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Abstract. In this paper, we consider the calibration procedure for Su et
al.’s [Sociol. Methods Res. 44 (2014) DOI:10.1177/0049124114554459] ad-
justed Kuk randomized response (RR) technique by using auxiliary infor-
mation such as gender or age group of respondents associated with the
variable of interest. Our proposed calibration method can overcome the
problems such as noncoverage and nonresponse. From the efficiency com-
parison study, we show that the calibrated adjusted Kuk’s RR estimators
are more efficient than that of Su et al. [Sociol. Methods Res. 44 (2014)
DOI:10.1177/0049124114554459], when the known population cell and
marginal counts of auxiliary information are used for the calibration proce-
dure.

1 Introduction

Warner (1965) first suggested an ingenious survey model called randomized re-
sponse (RR) technique to procure sensitive information from respondents without
disturbing their privacy by using a randomization device which was composed of
two questions. One was sensitive and the other was non-sensitive:

Question 1: Do you have a sensitive attribute A? (with probability P ),
Question 2: Do you have a non-sensitive attribute Ā? (with probability 1 − P ).

The probability of a “Yes” answer is given by

φW = Pπ + (1 − P)(1 − π). (1.1)

Let nφ̂W be the number of “Yes” answers in a random sample of n respondents,
the estimator π̂W and it’s variance V (π̂W ) of sensitive proportion π are respec-
tively,

π̂W = φ̂W − (1 − P)

2P − 1
, P �= 1/2, (1.2)

V (π̂W ) = π(1 − π)

n
+ P(1 − P)

n(2P − 1)2 . (1.3)
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Kuk (1990) suggested an RR design that made use of two randomization de-
vices. The first randomization device R1, which is made up a deck of cards each
bearing one of two possible questions that has two possible outcomes:

Question 1: Do you have a sensitive attribute A? (with probability θ1),
Question 2: Do you have a non-sensitive attribute Ā? (with probability 1 − θ1).

The second randomization device, R2, which is made up a deck of cards each
bearing one of two possible questions that has two possible outcomes:

Question 1: Do you have a non-sensitive attribute Ā? (with probability θ2),
Question 2: Do you have a sensitive attribute A? (with probability 1 − θ2).

Assume that a simple random sample with replacement (SRSWR) of size n

respondents is selected from the population of interest. Each respondent is to report
the first outcome of R1 if he/she has a sensitive attribute A and the second outcome
of R2 if he/she does not have a sensitive attribute A.

The probability of a “Yes” answer φK is given by

φK = P(Yes) = πθ1 + (1 − π)θ2. (1.4)

Let nφ̂K denote the number of “Yes” responses in the sample of size n, the
estimator π̂K of π , the proportion of the population in the sensitive group, and it’s
variance V (π̂K) are given by

π̂K = φ̂K − θ2

θ1 − θ2
, θ1 �= θ2, (1.5)

V (π̂K) = φK(1 − φK)

n(θ1 − θ2)2 . (1.6)

Recently, Su et al. (2014) suggested a new RR model compelling answers “Yes”
or “No” to each respondent according to his/her selection situation in the random-
ization device which modified Kuk’s randomization device.

It has been a difficult problem for social survey statisticians to deal with nonre-
sponse and noncoverage of survey data. The respondents are unlikely to respond to
the survey especially when sensitive questions related to their privacies are asked.
In order to adjust the survey nonresponse, we can use auxiliary information to im-
prove the precision of the estimator for the population parameters such as total,
mean, and proportion using external data. In terms of calibration procedure, Dev-
ille and Särndal (1992), and Deville, Särndal and Sautory (1993) suggested the
calibration estimator according to the distance functions.

Tracy et al. (1999) suggested the calibrated estimator of the quantitative RR
survey for the quantitative sensitive characteristics, and they suggested the high-
order calibration method using the population variance of the auxiliary variable.
Recently, Son et al. (2010) suggested the calibrated RR estimators of qualitative
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sensitive question survey, and they showed that the calibrated RR estimators are
more efficient than that of Waner’s and Mangat model.

In this paper, we suggest the calibrated estimator of Su et al. (2014) adjusted
Kuk’s randomized response technique using auxiliary information such as demo-
graphical variables associated with the variable of interest.

In Section 2, we review the adjusted Kuk’s RR model suggested by Su et al.
(2014). Section 3 proposes the calibration procedure for Su et al.’s RR model, and
Section 4 introduces the conditional and unconditional properties of the calibrated
RR estimators. Section 5 is devoted to the simulation and a real survey data study
in order to compare the efficiencies between the calibrated adjusted Kuk’s RR
estimators and the original Kuk’s RR ones, and Section 6 provides the conclusion.

2 Review of adjusted Kuk’s randomized response model

In this section, we review the adjusted Kuk’s RR model suggested by Su et al.
(2014). Su et al. estimated the proportion of sensitive attribute by suggesting an
adjusted Kuk’s one. They consider selecting a SRSWR sample of n respondents
from the given population of interest. Each respondent in the sample of n respon-
dents is provided with two randomization devices, D1 and D2. The randomization
device D1 consists of a deck of cards, each card bearing one of two types of state-
ments: (1) Use randomization device F1 and (2) use randomization device F̄1 with
probabilities θ1 and (1 − θ1), respectively. Similarly, the randomization device D2
consists of a deck of cards, each card bearing one of two statements: (1) Use ran-
domization device F2 and (2) use randomization device F̄2, with probabilities θ2
and (1 − θ2) respectively. Each respondent is instructed to use the first device D1
if he/she has the sensitive attribute A, and to use the second device D2 if he/she
has the non-sensitive attribute Ā.

The device F1 mentioned by the first outcome of device D1 consists of two
possible mutually exclusive statements: (1) Say “Yes” and (2) say “No” with prob-
abilities P1 and (1 − P1), respectively. The device F̄1 mentioned by the second
outcome of device D1 also consists of two possible mutually exclusive statements:
(1) Say “Yes” and (2) say “No” but with probabilities T1 and (1−T1), respectively.
Similarly, the device F2 mentioned by the first outcome of device D2 consists of
two possible mutually exclusive statements: (1) Say “Yes” and (2) say “No” with
probabilities P2 and (1−P2), respectively. The device F̄2 mentioned by the second
outcome of device D2 also consists of two possible mutually exclusive statements:
(1) Say “Yes” and (2) say “No” but with probabilities T2 and (1−T2), respectively.
A pictorial representation of such a proposed forced randomized response model
is given in Figure 1.

In the adjusted Kuk’s RR model, the probability of a “Yes” answer is given by:

φ = π
[
θ1P1 + (1 − θ1)T1

] + (1 − π)
[
θ2P2 + (1 − θ2)T2

]
(2.1)

= π
[
θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)

] + θ2P2 + (1 − θ2)T2,
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Figure 1 Adjusted Kuk’s forced randomized response model.

where π is the population proportion of sensitive attribute.
The estimator π̂s of the population proportion of sensitive attribute is

π̂s = φ̂ − θ2P2 − (1 − θ2)T2

θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)
, (2.2)

where φ̂ = ∑n
k=1

yk

n
is the observed proportion of “Yes” answers in the sample.

The variance of the proposed estimator π̂s is given as follows:

V (π̂s) = φ(1 − φ)

n[θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)]2 . (2.3)

If the respondents are selected by simple random sampling without replacement
(SRSWOR), then the variance of the proposed estimator π̂s is given as follows:

V (π̂s) =
(

N − n

N − 1

)
φ(1 − φ)

n[θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)]2 . (2.4)

3 Calibration procedure

The RR survey for sensitive attribute has the limitation to the use of auxiliary infor-
mation for the privacy protection of respondents. Nevertheless, auxiliary informa-
tion of respondents of the RR survey may be available some socio-demographical
auxiliary information such as gender and age in the population level. In this sec-
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tion, we consider the calibration procedure to improve the Su et al.’s RR estima-
tor.

3.1 Known population cell counts

Let yk be the binomial variable with parameter φ. The sample respondents are
selected by simple random sampling without replacement (SRSWOR). Then
the population proportion reporting “Yes” to RR question is defined by ȳ =
N−1 ∑

U yk and the counterpart of the sample is ˆ̄y = N−1 ∑
s dkyk , where dk =

1/υk is the sampling design weight. The auxiliary information τx = ∑
k∈U xk is

given in the form of known cell counts in contingency table with two dimensions
as follows: ∑

k∈U

xk = (N11,N12, . . . ,Nij , . . . ,Nrc). (3.1)

For Su et al.’s RR model, the sample proportion of answering “Yes”, ȳ, can be
rewritten as follows:

ȳ = 1

N

n∑
k=1

dkyk, (3.2)

where the original sampling weight is dk = N/n for SRSWOR.
The original sampling weight dk is replaced by the new weight wk = dkNij /N̂ij ,

and then the calibrated sample proportion ȳ is given by

ȳpost = 1

N

n∑
k=1

wkyk = 1

N

r∑
i=1

c∑
j=1

Nij ỹij , (3.3)

where ỹij = ∑nij

k=1 dkyk/N̂ij is the weighted proportion in the sample cell with
N̂ij = ∑

sij
dk .

Theorem 3.1. If the respondents are selected by SRSWOR, N̂ij = dknij =
(N/n)nij , then the post-stratified Su et al.’s RR estimator is given by

π̂post =
r∑

i=1

c∑
j=1

(
Nij

N

)
φ̂ij − θ2P2 − (1 − θ2)T2

θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)
, (3.4)

where φ̂ij = ∑
k

yk

nij
is the observed proportion of “Yes” answers in the sample cell

(i, j).

Proof. From (2.2) the Su et al.’s RR estimator π̂c, we can rewrite a sample pro-
portion as (3.3) under SRSWOR and then the post-stratified RR estimator is given
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by

π̂post = 1

N

n∑
k=1

dkyk − θ2P2 − (1 − θ2)T2

θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)

= 1

N

r∑
i=1

c∑
j=1

Nij

∑nij

k=1 dkỹk − θ2P2 − (1 − θ2)T2

θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)

=
r∑

i=1

c∑
j=1

Nij

N

∑nij

k=1 yk/nij − θ2P2 − (1 − θ2)T2

θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)

=
r∑

i=1

c∑
j=1

Nij

N

φ̂ij − θ2P2 − (1 − θ2)T2

θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)
.

�

3.2 The only known population marginal counts

We consider using the knowledge of population cell counts of the auxiliary variable
in the previous calibration procedure. But if we only know the population marginal
counts from auxiliary information, we can use the knowledge of marginal counts
in calibration procedure as the following,∑

k∈U

xk = (N1+,N2+, . . . ,Nr+,N+1,N+2, . . . ,N+c)
′, (3.5)

where Ni+ = ∑c
j=1 Nij , N+j = ∑r

i=1 Nij .
From (3.5), we define the auxiliary variable vector xk = (δ1·k, . . . , δr·k, δ·1k, . . . ,

δ·ck)′, where δi·k = 1, if the respondent k is in row i and 0 otherwise, δ·jk = 1 if
the respondent k is in column j and 0 otherwise.

We denote the Lagrange multiplier as ϕ = (u1, . . . , ur, v1, . . . , vc)
′ so that we

can express x′
kϕ = ui + vj , which can be written as F(x′

kϕ) = F(ui + vj ), where
F = (∂G/∂w)−1 is defined as Deville and Särndal (1992). The calibration equa-
tions are

c∑
j=1

N̂ijF (ui + vj ) = Ni+ for i = 1,2, . . . , r, (3.6)

r∑
i=1

N̂ijF (ui + vj ) = N+j for j = 1,2, . . . , c, (3.7)

where ui and vj are determined by iterative computation.
We can obtain the calibrated cell counts estimate N̂w

ij = N̂ijF (ui +vj ), and then
the calibrated weight is wk = dkN̂

w
ij /N̂ij . As a result the calibration estimator for

population proportion φ is given by

ȳcal = 1

N

n∑
k=1

wkyk = 1

N

r∑
i=1

c∑
j=1

N̂w
ij ỹij . (3.8)
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Theorem 3.2. By (3.8), if the respondents are selected by SRSWOR, then the cal-
ibrated Su et al.’s RR estimator is given by

π̂cal =
r∑

i=1

c∑
j=1

(N̂w
ij

N

)
φ̂ij − θ2P2 − (1 − θ2)T2

θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)
. (3.9)

Proof. Refer to the proof of Theorem 3.1. �

4 Variances and its estimator of calibrated Su et al.’s RR estimators

In this section, we investigate the conditional and unconditional properties of the
calibrated Su et al.’s RR estimator. The conditional variance given the cell or
marginal count of population, V (·|N̂), can be derived from the cell or marginal
information of population level, and the unconditional variance is derived from the
double expectation of estimates. In addition, we derive the variance estimator of
the proposed calibration RR estimator.

4.1 Conditional variances

We consider a row effect and a column effect in two-way contingency table for
RR survey data. Let the two cross effect factors explain the population proportion
reporting “Yes” for RR questions, then we parameterize the finite population using
the ANOVA representing that for respondent k in population cell Uij , yk = αi +
βj +Ek , where yk is the binomial variable to RR question. If αi is a row effect, βj

a column effect, and Ek is an error term, then αi and βj are fixed unknown values
defined by calibration equations

c∑
j=1

Nij (αi + βj ) = Ni+φi+ for i = 1,2, . . . , r, (4.1)

r∑
i=1

Nij (αi + βj ) = N+jφ+j for j = 1,2, . . . , c. (4.2)

Let us decompose the kth error term Ek = Lij +Rk , where Lij = φij −(αi +βj )

is an interaction term, and Rk = yk −φij is the deviation from φij = ∑
Uij

yij /Nij ,
where φij represents the population proportion of “Yes” to the RR question in cell
ij . The restrictions for the interaction term are

r∑
i=1

NijLij =
c∑

j=1

NijLij = 0. (4.3)

The variable of interest yk can be written as yk = αi + βj + Lij + Rk , so that
the calibrated Su et al.’s RR estimator can be expressed by

ȳcal = 1

N

r∑
i=1

c∑
j=1

N̂w
ij (αi + βj + Lij + R̃ij ), (4.4)
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where R̃ij = ∑nij

k=1 dkRk/N̂ij are the deviation proportion of sample cells and N̂w
ij

are the calibrated cell counts.
Also, we can express the calibration equation of yk as follows:

1

N

r∑
i=1

c∑
j=1

Nij (αi + βj ) = 1

N

r∑
i=1

c∑
j=1

N̂w
ij (αi + βj ). (4.5)

Let the population proportion answering “Yes” for the RR question, φ =
N−1 ∑

U yk be denoted by the left-hand side of equation (4.5), then we can ex-
press the error of ȳcal as

ȳcal − φ = 1

N

r∑
i=1

c∑
j=1

(
N̂w

ij − Nij

)
Lij + 1

N

r∑
i=1

c∑
j=1

N̂w
ij R̃ij . (4.6)

Similar to (4.6), the error of the post-stratified estimator ȳpost is

ȳpost − φ = 1

N

r∑
i=1

c∑
j=1

Nij R̃ij . (4.7)

The conditional biases Bc = B(·|N̂) of the estimators of population means, π̂post

and π̂cal, can be expressed by

Bc(π̂post) =
(

1

θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)

)
(4.8)

× 1

N

r∑
i=1

c∑
j=1

NijEc(R̃ij ),

Bc(π̂cal) =
(

1

θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)

)
(4.9)

×
[

1

N

r∑
i=1

c∑
j=1

(
N̂w

ij − Nij

)
Lij + 1

N

r∑
i=1

c∑
j=1

N̂w
ij Ec(R̃ij )

]
,

respectively.
From (4.8) and (4.9), the conditional expectation is Ec(R̃ij ) = 0 or nearly 0 for

all i, j , because the sampling design is SRSWOR. Then the inclusion probabil-
ity υk is constant. The conditional bias of post-stratified estimator Bc(π̂post) ≈ 0,
whereas Bc(π̂cal) = N−1 ∑r

i=1
∑c

j=1(N̂
w
ij − Nij )Lij . For a large sample, N̂w

ij is
closed to Nij , and then the conditional bias of ȳcal is asymptotically equal to that
of ȳpost.
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The conditional variance of the post-stratified Su et al.’s RR estimator π̂post can
be rewritten by

Vc(π̂post) =
r∑

i=1

c∑
j=1

(
Nij

N

)2[(
Nij − nij

Nij − 1

)
(4.10)

× φij (1 − φij )

nij {θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)}2

]
.

Also, the conditional variance of calibration Su et al.’s RR estimator π̂cal is

Vc(π̂cal) =
r∑

i=1

c∑
j=1

(N̂w
ij

N

)2[(
Nij − nij

Nij − 1

)
(4.11)

× φij (1 − φij )

nij {θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)}2

]
.

If the interaction terms Lij are negligible in (4.9), then the conditional vari-
ances of π̂cal are equal to the conditional variances of π̂post replacing N̂w

ij by
Nij . Ordinarily, it is reasonable that the conditional variances of the calibration
estimators are larger than the conditional variances of the post-stratified estima-
tors. Also, we note the conditional bias of the post-stratified estimators are unaf-
fected by interaction, whereas that of the calibration estimators depend on interac-
tion.

4.2 Unconditional variances

The unconditional variance is V (·) = E(Vc) + V (Bc), we can derive the uncondi-
tional variances of calibrated Su et al.’s RR estimators π̂post and π̂cal.

Theorem 4.1. The unconditional variance of the post-stratified Su et al.’s RR es-
timator can be expressed by

V (π̂post) =
r∑

i=1

c∑
j=1

(
Nij

N

)

×
[
(1 − f )

φij (1 − φij )

n{θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)}2

]
(4.12)

+ 1

n

r∑
i=1

c∑
j=1

(
1 − Nij

N

)

×
[
(1 − f )

φij (1 − φij )

n{θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)}2

]
.



Calibration estimation of adjusted Kuk’s randomized response 169

Proof. By Cochran (1977), the size of sample cell nij is the random variable with
E(nij ) = n(Nij /N), V (nij ) = nNij /N(1 − Nij/N) for the post-stratification. nij

can be expressed by

nij = n
Nij

N

(
1 − n(Nij /N) − nij

n(Nij /N)

)
. (4.13)

Thus the 1/nij can be written

1

nij

= 1

n(Nij /N)

(
1 − n(Nij /N) − nij

n(Nij /N)
+ (nNij /N − nij )

2

(nNij /N)2 − · · ·
)
.

Then the expectation of 1/nij is

E

(
1

nij

)
∼= 1

n(Nij /N)
+ n(Nij /N)(1 − Nij/N)

(nNij /N)2

= 1

n(Nij /N)
+ (1 − Nij/N)

(nNij /N)2 .

Substitute E(nij ) = n(Nij /N) and (4.13) into the expectation of (4.10), and
after some algebra, we can obtain (4.12). �

Theorem 4.2. The unconditional variance of calibrated Su et al.’s RR estimator is
given by

V (π̂cal) =
r∑

i=1

c∑
j=1

(N̂w
ij

N

)

×
[

φij (1 − φij )

n{θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)}2 (1 − f )

]

+ 1

n

r∑
i=1

c∑
j=1

(
1 − N̂w

ij

N

)
(4.14)

×
[

φij (1 − φij )

n{θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)}2 (1 − f )

]

+ 1 − f

n

r∑
i=1

c∑
j=1

(N̂w
ij

N

)2

× L2
ij

n{θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)}2 .

Proof. We can obtain the first and second terms of right-hand side in (4.14) from
Theorem 4.1 replacing N̂w

ij by Nij . For the third term of (4.14), the variance of
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conditional bias becomes V (Bc(π̂cal)) = V (
∑

i

∑
j N̂w

ij Lij ) from (4.9) as follows:

V
(
Bc(π̂cal)

) =
(

1

θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)

)2

× V

[
1

N

r∑
i=1

c∑
j=1

(
N̂w

ij − Nij

)
Lij

]

=
(

1

θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)

)2

× V

[
1

N

r∑
i=1

c∑
j=1

N̂w
ij Lij

]

=
(

1

θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)

)2

×
r∑

i=1

c∑
j=1

(N̂w
ij

N

)2(
1 − f

n

)
L2

ij . �

From the unconditional variances of the calibrated Su et al.’s RR estimator
(4.14), the first term of the unconditional variances equals the post-stratified vari-
ance replacing N̂w

ij by Nij . Therefore, if E(N̂w
ij ) ∼= Nij for large sample, then the

last terms of the (4.14) is negligible. Hence, the unconditional variance of the cal-
ibrated Poisson RR estimator equals to that of the post-stratified Su et al.’s RR
estimator.

4.3 Variance estimation

The variance estimator of calibrated Sue et al. RR estimator can be derived from
the calibration procedure. In Section 4.1, we assumed the two-way ANOVA model
as yk = αi +βj +Ek in population level. Then we can consider sample level model
as yk = α̂i + β̂j + ek . The variance estimator is calculated from the sample-based
calibration equations as follows:

c∑
j=1

N̂w
ij (α̂i + β̂j ) =

c∑
j=1

N̂w
ij φ̂ij for i = 1,2, . . . , r, (4.15)

r∑
i=1

N̂w
ij (α̂i + β̂j ) =

r∑
i=1

N̂w
ij φ̂ij for j = 1,2, . . . , c. (4.16)
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For SRSWOR, the variance estimator of the calibration Su et al. RR estimator
is given by

V̂ (π̂cal) = n(1 − f )

n − 1

r∑
i=1

c∑
j=1

(N̂w
ij

N

)

×
[

φ̂ij (1 − φ̂ij )

nij {θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)}2

]

+ n(1 − f )

n − 1

r∑
i=1

c∑
j=1

(
1 − N̂w

ij

N

)
(4.17)

×
[

φ̂ij (1 − φ̂ij )

nij {θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)}2

]

+ n(1 − f )

n − 1

r∑
i=1

c∑
j=1

(N̂w
ij

N

)2

× L̂2
ij

nij {θ1(P1 − T1) − θ2(P2 − T2) + (T1 − T2)}2 .

5 Efficiency comparison study

5.1 Numerical comparison

We assume the population with rows and columns in contingency table according
to auxiliary variables with 2 × 2 dimensions. As discussed in Deville et al. (1993),
this dimension of the population and sample contingency table can be extended to
more than 2×2 dimensions. We generate a population with size N (=10,000), and
then it classifies with 2 × 2 table according to size of random generated number.

Table 1 shows the population distribution of the respondents, each cell count
denoted by Nij , which can be known from the socio-demographic information
for respondents. Let Ni+ and N+j denote the row and column marginal counts,
respectively. If the population cell counts Nij are known, then we can use the post-
stratified estimator, and if these counts are unknown but the marginal counts Ni+
and N+j are known, then we can use the calibration estimator.

Table 2 describes the sample distribution of the respondent selected by SR-
SWOR with size of n (=1000) and each cell count nij observed from the survey.

We obtain the response set of size 200 from the sample Table 2 according to a
given sample proportion ȳ of reporting “Yes” to a sensitive attribute as followed
by Table 3.

As a result, we calibrate the proportion of respondents reporting “Yes” in sample
cells according to the available information Nij or Ni+ and N+j . We compute the
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Table 1 Population distribution

Gender

Dwelling area Male Female Total

Urban N11 (=3711) N12 (=1257) N1+ (=4968)
Rural N21 (=1296) N22 (=3736) N2+ (=5032)

Total N+1 (=5007) N+2 (=4993) N (=10,000)

Table 2 Sample distribution

Gender

Dwelling area Male Female Total

Urban n11 (=376) n12 (=139) n1+ (=515)
Rural n21 (=127) n22 (=358) n2+ (=485)

Total n+1 (=503) n+2 (=497) n (=1000)

Table 3 Respondents distribution

Gender

Dwelling area Male Female Total

Urban 78 25 103
Rural 33 64 97

Total 111 89 200

unconditional variance of calibration and ordinary Su et al.’s RR model changing
the population proportion π for sensitive attribute and the selection probabilities
P1, P2, T1 and T2. We compare the relative efficiencies (RE) between the uncon-
ditional variance of the calibration Su et al.’s RR estimator as follows:

RE = V (π̂s)

V (π̂cal)
,

where V (π̂cal) represents the variance of post-stratified and calibrated estimator.
From Table 4 and Table 5, we found that the post-stratified Su et al.’s RR esti-

mator is more efficient than of original Su et al.’s RR estimator. When a population
proportion of a sensitive attribute is small, that is less equal than 0.4, then the post-
stratified estimator is more efficient. But if a population proportion of an sensitive
attribute is greater than or equal to 0.6 and selection probabilities of RR question
P1, T1 and T2 are over 0.8, then the RE of our post-stratified estimator is less
than 1.
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Table 4 Relative efficiencies of post-stratified Su et al.’s estimator

π (P2 = 0.5, T1 = 0.6, T2 = 0.7)

P1 0.1 0.2 0.3 0.4

0.1 2.1985 2.4344 2.6654 2.8916
0.2 2.1569 2.3529 2.5455 2.7348
0.3 2.1152 2.2708 2.4243 2.5756
0.4 2.0734 2.1881 2.3017 2.4141

(P2 = 0.6, T1 = 0.7, T2 = 0.8)

0.1 1.7111 1.9997 2.2811 2.5555
0.2 1.6677 1.9150 2.1569 2.3937
0.3 1.6242 1.8296 2.0313 2.2295
0.4 1.5805 1.7436 1.9043 2.0629

(P2 = 0.7, T1 = 0.8, T2 = 0.9)

0.1 1.2020 1.5476 1.8830 2.2088
0.2 1.1566 1.4594 1.7543 2.0419
0.3 1.1111 1.3705 1.6242 1.8724
0.4 1.0654 1.2809 1.4925 1.7003

Table 5 Relative efficiencies of post-stratified Su et al.’s estimator

π (P2 = 0.1, T1 = 0.6, T2 = 0.7)

P1 0.5 0.6 0.7 0.8 0.9

0.5 2.5254 2.5555 2.5856 2.6156 2.6455
0.6 2.3222 2.3119 2.3017 2.2914 2.2811
0.7 2.1152 2.0629 2.0103 1.9574 1.9043
0.8 1.9043 1.8081 1.7111 1.6133 1.5146
0.9 1.6894 1.5476 1.4039 1.2584 1.1111

(P2 = 0.2, T1 = 0.7, T2 = 0.8)

0.5 2.2192 2.2914 2.3631 2.4344 2.5052
0.6 2.0103 2.0419 2.0734 2.1048 2.1361
0.7 1.7974 1.7867 1.7759 1.7651 1.7543
0.8 1.5805 1.5256 1.4704 1.4150 1.3593
0.9 1.3593 1.2584 1.1566 1.0539 0.9503

(P2 = 0.3, T1 = 0.8, T2 = 0.9)

0.5 1.9043 2.0208 2.1361 2.2502 2.3631
0.6 1.6894 1.7651 1.8403 1.9150 1.9892
0.7 1.4704 1.5035 1.5366 1.5695 1.6023
0.8 1.2471 1.2359 1.2246 1.2133 1.2020
0.9 1.0195 0.9619 0.9040 0.8458 0.7873
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Table 6 Relative efficiencies of calibrated Su et al.’s estimator

π (P2 = 0.5, T1 = 0.6, T2 = 0.7)

P1 0.1 0.2 0.3 0.4

0.1 2.1055 2.3390 2.5689 2.7954
0.2 2.0646 2.2582 2.4494 2.6382
0.3 2.0235 2.1770 2.3289 2.4794
0.4 1.9823 2.0953 2.2075 2.3188

(P2 = 0.6, T1 = 0.7, T2 = 0.8)

0.1 1.6279 1.9100 2.1871 2.4594
0.2 1.5857 1.8269 2.0646 2.2986
0.3 1.5433 1.7434 1.9410 2.1362
0.4 1.5009 1.6595 1.8165 1.9720

(P2 = 0.7, T1 = 0.8, T2 = 0.9)

0.1 1.1356 1.4690 1.7957 2.1158
0.2 1.0920 1.3836 1.6700 1.9514
0.3 1.0484 1.2978 1.5433 1.7852
0.4 1.0046 1.2114 1.4157 1.6174

Similar as the post-stratified estimator, we can show that the calibrated Su et
al.’s estimator is more efficient than the original Su et al.’s estimator in Table 6
and Table 7. The RE of calibration estimator is less than that of the post-stratified
estimator because the former uses the marginal information in the weighting ad-
justment procedure, and on the contrary the latter uses the cell information of pop-
ulation level. From Table 7, when the population proportion of sensitive attribute is
over 0.5 and the selection probabilities P1, T1 and T2 are over 0.8, we can find that
the RE of calibration estimator is less than 1. When the selection probabilities of
RR question P1, P2, T1 and T2 are increasing to 0.9 then the efficiency of proposed
calibration estimator is decreasing. As a result, our proposed calibration estimator
is more efficient than the Su et al.’s RR estimator except in the case of the large
value of proportion of sensitive attribute. It means that the calibration RR estimator
which uses auxiliary information of respondent such as socio-demographic vari-
ables, gender, age group or dwelling area can improve the original RR estimator
although the available information is limited to protect the respondent privacy.

5.2 Comparison for real survey data

In this section, we consider the proposed estimation method using the post-
stratification and calibration with real survey data. We obtained data from under-
graduate students (50 for freshman and sophomore years) in the Department of
Applied Statistics at Dongguk University in Gyeongju. Table 8 shows the popula-
tion and sample distribution according to gender and grade/year.
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Table 7 Relative efficiencies of calibrated Su et al.’s estimator

π (P2 = 0.1, T1 = 0.6, T2 = 0.7)

P1 0.5 0.6 0.7 0.8 0.9

0.5 2.1260 2.1973 2.2683 2.3390 2.4093
0.6 1.9204 1.9514 1.9823 2.0132 2.0440
0.7 1.7120 1.7015 1.6910 1.6805 1.6700
0.8 1.5009 1.4477 1.3943 1.3407 1.2870
0.9 1.2870 1.1898 1.0920 0.9937 0.8947

(P2 = 0.2, T1 = 0.7, T2 = 0.8)

0.5 2.1260 2.1973 2.2683 2.3390 2.4093
0.6 1.9204 1.9514 1.9823 2.0132 2.0440
0.7 1.7120 1.7015 1.6910 1.6805 1.6700
0.8 1.5009 1.4477 1.3943 1.3407 1.2870
0.9 1.2870 1.1898 1.0920 0.9937 0.8947

(P2 = 0.3, T1 = 0.8, T2 = 0.9)

0.5 1.8165 1.9307 2.0440 2.1566 2.2683
0.6 1.6068 1.6805 1.7539 1.8269 1.8996
0.7 1.3943 1.4264 1.4583 1.4903 1.5221
0.8 1.1790 1.1681 1.1573 1.1464 1.1356
0.9 0.9608 0.9057 0.8505 0.7952 0.7396

Table 8 Population and sample distributions

Population Sample

Gender Gender

Grade Male Female Total Male Female Total

Freshman N11 (=22) N12 (=14) N1+ (=36) n11 (=21) n12 (=11) n1+ (=32)
Sophomore N21 (=15) N22 (=9) N2+ (=24) n21 (=12) n22 (=6) n2+ (=18)
Total N+1 (=37) N+2 (=23) N (=60) n+1 (=33) n+2 (=17) n (=50)

From Su et al. model with probabilities θ1 = 0.2, P1 = 1/6 and T1 = 2/6 for
randomization device D1 and θ2 = 0.3, P2 = 4/6 and T2 = 2/6 for randomization
device D2, respectively. In order to answer the question, the respondents used the
mobile phone two apps with spindle having 0∼9 score to determine probabilities
θ1 and θ2 and dice to determine P1, T1, P2 and T2. We obtain the response set
of size 50 from Table 8 according to a given sample proportion ȳ of reporting
“Yes” to a sensitive attribute as followed by Table 9 using the randomized response
questionnaire in the Appendix.
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Table 9 Respondents distribution

Gender

Grade Male Female Total

Freshman 7 7 14
Sophomore 2 3 5

Total 16 10 19

Table 10 Estimation results

Methods Estimated proportions Stderr RE

Directed question (π̂D) 0.14 0.048494 –
Su et al. model (π̂Su) 0.40 0.029975 –
Post_Su et al. (π̂post) 0.41 0.029106 1.029845
Cal_Su et al. (π̂cal) 0.41 0.032186 0.931278

To compare efficiency between the directed question and randomized response
model, we use the directed question and Su et al. model for the same group. The
students answer the following for the directed question:

Question: Have you ever felt the sexual impulses to men or women in your class?

In Table 10, we obtain the estimates from survey π̂D = 0.14 for the directed
question, π̂Su = 0.4 for the Su et al. model, π̂post = 0.41 for post stratified Su et al.
and π̂cal = 0.41 for the calibrated Su et al. model, respectively.

The relative efficiency is 1.029 and 0.93 for the post stratified and calibrated
estimator so that the post stratified estimator is more efficient than Su et al. model.
As from Table 4 to 7, the proposed estimates are less than 1 for some probabilities
P1, T1, P2 and T2. We find that the post-stratified estimator is more efficient than
the Su et al. model but the calibrated estimator is not.

6 Concluding remarks

This paper considered the calibration procedure to reduce the variances of esti-
mators for Su et al. (2014) which adjusted Kuk’s RR estimator. Although the
RR survey has a limitation of using auxiliary information for a privacy protec-
tion of respondents, we can use any auxiliary variable for respondents such as
socio-demographic variable. In this respect, we suggest the calibrated Su et al.’s
RR estimator to improve nonresponse and noncoverage.

From the simulation study to compare the proposed and ordinary estimator, we
find that the suggested estimators are more efficient than the existing ordinary Su
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et al.’s RR estimator. And from real survey data we find that the Su et al.’s RR
estimator is higher than the directed question estimator for the sensitive attribute.
Also, our proposed estimator is little higher than Su et al.’s model and the efficiency
of the post-stratified estimator is greater than it.

Appendix

Randomization device [D1]

Using the spindle app in the mobile phone of the respondents when
the outcomes are “0” or “1”, goes to device <F1>, otherwise goes
to <F1*>

<F1>

Q: Have you ever felt the sexual impulses to men or women in your
class?

Response—use the dice app in the mobile phone of the respondents
When the outcome of dice “1”, forced answer “yes”

<F1*>

Q: Have you never felt the sexual impulses to men or women in your
class?

Response—use the dice app in the mobile phone of the respondents
When the outcome of dice “1”or “2”, forced answer “yes”

Randomization device [D2]

Using the spindle app in the mobile phone of the respondents “0”, “1”
or “2” goes to device <F2>, otherwise goes to <F2*>

<F2>

Q: Have you never felt the sexual impulses to men or women in your
class?

Response—use the dice app in the mobile phone of the respondents
When the outcome of dice “3”, “4”, “5” or “6”, forced answer “yes”

<F2*>

Q: Have you ever felt the sexual impulses to men or women in your
class?

Response—use the dice app in the mobile phone of the
respondents “1” or “5”

When the outcome of dice “1” or “5”, forced answer “yes”
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