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ONLINE ESTIMATION OF THE GEOMETRIC MEDIAN IN
HILBERT SPACES: NONASYMPTOTIC CONFIDENCE BALLS

BY HERVÉ CARDOT, PEGGY CÉNAC AND ANTOINE GODICHON-BAGGIONI

Université de Bourgogne Franche Comté

Estimation procedures based on recursive algorithms are interesting and
powerful techniques that are able to deal rapidly with very large samples of
high dimensional data. The collected data may be contaminated by noise so
that robust location indicators, such as the geometric median, may be pre-
ferred to the mean. In this context, an estimator of the geometric median
based on a fast and efficient averaged nonlinear stochastic gradient algorithm
has been developed by [Bernoulli 19 (2013) 18–43]. This work aims at study-
ing more precisely the nonasymptotic behavior of this nonlinear algorithm by
giving nonasymptotic confidence balls in general separable Hilbert spaces.
This new result is based on the derivation of improved L2 rates of conver-
gence as well as an exponential inequality for the nearly martingale terms of
the recursive nonlinear Robbins–Monro algorithm.

1. Introduction. Dealing with large samples of observations taking values
in high dimensional spaces, such as functional spaces, is not unusual nowadays.
In this context, simple estimators of location such as the arithmetic mean can be
greatly influenced by a small number of outlying values and robust indicators of
location may be preferred to the mean. We focus in this work on the estimation of
the geometric median, also called L1-median or spatial median. It is a multivariate
generalization of the real median introduced by [13] that can be defined in general
metric spaces.

Let H be a separable Hilbert space, we denote by 〈·, ·〉 its inner product and
by ‖ · ‖ the associated norm. Let X be a random variable taking values in H , the
geometric median m of X is defined by

(1.1) m := arg min
h∈H

E
[‖X − h‖ − ‖X‖]

.

Many properties of this median in the general setting of separable Banach
spaces, such as existence and uniqueness, as well as robustness are given in [14]
(see also the review [25]). Recently, this median has received much attention in the
literature. For example, [18] suggests to consider, in various statistical contexts, the
geometric median of independent estimators in order to obtain much tighter con-
centration bounds. In functional data analysis, [15] consider resistant estimators of
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the covariance operator based on the geometric median in order to derive a robust
test of equality of the second-order structure for two samples. The geometric me-
dian is also chosen to be the central location indicator in various types of robust
functional principal components analysis (see [12, 17] and [4]). The posterior ge-
ometric median of estimators has also been used in a robust Bayesian context by
[19]. Finally, a general definition of the geometric median on manifolds is given in
[11] and [1] with signal processing issues in mind.

Consider a sequence of i.i.d. copies X1,X2, . . . ,Xn, . . . of X. A natural esti-
mator m̂n of m, based on X1, . . . ,Xn, is obtained by minimizing the empirical
risk

(1.2) m̂n := arg min
h∈H

n∑
i=1

[‖Xi − h‖ − ‖Xi‖]
.

Convergence properties of the empirical estimator m̂n are reviewed in [20] when
the dimension of H is finite whereas the recent work of [9] proposes a deep asymp-
totic study for random variables taking values in separable Banach spaces. Given
a sample X1, . . . ,Xn the computation of m̂n generally relies on a variant of the
Weiszfeld’s algorithm (see, e.g., [28] and [16]) introduced by [27]. This iterative
algorithm is relatively fast (see [6] for an improved version) but it is not adapted
to handle very large datasets of high-dimensional data since it requires to store all
the data in memory.

However, huge datasets are not unusual anymore with the development of auto-
matic sensors and smart meters. In this context, [8] have developed a much faster
algorithm, which thanks to its recursive nature does not require to store all the data
and can be updated automatically when the data arrive sequentially. The estimation
procedure is based on the simple following recursive scheme:

(1.3) Zn+1 = Zn + γn

Xn+1 − Zn

‖Xn+1 − Zn‖ ,

where the sequence of steps (γn) controls the convergence of the algorithm and
satisfy the usual conditions for the convergence of Robbins–Monro algorithms
(see Section 3). The averaged version of the algorithm is defined as follows:

Zn+1 = Zn + 1

n + 1
(Zn+1 − Zn),(1.4)

with Z0 = 0, so that Zn = 1
n

∑n
i=1 Zi . The averaging step described in (1.4), and

first studied in [23], allows a considerable improvement of the convergence com-
pared to the initial Robbins–Monro algorithm described in (1.3). It is shown in [8]
that the recursive averaged estimator Zn and the empirical estimator m̂n have the
same Gaussian limiting distribution.

However, the asymptotic normality shown in [8] does not give any clue of how
far the distribution of the estimator is from its asymptotic law for any fixed sample
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size n. The aim of this work is to give new arguments in favor of the averaged
stochastic estimator of the geometric median by providing a sharp control of its
deviations around the true median, for finite samples. Indeed the obtention of fi-
nite sample guarantees with high probability is always desirable for the statisti-
cians who have to study real data, since the samples under study will always have
a finite sample size. Nice arguments for considering nonasymptotic properties of
estimators are given, for example, in [24]. The obtention of such results gener-
ally requires much more mathematical efforts compared to more classical weak
convergence results as well as more restrictive conditions on the existence of all
the moments of the variable (see, e.g., [29] or [26]). Note also that, as far as we
know, there are only very few results in the literature on nonasymptotic bounds for
nonlinear recursive algorithms (see, however, [5] for recursive PCA or [3]).

The construction of our nonasymptotic confidence balls (see Theorem 4.1 and
Theorem 4.2) rely on the obtention of the optimal rate of convergence in quadratic
mean (see Theorem 3.1) of the Robbins–Monro algorithm used for estimating the
geometric median as well as new exponential inequalities for “near” martingale
sequences in Hilbert spaces (see Proposition 4.1), similar to the seminal result of
[22] for martingales. These properties do not require any additional conditions on
the moments of the data to hold. The proof of Theorem 3.1 is based on a new
approach which consists in obtaining first, relations between the L2 and the L4

estimation errors and then make an induction using these relations to get the op-
timal rate of convergence in quadratic mean of Robbins–Monro algorithms. This
new approach may give keys to obtain nonasymptotic results when the objective
function only possesses locally strong convexity properties.

The paper is organized as follows. Section 2 recalls some convexity properties
of the geometric median as well as the basic assumptions ensuring the uniqueness
of the geometric median. In Section 3, the rates of convergence of the stochastic
gradient algorithm are derived in quadratic mean as well as in L4. In Section 4,
an exponential inequality is derived borrowing ideas from [26]. It enables us to
build nonasymptotic confidence balls for the Robbins–Monro algorithm as well as
its averaged version. The most innovative part of the proofs is given in Section 5
whereas the other technical details are gathered in the Supplementary Material [7].

2. Assumptions on the median and convexity properties. Let us first state
basic assumptions on the median.

(A1) The random variable X is not concentrated on a straight line: for all
h ∈ H , there exists h′ ∈ H such that 〈h,h′〉 = 0 and

Var
(〈
h′,X

〉)
> 0.

(A2) X is not concentrated around single points: there is a constant C > 0 such
that for all h ∈ H :

E
[‖X − h‖−1] ≤ C.
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Assumption (A1) ensures that the median m is uniquely defined (see [14]). As-
sumption (A2) is closely related to small ball probabilities and to the dimension
of H . It was proved in [10] that when H = R

d , assumption (A2) is satisfied when
d ≥ 2 under classical assumptions on the density of X. A detailed discussion on
assumption (A2) and its connection with small balls probabilities can be found
in [8].

We now recall some results about convexity and robustness of the geometric
median. We denote by G : H −→ R the convex function we would like to mini-
mize, defined for all h ∈ H by

(2.1) G(h) := E
[‖X − h‖ − ‖X‖]

.

This function is Fréchet differentiable on H , we denote by � its Fréchet derivative,
and for all h ∈ H :

�(h) := ∇hG = −E

[
X − h

‖X − h‖
]
.

Under previous assumptions, m is the unique zero of �.
Let us define Un+1 := − Xn+1−Zn

‖Xn+1−Zn‖ and let us introduce the sequence of σ -
algebra Fn := σ(Z1, . . . ,Zn) = σ(X1, . . . ,Xn). For all integers n ≥ 1,

E[Un+1|Fn] = �(Zn).(2.2)

The sequence (ξn)n defined by ξn+1 := �(Zn) − Un+1 is a martingale differ-
ence sequence with respect to the filtration (Fn). Moreover, we have for all n,
‖ξn+1‖ ≤ 2 and

E
[‖ξn+1‖2|Fn

] ≤ 1 − ∥∥�(Zn)
∥∥2 ≤ 1.(2.3)

Algorithm (1.3) can be written as a Robbins–Monro or a stochastic gradient algo-
rithm:

Zn+1 − m = Zn − m − γn�(Zn) + γnξn+1.(2.4)

We now consider the Hessian of G, which is denoted by �h : H −→ H . It
satisfies (see [12])

�h = E

[
1

‖X − h‖
(
IH − (X − h) ⊗ (X − h)

‖X − h‖2

)]
,

where IH is the identity operator in H and u ⊗ v(h) = 〈u,h〉v for all u, v,h ∈ H .
The following (local) strong convexity properties will be useful (see [8] for proofs).

PROPOSITION 2.1. Under assumptions (A1) and (A2), for any real number
A > 0, there is a positive constant cA such that for all h ∈ H with ‖h‖ ≤ A, and
for all h′ ∈ H :

cA

∥∥h′∥∥2 ≤ 〈
h′,�hh

′〉 ≤ C
∥∥h′∥∥2

.
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As a particular case, there is a positive constant cm such that for all h′ ∈ H :

(2.5) cm

∥∥h′∥∥2 ≤ 〈
h′,�mh′〉 ≤ C

∥∥h′∥∥2
.

The following corollary recall some properties of the spectrum of the Hessian
of G, in particular on the spectrum of �m.

COROLLARY 2.1. Under assumptions (A1) and (A2), for all h ∈ H , there
is an increasing sequence of nonnegative eigenvalues (λj,h) and an orthonormal
basis (vj,h) of eigenvectors of �h such that

�hvj,h = λj,hvj,h,

σ (�h) = {λj,h, j ∈ N},
λj,h ≤ C.

Moreover, if ‖h‖ ≤ A, for all j ∈N we have cA ≤ λj,h ≤ C.
As a particular case, the eigenvalues λj,m of �m satisfy, cm ≤ λj,m ≤ C, for all

j ∈N.

The bounds are an immediate consequence of Proposition 2.1. Remark that with
these different convexity properties of the geometric median, we are close to the
framework of [2]. The difference comes from the fact that G does not satisfy the
generalized self-concordance assumption which is central in the latter work.

3. Rates of convergence of the Robbins–Monro algorithms. If the se-
quence (γn)n of step-sizes fulfills the classical following assumptions:∑

n≥1

γ 2
n < ∞ and

∑
n≥1

γn = ∞,

and (A1) and (A2) hold, the recursive estimator Zn is strongly consistent (see
[8], Theorem 3.1). The first condition on the step-sizes ensures that the recursive
algorithm converges toward some value in H whereas the second condition forces
the algorithm to converge to m, the unique minimizer of G.

From now on, Z1 is chosen so that it is bounded (consider, e.g., Z1 =
X11{‖X‖≤M ′} for some nonnegative constant M ′). Consequently, there is a posi-
tive constant M such that for all n ≥ 1:

E
[‖Zn − m‖2] ≤ M.

Let us consider now sequences (γn)n of the form γn = cγ n−α where cγ is a
positive constant, and α ∈ (1/2,1). Note that considering α = 1 would be possible,
with a suitable constant cγ which is unknown in practice, in order to obtain the
optimal parametric rate of convergence. The algorithm can be very sensitive to the
values cγ . That is why we prefer to introduce an averaging step with α < 1, which
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is in practice and theoretically more efficient, since it has the same asymptotic
variance as the empirical risk minimizer ([8], Theorem 3.4).

In order to get confidence balls for the median, the following additional assump-
tion is supposed to hold.

(A3) There is a positive constant C such that for all h ∈ H :

E
[‖X − h‖−2] ≤ C.

This assumption ensures that the remainder term in the Taylor approximation to the
gradient is bounded. Note that this assumption is also required to get the asymp-
totic normality in [8]. It is also assumed in [9] for deriving the asymptotic normal-
ity of the empirical median estimator. Remark that for the sake of simplicity, we
have considered the same constant C in (A2) and (A3). As in (A2), Assumption
(A3) is closely related to small ball probabilities and when H = R

d , this assump-
tion is satisfied when d ≥ 3 under weak conditions.

We state now the first new and important result on the rates of convergence
in quadratic mean of the Robbins–Monro algorithm. A comparison with Proposi-
tion 3.2 in [8] reveals that the term logn has disappeared as well as the constant
CN that was related to a sequence (	N)N of events whose probability was tending
to one. This is a significant improvement which is crucial to get a deep study of
the estimators and to get nonasymptotic results.

THEOREM 3.1. Assuming (A1)–(A3) hold, the algorithm (Zn) defined by
(1.3), with γn = cγ n−α , converges in quadratic mean, for all α ∈ (1/2,1) and
for all α < β < 3α − 1, with the following rate:

E
[‖Zn − m‖2] = O

(
1

nα

)
,(3.1)

E
[‖Zn − m‖4] = O

(
1

nβ

)
.(3.2)

Upper bounds for the rates of convergence at order four are also given because
they will be useful in several proofs. Remark that obtaining better rates of conver-
gence at the order four would also be possible at the expense of longer proofs, and
since it is not necessary here, it is not given.

The proof of this theorem relies on a new approach which consists in an induc-
tion on n using two decompositions of the algorithm which enables us to obtain an
upper bound of the quadratic mean error and the L4 error. Note that this approach
can be used in several cases when the function we would like to minimize is only
locally strongly convex.

LEMMA 3.1. Assuming (A1)–(A3) hold, there are positive constants C1, C2,
C3, C4 such that for all n ≥ 1:

(3.3) E
[‖Zn − m‖2] ≤ C1e

−C4n
1−α + C2

nα
+ C3 sup

n/2−1≤k≤n

E
[‖Zk − m‖4]

.
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The proof of Lemma 3.1 is given in Section 5. In order to get a rate of conver-
gence of the last term in previous inequality, we use a second decomposition [see
equation (2.4)], to get a bound of the fourth moment.

LEMMA 3.2. Assuming the three assumptions (A1) to (A3), for all α ∈
(1/2,1), there are a rank nα and positive constants C′

1, C′
2 such that for all n ≥ nα :

E
[‖Zn+1 − m‖4] ≤

(
1 − 1

n

)2
E

[‖Zn − m‖4] + C′
1

n3α

+ C′
2

1

n2α
E

[‖Zn − m‖2]
.

(3.4)

The proof of Lemma 3.2 is given in Section 5. The next result gives the exact
rate of convergence in quadratic mean and states that it is not possible to get the
parametric rates of convergence with the Robbins–Monro algorithm when α ∈
(1/2,1).

PROPOSITION 3.1. Assume (A1)–(A3) hold, for all α ∈ (1/2,1), there is a
positive constant C′ such that for all n ≥ 1,

E
[‖Zn − m‖2] ≥ C′

nα
.

The proof of Proposition 3.1 is given in the Supplementary Material [7].

4. Nonasymptotic confidence balls.

4.1. Nonasymptotic confidence balls for the Robbins–Monro algorithm. The
aim is now to derive an upper bound for P[‖Zn −m‖ ≥ t], for t > 0. A simple and
first result can be obtained by applying Markov’s inequality and Theorem 3.1. We
give below a sharper bound that relies on exponential inequalities that are close to
the ones given in Theorem 3.1 in [22]. The following theorem gives nonasymptotic
confidence balls for the Robbins–Monro algorithm.

THEOREM 4.1. Assume that (A1)–(A3) hold. There is a positive constant C

such that for all δ ∈ (0,1), there is a rank nδ such that for all n ≥ nδ ,

P

[
‖Zn − m‖ ≤ C

nα/2 ln
(

4

δ

)]
≥ 1 − δ.

The proof is given in the Supplementary Material [7]. This result is obtained via
the study of a linearized version of the gradient (2.4),

Zn+1 − m = Zn − m − γn�m(Zn − m) + γnξn+1 − γnδn,(4.1)
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where δn := �(Zn) − �m(Zn − m). Introducing for all n ≥ 1, the following oper-
ators:

αn := IH − γn�m,

βn :=
n∏

k=1

αk =
n∏

k=1

(IH − γk�k),

β0 := IH ,

by induction, (4.1) yields

Zn − m = βn−1(Z1 − m) + βn−1Mn − βn−1Rn,(4.2)

with Rn := ∑n−1
k=1 γkβ

−1
k δk and Mn := ∑n−1

k=1 γkβ
−1
k ξk+1. Note that (Mn) is a mar-

tingale sequence adapted to the filtration (Fn). Moreover,

P
[‖Zn − m‖ ≥ t

] ≤ P

[
‖βn−1Mn‖ ≥ t

2

]
+ P

[
‖βn−1Rn‖ ≥ t

4

]
+ P

[∥∥βn−1(Z1 − m)
∥∥ ≥ t

4

]
≤ P

[
‖βn−1Mn‖ ≥ t

2

]
+ 4

E[‖βn−1Rn‖]
t

+ 16
E[‖βn−1(Z1 − m)‖2]

t2 .

(4.3)

Then we must get upper bounds for each term on the right-hand side of previous
inequality. As explained in Remark 4.1 below, it is not possible to directly apply
Theorem 3.1 of [22] to the quasi martingale term but the following proposition
gives an analogous exponential inequality in the case where we do not have exactly
a sequence of martingale differences.

PROPOSITION 4.1. Let (βn,k)(k,n)∈N×N be a sequence of linear operators on
H and (ξn) be a sequence of H -valued martingale differences adapted to a filtra-
tion (Fn). Moreover, let (γn) be a sequence of positive real numbers. Then, for all
r > 0 and for all n ≥ 1,

P

[∥∥∥∥∥
n−1∑
k=1

γkβn−1,kξk+1

∥∥∥∥∥ ≥ r

]

≤ 2e−r

∥∥∥∥∥
n∏

j=2

(
1 +E

[
e‖γj−1βn−1,j−1ξj‖ − 1 − ‖γj−1βn−1,j−1ξj‖|Fj−1

])∥∥∥∥∥
≤ 2 exp

(
−r +

∥∥∥∥∥
n∑

j=2

E
[
e‖γj−1βn−1,j−1ξj‖ − 1 − ‖γj−1βn−1,j−1ξj‖|Fj−1

]∥∥∥∥∥
)
.
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The proof of Proposition 4.1 is in the Supplementary Material [7]. As in [26], it
enables to give a sharp upper bound for P[‖∑n−1

k=1 γkβn−1,kξk+1‖ ≥ t].
COROLLARY 4.1. Let (βn,k) be sequence of linear operators on H , (ξn) be a

sequence of H -valued martingale differences adapted to a filtration (Fn) and (γn)

be a sequence of positive real numbers. Let (Nn) and (σ 2
n ) be two deterministic

sequences such that

Nn ≥ sup
k≤n−1

‖γkβn−1,kξk+1‖ a.s. and σ 2
n ≥

n−1∑
k=1

E
[‖γkβn−1,kξk+1‖|Fn

]
.

For all t > 0 and all n ≥ 1,

P

[∥∥∥∥∥
n−1∑
k=1

γkβn−1,kξk+1

∥∥∥∥∥ ≥ t

]
≤ 2 exp

(
− t2

2(σ 2
n + tNn/3)

)
.

In our context, Corollary 4.1 can be written as follows.

COROLLARY 4.2. Let (Nn)n≥1 and (σ 2
n )n≥1 be two deterministic sequences

such that

Nn ≥ sup
k≤n−1

∥∥γkβn−1β
−1
k ξk+1

∥∥ a.s. and σ 2
n ≥

n−1∑
k=1

E
[∥∥γkβn−1β

−1
k ξk+1

∥∥|Fn

]
.

Then, for all t > 0 and for all n ≥ 1,

P

[∥∥∥∥∥
n−1∑
k=1

γkβn−1β
−1
k ξk+1

∥∥∥∥∥ ≥ t

]
≤ 2 exp

(
− t2

2(σ 2
n + tNn/3)

)
.

REMARK 4.1. Note that (βn−1Mn) is not a martingale sequence. Then a
first idea could be to apply Theorem 3.1 in [22] to the martingale term Mn =∑n−1

k=1 β−1
k γkξk+1 but this does not work. Indeed, although there is a positive con-

stant M such that ‖βn−1Mn‖ ≤ M for all n ≥ 1, the sequence ‖βn−1‖‖Mn‖ may
not be convergent (‖βn−1‖ denotes the usual spectral norm of operator βn−1). Then
it is possible to exhibit sequences (ξn) such that for all t > 0,

lim
n→∞P

[‖βn−1‖‖Mn‖ ≥ t
] = 1,

lim
n→∞P

[‖βn−1Mn‖ ≥ t
] = 0.

Indeed, let λmin and λmax be the lim inf and lim sup of the eigenvalues of the hes-
sian �m and suppose that λmin < λmax and suppose γnλmax ≤ 1 for all n ≥ 1. Then
‖βn−1‖ = ∏n−1

k=1(1 − λminγk). Moreover, there exists a sequence (hn)n≥1 such that
‖hn‖ = 1 for all n ≥ 1, and a positive constant λ such that λmin < λ ≤ λmax, and∥∥∥∥∥

n−1∑
k=1

γkβ
−1
k hk

∥∥∥∥∥ =
n−1∑
k=1

γk

k∏
j=1

(1 − λγj )
−1.
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Thus,

‖βn−1‖
∥∥∥∥∥
n−1∑
k=1

γkβ
−1
k hk

∥∥∥∥∥ −−−→
n→∞ +∞.

4.2. Nonasymptotic confidence balls for the averaged algorithm. The follow-
ing theorem, which is one of the most important result of this paper, provides
nonasymptotic confidence balls for the averaged algorithm.

THEOREM 4.2. Assume that (A1)–(A3) hold. For all δ ∈ (0,1), there is a rank
nδ such that for all n ≥ nδ ,

P

[
‖Zn − m‖ ≤ 4

λmin

(
2

3n
+ 1√

n

)
ln

(
4

δ

)]
≥ 1 − δ.

The proof heavily relies on the following decomposition, which is obtained, as
in [8] and [21], using decomposition (4.1). Indeed, summing and applying Abel’s
transform, we get

�m(Zn − m) = Z1 − m

γ1n
− Zn+1 − m

γnn
+ 1

n

n∑
k=2

[
1

γk

− 1

γk−1

]
(Zk − m)

− 1

n

n∑
k=1

δk + 1

n

n∑
k=1

ξk+1.

(4.4)

Noting that
∑n

k=1 ξk+1 is a martingale term adapted to the filtration (Fn), the proof
of Theorem 4.2 relies on the application of Pinelis–Bernstein’s lemma (see [26],
Appendix A) to this term and on the fact that, thanks to Theorem 3.1, it can be
shown that the other terms at the right-hand side of (4.4) are negligible.

REMARK 4.2. We can also have a more precise form of the rank nδ (see the
proof of Theorem 4.2):

nδ := max
{(

6C′
1

δ ln(4
δ
)

) 1
1/2−α/2

,

(
6C′

2

δ ln(4
δ
)

) 1
α−1/2

,

(
6C′

3

δ ln(4
δ
)

) 1
2
}
,(4.5)

where C′
1, C′

2 and C′
3 are constants. We can remark that the first two terms are the

leading ones and if the rate α is chosen equal to 2/3, they are of the same order
that is nδ = O(( −1

δ ln δ
)6).

REMARK 4.3. We can make an informal comparison of previous result with
the central limit theorem stated in ([8], Theorem 3.4), even if the latter result is
only of asymptotic nature. Under assumptions (A1)–(A3), it has been shown that

√
n(Zn − m)

L−−−→
n→∞ N

(
0,�−1

m ��−1
m

)
,
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with

� = E

[
(X − m)

‖X − m‖ ⊗ (X − m)

‖X − m‖
]
.

This implies, with the continuity of the norm in H , that for all t > 0,

lim
n→∞P

[∥∥√n(Zn − m)
∥∥ ≥ t

] = P
[‖V ‖ ≥ t

]
,

where V is a centered H -valued Gaussian random vector with covariance operator

V = �−1

m ��−1
m . Operator 
V is self-adjoint and nonnegative, so that it admits

a spectral decomposition 
V = ∑
j≥1 ηjvj ⊗ vj , where η1 ≥ η2 ≥ · · · ≥ 0 is the

sequence of ordered eigenvalues associated to the orthonormal eigenvectors vj ,
j ≥ 1. Using the Karhunen–Loève’s expansion of V , we directly get that

‖V ‖2 = ∑
j≥1

η2
jV

2
j ,

where V1,V2, . . . are i.i.d. centered Gaussian variables with unit variance. Thus,
the distribution of ‖V ‖2 is a mixture of independent Chi-square random variables
with one degree of freedom. Computing the quantiles of ‖V ‖ to build confidence
balls would require to know, or to estimate, all the (leading) eigenvalues of the
rather complicated operator 
V and this is not such an easy task. Indeed, it would
be necessary to project on a finite dimensional space to get the inverse of the Hes-
sian before extracting the leading eigenvectors of the covariance. Finally, the last
issue with the use of the central limit theorem to get confidence balls is that, to our
knowledge, its rate of convergence is not known.

On the other hand, the use of the confidence balls given in Theorem 4.2 only
requires the knowledge of λmin. This eigenvalue is not difficult to estimate since it
can also be written as

λmin = E

[
1

‖X − m‖
]

− λmax

(
E

[
1

‖X − m‖3 (X − m) ⊗ (X − m)

])
,

where λmax(A) denotes the largest eigenvalue of operator A.

REMARK 4.4. Under previous assumptions, with analogous calculus to the
ones in the proof of Theorem 4.2 and applying Theorem 3.1, it can be shown that
there is a positive constant C′ such that for all n ≥ 1,

E
[‖Zn − m‖] ≤ C′

√
n
.

Moreover, assuming the additional condition α > 2/3, it can be shown that there
is a positive constant C ′′ such that

E
[‖Zn − m‖2] ≤ C′′

n
.

The averaged algorithm converges at the parametric rate of convergence in
quadratic mean.
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5. Proofs.

5.1. Proof of Theorem 3.1. As explained in Section 3, the proof of Theo-
rem 3.1 is based on Lemma 3.1, which allows to obtain an upper bound of the
quadratic mean error, and on Lemma 3.2, which gives an upper bound of the L4

error. We first prove Lemma 3.1. In order to do so, we have to introduce a new
technical lemma which gives a bound of the rest in the Taylor’s expansion of the
gradient. This will enable us to bound the rest term βn−1Rn in decomposition (4.2).

LEMMA 5.1. Assuming assumption (A3), there is a constant Cm such that for
all n ≥ 1:

(5.1) ‖δn‖ ≤ Cm‖Zn − m‖2,

where δn := �(Zn)−�m(Zn −m) is the second order term in the Taylor’s decom-
position of �(Zn).

The proof is given in the Supplementary Material [7]. We can now prove
Lemma 3.1.

PROOF OF LEMMA 3.1. Let us study the asymptotic behavior of the sequence
of operators (βn). Since �m admits a spectral decomposition, we have ‖αk‖ ≤
supj |1 − γkλj | where (λj ) is the sequence of eigenvalues of �m. Since for all
j ≥ 1 we have 0 < cm ≤ λj ≤ C, there is a rank n0 such that for all n ≥ n0,
γnC < 1. In particular, for all n ≥ n0 we have ‖αn‖ ≤ 1 − γncm. Thus, there is a
positive constant c1 such that for all n ≥ 1:

(5.2) ‖βn−1‖ ≤ c1 exp

(
−λmin

n−1∑
k=1

γk

)
≤ c1 exp

(
−cm

n−1∑
k=1

γk

)
,

where λmin > 0 is the smallest eigenvalue of �m. Similarly, there is a positive
constant c2 such that for all integer n and for all integer k ≤ n − 1:

(5.3)
∥∥βn−1β

−1
k

∥∥ ≤ c2 exp

(
−cm

n−1∑
j=k+1

γj

)
.

Moreover, for all n > n0, k ≥ n0 such that k ≤ n − 1 (see [8] for more details),

(5.4)
∥∥βn−1β

−1
k

∥∥ ≤ exp

(
−cm

n−1∑
j=k+1

γj

)
.

Using decomposition (4.2) again, we get

E
[‖Zn − m‖2] ≤ 3E

[∥∥βn−1(Z1 − m)
∥∥2] + 3E

[‖βn−1Mn‖2]
+ 3E

[‖βn−1Rn‖2]
.

(5.5)
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We now bound each term on the right-hand side of previous inequality.
Step 1: The quasi-deterministic term: Using inequality (5.2), with help of an

integral test for convergence, for all n ≥ 1:

E
[∥∥βn−1(Z1 − m)

∥∥2] ≤ c2
1 exp

(
−2cm

n−1∑
k=1

γk

)
E

[‖Z1 − m‖2]
≤ c2

1

(
−2cmcγ

∫ n

1
t−α dt

)
E

[‖Z1 − m‖2]
≤ c2

1M exp
(

2
cmcγ

1 − α

)
exp

(
−2

cmcγ

1 − α
n1−α

)
.

Since α < 1, this term converges exponentially to 0.
Step 2: The martingale term: We have

‖βn−1Mn‖2 =
∥∥∥∥∥
n−1∑
k=1

γkβn−1β
−1
k ξk+1

∥∥∥∥∥
2

≤
n−1∑
k=1

γ 2
k

∥∥βn−1β
−1
k

∥∥2‖ξk+1‖2

+ 2
n−1∑
k=1

∑
k′<k

γkγk′
〈
βn−1β

−1
k ξk+1, βn−1β

−1
k′ ξk′+1

〉
.

Since (ξn) is a sequence of martingale differences, for all k′ < k we have
E[〈ξk+1, ξk′+1〉] = 0. Thus,

(5.6) E
[‖βn−1Mn‖2] ≤

n−1∑
k=1

γ 2
k

∥∥βn−1β
−1
k

∥∥2
,

because for all k ∈ N, E[‖ξk+1‖2] ≤ 1. The term ‖βn−1β
−1
k ‖ converges exponen-

tially to 0 when k is lower enough than n. We denote by E(·) the integer function
and we isolate the dominating term. Let us split the sum into two parts:

(5.7)
n−1∑
k=1

γ 2
k

∥∥βn−1β
−1
k

∥∥2 =
E(n/2)−1∑

k=1

γ 2
k

∥∥βn−1β
−1
k

∥∥2 +
n−1∑

k=E(n/2)

γ 2
k

∥∥βn−1β
−1
k

∥∥2
.

We shall show that the first term on the right-hand side in (5.7) converges exponen-
tially to 0 and that the second term on the right-hand side, which is the dominating
one, converges at the rate 1

nα . Indeed, we deduce from inequality (5.3):

E(n/2)−1∑
k=1

γ 2
k

∥∥βn−1β
−1
k

∥∥2 ≤ c2

E(n/2)−1∑
k=1

γ 2
k e−2cm

n
2

cγ
nα ≤ c2e

−cmcγ n1−α
E(n/2)−1∑

k=1

γ 2
k .
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Since
∑

γ 2
k < ∞, we get

∑E(n/2)−1
k=1 γ 2

k ‖βn−1β
−1
k ‖2 = O(e−cmcγ n1−α

).
We now bound the second term on the right-hand side of equality (5.7). Using

inequality (5.4), for all n > 2n0:

n−1∑
k=E(n/2)

γ 2
k

∥∥βn−1β
−1
k

∥∥2 ≤
n−2∑

k=E(n/2)

γ 2
k e

−2cm
∑n−1

j=k+1 γj + γ 2
n−1

≤ cγ

(
1

E(n/2)

)α n−2∑
k=E(n/2)

γke
−2cm

∑n−1
j=k+1 γj + γ 2

n−1

≤ 2αcγ

nα

n−2∑
k=E(n/2)

γke
−2cm

∑n−1
j=k+1 γj + γ 2

n−1.

Moreover, for all n > 2n0 and k ≤ n − 2,

n−1∑
j=k+1

γj ≤
∫ n

k+1

cγ

sα
ds = cγ

1 − α

[
n1−α − (k + 1)1−α]

,

and hence e
−2cm

∑n−1
j=k+1 γj ≤ e−2cm

cγ
1−α

[n1−α−(k+1)1−α]. Since 1
kα ≤ 2

(k+1)α
,

n−2∑
k=E(n/2)

γke
2cm

cγ
1−α

(k+1)1−α ≤ 2αcγ

n−2∑
k=E(n/2)

1

(k + 1)α
e2cm

cγ
1−α

(k+1)1−α

≤ 2αcγ

∫ n−1

E(n/2)

1

(t + 1)α
e2cm

cγ
1−α

(t+1)1−α

dt

≤ 2α−1

cm

e2cm
cγ

1−α
n1−α

.

Note that the integral test for convergence is valid because there is a rank n′
0 ∈ N

such that the function t �−→ 1
(t+1)α

e2cm
cγ

1−α
(t+1)1−α

is increasing on [n′
0,∞). Let

n1 := max{2n0 + 1, n′
0}, for all n ≥ n1:

(5.8)
n−1∑

k=E(n/2)

γ 2
k

∥∥βn−1β
−1
k

∥∥2 ≤ 22α−1cγ

cm

1

nα
+ cγ 22α 1

n2α
.

Consequently, there is a positive constant C2 such that for all n ≥ 1,

(5.9) 3E
[‖βn−1Mn‖2] ≤ C2

1

nα
.

REMARK 5.1. Note that splitting the sum in equation (5.7) is really crucial to
get the good rate of convergence of the martingale term. Remark that a different
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split was considered in [8], which leads to a nonoptimal bound of the form

E
[‖βn−1Mn‖2] ≤ C2 lnn

nα
.

Step 3: The rest term: In the same way, we split the sum into two parts:

(5.10)
n−1∑
k=1

γkβn−1β
−1
k δk =

E(n/2)−1∑
k=1

γkβn−1β
−1
k δk +

n−1∑
k=E(n/2)

γkβn−1β
−1
k δk.

One can check (see the proof of Lemma 5.3 for more details) that there is a positive
constant M such that for all n ≥ 1,

(5.11) E
[‖Zn − m‖4] ≤ M.

Moreover, by Lemma 5.1, ‖δn‖ ≤ Cm‖Zn −m‖2. Thus, for all k, k′ ≥ 1, the appli-
cation of Cauchy–Schwarz’s inequality gives us

E
[‖δk‖‖δk′‖] ≤ C2

mE
[‖Zk − m‖2‖Zk′ − m‖2]

≤ C2
m sup

n≥1
E

[‖Zn − m‖4] ≤ C2
mM.

As a particular case, we also have E[|〈δk, δk′ 〉|] ≤ C2
mM . Applying this result to

the term on the right-hand side in (5.10),

E

[∥∥∥∥∥
E(n/2)−1∑

k=1

γkβn−1β
−1
k δk

∥∥∥∥∥
2]

≤ C2
mM

[E(n/2)−1∑
k=1

γk

∥∥βn−1β
−1
k

∥∥]2

≤ c2C
2
mMe−2cmcγ n1−α

(E(n/2)−1∑
k=1

γk

)2

≤ C′
1e

−2cmcγ n1−α

n2−2α.

This term converges exponentially to 0. To bound the second term, we use the
same idea as for the martingale term. Applying previous inequalities for the terms
E[‖δk‖‖δk′‖] which appear in the double products, we get

E

[∥∥∥∥∥
n−1∑

k=E(n/2)

γkβn−1β
−1
k δk

∥∥∥∥∥
2]

≤ C2
m sup

E(n/2)≤k≤n−1
E

[‖Zk − m‖4][ n−1∑
k=E(n/2)

γk

∥∥βn−1β
−1
k

∥∥]2

≤ C3 sup
E(n/2)≤k≤n−1

E
[‖Zk − m‖4]

,
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since [∑n−1
k=E(n/2) γk‖βn−1β

−1
k ‖]2 is bounded. Indeed, one can check it with similar

calculus to the ones in the proof of inequality (5.9). We put together the terms
which converge exponentially to 0. �

To prove Lemma 3.2, we introduce two technical lemmas. The first one gives a
bound of the decomposition in the particular case when ‖Zn −m‖ is not too large.

LEMMA 5.2. If assumptions (A1) and (A2) holds, there are a rank nα and a
constant c such that for all n ≥ nα , ‖Zn − m‖ ≤ cn1−α yields

(5.12)
〈
�(Zn),Zn − m

〉 ≥ 1

cγ n1−α
‖Zn − m‖2.

As a corollary, there is also a deterministic rank n′
α such that for all n ≥ n′

α ,
‖Zn − m‖ ≤ cn1−α yields

(5.13)
∥∥Zn − m − γn�(Zn)

∥∥2 ≤
(

1 − 1

n

)
‖Zn − m‖2.

PROOF. We suppose that ‖Zn − m‖ ≤ cn1−α . We must consider two cases.
If ‖Zn − m‖ ≤ 1, then we have in particular ‖Zn‖ ≤ ‖m‖ + 1. Consequently,

we get with Corollary 2.2 in [8] that there is a positive constant c1 such that
〈�(Zn),Zn − m〉 ≥ c1‖Zn − m‖2.

If ‖Zn − m‖ ≥ 1, since �(Zn) = ∫ 1
0 �m+t (Zn−m)(Zn − m)dt ,

〈
�(Zn),Zn − m

〉 = ∫ 1

0

〈
Zn − m,�m+t (Zn−m)(Zn − m)

〉
dt.

Moreover, operators �h are nonnegative for all h ∈ H . Applying Proposition 2.1
of [8], and since for all t ∈ [0, 1

‖Zn−m‖ ] we have ‖m + t (Zn − m)‖ ≤ ‖m‖ + 1,
there is a positive constant c2 such that

〈
�(Zn),Zn − m

〉 = ∫ 1

0

〈
Zn − m,�m+t (Zn−m)(Zn − m)

〉
dt

≥
∫ 1/‖Zn−m‖

0

〈
Zn − m,�m+t (Zn−m)(Zn − m)

〉
dt

≥
∫ 1/‖Zn−m‖

0
c2‖Zn − m‖2 dt

≥ c2

cn1−α
‖Zn − m‖2.

We can choose a rank nα such that for all n ≥ nα we have c1 ≥ 1
cγ n1−α which

concludes the proof of inequality (5.12) with c = c2cγ .
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We now prove inequality (5.13). For all n ≥ nα , ‖Zn − m‖ ≤ cn1−α yields∥∥Zn − m − γn�(Zn)
∥∥2 ≤ ‖Zn − m‖2 − 2

cγ n1−α

cγ

nα
‖Zn − m‖2

+ γ 2
n C2‖Zn − m‖2

=
(

1 − 2

n
+ C2 c2

γ

n2α

)
‖Zn − m‖2.

Thus, we can choose a rank n′
α ≥ nα such that for all n ≥ n′

α we have C2 c2
γ

n2α ≤ 1
n

.
Note that this is possible since α > 1/2. �

The second lemma shows that the probability for ‖Zn − m‖ to be large is very
small as n increases.

LEMMA 5.3. There is a positive constant Cα such that for all n ≥ 1,

P
[‖Zn − m‖ ≥ cn1−α] ≤ Cα

n4−α
,

where c has been defined in the previous lemma.

The proof is given in the Supplementary Material [7].

PROOF OF LEMMA 3.2. For all n ≥ 1,

E
[‖Zn+1 − m‖4] = E

[‖Zn+1 − m‖41‖Zn−m‖≥cn1−α

]
+E

[‖Zn+1 − m‖41‖Zn−m‖<cn1−α

]
,

(5.14)

with c defined in Lemma 5.2. Let us bound the first term in (5.14). Since
‖Zn+1 − m‖ ≤ ‖Zn − m‖ + γn ≤ ‖Z1 − m‖ + ∑n

k=1 γk and since Z1 is bounded
or deterministic, there is a constant C′

α such that for all integer n ≥ 1,

‖Zn − m‖ ≤ C′
αn1−α.

Consequently,

E
[‖Zn+1 − m‖41‖Zn−m‖≥cn1−α

] ≤ E
[(

C′
α(n + 1)1−α)41‖Zn−m‖≥cn1−α

]
≤ (

C′
α(n + 1)1−α)4

P
[‖Zn − m‖ ≥ cn1−α]

.

Thus, applying Lemma 5.3, we get

(
C′

α(n + 1)1−α)4
P

[‖Zn − m‖ ≥ cn1−α] ≤ C′4
α Cα(n + 1)4−4α

n4−α
≤ 24−4α C′4

α Cα

n3α
.
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We now bound the second term. Suppose that ‖Zn − m‖ ≤ cn1−α . Since
‖ξn+1‖ ≤ 2, using Lemma 5.2, there is a rank nα such that for all n ≥ nα ,

‖Zn+1 − m‖21‖Zn−m‖<cn1−α

= (∥∥Zn − m − γn�(Zn)
∥∥2 + γ 2

n ‖ξn+1‖2

+ 2γn

〈
Zn − m − γn�(Zn), ξn+1

〉)
1‖Zn−m‖<cn1−α

≤
((

1 − 1

n

)
‖Zn − m‖2 + 4γ 2

n

+ 2γn

〈
Zn − m − γn�(Zn), ξn+1

〉)
1‖Zn−m‖<cn1−α .

Moreover, since (ξn+1) is a sequence of martingale differences for the filtration
(Fn),

E
[〈
Zn − m − γn�(Zn), ξn+1

〉
1‖Zn−m‖≤cn1−α |Fn

] = 0,

E
[〈
Zn − m − γn�(Zn), ξn+1

〉‖Zn − m‖21‖Zn−m‖≤cn1−α |Fn

] = 0.

Applying Cauchy–Schwarz’s inequality,

E
[‖Zn+1 − m‖41‖Zn−m‖≤cn1−α

]
≤

(
1 − 1

n

)2
E

[‖Zn − m‖41‖Zn−m‖≤cn1−α

] + 16γ 4
n

+ 8γ 2
n

(
1 − 1

n

)
E

[‖Zn − m‖21‖Zn−m‖≤cn1−α

]
+ 4γ 2

nE
[〈
Zn − m − γn�(Zn), ξn+1

〉21‖Zn−m‖≤cn1−α

]
≤

(
1 − 1

n

)2
E

[‖Zn − m‖4] + 16γ 4
n + 8γ 2

nE
[‖Zn − m‖2]

+ 4γ 2
nE

[∥∥Zn − m − γn�(Zn)
∥∥2
E

[‖ξn+1‖2|Fn

]
1‖Zn−m‖≤cn1−α

]
.

Finally, since E[‖ξn+1‖2|Fn] ≤ 1, applying Lemma 5.3 we get

E
[‖Zn+1 − m‖41‖Zn−m‖≤cn1−α

]
≤

(
1 − 1

n

)2
E

[‖Zn − m‖4] + 16γ 4
n

+ 8γ 2
nE

[‖Zn − m‖2] + 4γ 2
n

(
1 − 1

n

)
E

[‖Zn − m‖2]
≤

(
1 − 1

n

)2
E

[‖Zn − m‖4] + 16γ 4
n + 12γ 2

nE
[‖Zn − m‖2]

.
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Since γ 4
n = o( 1

n3α ), there are positive constants C′
1, C′

2 such that for all n ≥ nα ,

E
[‖Zn+1 − m‖4]

= E
[‖Zn+1 − m‖41‖Zn−m‖≥cn1−α

] +E
[‖Zn+1 − m‖41‖Zn−m‖≤cn1−α

]
≤ 24−4αC′4

α Cα

n3α
+

(
1 − 1

n

)2
E

[‖Zn − m‖4] + 16γ 4
n + 12γ 2

nE
[‖Zn − m‖2]

≤
(

1 − 1

n

)2
E

[‖Zn − m‖4] + C′
1

1

n3α
+ C′

2
1

n2α
E

[‖Zn − m‖2]
. �

PROOF OF THEOREM 3.1. Let β ∈ (α,3α − 1), there is a rank nβ ≥ nα (nα is
defined in Lemma 3.2) such that for all n ≥ nβ we have (1 − 1

n
)2(n+1

n
)β + (C′

1 +
C′

2)2
3α 1

(n+1)3α−β ≤ 1 (C′
1, C′

2 are defined in Lemma 3.2). Indeed, since β < 3α −
1 < 2, (

1 − 1

n

)2(
n + 1

n

)β

+ (
C′

1 + C′
2
)
23α 1

(n + 1)3α−β

= 1 − (2 − β)
1

n
+ o

(
1

n

)
.

We now prove by induction that there are positive constants C′, C′′ such that 2C′ ≥
C′′ ≥ C′ ≥ 1 and such that for all n ≥ nβ ,

E
[‖Zn − m‖2] ≤ C′

nα
,

E
[‖Zn − m‖4] ≤ C′′

nβ
.

Let us choose C′ ≥ nβE[‖Znβ − m‖2] and C′′ ≥ nβE[‖Znβ − m‖4]. This is pos-
sible since there is a positive constant M such that for all n ≥ 1, sup{E[‖Zn −
m‖2],E[‖Zn − m‖4]} ≤ M . Let n ≥ nβ , using Lemma 3.2 and by induction,

E
[‖Zn+1 − m‖4] ≤

(
1 − 1

n

)2
E

[‖Zn − m‖4] + C′
1

n3α
+ C′

2

n2α
E

[‖Zn − m‖2]
≤

(
1 − 1

n

)2 C′′

nβ
+ C′

1

n3α
+ C′

2C
′

n3α
.

Moreover, since C′ ≤ C′′ and since C′′ ≥ 1,

E
[‖Zn+1 − m‖4] ≤

(
1 − 1

n

)2 C′′

nβ
+ C′

1C
′′

n3α
+ C′

2C
′′

n3α
.
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Factorizing by C′′
(n+1)β

, we get

E
[‖Zn+1 − m‖4]

≤
(

1 − 1

n

)2(
1 + 1

n

)β C′′

(n + 1)β

+ (
C′

1 + C′
2
)(

1 + 1

n

)3α 1

(n + 1)3α−β

C′′

(n + 1)β

≤
((

1 − 1

n

)2(
1 + 1

n

)β

+ (
C′

1 + C′
2
)
23α 1

(n + 1)3α−β

)
C′′

(n + 1)β
.

By definition of nβ ,

(5.15) E
[‖Zn+1 − m‖4] ≤ C′′

(n + 1)β
.

We now prove that E[‖Zn+1 −m‖2] ≤ C′
(n+1)α

. Since C′′ ≤ 2C′, by Lemma 3.1 and
by induction, there is a constant C′′′ > 0 such that

E
[‖Zn+1 − m‖2] ≤ C′′′

(n + 1)α
+ C3 sup

n/2+1≤k≤n+1
E

[‖Zk − m‖4]
≤ C′′′

(n + 1)α
+ 2β+1C3

1

(n + 1)β−α

C′

(n + 1)α
.

To get E[‖Zn+1 − m‖2] ≤ C′
(n+1)α

, we choose C′ ≥ C′′′ + 2β+1C3
1

(n+1)β−α , which

concludes the induction. The proof is complete for all n ≥ 1 by taking C′ ≥
maxn≤nβ {nα

E[‖Zn − m‖2]} and C′′ ≥ maxn≤nβ {nβ
E[‖Zn − m‖4]}. �

5.2. Proof of Theorem 4.2. Let us recall the decomposition of the averaged
algorithm

�m(Zn − m) = Z1 − m

nγ1
− Zn+1 − m

nγn

+
n∑

k=2

(
1

γk

− 1

γk−1

)
(Zk − m)

− 1

n

n∑
k=1

δk + 1

n

n∑
k=1

ξk+1.

We now bound each term on the right-hand side of previous inequality. Note
that since E[‖Zn − m‖2] ≤ C′

nα , applying Cauchy–Schwarz’s inequality, we have

E[‖Zn − m‖] ≤
√

C′
nα . Then

E

[∥∥∥∥Zn+1 − m

nγn

∥∥∥∥2]
≤ n2α

cγ n2E
[‖Zn+1 − m‖2] ≤ 2αC′

cγ

1

n2−α
.
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Since α < 1, remark that 2−α
2 > 1

2 . Moreover, since γ −1
k − γ −1

k−1 ≤ 2αc−1
γ kα−1,

there is a positive constant C1 such that

E

[∥∥∥∥∥1

n

n∑
k=2

(Zk − m)
(
γ −1
k − γ −1

k−1

)∥∥∥∥∥
]

≤ 2αc−1
γ

n

n∑
k=2

E
[‖Zk − m‖]

kα−1

≤ 2αc−1
γ

√
C′

n

n/2−1∑
k=2

kα/2−1

≤ C1

n1−α/2 .

Note also that since α < 1, we have 1 − α/2 ≥ 1/2. Moreover, since ‖δn‖ ≤
Cm‖Tn‖2, there is a positive constant C2 such that

E

[∥∥∥∥∥1

n

n∑
k=1

δk

∥∥∥∥∥
]

≤ Cm

n

n∑
k=1

E
[‖Zk − m‖2] ≤ CmC′

n

n∑
k=1

k−α ≤ C2
1

nα
.

Finally, there is a positive constant C3 such that E[‖Z1−m
γ1n

‖] ≤ C3
n

.
We now study the martingale term. Let M be a constant and (σn) be a se-

quence of positive real numbers defined by M := 2 ≥ supi ‖ξi‖ and σ 2
n := n ≥∑n

k=1 E[‖ξk‖2|Fk−1]. Applying Pinelis–Bernstein’s lemma, we have for all t > 0,

P

(
sup

1≤k≤n

∥∥∥∥∥
k∑

j=1

ξj+1

∥∥∥∥∥ ≥ t

)
≤ 2 exp

[
− t2

2(σ 2
n + Mt/3)

]
.

Consequently,

P

(‖∑n
k=1 ξk+1‖

n
≥ t

)
≤ P

(
sup

1≤k≤n

∥∥∥∥∥
k∑

j=1

ξj+1

∥∥∥∥∥ ≥ tn

)

≤ 2 exp
[
− t2

2(σ ′2
n + N ′

nt/3)

]
,

with σ ′2
n := 1/n and N ′

n := 2/n. As in the proof of Theorem 4.1, there are positive
constants C ′

1, C′
2, C′

3 such that for all t > 0,

P
[∥∥�m(Zn − m)

∥∥ ≥ t
]

≤ 2 exp
[
− (t/2)2

2(σ ′2
n + N ′

nt/6)

]
+ C′

1

n1−α/2 + C′
2

nα
+ C′

3

n

=: g(t, n).
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We search values of t such that g(t, n) ≤ δ and we must solve the following system
of inequalities:

2 exp
[
− (t/2)2

2(σ ′2
n + Nnt/6)

]
≤ δ/2,

C′
1

tn1−α/2 ≤ δ/6,

C′
2

tnα
≤ δ/6,

C′
3

tn
≤ δ/6.

We get that t must satisfy (see [26], Appendix A, for the martingale term):

t ≥ 4
(

N ′
n

3
+ σ ′

n

)
ln

(
4

δ

)
, t ≥ 6C′

1

δ

1

n1−α/2 ,

t ≥ 6C′
2

δ

1

nα
, t ≥ 6C′

3

δ

1

n
.

Since (
N ′

n

3 + σ ′
n) = 2

3n
+ 1√

n
, the other terms are negligible for n large enough and

we can choose

nδ := max
{(

6C′
1

δ ln(4
δ
)

) 1
1/2−α/2

,

(
6C′

2

δ ln(4
δ
)

) 1
α−1/2

,

(
6C′

3

δ ln(4
δ
)

) 1
2
}
.(5.16)
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SUPPLEMENTARY MATERIAL

Supplement to “Online estimation of the geometric median in Hilbert
spaces: Nonasymptotic confidence balls” (DOI: 10.1214/16-AOS1460SUPP;
.pdf). We provide the proofs of some technical ancillary lemmas and propositions.
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