cases, or during breast feeding, varying from 7% to
22% of cases. Serum reversal or serological reversal can occur in children of HIV-
contaminated mothers. It is the process by which HIV antibodies disappear from
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Figure 6 The estimated Kw–CWG pdf and other estimated pdfs. (a) The estimated Kw–CWG,
Kw–CRG, Kw–CEG, BW and CWG densities. (b) The estimated Kw–CWG, Kw–TLL, Mc–W, MBW
and ETGR densities.

Figure 7 (a) The estimated cdf of the Kw–CWG model. (b) The estimated survival function of the
Kw–CWG model.

the blood in an individual who tested positive for HIV infection. As the months
pass, the maternal antibodies are eliminated and the child ceases to be HIV pos-
itive. The exposed newborns were monitored until definition of their serological
condition, after administration of Zidovudin (AZT) in the first 24 hours and for
the following 6 weeks. We assume that the lifetimes are independently distributed,
and also independent from the censoring mechanism.

In order to compare the distributions, we consider some goodness-of-fit mea-
sures including the Akaike information criterion (AIC), Bayesian information cri-
terion (BIC), Hannan–Quinn information criterion (HQIC), consistent Akaike in-
formation criterion (CAIC) and −2	̂. These goodness-of-fit statistics evaluated at
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Figure 8 QQ-plots of the Kw–CWG distribution and other competitive distributions.

Table 4 Goodness of fit statistic for the serum reversal data

Model −2l̂ AIC CAIC BIC HQIC

Kw–CWG 765.4 775.4 775.8 790.4 781.5
Kw–CEG 771.6 779.6 779.8 791.6 784.5
Kw–W 775.5 783.5 783.8 795.5 788.4
GCWG 775.7 783.7 784.0 795.7 788.6
ECWG 766.9 774.9 775.2 786.9 779.8
GW 790.2 796.2 796.4 805.2 799.9
Weibull 804.0 808.0 808.1 814.0 810.4

the MLEs are given by

AIC = −2	̂ + 2k, CAIC = −2	̂ + 2kn/(n − k − 1),

HQIC = −2	̂ + 2k log
(
log(n)

)
and BIC = −2	̂ + k log(n).

where k is the number of parameters and n is the sample size.
Tables 4 and 5 provide the values of the −2l̂, AIC, BIC, CAIC and HQIC statis-

tics and the MLEs (and their SEs in parentheses) of the parameters, respectively.
These results indicate that the Kw-CWG and ECWG models have the lowest −2l̂,
AIC, BIC, CAIC and HQIC values among those of all fitted models, and then they
could be chosen as the best models.
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Table 5 MLEs of the model parameters and the corresponding SEs (given in parentheses) for the
serum reversal data

Model α β γ a b

Kw–CWG 0.0003 6.6656 0.0036 0.2604 3.0844
(0.0005) (0.2783) (0.0001) (0.0460) (1.9301)

Kw–CEG 1e-8 1 0.0466 0.2899 2.0234
(1e-9) (0.0039) (0.0562) (1.3789)

Kw–W 1 6.7550 0.0039 0.2358 0.1769
(2.1887) (0.0004) (0.0756) (0.1037)

GCWG 0.00008 1.2577 0.0092 1 297.85
(0.0001) (0.5792) (0.0080) (0.0008)

ECWG 0.0054 6.6560 0.0036 0.2218 1
(0.0052) (2.5641) (0.00009) (0.0307)

GW 1 6.3607 0.0028 0.3670 1
(0.2782) (0.0001) (0.0462)

Weibull 1 3.1132 0.0033 1 1
(0.3250) (0.0001)

Table 6 LR statistics for the serum reversal data

Model Hypotheses Statistics w P -value

Kw–CWG vs Kw–CEG H0 : β = 1 vs H1 : H0 is false 6.2 0.0128
Kw–CWG vs Kw–W H0 : α = 1 vs H1 : H0 is false 10.1 0.0015
Kw–CWG vs GCWG H0 : a = 1 vs H1 : H0 is false 10.3 0.0013
Kw–CWG vs ECWG H0 : b = 1 vs H1 : H0 is false 1.5 0.2207
Kw–CWG vs GW H0 : b = α = 1 vs H1 : H0 is false 24.8 <0.0001
Kw–CWG vs Weibull H0 : a = b = α = 1 vs H1 : H0 is false 38.6 <0.0001

A comparison of the proposed distribution with some of its sub-models us-
ing LR statistics is addressed in Table 6. The numbers in this table, specially the
p-values, suggest that the new Kw–CWG and ECWG models yield better fits to
these data than the other three distributions.

In order to assess if the model is appropriate, plots of the estimated survival
functions of the Kw–CWG, Kw–CEG, Kw–W, GCWG, ECWG, GW and Weibull
distributions and the empirical survival function are displayed in Figures 9 and 10.
We conclude that the Kw–CWG and ECWG models provide good fits to these
data.
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Figure 9 Estimated survival function for the fitted Kw–CWG distribution and some other mod-
els and the empirical survival function for the serum reversal data. (a) Kw–CWG vs Kw–CEG.
(b) Kw–CWG vs Kw–W. (c) Kw–CWG vs GCWG.

Figure 10 Estimated survival function for the fitted Kw–CWG distribution and some other mod-
els and the empirical survival function for the serum reversal data. (a) Kw–CWG vs ECWG.
(b) Kw–CWG vs GW. (c) Kw–CWG vs Weibull.

7 Concluding remarks

In this paper, we propose a new five-parameter model, named the Kumaraswamy
complementary Weibull geometric (Kw–CWG) distribution, which extends the
complementary Weibull geometric (CWG) distribution introduced by Tojeiro et
al. (2014). The Kw–CWG model is motivated by the wide use of the Weibull dis-
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tribution in practice and also for the fact that the generalization provides more
flexibility to analyze positive real data. We provide some of its mathematical and
statistical properties. The Kw–CWG density function can be expressed as a mix-
ture of Weibull densities. We derive explicit expressions for the ordinary moments,
generating function, Rényi entropy, mean residual life and mean inactivity time.
We obtain the density function of the order statistics and their moments. We in-
vestigate the maximum likelihood estimation of the model parameters. We also
provide some simulation results to assess the performance of the proposed model.
Two applications to real data illustrate that the proposed distribution provides con-
sistently better fits than other nested and non-nested models. We hope that the new
model will attract wider applications in areas such as engineering, survival and
lifetime data, hydrology, economics (income inequality) and others.

Appendix: Mixture representation

We derive mixture representations for the pdf and cdf of X. In order to obtain a
simple form for the Kw–CWG pdf, we expand (6) using the power series

(1 − z)b−1 =
∞∑

j=0

(−1)j�(b)

j !�(b − j)
zj , |z| < 1, b > 0. (16)

Using expansion (16) in equation (6) and after some algebra, the pdf of X can be
expressed as

f (x) = βγ ab(γ x)β−1 exp
[−(γ x)β

] ∞∑
j=0

(−1)j�(b)

j !�(b − j)
αa(j+1)

× {
1 − exp

[−(γ x)β
]}a(j+1)−1{

α + (1 − α) exp
[−(γ x)β

]}−[a(j+1)+1]
.

For |z| < 1, b > 0, the power series holds

(1 − z)−b =
∞∑

j=0

�(b + j)

j !�(b)
zj . (17)

By applying (17) in the expression {α + (1 − α) exp[−(γ x)β]}−[a(j+1)+1], we ob-
tain

f (x) = βγ abα−1(γ x)β−1
∞∑

j,k=0

(−1)j�(b)�(aj + a + k + 1)

j !k!�(b − j)�(aj + a + 1)

×
(

1 − 1

α

)k

exp
[−(k + 1)(γ x)β

]{
1 − exp

[−(γ x)β
]}a(j+1)−1

.



A new lifetime model with variable shapes for the hazard rate 539

By using (16) in the last binomial term, the pdf of X becomes

f (x) = β(k + i + 1)γ βxβ−1
∞∑

k,i=0

sk,i exp
[−(k + i + 1)(γ x)β

]
, (18)

where sk,i is a constant given by

sk,i =
∞∑

j=0

(−1)j+ia�(b + 1)�(aj + a)�(aj + a + k + 1)

j !k!i!α(k + i + 1)�(b − j)�(aj + a + 1)�(aj + a − i)

(
1 − 1

α

)k

.

Equation (18) can be rewritten as

f (x) =
∞∑

k,i=0

sk,ihk+i+1(x), (19)

where hk+i+1(x) is the Weibull pdf with shape parameter β and scale parameter
γ (k + i + 1)1/β .

Equation (19) reveals that the Kw–CWG density function can be written as a
linear mixture of Weibull densities. So, several of its structural properties can be
obtained from those of the Weibull distribution.

By integrating (19), we obtain

F(x) =
∞∑

k,i=0

sk,iHk+i+1(x), (20)

where Hk+i+1(x) is the Weibull cdf with shape parameter β and scale parameter
γ (k + i + 1)1/β .

Equations (19) and (20) are the main results of this Appendix. They can be used
to study some structural properties of the proposed family.
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