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IDENTIFIABILITY OF RESTRICTED LATENT CLASS MODELS
WITH BINARY RESPONSES

BY GONGJUN XU

University of Minnesota

Statistical latent class models are widely used in social and psychological
researches, yet it is often difficult to establish the identifiability of the model
parameters. In this paper, we consider the identifiability issue of a family of
restricted latent class models, where the restriction structures are needed to
reflect pre-specified assumptions on the related assessment. We establish the
identifiability results in the strict sense and specify which types of restriction
structure would give the identifiability of the model parameters. The results
not only guarantee the validity of many of the popularly used models, but
also provide a guideline for the related experimental design, where in the
current applications the design is usually experience based and identifiability
is not guaranteed. Theoretically, we develop a new technique to establish the
identifiability result, which may be extended to other restricted latent class
models.

1. Introduction. Statistical latent class models are widely used in social and
psychological researches to model latent traits that are not directly measurable,
with the aim to identify homogeneous subgroups of individuals based on their
surrogate response variables. Although latent class models have many attractive
traits for practitioners, fundamental identifiability issues, that is, the feasibility
of recovering model parameters based on the observed data, could be difficult
to address. Specifically, we say a set of parameters β for a family of distribu-
tions {f (x|β) : β ∈ B} is identifiable if distinct values of β correspond to distinct
probability density functions, that is, for any β there is no β̃ ∈ B \ {β} for which
f (x|β) ≡ f (x|β̃). Identifiability is the prerequisite for most common statistical
inferences, especially parameter estimation, and its study dates back to Koopmans
(1950) and Koopmans and Reiersøl (1950); see also Gabrielsen (1978), Goodman
(1974), McHugh (1956), Rothenberg (1971) for further developments.

For latent class models with finite mixtures of finite measure products, Teicher
(1967) established the equivalence between the model identifiability with that of
the corresponding one-dimensional mixture model. Gyllenberg et al. (1994) fur-
ther showed that the latent class models with binary responses (finite mixture of
Bernoulli products) are not identifiable. Such nonidentifiablity results have likely
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impeded statisticians from looking further into this problem [Allman, Matias and
Rhodes (2009)]. Recently, researchers have considered the generic identifiability
of such models. The generic identifiability is defined following algebraic geometry
terminology. It implies that the set of parameters for which the identifiability does
not hold has Lebesgue measure zero. Establishing the identifiability conditions
can be mathematically difficult. The generic identifiability problem is closely re-
lated to the algebraic geometry theory, as pointed out by Elmore, Hall and Neeman
(2005). Elmore, Hall and Neeman (2005) and Allman, Matias and Rhodes (2009)
used algebraic-geometric approaches to establish generic identifiability results for
a large set of models, including the latent class models and many other latent vari-
able models. In particular, the work of Allman, Matias and Rhodes (2009) is based
on the fundamental result of Kruskal’s trilinear decomposition of three-way arrays
[Kruskal (1976, 1977)] by “unfolding” a high-way array into a three-way array.

The existing techniques to establish generic identifiability, being algebraic-
geometric in nature, necessarily exclude a measure zero set. Therefore, they do not
provide information as to whether the model parameters are identifiable for sub-
models with additional constraints, where the constrained parameter spaces usu-
ally falls in a measure zero set. To develop the identifiability conditions for such
restricted models, we need techniques to incorporate the additional constraints.

In this paper, we consider a class of restricted latent class models with binary
responses (finite mixture of Bernoulli products). The class of models has recently
gained great interests in psychological and educational measurement, psychiatry
and other research areas, where a classification-based decision needs to be made
about an individual’s latent traits, based on his or her observed surrogate responses
(to test problems, questionnaires, etc.). The model parameters are restricted via
a pre-specified matrix (see Section 2.1 for more details) to reflect the diagnos-
tic assumptions about the latent traits. In particular, when there is no restriction,
the model becomes the unrestricted latent class model. Differently from the unre-
stricted models, the restriction matrix provides important information for applica-
tions and, therefore, the strict identifiability needs to be satisfied to guarantee the
validity of the models under different parameter constraints. Although researchers
have long been aware of the identifiability problem of these types of restricted
models [DeCarlo (2011), DiBello, Stout and Roussos (1995), Maris and Bechger
(2009), Tatsuoka (2009)], there is a tendency to gloss over the issue in practice due
to a lack of theoretical development on the topic. To the author’s best knowledge,
there are few studies in the literature on the identifiability of the restricted latent
class models.

This paper aims to address the identifiability issue for these models. Our main
contribution includes the following points:

(i) First, we prove the identifiability for a class of restricted latent class models.
We show the identifiability depends on the structure matrix and propose a unified
set of sufficient conditions under which the model parameters are estimable from
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the data. For the restricted latent class models under consideration, the identifica-
tion results are strict. From an application perspective, the identifiability results
would provide a guideline for designing diagnostic tests, where in the current ap-
plications the design is usually experience based and the identifiability is often not
guaranteed.

(ii) Second, we develop a new technique to establish the identifiability results
for a class of restricted latent class models. Instead of working on the tensor prod-
uct, we propose to study the corresponding marginal matrix, which has a nice
algebra structure that can be well incorporated with the specified constraints.

The remainder of this paper is organized as follows. Section 2 introduces the
class of restricted models and contains useful background on the diagnostic classi-
fication modeling and applications. Section 3 introduces the issue of identifiability
and our main results. The corresponding proofs are given in Section 4.

2. Models and applications.

2.1. Model setup. The models begin from the basic setting, in which sub-
jects (examinees, patients, etc.) provide a J -dimensional binary response vector
R = (R1, . . . ,RJ )� to J items (test questions, symptom diagnostic questions,
etc.), where the superscript � denotes the transpose, and these responses depend in
certain way on K unobserved latent traits (attributes, skills, etc.). A complete set
of K latent traits is known as a latent class or an attribute profile, which is denoted
by column vectors α = (α1, . . . , αK)�, where αk ∈ {0,1} indicate the absence or
presence, respectively, of the kth attribute. The above structure of α is often as-
sumed in psychological and educational measurement for the diagnosis purpose.
For instance, in a diagnostic math exam, teachers aim to estimate whether a stu-
dent has mastered certain math skills; in a psychiatry diagnosis, doctors want to
know whether a patient has certain mental depressions. Both α and R are subject-
specific; a particular subject i’s attribute and response vectors are denoted by αi

and Ri , respectively, for i = 1, . . . ,N . We assume that the subjects are a random
sample of size N from a designated population so that their attribute profiles αi ,
i = 1, . . . ,N are i.i.d. random variables following a categorical distribution with
probabilities

P(αi = α) = pα,

where pα ∈ (0,1), for any α ∈ {0,1}K , and
∑

α pα = 1. The distribution is thus
characterized by the column vector p = (pα : α ∈ {0,1}K)�.

Given a subject’s attribute profile α, the response Rj to item j under the corre-
sponding model follows a Bernoulli distribution

(2.1) P(Rj = r|α) = (θj,α)r(1 − θj,α)1−r , r = 0,1,
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where we denote

θj,α = P(Rj = 1|α),

which is the probability of providing positive response to item j for subjects
with α. Let � = (θj,α) be a J × 2K matrix containing the θ parameters. The un-
known model parameters of the latent class model include � and p.

In the following, we write ei as a standard basis vector, whose ith element is
one and the rest are zero. We write 0 and 1 as the zero and one column vectors,
that is, (0, . . . ,0)� and (1, . . . ,1)�, respectively. When there is no ambiguity, we
omit the index of length.

We consider a class of restricted latent class models where parameters � =
(θj,α) are constrained by the relationship between the J items and the K latent
traits. Such relationship is specified through a Q-matrix, which is defined as a
J × K binary matrix with entries qjk ∈ {0,1} indicating the absence or presence,
respectively, of a link between the j th item and the kth latent trait. The row vec-
tors, qj of Q correspond to the full attribute requirements of each item. Given an
attribute profile α and a Q-matrix Q, we write

α � qj if αk ≥ qjk for any k ∈ {1, . . . ,K}
and

α � qj if there exists k such that αk < qjk;
similarly, we define the operations � and �.

If α � qj , a subject with α has all the attributes for item j specified by the
Q-matrix and would be most “capable” to provide a positive answer; on the other
hand, if α′ � qj , the subject with α′ misses some related attribute and is expected
not to have a higher positive response probability than α � qj . In addition, subjects
without mastery of any latent traits (α = 0) is expected to have the lowest positive
response probability. Such constraints on � are proposed through the following
monotonicity relations:

max
α:α�qj

θj,α = min
α:α�qj

θj,α ≥ θj,α′ ≥ θj,0, for any α′;(2.2)

in addition, for any k ∈ {1, . . . ,K} and item j with qj = ek ,

θj,1 > max
α:α�ek

θj,α.(2.3)

Assumption (2.2) requires that, all the most capable subjects with α � qj have
the same positive response probability. Assumption (2.3) assumes that for an item
only requiring the kth attribute, the most capable subjects with α = 1 have higher
positive response probability than those not having the kth attribute. Both assump-
tions are satisfied by many of the restricted latent class models as introduced in
Section 2.2.
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The Q-matrix is the key part of the restricted diagnostic models and its structure
makes them distinguished from the unrestricted latent class models in the litera-
ture. Since some θ ’s are restricted to be equal, the parameter space then falls in a
measure zero set with respect to the whole parameter space under the unrestricted
model.

2.2. Examples and applications. The restricted latent class models in Sec-
tion 2.1 have recently gained great interests in cognitive diagnosis with applica-
tions in educational assessment, psychiatric evaluation and many other disciplines
[Rupp, Templin and Henson (2010), Tatsuoka (2009)], where they are often called
as diagnostic classification models or cognitive diagnostic models. Cognitive diag-
nosis is the process of arriving at a classification-based decision about an individ-
ual’s latent traits, based on his or her observed surrogate responses. Measuring stu-
dents’ growth and success means obtaining diagnostic information about their skill
set; this is very important for constructing efficient, focused remedial strategies for
improving student and teacher results. The introduced models are important sta-
tistical tools developed in cognitive diagnosis to detect the presence or absence of
multiple fine-grained skills or attributes.

We use a simple example for an illustration of the model setup.

EXAMPLE 1. Suppose that we are interested in testing two latent traits: addi-
tion and multiplication. Consider a test containing three problems and admitting
the following Q-matrix,

(2.4) Q =
Addition Multiplication

2 + 1 1 0
3 × 2 0 1

(2 + 1) × 2 1 1

We have four latent classes α = (0,0), (1,0), (0,1) and (1,1), corresponding to
subjects who do not master either addition or multiplication, who master only ad-
dition, who master only multiplication and who master both, respectively. Take
the first item for an example. Under the restrictions in (2.2) and (2.3), subjects
who master addition, α = (1,0), have a higher correct response probability than
those who do not master addition, α = (0,0) or (0,1); on the other hand, they have
the same correct response probability as those who master both, α = (1,1), since
the first item only needs addition.

The restriction structure in Section 2.1 is satisfied by many of diagnostic mod-
els. An incomplete list of the popularly used restricted latent class models devel-
oped in recent decades includes the DINA (Deterministic Input, Noisy “And” gate)
and NIDA (Noisy Inputs, Deterministic “And” gate) models [de la Torre and Dou-
glas (2004), Junker and Sijtsma (2001)], the reparameterized unified/fusion model
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(RUM) [DiBello, Stout and Roussos (1995), Hartz (2002)], the DINO (Determin-
istic Input, Noisy “Or” gate) and NIDO (Noisy Inputs, Deterministic “Or” gate)
[Templin and Henson (2006)], the rule space method [Tatsuoka (1983, 2009)], the
attribute hierarchy method [Leighton, Gierl and Hunka (2004)], the Generalized
DINA models [de la Torre (2011)], and the general diagnostic model [von Davier
(2008)]; see also Henson, Templin and Willse (2009) and Rupp, Templin and Hen-
son (2010). We use the following examples to introduce some of the popularly used
models.

EXAMPLE 2 (DINA model). The DINA model [Junker and Sijtsma (2001)]
assumes a conjunctive relationship among attributes. That is, it is necessary to
possess all the attributes indicated by the Q-matrix to be capable of providing a
positive response. In addition, having additional unnecessary attributes does not
compensate for the lack of necessary attributes. For item j and attribute vector α,
we define the ideal response ξDINA

j,α = I (α � qj ). The uncertainty is further in-
corporated at the item level, using the slipping and guessing parameters s and g.
For each item j , the slipping parameter sj = P(Rj = 0|ξDINA

j,α = 1) denotes the
probability of the respondent making a negative response despite mastering all
necessary skills; similarly, the guessing parameter gj = P(Rj = 1|ξDINA

j,α = 0) de-
notes the probability of a positive response despite an incorrect ideal response. The
response probability θj,α then takes the form

(2.5) θj,α = (1 − sj )
ξDINA
j,α g

1−ξDINA
j,α

j .

In this case, assumptions (2.2) and (2.3) are equivalent to 1 − sj > gj for any
item j , which is usually assumed in applications.

EXAMPLE 3 (DINO model). In contrast to the DINA model, the DINO model
assumes a nonconjunctive relationship among attributes, that is, one only needs
to have one of the required attributes to be capable of providing a positive re-
sponse. The ideal response of the DINO model is given by ξDINO

j,α = I (αk ≥
qjk for at least one k). Similar to the DINA model, there are two parameters s and
g for each item, and

θj,α = (1 − sj )
ξDINO
j,α g

1−ξDINO
j,α

j .

Again, assumptions (2.2) and (2.3) are satisfied if 1 − sj > gj for any j .

EXAMPLE 4 (G-DINA model). de la Torre (2011) generalizes the DINA
model to the G-DINA model. The formulation of the G-DINA model based on
θj,α can be decomposed into the sum of the effects due the presence of specific
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attributes and their interactions. Specifically,

θj,α = βj0 +
K∑

k=1

βjk(qjkαk) +
K∑

k′=k+1

K−1∑
k=1

βjkk′(qjkαk)(qjk′αk′)

+ · · · + βj12···K
∏
k

(qjkαk).

Note that not all β’s in the above equation are included in the model. For instance,
when qj 	= 1�, we do not need parameter βj12···K since

∏
k(qjkαk) = 0. To inter-

pret, βj0 represents probability of a positive response when none of the required
attributes is present; when qjk = 1, βjk is included in the model and it shows the
change in the positive response probability as a result of mastering a single at-
tribute αk ; when qjk = qjk′ = 1, βjkk′ is in the model and it shows the change in
the positive response probability due to the interaction effect of mastery of both
αk and αk′ ; similarly, when qj = 1�, βj12···K represents the change in the posi-
tive response probability due to the interaction effect of mastery of all the required
attributes. Note that the assumption in (2.2), maxα:α�qj

θj,α = minα:α�qj
θj,α , is

automatically satisfied from the model definition form.

EXAMPLE 5 (Linear logistic model and logit-CDM). The linear logistic
model [LLM, see Hagenaars (1993), Maris (1999)] is given by

(2.6) θj,α = exp(βj0 +∑K
k=1 βjkqjkαk)

1 + exp(βj0 +∑K
k=1 βjkqjkαk)

.

Equivalently,

logit θj,α = βj0 +
K∑

k=1

βjkqjkαk.

This is also called the compensatory reparameterized unified model (C-RUM).
The LLM model (2.6) is recognized as a structure in multidimensional item re-
sponse theory model or in factor analysis. Again, we have maxα:α�qj

θj,α =
minα:α�qj

θj,α from (2.6).

EXAMPLE 6 (Reduced RUM model and log-CDM). Under the reduced ver-
sion of the Reparameterized Unified Model [Reduced RUM, see DiBello, Stout
and Roussos (1995), Rupp, Templin and Henson (2010)], we have

(2.7) θj,α = πj

K∏
k=1

rj,k
qjk(1−αk),

where πj is the positive response probability for subjects who possess all required
attributes and rj,k , 0 < rj,k < 1, is the penalty parameter for not possessing the kth



682 G. XU

attribute. Note that the model is equivalent to the log-link model

log θj,α = βj0 +
K∑

k=1

βjk(qjkαk).

For the reduced RUM in (2.7), it is easy to see that assumptions (2.2) and (2.3) are
satisfied by the definition.

Psychometricians have long been aware of the identifiability issue of the Q-
matrix based latent class models [DeCarlo (2011), DiBello, Stout and Roussos
(1995), Maris and Bechger (2009), Tatsuoka (2009)]. For these models, identifia-
bility affects the classification of respondents according to their latent traits, which
is dependent on the accuracy of the parameter estimates. Unprincipled use of stan-
dard diagnostic models may lead to misleading conclusions about the respondents’
latent traits [Maris and Bechger (2009), Tatsuoka (2009)]. In the literature, the
identifiability issue of diagnostic models has only been studied for some specific
models. Recently, Xu (2013), Chen et al. (2015) and Xu and Zhang (2015) studied
the identifiability of the slipping and guessing parameters under the DINA model
in Example 2. However, their technique highly depends on the assumption that
the subjects with ξDINA = 0 having the same response probability (i.e., the guess-
ing parameters) and, therefore, cannot be applied to the general diagnostic models
considered in this paper, where the Q-matrix restricted latent structure is more
complicated.

3. Main results. We introduce the identifiability results in this section.
Throughout the rest of the discussion, we let Mj,· denote the j th row of a ma-
trix M and M·,k the kth column. We write Id as the d × d identity matrix.

3.1. Identifiability and response marginal T -matrix. The model parameters
contain the parameter matrix � = (θj,α)J×2K and proportion parameter p =
(pα)2K×1. Note the joint distribution of R, conditional on the latent class α, is
given by a J -dimensional 2 × · · · × 2 table

Pα(Q,�) =
J⊗

j=1

[
1 − θj,α

θj,α

]
,

where the r = (r1, . . . , rJ )-entry of the table is

(3.1) πr,α(Q,�) =
J∏

j=1

(1 − θj,α)1−rj θ
rj
j,α.

Note that πr,α(Q,�) is the probability of observing r given Q,� and α. Follow-
ing the above notation, we can write

P(R = r|Q,�,p) = ∑
α∈{0,1}K

πr,α(Q,�)pα.
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We introduce the following identifiability definition for the Q-restricted latent
class models in Section 2.1.

DEFINITION 1. We say that (�,p) is identifiable if the following holds:

(3.2) ∀r,P (R = r|Q,�,p) = P(R = r|Q,�̄, p̄) ⇐⇒ (�,p) = (�̄, p̄).

Note that the above definition does not involve label swapping of the latent
classes due to the fact that the labels of attributes are pre-specified from the knowl-
edge of the Q-matrix. On the other hand, for unrestricted latent class models, the
latent classes can be freely relabeled without changing the distribution of the data
and the model parameters are therefore identifiable only up to label swapping.

To establish (3.2) for the restricted latent models, directly working with the
vectors P(R = r|Q,�,p) is technically challenging. To better incorporate the in-
duced restrictions by the Q-matrix, we consider the marginal matrix as introduced
in the following.

Marginal T -matrix. The T -matrix T (Q,�) is defined as a 2J × 2K matrix,
where the entries are indexed by row index r ∈ {0,1}J and column index α.
The r = (r1, . . . , rJ )th row and αth column element of T (Q,�), denoted by
tr,α(Q,�), is the marginal probability that a subject with attribute profile α an-
swers all items in subset {j : rj = 1} positively. Thus, tr,α(Q,�) is the marginal
probability that, given Q,�,α, the random response R � r, that is,

tr,α(Q,�) = P(R � r|Q,�,α).

When r = 0, t0,α(Q,�) = P(R � 0) = 1 for any α; and for any r 	= 0,

tr,α(Q,�) = ∏
j :rj=1

P(Rj = rj |Q,�,α) = ∑
r′�r

πr′,α(Q,�).

In particular, for r = ej with 1 ≤ j ≤ J ,

tej ,α(Q,�) = P(Rj = 1|Q,�,α) = θj,α.

Let Tr,·(Q,�) be the row vector corresponding to r. Then we know that for j =
1, . . . , J , Tej ,·(Q,�) = �j,·. In addition, for any r 	= 0, we can write

(3.3) Tr,·(Q,�) = ⊙
j :rj=1

Tej ,·(Q,�),

where � is the element-wise product of the row vectors.
By definition, multiplying the T -matrix by the distribution of attribute profiles p

results in a vector containing the marginal probabilities of successfully answering
each subset of items correctly. The rth entry of this vector is

Tr,·(Q,�)p =∑
α

tr,α(Q,�)pα = P(R � r|Q,�,p).
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We can see that there is a one-to-one mapping between the T -matrix and the
vectors P(R = r|Q,�,p), r ∈ {0,1}J . Therefore, (3.2) directly implies the fol-
lowing proposition.

PROPOSITION 1. (�,p) is identifiable if and only if for any (�̄, p̄) 	= (�,p),
there exists r ∈ {0,1}J such that

(3.4) Tr,·(Q,�)p 	= Tr,·(Q, �̄)p̄.

From Proposition 1, to show the identifiability of (�,p), we only need to focus
on the T -matrix and prove that if

(3.5) T (Q,�)p = T (Q, �̄)p̄,

then � = �̄ and p = p̄. We will use this argument in the proof of the identifiability
results.

3.2. Identifiability results. In this subsection, we present the main identifia-
bility results. To illustrate which types of Q-matrix structure is required to satisfy
(3.4), we take as an example the basic DINA model introduced in Example 2.
We consider the ideal case where the j th response Rj = ξj,α , where ξj,α denotes
ξDINA
j,α as defined in the example. In this ideal case, θj,α is known as ξj,α and the

only unknown parameter is p. Note that here tej ,α(Q,�) = ξj,α and the identifia-
bility condition is equivalent to

(3.6) (ξ j,α; j = 1, . . . , J ) 	= (ξ j,α′ ; j = 1, . . . , J )

for all α 	= α′. Otherwise, if there exists α 	= α′ such that (ξ j,α; j = 1, . . . , J ) =
(ξ j,α′ ; j = 1, . . . , J ), the corresponding columns of the T -matrix satisfy
T·,α(Q,�) = T·,α′(Q,�). This implies the nonidentifiability of p.

To guarantee (3.6), the mathematical requirements on the Q-matrix structure
for the ideal case are specified in the following definition.

DEFINITION 2. A Q-matrix is said to be complete if {e�
j : j = 1, . . . ,K} ⊂

{qj : j = 1, . . . , J }; otherwise, we say that Q is incomplete.

To interpret, for each attribute there must exist an item requiring that and only
that attribute. The Q-matrix is complete if there exist K rows of Q that can be
ordered to form the K-dimensional identity matrix IK . A simple (and minimal)
example of a complete Q-matrix is the K × K identity matrix IK . Completeness
ensures that there is enough information in the response data for each attribute
profile to have its own distinct ideal response vector. When a Q-matrix is incom-
plete, we can easily construct a nonidentifiable example. For instance, consider the
incomplete Q-matrix

Q =
(

1 1
0 1

)
.
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The population parameter p is nonidentifiable in this case. Subjects with attribute
profiles α1 = (1,0)� and α2 = (0,0)� have the same ideal responses, so (3.6) is
not satisfied. It is easy to see that such argument holds for the general incomplete
Q-matrix.

It has been established in the literature that the completeness of the Q-matrix is
a sufficient and necessary condition for the identifiability of p in the ideal response
case under DINA model with known � [Chiu, Douglas and Li (2009), Xu and
Zhang (2015)]. For the diagnostic models with unknown (�,p), completeness of
the Q-matrix is not enough to guarantee the identifiability of (�,p). For instance,
Xu and Zhang (2015) showed that, under the DINA model, a necessary condition
for the identifiability of the guessing parameters, slipping parameters, and p is:
(i) the Q-matrix is complete and (ii) each latent trait is required by at least three
items.

For diagnostic models in Section 2, we provide in the following a unified suffi-
cient condition that ensures their identifiability. Since the DINA model is a special
case of the restricted latent class models, it is necessary that we need to use a com-
plete Q-matrix for the diagnostic models and we need at least three items for each
attribute. To establish identifiability for the general class of models, we list below
the conditions that will be used.

(C1) We assume that the Q-matrix takes the following form (after row swap-
ping):

(3.7) Q =
⎛
⎝IK

IK

Q′

⎞
⎠ .

(C2) Suppose Q has the structure defined in (3.7). We assume that for any
k ∈ {1, . . . ,K}, (θj,ek

; j > 2K)� 	= (θj,0; j > 2K)�. That is, there exist at least
one item in Q′ such that subjects with α = ek have different positively response
probability from that of subjects with α = 0.

REMARK 1. Condition C1 is a little stronger than the necessity of the com-
plete matrix by requiring two such identify matrices. C1 itself implies that each at-
tribute is required by at least two items. We need such condition to ensure enough
information to identify the model parameters for each attribute. Condition C2 is
satisfied if we assume for j > 2K , θj,0 < minα 	=0 θj,α . That is, for subjects with-
out any latent traits, the positive response probability is the lowest among all latent
classes. In practice, condition C2 may be checked by a posteriori empirically after
data have been collected. On the other hand, condition C2 is satisfied if Q′ can be
written as (after row swapping):

Q′ =
(IK

· · ·
)

.

Therefore, if there are three identity matrices in the Q-matrix, both C1 and C2 are
satisfied.
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Before stating the main theorem, we show in the following result that condition
C1 itself is not enough to establish the identifiability of (�,p).

PROPOSITION 2. Under the model setup in Section 2.1, there exist Q-matrices
satisfying C1 but (�,p) is nonidentifiable.

The proof of Proposition 2 is given in Section 4.2. Our main identifiability result
is as follows.

THEOREM 1. Under the model setup in Section 2.1, if conditions C1 and C2
hold, (�,p) is identifiable.

The theorem specifies the sufficient condition under which the restricted latent
class model parameters (�,p) are identifiable from the response data. From an
application perspective, the identifiability result would provide a guideline for de-
signing diagnostic tests, where currently the design is usually experience based and
may suffer identifiability problems. In particular, for the diagnostic classification
models introduced in Section 2, the model parameters are identifiable if the Q-
matrix satisfies the proposed conditions C1 and C2. Therefore, if single attribute
items are possible, it is recommended to have at least two complete matrices in
the test which guarantees C1; moreover, from Remark 1, both C1 and C2 hold if
we have three identity matrices in the Q-matrix. The theoretical result would also
help to improve existing diagnostic tests. For instance, when researchers find that
the estimation results are problematic and the Q-matrix does not satisfy the iden-
tifiability conditions, it is then recommended to design new items such that the
identifiability conditions C1 and C2 are satisfied.

When the identifiability conditions are satisfied, the maximum likelihood
estimators of � and p are consistent as the sample size N → ∞. Specifi-
cally, we introduce a 2J -dimensional response vector γ = {1,N−1∑N

i=1 I (Ri �
e1), . . . ,N

−1∑N
i=1 I (Ri � eJ ),N−1∑N

i=1 I (Ri � e1 + e2), . . . ,N
−1 ×∑N

i=1 I (Ri � 1)}. From the definition of the T -matrix and the law of large num-
bers, we know γ → T (Q,�)p almost surely as N → ∞. On the other hand, the
maximum likelihood estimators �̂ and p̂ satisfy∥∥γ − T (Q, �̂)p̂

∥∥→ 0,

where ‖ · ‖ is the L2 norm. Therefore,∥∥T (Q,�)p − T (Q, �̂)p̂
∥∥→ 0

almost surely. Then from the proof of Theorem 1, we can obtain the consistency
result that (�̂, p̂) → (�,p) almost surely. Furthermore, following a standard ar-
gument of the asymptotic theory, we take Taylor’s expansion of the log-likelihood
function at (�,p) and the central limit theorem gives the asymptotic normality of
the estimators (�̂, p̂).
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REMARK 2. It is worthwhile to mention that our proof is not based on the
trilinear decomposition result in Kruskal (1976). Kruskal’s result is applied in
Allman, Matias and Rhodes (2009) to show the generic identifiability up to label
swapping. From their Corollary 5, a sufficient condition for the generic identifia-
bility is that the number of items J is at least 2K + 1. Such a condition is weaker
than C1 and C2 due to the fact that C2 implicitly requires a non-empty Q′, and thus
C1 and C2 imply J ≥ 2K + 1. However, their result cannot be directly applied for
the Q-restricted latent class models. In addition, we would like to point out that
conditions C1 and C2 are different from the rank conditions required by Kruskal’s
result and may be weaker in some cases.

REMARK 3. When the Q-matrix is incomplete, the model parameters (�,p)

are nonidentifiable. A particular case is when each row of the Q-matrix is 1�, then
the model becomes similar as the unrestricted latent class models with 2K classes.
In this case, generic identifiability results as in Allman, Matias and Rhodes (2009)
can still be applied. For a general incomplete Q-matrix, such results are still un-
known in the literature. We plan to study the generic identifiability for the param-
eters in the constrained parameter space when the Q-matrix is incomplete. These
results would be helpful for practitioners, especially when it becomes difficult or
even impossible to design items with particular attribute specifications.

It is also possible in practice that there exist certain hierarchical structures
among the latent attributes. For instance, a certain attribute may be a prerequisite
for other attributes. In this case, some p’s are restricted to be 0. The method devel-
oped in this paper may be extended to this type of restricted latent class models,
and we would like to study this in the future.

4. Proof of the main results.

4.1. Proof of Theorem 1. To show the identifiability, Proposition 1 implies
that it suffices to show that for two sets of parameters (�,p) and (�̄, p̄) satisfying
equation (3.5), we must have (�,p) = (�̄, p̄).

Without loss of generality, we arrange the rows of Q such that it takes the form
of (3.7) in condition C1. For notational convenience, we write tej ,α(Q,�) and
tej ,α(Q, �̄) as tej ,α and t̄ej ,α , respectively. Note that by the definition of the T -
matrix, tej ,α = θj,α and t̄ej ,α = θ̄j,α for any j ∈ {1, . . . , J } and α ∈ {0,1}K . There-
fore, to show � = �̄, it is equivalent to show tej ,α = t̄ej ,α for any j ∈ {1, . . . , J }
and α ∈ {0,1}K .

We prove the theorem in five Steps. Given equation (3.5) that T (Q,�)p =
T (Q, �̄)p̄, we aim to prove the following conclusions in each step:

Step 1. tej ,0 = t̄ej ,0 for j > 2K ;
Step 2. tej ,ek

= t̄ej ,ek
for j > 2K and k ∈ {1, . . . ,K};
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FIG. 1. An illustration of the proof steps.

Step 3. tej ,0 = t̄ej ,0, tej ,ek
= t̄ej ,ek

, p0 = p̄0 and pek
= p̄ek

for j ∈ {1, . . . ,2K}
and k ∈ {1, . . . ,K};

Step 4. tej ,eh1+eh2
= t̄ej ,eh1+eh2

and peh1+eh2
= p̄eh1+eh2

for j ∈ {1, . . . , J } and
1 ≤ h1 	= h2 ≤ K ;

Step 5. tej ,
∑k

i=1 ehi
= t̄ej ,

∑k
i=1 ehi

and p∑k
i=1 ehi

= p̄∑k
i=1 ehi

for j ∈ {1, . . . , J } and

1 ≤ h1 	= · · · 	= hk ≤ K with any 2 < k ≤ K .

For a better illustration, Figure 1 specifies the corresponding components of the �

matrix and the p vector that we will focus on in each step. Combining the results
in the five steps, we have the desired conclusion that � = �̄ and p = p̄.

In order to establish Steps 1–5, we need to incorporate into (3.5) the constraints
of the parameters under the restricted latent class models. This is achieved by the
following linear transformation of the T -matrix in Proposition 3. We extend the
definition of T -matrix through (3.3) to include � /∈ [0,1]J×2K

, where tr,α(Q,�)

will no longer correspond to probabilities. We order the column indices of the T -
matrix from left to right as (0, e1, . . . , eK, e1 + e2, . . . , eK−1 + eK, . . . ,1) and the
row indices from top to bottom as (0, e1, . . . , eJ , e1 + e2, . . . , eJ−1 + eJ , . . . ,1).

PROPOSITION 3. For any θ∗ = (θ∗
1 , . . . , θ∗

J )� ∈ RJ , there exists an invertible
matrix D(θ∗) depending solely on θ∗, such that the matrix D(θ∗) is lower trian-
gular with diagonal diag{D(θ∗)} = 1, and

T
(
Q,� − θ∗1�)= D

(
θ∗)T (Q,�).

Proposition 3 shows that equation (3.5) is equivalent to

T
(
Q,� − θ∗1�)p = T

(
Q,�̄ − θ∗1�)p̄.
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Note that the vector product θ∗1� is a J × 2K matrix with the j th row equal to
θ∗
j 1� = (θ∗

j , . . . , θ∗
j )1×2K , and the j th row vector of � − θ∗1� is (θj,α − θ∗

j ;α ∈
{0,1}K). Thus, if we take θ∗

j equal to θj,α , the corresponding element in �− θ∗1�
will become 0. By properly choosing the vector θ∗ according to the Q-restrictions,
we can then make certain elements in T (Q,� − θ∗1�) to be 0. For instance,
if we choose θ∗

1 = te1,1(Q,�), then we have the transformed matrix elements
te1,α(Q,� − θ∗1�) = 0 for all α � q1. This nice algebraic structure makes the
transformed T -matrix much easier to work with and plays a key role in the follow-
ing proof.

Step 1. We apply the result in Proposition 3. Define

θ∗ = (t̄e1,1, . . . , t̄eK,1︸ ︷︷ ︸
K

, teK+1,1, . . . , te2K,1︸ ︷︷ ︸
K

,0, . . . ,0︸ ︷︷ ︸
J−2K

)�,

and (3.5) gives

(4.1) T
(
Q,� − θ∗1�)p = T

(
Q,�̄ − θ∗1�)p̄.

Note that for any k ∈ {1, . . . ,K}, t̄ek,α − θ∗
k = t̄ek,α − t̄ek,1 = 0 if α � ek , and simi-

larly, teK+k,α − θ∗
K+k = teK+k,α − teK+k,1 = 0 if α � ek .

Consider the row vector of T (Q,� − θ∗1�) corresponding to r = ∑2K
k=1 ek ,

that is, T∑2K
k=1 ek,·(Q,� − θ∗1�). From the definition form (3.3) of the T -matrix,

we know

T∑2K
k=1 ek,·

(
Q,� − θ∗1�)= 2K⊙

k=1

{
Tek,·

(
Q,� − θ∗1�)}

=
(

K∏
k=1

(tek,0 − t̄ek,1)

2K∏
k=K+1

(tek,0 − tek,1),0�
)
.

That is, the last 2K − 1 elements of the row vector T∑2K
k=1 ek,·(Q,� − θ∗1�) are 0.

Next, we show that the first element of T∑2K
k=1 ek,·(Q,�− θ∗1�) is nonzero, that is,

K∏
k=1

(tek,0 − t̄ek,1)

2K∏
k=K+1

(tek,0 − tek,1) 	= 0.

We introduce the following lemma, whose proof is in Section 4.2.

LEMMA 1. Under the conditions of Theorem 1, if (3.5) holds, then for any
1 ≤ k ≤ K and α∗ � ek

tek,0 	= t̄ek,α∗, tek,α∗ 	= t̄ek,0, teK+k,0 	= t̄eK+k,α∗ and teK+k,α∗ 	= t̄eK+k,0.
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Lemma 1 implies that
∏K

k=1(tek,0 − t̄ek,1) 	= 0. In addition, from the assumption
that tek,0 < tek,1 for k ∈ {1, . . . ,2K}, we have

∏2K
k=K+1(tek,0 − tek,1) 	= 0. Thus, the

first element of the row vector T∑2K
k=1 ek,·(Q,� − θ∗1�) is not 0.

Similarly, by doing the same transformation, we have

T∑2K
k=1 ek,·

(
Q,�̄ − θ∗1�)=

(
K∏

k=1

(t̄ek,0 − t̄ek,1)

2K∏
k=K+1

(t̄ek,0 − tek,1),0�
)
,

where the first element
∏K

k=1(t̄ek,0 − t̄ek,1)
∏2K

k=K+1(t̄ek,0 − tek,1) 	= 0 and the rest
elements are 0.

Now consider any j > 2K . The row vector of T (Q,� − θ∗1�) corresponding
to r = ej +∑2K

k=1 ek equals

Tej+∑2K
k=1 ek,·

(
Q,� − θ∗1�)

= Tej ,·
(
Q,� − θ∗1�)�

[ 2K⊙
k=1

{
Tek,·

(
Q,� − θ∗1�)}]

=
(
tej ,0 ×

K∏
k=1

(tek,0 − t̄ek,1)

2K∏
k=K+1

(tek,0 − tek,1),0�
)

= tej ,0 · T∑2K
k=1 ek,·

(
Q,� − θ∗1�)

and similarly

Tej+∑2K
k=1 ek,·

(
Q,�̄ − θ∗1�)

=
(
t̄ej ,0 ×

K∏
k=1

(t̄ek,0 − t̄ek,1)

2K∏
k=K+1

(t̄ek,0 − tek,1),0�
)

= t̄ej ,0 · T∑2K
k=1 ek,·

(
Q,�̄ − θ∗1�).

By equation (4.1),

Tej+∑2K
k=1 ek,·

(
Q,� − θ∗1�)p = Tej+∑2K

k=1 ek,·
(
Q,�̄ − θ∗1�)p̄ and

T∑2K
k=1 ek,·

(
Q,� − θ∗1�)p = T∑2K

k=1 ek,·
(
Q,�̄ − θ∗1�)p̄.

Thus, for any j > 2K ,

tej ,0 =
Tej+∑2K

k=1 ek,·(Q,� − θ∗1�)p

T∑2K
k=1 ek,·(Q,� − θ∗1�)p

=
Tej+∑2K

k=1 ek,·(Q, �̄ − θ∗1�)p̄

T∑2K
k=1 ek,·(Q, �̄ − θ∗1�)p̄

= t̄ej ,0.

This completes Step 1.
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Step 2. To better illustrate our idea, we first focus on the column with respect to
α = e1 and show

tej ,e1 = t̄ej ,e1 for j > 2K.

We redefine the θ∗ vector as

θ∗ = (t̄e1,0, t̄e2,1, . . . , t̄eK,1︸ ︷︷ ︸
K

, teK+1,0, teK+2,1, . . . , te2K,1︸ ︷︷ ︸
K

,0, . . . ,0︸ ︷︷ ︸
J−2K

)�,

where the first element is t̄e1,0 and the (K + 1)th element is teK+1,0 while the other
elements are the same as the θ∗ vector taken in Step 1. For the chosen θ∗, the row
vectors of the transformed T -matrices corresponding to items 1, . . . ,2K , that is,
r =∑2K

k=1 ek , are

T∑2K
k=1 ek,·

(
Q,� − θ∗1�)= 2K⊙

k=1

{
Tek,·

(
Q,� − θ∗1�)}

=
(

0, (te1,e1 − t̄e1,0)

K∏
k=2

(tek,e1 − t̄ek,1)(4.2)

× (teK+1,e1 − teK+1,0)

2K∏
k=K+2

(tek,e1 − tek,1),0�
)
,

and

T∑2K
k=1 ek,·

(
Q,�̄ − θ∗1�)= 2K⊙

k=1

{
Tek,·

(
Q,�̄ − θ∗1�)}

=
(

0, (t̄e1,e1 − t̄e1,0)

K∏
k=2

(t̄ek,e1 − t̄ek,1)(4.3)

× (t̄eK+1,e1 − teK+1,0)

2K∏
k=K+2

(t̄ek,e1 − tek,1),0�
)
.

We now show the second elements of the above two vectors are nonzero. We need
the following lemma, which is proved in Section 4.2.

LEMMA 2. Under the conditions of Theorem 1, if (3.5) holds, then for any
1 ≤ k 	= h ≤ K ,

tek,eh
	= t̄ek,1, tek,1 	= t̄ek,eh

, teK+k,eh
	= t̄eK+k,1 and teK+k,1 	= t̄eK+k,eh

.

Consider vector (4.2). Lemma 1 implies that (te1,e1 − t̄e1,0) 	= 0, and Lemma 2
implies

K∏
k=2

(tek,e1 − t̄ek,1) 	= 0.
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Moreover, for the term (teK+1,e1 − teK+1,0), since the (K + 1)th item only requires
the first attribute, that is, the q-vector is e1, we know teK+1,e1 = teK+1,1 > teK+1,0.
Similarly, we have

2K∏
k=K+2

(tek,e1 − tek,1) 	= 0.

The above results implies that the second element of (4.2) is nonzero. From a
similar argument, the second element of (4.3) is also nonzero.

Now consider any j ≥ 2K + 1. We have

Tej+∑2K
k=1 ek,·

(
Q,� − θ∗1�)

=
(

0, tej ,e1(te1,e1 − t̄e1,0)

K∏
k=2

(tek,e1 − t̄ek,1)

× (teK+1,e1 − teK+1,0)

2K∏
k=K+2

(tek,e1 − tek,1),0�
)

= tej ,e1 · T∑2K
k=1 ek,·

(
Q,� − θ∗1�)

and

Tej+∑2K
k=1 ek,·

(
Q,�̄ − θ∗1�)

=
(

0, t̄ej ,e1(t̄e1,e1 − t̄e1,0)

K∏
k=2

(t̄ek,e1 − t̄ek,1)

× (t̄eK+1,e1 − teK+1,0)

2K∏
k=K+2

(t̄ek,e1 − tek,1),0�
)

= t̄ej ,e1 · T∑2K
k=1 ek,·

(
Q,�̄ − θ∗1�).

As in Step 1, since

Tej+∑2K
k=1 ek,·

(
Q,� − θ∗1�)p = Tej+∑2K

k=1 ek,·
(
Q,�̄ − θ∗1�)p̄,

T∑2K
k=1 ek,·

(
Q,� − θ∗1�)p = T∑2K

k=1 ek,·
(
Q,�̄ − θ∗1�)p̄,

we have

tej ,e1 =
Tej+∑2K

k=1 ek,·(Q,� − θ∗1�)p

T∑2K
k=1 ek,·(Q,� − θ∗1�)p

=
Tej+∑2K

k=1 ek,·(Q, �̄ − θ∗1�)p̄

T∑2K
k=1 ek,·(Q, �̄ − θ∗1�)p̄

= t̄ej ,e1 .
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The above argument can be easily generalized to any 1 < h ≤ K . Redefine

θ∗ = (t̄e1,1, . . . , t̄eh−1,1, t̄eh,0, t̄eh+1,1, . . . , t̄eK,1︸ ︷︷ ︸
K

,

teK+1,1, . . . , teK+h−1,1, teK+h,0, teK+h+1,1, . . . , te2K,1︸ ︷︷ ︸
K

,0, . . . ,0︸ ︷︷ ︸
J−2K

)�.

Following a similar argument as above, we can get for any j ≥ 2K + 1 and k ∈
{1, . . . ,K}, tej ,ek

= t̄ej ,ek
. This completes Step 2.

Step 3. From assumption C2, for any 1 ≤ k ≤ K ,

(te2K+1,ek
, . . . , teJ ,ek

)� 	= (te2K+1,0, . . . , teJ ,0)
�.

Then (1, te2K+1,ek
, . . . , teJ ,ek

)� and (1, te2K+1,0, . . . , teJ ,0)
� are not proportional to

each other. There exists a (J − 2K + 1)-dimensional row vector uk such that

bk := uk(1, te2K+1,ek
, . . . , teJ ,ek

)� 	= 0 and uk(1, te2K+1,0, . . . , teJ ,0)
� = 0.

Consider matrix

A(Q,�) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1�
Te2K+1,·(Q,�)

Te2K+2,·(Q,�)
...

TeJ ,·(Q,�)

⎞
⎟⎟⎟⎟⎟⎟⎠ .

From the first two steps, we know that the first K + 1 columns of A(Q,�) and
A(Q, �̄) are equal. For simplicity, we write A(Q,�) and A(Q, �̄) as A and Ā,
respectively. Then we have

ukA = (0,∗, . . . ,∗, bk︸︷︷︸
column ek

,∗, . . . ,∗),

(4.4)
ukĀ = (0,∗, . . . ,∗, bk︸︷︷︸

column ek

,∗, . . . ,∗),

where ∗’s are unspecified values.
We use the above results to prove Step 3. For h ∈ {1, . . . ,K}, redefine

θ∗ = (t̄e1,1, . . . , t̄eh−1,1,0, t̄eh+1,1, . . . , t̄eK,1︸ ︷︷ ︸
K

,

teK+1,1, . . . , teK+h−1,1,0, teK+h+1,1, . . . , te2K,1︸ ︷︷ ︸
K

,0, . . . ,0︸ ︷︷ ︸
J−2K

)�



694 G. XU

and we have T (Q,�−θ∗1�)p = T (Q, �̄−θ∗1�)p̄. With such a choice of θ∗, for
any k ∈ {1, . . . ,K} and k 	= h, t̄ek,α −θ∗

k = t̄ek,α − t̄ek,1 = 0 if α � ek , and similarly,
teK+k,α − θ∗

K+k = teK+k,α − teK+k,1 = 0 if α � ek .
Consider the row vectors of T -matrices corresponding to items 1, . . . ,2K ex-

cept h and K + h, that is, r =∑2K
k=1 ek − eh − eK+h. We have

T∑2K
k=1 ek−eh−eK+h,·

(
Q,� − θ∗1�)

=
( ∏

k=1,...,K,
k 	=h

(tek,0 − t̄ek,1) × ∏
k=K+1,...,2K,

k 	=K+h

(tek,0 − tek,1),0�,(4.5)

∏
k=1,...,K,

k 	=h

(tek,eh
− t̄ek,1) × ∏

k=K+1,...,2K,
k 	=K+h

(tek,eh
− tek,1)

︸ ︷︷ ︸
column eh

,0�
)
,

where the second product term corresponds to column eh, and

T∑2K
k=1 ek−eh−eK+h,·

(
Q,�̄ − θ∗1�)

=
( ∏

k=1,...,K,
k 	=h

(t̄ek,0 − t̄ek,1) × ∏
k=K+1,...,2K,

k 	=K+h

(t̄ek,0 − tek,1),0�,(4.6)

∏
k=1,...,K,

k 	=h

(t̄ek,eh
− t̄ek,1) × ∏

k=K+1,...,2K,
k 	=K+h

(t̄ek,eh
− tek,1)

︸ ︷︷ ︸
column eh

,0�
)
.

From Lemmas 1 and 2 and the model assumption, we know the product compo-
nents in (4.5) and (4.6) are nonzero. Adding item h into the above combinations,
the row vectors corresponding to r =∑2K

k=1 ek − eK+h equal to

T∑2K
k=1 ek−eK+h,·

(
Q,� − θ∗1�)

=
(
teh,0 × ∏

k=1,...,K,
k 	=h

(tek,0 − t̄ek,1) × ∏
k=K+1,...,2K,

k 	=K+h

(tek,0 − tek,1),0�,(4.7)

teh,eh
× ∏

k=1,...,K,
k 	=h

(tek,eh
− t̄ek,1) × ∏

k=K+1,...,2K,
k 	=K+h

(tek,eh
− tek,1)

︸ ︷︷ ︸
column eh

,0�
)
,
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and

T∑2K
k=1 ek−eK+h,·

(
Q,�̄ − θ∗1�)

=
(
t̄eh,0 × ∏

k=1,...,K,
k 	=h

(t̄ek,0 − t̄ek,1) × ∏
k=K+1,...,2K,

k 	=K+h

(t̄ek,0 − tek,1),0�,(4.8)

t̄eh,eh
× ∏

k=1,...,K,
k 	=h

(t̄ek,eh
− t̄ek,1) × ∏

k=K+1,...,2K,
k 	=K+h

(t̄ek,eh
− tek,1)

︸ ︷︷ ︸
column eh

,0�
)
.

Take the element-wise product of the row vectors: uhA defined in (4.4) and the
vector in (4.5). We have

(uhA) � T∑2K
k=1 ek−eh−eK+h,·

(
Q,� − θ∗1�)

=
(

0, bh

∏
k=1,...,K,

k 	=h

(tek,eh
− t̄ek,1) × ∏

k=K+1,...,2K,
k 	=K+h

(tek,eh
− tek,1)

︸ ︷︷ ︸
column eh

,0�
)
.

From uhĀ in (4.4) and the vector in (4.6)

(uhĀ) � T∑2K
k=1 ek−eh−eK+h,·

(
Q,�̄ − θ∗1�)

=
(

0, bh

∏
k=1,...,K,

k 	=h

(t̄ek,eh
− t̄ek,1) × ∏

k=K+1,...,2K,
k 	=K+h

(t̄ek,eh
− tek,1)

︸ ︷︷ ︸
column eh

,0�
)
.

Similarly, the element-wise product of uhA and (4.7) gives

(uhA) � T∑2K
k=1 ek−eK+h,·

(
Q,� − θ∗1�)

=
(

0, bhteh,eh

∏
k=1,...,K,

k 	=h

(tek,eh
− t̄ek,1) × ∏

k=K+1,...,2K,
k 	=K+h

(tek,eh
− tek,1)

︸ ︷︷ ︸
column eh

,0�
)

(4.9)

= teh,eh
· {(uhA) � T∑2K

k=1 ek−eh−eK+h,·
(
Q,� − θ∗1�)},



696 G. XU

and the element-wise product of uhĀ and (4.8) gives

(uhĀ) � T∑2K
k=1 ek−eK+h,·

(
Q,�̄ − θ∗1�)

=
(

0, bht̄eh,eh

∏
k=1,...,K,

k 	=h

(t̄ek,eh
− t̄ek,1) × ∏

k=K+1,...,2K,
k 	=K+h

(t̄ek,eh
− tek,1)

︸ ︷︷ ︸
column eh

,0�
)

(4.10)

= t̄eh,eh
· {(uhĀ) � T∑2K

k=1 ek−eh−eK+h,·
(
Q,�̄ − θ∗1�)}.

From the equation that T (Q,� − θ∗1�)p = T (Q, �̄ − θ∗1�)p̄, we know{
(uhA) � T∑2K

k=1 ek−eh−eK+h,·
(
Q,� − θ∗1�)}p

= {
(uhĀ) � T∑2K

k=1 ek−eh−eK+h,·
(
Q,�̄ − θ∗1�)}p̄

and {
(uhA) � T∑2K

k=1 ek−eK+h,·
(
Q,� − θ∗1�)}p

= {
(uhĀ) � T∑2K

k=1 ek−eK+h,·
(
Q,�̄ − θ∗1�)}p̄.

Therefore, (4.9) and (4.10) imply that for h = 1, . . . ,K ,

(4.11) teh,eh
= t̄eh,eh

.

Similarly, we have teK+h,eh
= t̄eK+h,eh

.
Furthermore, there exists row vector vk such that

vk(1, te2K+1,ek
, . . . , teJ ,ek

)� = 0 and vk(1, te2K+1,0, . . . , teJ ,0)
� 	= 0.

A similar argument then gives

teh,0 = t̄eh,0 for h = 1, . . . ,2K.

Before to prove tej ,eh
= t̄ej ,eh

for the rest j ∈ {1, . . . ,2K} and h ∈ {1, . . . ,K},
we first show p0 = p̄0 and peh

= p̄eh
for h ∈ {1, . . . ,K}. Take

θ∗ = (te1,1, . . . , teK,1︸ ︷︷ ︸
K

,0, . . . ,0︸ ︷︷ ︸
J−K

)�.

By the results that teh,eh
= teh,1 and (4.11), we know

T∑K
k=1 ek,·

(
Q,� − θ∗1�)

= T∑K
k=1 ek,·

(
Q,�̄ − θ∗1�)=

(
K∏

k=1

(tek,0 − tek,1),0�
)
,
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where the product element is nonzero under the model assumption. Then the equa-
tion

T∑K
k=1 ek,·

(
Q,� − θ∗1�)p = T∑K

k=1 ek,·
(
Q,�̄ − θ∗1�)p̄

implies

p0 = p̄0.

Now for any h ∈ {1, . . . ,K}, take

θ∗ = (te1,1, . . . , teh−1,1, teh,0, teh+1,1, . . . , teK,1︸ ︷︷ ︸
K

,0, . . . ,0︸ ︷︷ ︸
J−K

)�.(4.12)

From the results in (4.11), we have

T∑K
k=1 ek,·

(
Q,� − θ∗1�)= T∑K

k=1 ek,·
(
Q,�̄ − θ∗1�)

=
(

0�, (teh,eh
− teh,0)

∏
k=1,...,K,

k 	=h

(tek,eh
− tek,1)

︸ ︷︷ ︸
column eh

,0�
)
.

Then the equation T∑K
k=1 ek,·(Q,� − θ∗1�)p = T∑K

k=1 ek,·(Q, �̄ − θ∗1�)p̄ implies

peh
= p̄eh

for h = 1, . . . ,K.(4.13)

We continue to show tej ,eh
= t̄ej ,eh

for the rest j ∈ {1, . . . ,2K} and h ∈
{1, . . . ,K}. Consider any j and h such that K < j ≤ 2K and 1 ≤ h ≤ K . For
θ∗ in (4.12), we have

Tej+∑K
k=1 ek,·

(
Q,� − θ∗1�)

=
(

0�, tej ,eh
(teh,eh

− teh,0)
∏

k=1,...,K,
k 	=h

(tek,eh
− tek,1)

︸ ︷︷ ︸
column eh

,0�
)
,

and

Tej+∑K
k=1 ek,·

(
Q,�̄ − θ∗1�)

=
(

0�, t̄ej ,eh
(teh,eh

− teh,0)
∏

k=1,...,K,
k 	=h

(tek,eh
− tek,1)

︸ ︷︷ ︸
column eh

,0�
)
.

Then from (4.13) and

Tej+∑K
k=1 ek,·

(
Q,� − θ∗1�)p = Tej+∑K

k=1 ek,·
(
Q,�̄ − θ∗1�)p̄,
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we obtain

tej ,eh
= t̄ej ,eh

.

For any j and h such that 1 ≤ j ≤ K and 1 ≤ h ≤ K , take

θ∗ = (0, . . . ,0︸ ︷︷ ︸
K

, teK+1,1, . . . , teK+h−1,1, teK+h,0, teK+h+1,1, . . . , te2K,1︸ ︷︷ ︸
K

,0, . . . ,0︸ ︷︷ ︸
J−2K

)�

and a similar argument gives tej ,eh
= t̄ej ,eh

. This completes Step 3.

Step 4. The proof for Step 4 and Step 5 uses similar arguments. To better il-
lustrate our idea, we separate them in two steps. In particular, in Step 4, we con-
sider the columns corresponding to two attributes. For any h1 and h2 such that
1 ≤ h1 < h2 ≤ K , we first prove peh1+eh2

= p̄eh1+eh2
. Take

θ∗ = (te1,1, . . . , teh1−1,1, teh1 ,0︸ ︷︷ ︸
h1

, teh1+1,1, . . . , teh2−1,1, teh2 ,eh1︸ ︷︷ ︸
h2−h1

,

teh2+1,1, . . . , teK,1︸ ︷︷ ︸
K−h2

,0, . . . ,0︸ ︷︷ ︸
J−K

)�.

With such a choice of θ∗, for any k ∈ {1, . . . ,K} \ {h1, h2}, tek,α − θ∗
k = tek,α −

tek,1 = 0 if α � ek . In addition, teh2 ,eh1
− θ∗

h2
= 0. Therefore, by the definition,

the row vector of T -matrix T (Q,� − θ∗1�) corresponding to r =∑K
k=1 ek has

only two possible nonzero elements, which correspond to the two columns eh2 and
eh1 + eh2 in the T -matrix. Specifically, we have

T∑K
k=1 ek,·

(
Q,� − θ∗1�)

=
(

0�, (teh1 ,eh2
− teh1 ,0)(teh2 ,eh2

− teh2 ,eh1
)

∏
k=1,...,K,
k 	=h1,h2

(tek,eh2
− tek,1)

︸ ︷︷ ︸
column eh2

,0�,

(teh1 ,eh1+eh2
− teh1 ,0)(teh2 ,eh1+eh2

− teh2 ,eh1
)

∏
k=1,...,K,
k 	=h1,h2

(tek,eh1+eh2
− tek,1)

︸ ︷︷ ︸
column eh1+eh2

,0�
)
.

Consider the row vector of T -matrix T (Q, �̄ − θ∗1�) corresponding to r =∑K
k=1 ek . Thanks to the results in Steps 1–3, a similar calculation gives the fol-

lowing equation for the chosen θ∗

T∑K
k=1 ek,·

(
Q,�̄ − θ∗1�)= T∑K

k=1 ek,·
(
Q,� − θ∗1�).
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Under the model assumption, we have
teh1 ,eh1+eh2

− teh1 ,0 > 0, teh2 ,eh1+eh2
− teh2 ,eh1

> 0,∏
k=1,...,K,
k 	=h1,h2

(tek,eh2
− tek,1) 	= 0,

and
∏

k=1,...,K,k 	=h1,h2
(tek,eh1+eh2

− tek,1) 	= 0. Therefore, the eh1 + eh2 column

element of T∑K
k=1 ek,·(Q, �̄ − θ∗1�), equivalently T∑K

k=1 ek,·(Q,� − θ∗1�), is
nonzero. From the equation,

T∑K
k=1 ek,·

(
Q,� − θ∗1�)p = T∑K

k=1 ek,·
(
Q,�̄ − θ∗1�)p̄

and the result that peh2
= p̄eh2

as proved in Step 3, we thus have

peh1+eh2
= p̄eh1+eh2

.

Next, we show tej ,eh1+eh2
= t̄ej ,eh1+eh2

. First, consider the case when j > K . For

the row vector of T -matrix T (Q,� − θ∗1�) corresponding to r =∑K
k=1 ek + ej ,

we have

T∑K
k=1 ek+ej ,·

(
Q,� − θ∗1�)

=
(

0�, tej ,eh2
(teh1 ,eh2

− teh1 ,0)(teh2 ,eh2
− teh2 ,eh1

)
∏

k=1,...,K,
k 	=h1,h2

(tek,eh2
− tek,1)

︸ ︷︷ ︸
column eh2

,0�,

(4.14)
tej ,eh1 +eh2

(teh1 ,eh1 +eh2
− teh1 ,0)(teh2 ,eh1 +eh2

− teh2 ,eh1
)

∏
k=1,...,K,
k 	=h1,h2

(tek,eh1 +eh2
− tek,1)

︸ ︷︷ ︸
column eh1+eh2

,

0�
)
.

Similarly, for the row vector of T -matrix T (Q, �̄ − θ∗1�) corresponding to r =∑K
k=1 ek + ej , we can write

T∑K
k=1 ek+ej ,·

(
Q,�̄ − θ∗1�)

=
(

0�, tej ,eh2
(teh1 ,eh2

− teh1 ,0)(teh2 ,eh2
− teh2 ,eh1

)
∏

k=1,...,K,
k 	=h1,h2

(tek,eh2
− tek,1)

︸ ︷︷ ︸
column eh2

,0�,

(4.15)
t̄ej ,eh1 +eh2

(teh1 ,eh1 +eh2
− teh1 ,0)(teh2 ,eh1 +eh2

− teh2 ,eh1
)

∏
k=1,...,K,
k 	=h1,h2

(tek,eh2
− tek,1)

︸ ︷︷ ︸
column eh1+eh2

,

0�
)
,
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where the result t̄ej ,eh2
= tej ,eh2

is used for the element in column eh2 . From (4.14),
(4.15) and the proved results that peh2

= p̄eh2
and peh1+eh2

= p̄eh1+eh2
, we can

derive

tej ,eh1+eh2
= t̄ej ,eh1+eh2

,

for any 1 ≤ h1 < h2 ≤ K and j > K , from the equation T∑K
k=1 ek+ej ,·(Q,� −

θ∗1�)p = T∑K
k=1 ek+ej ,·(Q, �̄ − θ∗1�)p̄.

Moreover, for any 1 ≤ J ≤ K and 1 ≤ h1 < h2 ≤ K , we redefine

θ∗ = (0, . . . ,0︸ ︷︷ ︸
K

, teK+1,1, . . . , teK+h1−1,1, teK+h1 ,0︸ ︷︷ ︸
h1

,

teK+h1+1,1, . . . , teK+h2−1,1, teK+h2 ,eh1︸ ︷︷ ︸
h2−h1

, teK+h2+1,1, . . . , te2K,1︸ ︷︷ ︸
K−h2

,0, . . . ,0︸ ︷︷ ︸
J−2K

)�.

Consider T∑2K
k=K+1 ek,·(Q,�−θ∗1�) instead of T∑K

k=1 ek,·(Q,�−θ∗1�). A similar
argument as above gives

tej ,eh1+eh2
= t̄ej ,eh1+eh2

for any 1 ≤ h1 < h2 ≤ K and j = 1, . . . ,K . This completes Step 4.

Step 5. We consider the columns corresponding to more than two attributes.
We use the induction method and a similar argument as in Step 4. In particular,
consider any integer k such that 3 ≤ k ≤ K . For any l ≤ k − 1, suppose we have

tej ,
∑l

i=1 ehi
= t̄ej ,

∑l
i=1 ehi

and p∑l
i=1 ehi

= p̄∑l
i=1 ehi

for any j ∈ {1, . . . , J } and 1 ≤ h1, . . . , hl ≤ K . We next show that the two equa-
tions also hold for l = k.

Consider any 1 ≤ h1, . . . , hk ≤ K . Define the vector θ∗ = (θ∗
1 , . . . , θ∗

J )� as

θ∗
i =

⎧⎪⎪⎨
⎪⎪⎩

tei ,0, for i ∈ {h1, . . . , hk};
tei ,1, for i ∈ {1, . . . ,K} \ {h1, . . . , hk};
0, otherwise.

Then under the induction assumption, we have the equivalence of the two row
vectors:

T∑K
i=1 ei ,·

(
Q,� − θ∗1�)= T∑K

i=1 ei ,·
(
Q,�̄ − θ∗1�).

In particular, the element of T∑K
i=1 ei ,·(Q,� − θ∗1�) corresponding to column∑k

i=1 ehi
is nonzero; for any l < k, the elements corresponding to column

∑l
i=1 ehi
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may be zero or nonzero; and the others terms are 0. Since p∑l
i=1 ehi

= p̄∑l
i=1 ehi

for

any l < k, the equation T∑k
i=1 ehi

,·(Q,�)p = T∑k
i=1 ehi

,·(Q, �̄)p̄ gives

p∑k
i=1 ehi

= p̄∑k
i=1 ehi

.

Moreover, for any j > K , we have Tej+∑K
i=1 ei ,·(Q,�)p = Tej+∑K

i=1 ei ,·(Q, �̄)p̄.
Following a similar argument as in Step 4, we can establish

tej ,
∑k

i=1 ehi
= t̄ej ,

∑k
i=1 ehi

.

For 1 ≤ j ≤ K and 1 ≤ h1, . . . , hk ≤ K , take

θ∗
i =

⎧⎪⎪⎨
⎪⎪⎩

tei ,0, for i ∈ {K + h1, . . . ,K + hk};
tei ,1, for i ∈ {K + 1, . . . ,2K} \ {K + h1, . . . ,K + hk};
0, otherwise.

Similarly, we can obtain tej ,
∑k

i=1 ehi
= t̄ej ,

∑k
i=1 ehi

. This completes the proof.

4.2. Proofs of Propositions 2 and 3 and Lemmas 1 and 2.

PROOF OF THE PROPOSITION 2. We only need to show that there exist
(�,p) 	= (�̄, p̄) satisfying equation (3.5). For notational convenience, we write
tej ,α(Q,�) and tej ,α(Q, �̄) as tej ,α and t̄ej ,α , respectively.

For simplicity, consider the DINA model in Example 2, under which tej ,α =
tej ,0 if ξj,α = 0 and tej ,α = tej ,1 if ξj,α = 1. Without loss of generality, we focus
on the Q-matrix has the following form:

Q =

⎛
⎜⎜⎜⎜⎜⎝

1 0�
1 0�
0 IK−1
0 IK−1
0 Q∗

⎞
⎟⎟⎟⎟⎟⎠ ,

where Q∗ is unspecified. Note that the above Q-matrix does not satisfy condition
C2 under the DINA model. Next, we show the item parameters for the first two
items are nonidentifiable.

Let tej ,1 = t̄ej ,1 for j ≥ 3. Consider the row vector of the T -matrix correspond-
ing to r = (r1, r2, . . . , rJ )�. Consider each possible value of (r1, r2) ∈ {0,1}2. We
can show that for any (�,p) 	= (�̄, p̄), equation (3.5) is satisfied if the following
equations hold for any α ∈ {0,1}K such that α1 = 0:

(4.16)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pα + pα+e1 = p̄α + p̄α+e1, if (r1, r2) = (0,0);
te1,1pα+e1 + te1,0pα = t̄e1,1p̄α+e1 + t̄e1,0p̄α, if (r1, r2) = (1,0);
te2,1pα+e1 + te2,0pα = t̄e2,1p̄α+e1 + t̄e2,0p̄α, if (r1, r2) = (0,1);
te1,1te2,1pα+e1 + te1,0te2,0pα

= t̄e1,1 t̄e2,1p̄α+e1 + t̄e1,0 t̄e2,0p̄α, if (r1, r2) = (1,1).
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Now we construct (�,p) 	= (�̄, p̄) such that (4.16) is satisfied. For ρ ∈ (0,1),
choose (�,p) such that pα/pα+e1 = ρ for over all α ∈ {0,1}K with α1 = 0. Then,
for any t̄ej ,0, j = 1, . . . , J , define

t̄ej ,1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t̄e1,0 + (te1,1 − t̄e1,0)(te2,1 − t̄e2,0) + ρ(te1,0 − t̄e1,0)(te2,0 − t̄e2,0)

(te2,1 − t̄e2,0) + ρ(te2,0 − t̄e2,0)
,

if j = 1;
t̄e2,0 + (te1,1 − t̄e1,0)(te2,1 − t̄e2,0) + ρ(te1,0 − t̄e1,0)(te2,0 − t̄e2,0)

(te1,1 − t̄e1,0) + ρ(te1,0 − t̄e1,0)
,

if j = 2;
tej ,1,

if j = 3, . . . , J ;

p̄α+e1 = {(te1,1 − t̄e1,0) + ρ(te1,0 − t̄e1,0)}{(te2,1 − t̄e2,0) + ρ(te2,0 − t̄e2,0)}
(te1,1 − t̄e1,0)(te2,1 − t̄e2,0) + ρ(te1,0 − t̄e1,0)(te2,0 − t̄e2,0)

× pα+e1,

p̄α = pα + pα+e1 − p̄α+e1,

for every α ∈ {0,1}K such that α1 = 0. This results in a solution to (4.16). Thus, we
have constructed (�,p) 	= (�̄, p̄) such that (3.5) holds. This completes the proof.

�

PROOF OF THE PROPOSITION 3. In what follows, we construct a D matrix
satisfying the conditions in the proposition, that is, D(θ∗) is a matrix only depend-
ing on θ∗ such that D(θ∗)T (Q,�) = T (Q,� − θ∗1�) for any Q and �. Recall
that

tr,α(Q,�) = ∏
j :rj=1

tej ,α(Q,�), ∀r ∈ {0,1}J ,α ∈ {0,1}K.

For any θ∗ = (θ∗
1 , . . . , θ∗

J ) ∈ RJ ,

tr,α
(
Q,� − θ∗1�)= ∏

j :rj=1

{
tej ,α(Q,�) − θ∗

j

}
.

By polynomial expansion,

tr,α
(
Q,� − θ∗1�)= ∑

r′�r

(−1)
∑J

j=1 rj−r ′
j

∏
j :rj−r ′

j=1

θ∗
j

∏
k:r ′

k=1

tek,α(Q,�).

Define the entry dr,r′(θ∗) of D(θ∗) corresponding to row r and column r′ as

dr,r′
(
θ∗)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, r′ � r,

(−1)
∑J

j=1 rj−r ′
j

∏
j :rj−r ′

j=1

θ∗
j , r′ � r and r′ 	= r,

1, r′ = r.
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Then we have

T
(
Q,� − θ∗1�)= D

(
θ∗)T (Q,�),

where D(θ∗) is a lower triangular matrix depending solely on θ∗ with eigenvalues
equal to its diagonal. Since diag{D(θ∗)} = 1, D(θ∗) is invertible. �

PROOF OF LEMMA 1. We use the method of contradiction. If there exists
k ∈ {1, . . . ,K} such that tek,0 = t̄ek,α∗ with α∗ � ek . Since tek,0 ≤ tek,α for any α ∈
{0,1}K and tek,0 < tek,α∗ = tek,1, this implies that for the row vectors corresponding
to r = ek ,

Tek,·(Q,�)p >
∑
α

pαtek,0 =∑
α

p̄α t̄ek,α∗ =∑
α

p̄α t̄ek,1 > Tek,·(Q, �̄)p̄,

which contradicts the equation (3.5) that requires Tek,·(Q,�)p = Tek,·(Q, �̄)p̄.
Therefore, we conclude that tek,0 	= t̄ek,α∗ . Similarly, we have tek,α∗ 	=
t̄ek,0, teK+k,0 	= t̄eK+k,α∗ and teK+k,α∗ 	= t̄eK+k,0. �

PROOF OF LEMMA 2. Without loss of generality, we only need to show that
for any 1 ≤ h ≤ K , te1,eh

	= t̄e1,1.
Take

θ∗ = (te1,0, te2,1, . . . , teK,1︸ ︷︷ ︸
K

,0, . . . ,0︸ ︷︷ ︸
J−K

)�,

and we have

T∑K
k=1 ek,·

(
Q,� − θ∗1�)=

(
0, (te1,e1 − te1,0) ×

K∏
k=2

(tek,e1 − tek,1),0�
)
.

From the model assumption, the product element is nonzero.
Consider the row vector T∑K

k=1 ek,·(Q, �̄ − θ∗1�). Under the equation (3.5),
there must exist a nonzero element. We denote the corresponding column as α∗
and the element then can be written as

(t̄e1,α∗ − te1,0) ×
K∏

k=2

(t̄ek,α∗ − tek,1) 	= 0.

Note that here we do not know whether α∗ equals e1.
Denote Q1 as the Q-matrix corresponding to items from K +1 to 2K . Note that

Q1 = IK . Consider the 2K × 2K T -matrix, T (Q1, �̄(K+1):2K), where �̄(K+1):2K

denotes the submatrix of � containing rows from K + 1 to 2K . Take θ̃ =
(θ̄K+1,1, . . . , θ̄2K,1)

�, and we know the transformed T -matrix T (Q1, �̄(K+1):2K −
θ̃1�) takes an upper-left triangular form (up to column swapping) and, therefore,
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is full rank. This implies T (Q1, �̄(K+1):2K) is full rank, and thus there exists a row
vector m such that

m · T (Q1, �̄(K+1):2K) = (0, . . . ,0, 1︸︷︷︸
column α∗

,0, . . . ,0).

On the other hand, consider m · T (Q1,�K+1:2K). We use x to denote the element
corresponding to the column e1 (i.e., the second element). Combining the above
results, we know{

m · T (Q1,�)
}� T∑K

k=1 ek,·
(
Q,� − θ∗1�)

=
(

0, x × (te1,e1 − te1,0) ×
K∏

k=2

(tek,e1 − tek,1),0

)
; and

{
m · T (Q1, �̄)

}� T∑K
k=1 ek,·

(
Q,�̄ − θ∗1�)

=
(

0, . . . ,0, (t̄e1,α∗ − te1,0) ×
K∏

k=2

(t̄ek,α∗ − tek,1)︸ ︷︷ ︸
column α∗

,0, . . . ,0

)
.

Under the equation (3.5), we know x 	= 0 and the above two vectors are both
nonzero. Now consider j > 2K , and we have{

m · T (Q1,�)
}� Tej+∑K

k=1 ek,·
(
Q,� − θ∗1�)

=
(

0, x × tej ,e1 × (te1,e1 − te1,0) ×
K∏

k=2

(tek,e1 − tek,1),0

)
; and

{
m · T (Q1, �̄)

}� Tej+∑K
k=1 ek,·

(
Q,�̄ − θ∗1�)

=
(

0, . . . ,0, t̄ej ,α∗ × (t̄e1,α∗ − te1,0) ×
K∏

k=2

(t̄ek,α∗ − tek,1)︸ ︷︷ ︸
column α∗

,0, . . . ,0

)
.

Therefore as in Step 1, we have for j > 2K , tej ,e1 = t̄ej ,α∗ .
Now redefine θ∗ = (0, te2,1, . . . , teK,1︸ ︷︷ ︸

K

,0, . . . ,0︸ ︷︷ ︸
J−K

)�, and we have

T∑K
k=2 ek,·

(
Q,� − θ∗1�)

=
(

K∏
k=2

(tek,0 − tek,1),

K∏
k=2

(tek,e1 − tek,1),0�
)
,

T∑K
k=1 ek,·

(
Q,� − θ∗1�)

=
(
te1,0

K∏
k=2

(tek,0 − tek,1), te1,e1

K∏
k=2

(tek,e1 − tek,1),0�
)
.
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From the model assumption, the product elements are nonzero. Following the no-
tation in Step 3, there exists a (J − 2K + 1)-dimensional vector u1 such that

b1 = u1(1, te2K+1,e1, . . . , teJ ,e1)
� 	= 0 and u1(1, te2K+1,0, . . . , teJ ,0)

� = 0.

Since for j > 2K , tej ,e1 = t̄ej ,α∗ , from a similar argument in Step 3, we have

(u1A) � {
m · T (Q1,�)

}� T∑K
k=2 ek,·

(
Q,� − θ∗1�)

=
(

0, b1 × x ×
K∏

k=2

(tek,e1 − tek,1),0�
)
;

(u1A) � {
m · T (Q1,�)

}� T∑K
k=1 ek,·

(
Q,� − θ∗1�)

=
(

0, b1 × x × te1,e1 ×
K∏

k=2

(tek,e1 − tek,1),0�
)
;

(u1Ā) � {
m · T (Q1, �̄)

}� T∑K
k=2 ek,·

(
Q,�̄ − θ∗1�)

=
(

0, . . . ,0, b1 ×
K∏

k=2

(t̄ek,α∗ − tek,1)︸ ︷︷ ︸
column α∗

,0, . . . ,0

)
; and

(u1Ā) � {
m · T (Q1, �̄)

}� T∑K
k=1 ek,·

(
Q,�̄ − θ∗1�)

=
(

0, . . . ,0, b1 × t̄e1,α∗ ×
K∏

k=2

(t̄ek,α∗ − tek,1)︸ ︷︷ ︸
column α∗

,0, . . . ,0

)
.

The above equations imply that te1,e1 = t̄e1,α∗ . Since under the model assumption
te1,e1 > te1,eh

, we have the conclusion that te1,eh
	= t̄e1,1 since otherwise, we have

t̄e1,α∗ > t̄e1,1 which cannot be true under the model assumption. This completes
the proof. �
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