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A GENERAL THEORY OF HYPOTHESIS TESTS
AND CONFIDENCE REGIONS FOR SPARSE

HIGH DIMENSIONAL MODELS1
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Cornell University and Princeton University

We consider the problem of uncertainty assessment for low dimensional
components in high dimensional models. Specifically, we propose a novel
decorrelated score function to handle the impact of high dimensional nui-
sance parameters. We consider both hypothesis tests and confidence regions
for generic penalized M-estimators. Unlike most existing inferential meth-
ods which are tailored for individual models, our method provides a general
framework for high dimensional inference and is applicable to a wide variety
of applications. In particular, we apply this general framework to study five
illustrative examples: linear regression, logistic regression, Poisson regres-
sion, Gaussian graphical model and additive hazards model. For hypothesis
testing, we develop general theorems to characterize the limiting distribu-
tions of the decorrelated score test statistic under both null hypothesis and
local alternatives. These results provide asymptotic guarantees on the type I
errors and local powers. For confidence region construction, we show that the
decorrelated score function can be used to construct point estimators that are
asymptotically normal and semiparametrically efficient. We further general-
ize this framework to handle the settings of misspecified models. Thorough
numerical results are provided to back up the developed theory.

1. Introduction. Given n independent and identically distributed multivariate
random variables U1, . . . ,Un, assume that they are generated by a statistical model
P = {Pβ : β ∈ �}, where β is a d-dimensional unknown vector of parameters
with d much larger than the sample size n and � is the parameter space. In high
dimensional settings, one general approach to estimate β is given by the penalized
M-estimator

(1.1) β̂ = argmin
β∈�

�(β) + Pλ(β),

where �(β) is a loss function (e.g., the negative log-likelihood) and Pλ(β) is a
penalty function with a tuning parameter λ. These penalty functions can be clas-
sified into two categories: convex penalties and nonconvex penalties. The most
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popular convex penalty is the L1 penalty, also known as the Lasso penalty [33],
whose theoretical properties have been extensively studied in the literature. For in-
stance, the statistical rate of the Lasso estimator is established by [5], and the vari-
able selection consistency is studied by [24, 43]. The class of nonconvex penalties
includes MCP [41], SCAD [8] and capped-L1 penalty. Theoretical properties of
these nonconvex estimators are investigated by [8, 37, 38, 41], among others.

Though significant progress has been made toward understanding the estima-
tion theory of penalized M-estimators, it remains less explored on quantifying the
uncertainty of the obtained results. To bridge this gap, this paper proposes a new
device, named as decorrelated score function, to test statistical hypotheses and
construct confidence regions for low dimensional components in high dimensional
models. In particular, we partition the parameter β as β = (θ,γ ), where θ is a
finite-dimensional parameter of interest and γ is a nuisance parameter. We aim to
test the null hypothesis H0 : θ∗ = 0, where θ∗ is the true value of θ . The main
challenge of this problem is the presence of high dimensional nuisance parame-
ters, which invalidates the classical inferential theory. To handle this challenge,
we apply a decorrelation operation on the high dimensional score function, so that
the obtained decorrelated score function for θ becomes uncorrelated with the nui-
sance score functions. Unlike the classical score function, the decorrelated score
can handle the impact of high dimensional nuisance parameters. With the decor-
related score function as a key ingredient, our framework is quite general. For
example, it provides valid inference for penalized M-estimators with both convex
and nonconvex penalties.

Theoretically, for hypothesis testing, we prove the limiting distributions of the
decorrelated score test statistic under both the null hypothesis and local alterna-
tives. These results characterize the asymptotic type I errors and local powers of the
test. We further establish the uniform weak convergence of the test statistic, which
implies honesty of the score test in terms of the type I errors and powers. For con-
fidence region construction, we show that the decorrelated score function can be
used to construct an estimator that is asymptotically normal and achieves the infor-
mation lower bound, leading to an optimal confidence region. These theorems are
established under a general framework. Thus, this paper provides a general theory
for hypothesis tests and confidence regions in high dimensional models. We further
illustrate the proposed methods by several commonly-used models including linear
regressions, logistic regressions, Poisson regressions, Gaussian graphical models
and additive hazards models.

To further broaden our framework, we provide valid inferential results under
general misspecified models. In particular, we show that the proposed score test is
robust to model misspecification, thus obtains valid inference on oracle parameters
(i.e., least false parameters). This generalizes the classical misspecified model the-
ory developed by [40]. Results on model misspecification is illustrated for linear
regression.
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We point out that the decorrelated score test can be viewed as a high dimen-
sional extension of the Rao’s score test in statistics [7] and the Lagrange multiplier
test in econometrics [11]. In particular, the decorrelated score test is asymptoti-
cally equivalent to these two tests in low dimensional models. However, in high
dimensions, the type I error can be controlled by the decorrelated score test rather
than the two classical tests.

1.1. Related works. In the literature, there exist some recent works on uncer-
tainty assessment for the regularized estimators in high dimensional models. In
an early work, [15] showed that the limiting distribution of the Lasso estimator is
nonnormal even in the low dimensional setting. Recently, in the high dimensional
setting, several authors including [25, 26, 39] considered p-values based on the
sample splitting technique or subsampling. Unlike these approaches, our approach
avoids sample splitting and is potentially more powerful. For the L1-regularized
linear regression, [16, 22] considered the conditional inference given the event that
some covariates have been selected, which is philosophically different from our
unconditional inference. An instrumental variable approach together with a dou-
ble selection procedure is proposed by [3]. From a different perspective, [13, 14,
34, 42] proposed a debiased method (named as LDPE) or desparsifying method
to construct confidence intervals for linear or generalized linear models with the
Lasso penalty. Unlike these works which are tailored for individual models, our
decorrelated score method provides a general framework for high dimensional in-
ference. In addition, our method can be used to infer the oracle parameter under
model misspecification. With a class of nonconvex penalty functions, [8] estab-
lished the oracle properties of the obtained estimator. However, such oracle results
require minimal signal strength conditions which may not hold in many applica-
tions and the uncertainty of the estimation for small signals cannot be evaluated. In
contrast, our method does not require variable selection consistency and provides
valid inference for small signals. For hypothesis testing, [36] proposed a penalized
score test. However, they focused on a null hypothesis depending on the tuning
parameter and their test is biased for H0 : θ∗ = 0. In addition, the validity of their
test hinges on an irrepresentable type condition, which is not needed here.

1.2. Organization of the paper. In Section 2, we propose the decorrelated
score function. In Section 3, we establish general results for hypothesis tests and
confidence regions. In Section 4, we apply these general results to linear regres-
sion, logistic regression, Poisson regression, Gaussian graphical model, and ad-
ditive hazards model. In Section 5, we consider misspecified models. Section 6
provides numerical results and Section 7 contains more discussions. We defer tech-
nical details to the supplementary materials [27].
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1.3. Notation. The following notation is adopted throughout this paper. For
v = (v1, . . . , vd)T ∈ R

d , and 1 ≤ q ≤ ∞, we define ‖v‖q = (
∑d

i=1 |vi |q)1/q ,
‖v‖0 = | supp(v)|, where supp(v) = {j : vj �= 0} and |A| is the cardinality of a
set A. Denote ‖v‖∞ = max1≤i≤d |vi | and v⊗2 = vvT . For a matrix M = [Mjk],
let ‖M‖max = maxjk |Mjk|, ‖M‖1 = ∑

jk |Mjk|, ‖M‖�∞ = maxj

∑
k |Mjk|. If the

matrix M is symmetric, then λmin(M) and λmax(M) are the minimal and maximal
eigenvalues of M. For S ⊆ {1, . . . , d}, let vS = {vj : j ∈ S} and S̄ be the comple-
ment of S. The gradient of a function f (x) is denoted by ∇f (x). Let ∇Sf (x)

denote the gradient of f (x) with respect to xS . For two positive sequences an and
bn, we write an � bn if C ≤ an/bn ≤ C′ for some C,C′ > 0. Similarly, we use
an � bn to denote an ≤ Cbn for some constant C > 0. For a sequence of random
variables Xn, we write Xn � X, if Xn converges weakly to X. Given a, b ∈ R, let
a ∨ b and a ∧ b denote the maximum and minimum of a and b. A random vari-
able X is sub-exponential if there exists some constant K1 > 0 such that P(|X| >

t) ≤ exp(1 − t/K1) for all t ≥ 0. The sub-exponential norm of X is defined as
‖X‖ψ1 = supp≥1 p−1(E|X|p)1/p . A random variable X is sub-Gaussian if there
exists some constant K2 > 0 such that P(|X| > t) ≤ exp(1 − t2/K2

2 ) for all t ≥ 0.
The sub-Gaussian norm of X is defined as ‖X‖ψ2 = supp≥1 p−1/2(E|X|p)1/p . For
simplicity, we use C,C′,C′′ to denote generic constants, whose values can change
from line to line.

2. Score function for high dimensional models. We first introduce a general
modeling framework and several examples. Then we review the classical Rao’s
score test for low dimensional models, and highlight the difficulty for directly ap-
plying it to models with high dimensional nuisance parameters. Finally, we pro-
pose a new device, named as decorrelated score function, to construct tests and
confidence regions in high dimensions.

2.1. A general statistical model framework and examples. Let U denote a
multivariate random variable following from a high dimensional statistical model
P = {Pβ : β ∈ �}, where β is a d dimensional unknown parameter and � is the
parameter space. To infer the true value of β , denoted by β∗ (which is an inte-
rior point of �), we assume that there exist n independently identically distributed
copies of U , that is, U1, . . . ,Un. In many statistical problems, the unknown pa-
rameter β can be partitioned as β = (θ,γ T )T , where θ is a univariate parame-
ter of interest and γ is a (d − 1) dimensional nuisance parameter. For simplicity
and without loss of generality, we consider only univariate parameter θ . Exten-
sion to finite-dimensional parameter θ is straightforward and is deferred to the
supplementary materials [27]. The statistical inferential problem can be formu-
lated as testing the validity of the null hypothesis H0 : θ∗ = 0 versus H1 : θ∗ �= 0
or constructing confidence intervals for θ∗. Instead of only relying on the like-
lihood based inference, our framework allows the inference based on a general
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loss function. To ease presentation, we introduce the notation of the loss function
�(θ,γ ) = 1

n

∑n
i=1 �i(θ,γ ), where �i(θ,γ ) is the loss function for the ith observa-

tion. For instance, �(θ,γ ) could be the negative log-likelihood for generalized lin-
ear models. Given �(β), we define I = Eβ(∇2�(β)), and Iθ |γ = Iθθ − Iθγ I−1

γ γ Iγ θ ,
where Iθθ , Iθγ , Iγ γ and Iγ θ are the corresponding partitions of I. When �(θ,γ )

is the negative log-likelihood, I and Iθ |γ are called Fisher information and par-
tial Fisher information, respectively. Similarly, denote I∗ = Eβ∗(∇2�(β∗)) and
w∗ = I∗−1

γ γ I∗
γ θ . Hereafter, we use Pβ∗(·) and Eβ∗(·) to denote the probability and

expectation evaluated under the joint probability density of (U1, . . . ,Un) indexed
by the true parameter β∗.

In this paper, we apply our general framework to study the high dimensional
inferential problems for the following five models.

2.1.1. Example 1: Linear regression models. Consider the linear regression,
Yi = θ∗Zi + γ ∗T Xi + εi , where Zi ∈ R, Xi ∈ R

d−1, and the error εi satisfies
E(εi) = 0, E(ε2

i ) = σ 2 for i = 1, . . . , n. Let Qi = (Zi,X
T
i )T denote the collection

of all covariates for sample i and β = (θ,γ T )T . The negative Gaussian quasi-
log-likelihood (i.e., the least square loss) has the form �(β) = (2n)−1 ∑n

i=1(Yi −
βT Qi )

2. For the purpose of theoretical derivation, we assume that noise εi satisfies
‖εi‖ψ2 ≤ C for some constant C, and 2κ ≤ λmin(E(Q⊗2

i )) ≤ λmax(E(Q⊗2
i )) ≤

2/κ for some constant κ > 0. In addition, we assume Qi is a sub-Gaussian vector.

2.1.2. Example 2: Logistic regression models. Assume that the binary out-
come Yi ∈ {0,1} given covariates Qi = (Zi,X

T
i )T ∈ R

d follows from the logistic
regression, whose negative log-likelihood is

�(θ,γ ) = −1

n

n∑
i=1

{
Yi

(
θZi + γ T Xi

) − log
[
1 + exp

(
θZi + γ T Xi

)]}
.

We derive the Fisher information matrix as I∗ = Eβ∗(exp(β∗T Qi )Q
⊗2
i /(1 +

exp(β∗T Qi ))
2). We assume that λmin(I∗) ≥ κ2 for some constant κ > 0, ‖Qi‖∞ ≤

K , and |w∗T Xi | ≤ K for some constant K > 0. These are technical conditions im-
posed the design variables, which are weaker than those in [34]; see Section 4 for
more detailed discussions.

2.1.3. Example 3: Poisson regression models. Assume that the outcome Yi ∈
{0,1,2, . . .} given covariates Qi = (Zi,X

T
i )T ∈ R

d follows from the Poisson re-
gression, whose negative log-likelihood is

�(θ,γ ) = −1

n

n∑
i=1

{
Yi

(
θZi + γ T Xi

) − exp
(
θZi + γ T Xi

)}
.
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The Fisher information matrix is I∗ = Eβ∗(exp(β∗T Qi )Q
⊗2
i ). Similarly, we as-

sume that λmin(I∗) ≥ κ2 for some constant κ > 0, ‖Qi‖∞ ≤ K , |w∗T Xi | ≤ K ,
and |β∗T Qi | ≤ K for some constant K > 0.

2.1.4. Example 4: Gaussian graphical models. Consider the Gaussian graph-
ical model X = (X1, . . . ,Xd)T ∼ N(0,�∗), where �∗ is the true covariance ma-
trix. Let X1, . . . ,Xn be n independent copies of X. Since the conditional inde-
pendence among X is characterized by the sparsity pattern of the precision matrix
�∗ = �∗−1, inferring the component of the unknown precision matrix �∗ is often
of interest. Denote the kth column of � as β . Without loss of generality, assume
we are interested in θ = 
∗

1k . Then we can similarly partition β as β = (θ,γ T )T .
We now consider the inference based on the following column-wise loss function
proposed by [21]:

(2.1) �(β) = 1

2
βT �̂β − eT

k β,

where �̂ = n−1 ∑n
i=1 XiX

T
i is the sample covariance matrix. Note that the ob-

jective function in (2.1) is a quadratic loss function instead of the log-likelihood
for Gaussian graphical models. Assume that for some constant ν, it holds that
1/ν ≤ λmin(�

∗) ≤ λmax(�
∗) ≤ ν.

2.1.5. Example 5: Additive hazards models. The additive hazards model pro-
vides a convenient approach for the regression analysis of right censored survival
data [17]. In the following, we first introduce some notation commonly used in
the survival analysis. Let T be the time to event, R be the censoring time and
Q(t) = (Z(t),XT (t))T be the d dimensional time-dependent covariate vector at
time t . Let W = min{T ,R} and � = I (T ≤ R) denote the observed survival time
and censoring indicator. Assume that T and R are conditionally independent given
all the covariates. The observed data consist of (Wi,�i,Qi (·)), for i = 1, . . . , n,
which are n independent copies of (W,�,Q(·)). Let λ(t | Q(t)) be the condi-
tional hazard function at time t given the covariates Q(t). The additive hazards
model assumes that λ(t | Q(t)) = λ0(t) + β∗T Q(t), where λ0(t) is an unknown
baseline hazard function and β∗ ∈ R

d is an unknown vector. We partition β as
β = (θ,γ T )T .

In the following, we introduce some counting process notation. Define Ni(t) =
I (Wi ≤ t,�i = 1) to be the observed counting process, Yi(t) = I (Wi ≥ t) to be
the at-risk process. Let Q̄(t) = ∑n

i=1 Yi(t)Qi (t)/
∑n

i=1 Yi(t) be the averaged co-
variates over the risk set. Denote

(2.2)

b = 1

n

n∑
i=1

∫ τ

0

{
Qi (t) − Q̄(t)

}
dNi(t) and

V = 1

n

n∑
i=1

∫ τ

0
Yi(t)

{
Qi (t) − Q̄(t)

}⊗2
dt,
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where τ is the end of study time. Under the additive hazards model, the inference
on β∗ is performed based on the following loss function:

(2.3) �(β) = 1

2
βT Vβ − bT β.

Recall that for any vector v, we write v⊗2 = vvT , v⊗1 = v and v⊗0 = 1. Define
s(k)(t) = E(Yi(t)Qi (t)

⊗k) for k = 0,1,2,

(2.4)

V∗ = E

(∫ τ

0
Yi(t)

{
Qi (t) − e(t)

}⊗2
dt

)
,

W∗ = E

(∫ τ

0

{
Qi (t) − e(t)

}⊗2
dNi(t)

)
,

where e(t) = s(1)(t)/s(0)(t). We assume that∫ τ

0
λ0(t) dt < ∞, P

(
Yi(τ ) = 1

)
> 0,

∥∥Qi (t)
∥∥∞ ≤ K(2.5)

for some constant K > 0. The sample paths of Qij (t) have uniformly bounded
variation for j = 1, . . . , d . The above assumptions are commonly used to study
the estimation properties for high dimensional additive hazards model (e.g., con-
dition 2 in [18]). In addition, we assume |w∗T Xi (t)| ≤ K and λmin(V∗) ≥ κ2 and
λmin(W∗) ≥ κ2 for some constants K,κ > 0. These assumptions are similar to
those imposed for logistic and Poisson models.

2.2. Challenges of score test in high dimensional models. To illustrate the
challenge of the classical score test, we assume �(β) is the negative log-likelihood.
When the dimension of the parameter vector is fixed and much smaller than the
sample size, the classical Rao’s score test for H0 : θ∗ = 0 versus H1 : θ∗ �= 0 is
based on the profile score function ∇θ �(0, γ̂ (0)), where γ̂ (θ) = argminγ �(θ,γ ) is
the constrained maximum likelihood estimator (MLE) of γ for fixed θ . Under the
null hypothesis, it is well known that [7],

(2.6) n1/2∇θ �
(
0, γ̂ (0)

)
� N

(
0, I ∗

θ |γ
)
.

The Rao’s score test statistic is given by Sc = n{∇θ �(0, γ̂ (0))}2Î−1
θ |γ , where Îθ |γ

is some consistent estimator of I ∗
θ |γ . The score test is obtained by rejecting H0, if

and only if the value of Sc is large. In low dimensions, the score test is known to
be asymptotically optimal against local alternatives.

In this paper, we are interested in inference for high dimensional models, in
which d can be much larger than n. When the nuisance parameter γ is of high di-
mension, the constrained maximum likelihood estimator (MLE) γ̂ (θ) is no longer
consistent [28, 29]. Even though the corresponding maximum penalized likelihood
estimator (MPLE) such as the Lasso estimator is consistent under certain condi-
tions, it does not have a tractable limiting distribution even in the fixed dimensional
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case [15]. To illustrate the infeasibility of the Rao’s score test for high dimensional
models, for any estimator γ̃ , consider the following Taylor expansion:

(2.7) n1/2∇θ �(0, γ̃ ) = n1/2∇θ �
(
0,γ ∗) + � + Rem,

where Rem represents the remainder and � = n1/2∇2
θγ �(0,γ ∗)(γ̃ −γ ∗). Although

n1/2∇θ �(0,γ ∗) usually converges weakly to a normal distribution due to the cen-
tral limit theorem, the asymptotic normality of n1/2∇θ �(0, γ̃ ) fails due to the non-
ignorable estimation bias and sparsity effect of γ̃ in � and Rem. First, to ensure
Rem is asymptotically ignorable, γ̃ must have a fast convergence rate, which rules
out the nonsparse MLE. Second, for those sparse estimators such as MPLE, fol-
lowing the arguments in [15], � may converge to some intractable limiting distri-
bution, if it exists. Hence, the score function with γ estimated by either MLE or
MPLE does not have a simple limiting distribution in the high dimensional setting.

2.3. A decorrelated score method for high dimensional models. As seen in the
previous section, the standard score function with estimated nuisance parameters
cannot be used for inference in high dimensional models. This motivates us to
construct a new type of score function applicable in this more challenging regime.
Assume that β can be estimated by the penalized M-estimator (1.1). In many ap-
plications, the penalty function Pλ(β) in (1.1) is decomposable in the sense that
Pλ(β) = ∑d

j=1 pλ(βj ). In our framework, we allow both convex and nonconvex
penalties. For instance, pλ(βj ) can be taken as the L1 penalty [33] pλ(βj ) = λ|βj |,
the SCAD penalty [8],

pλ(βj ) =
∫ |βj |

0

{
λI (z ≤ λ) + (aλ − z)+

a − 1
I (z > λ)

}
dz,

for some a > 2 and the MCP penalty [41],

pλ(βj ) = λ

∫ |βj |
0

(
1 − z

λb

)
+

dz,

for some b > 0. To infer the parameter θ , we propose a new type of score function
given by

(2.8) S(θ,γ ) = ∇θ �(θ,γ ) − wT ∇γ �(θ,γ ) with wT = Iθγ I−1
γ γ .

We call S(θ,γ ) as the decorrelated score function for θ . This name comes from
the fact that S(θ,γ ) is uncorrelated with the nuisance score functions ∇γ �(β), that
is, Eβ(S(β)T ∇γ �(β)) = 0. We can show that the decorrelation operation is crucial
to control the variability of higher order terms in the Taylor expansions, similar to
I2 in (2.7). Geometric insight of S(θ,γ ) and its connection with the profile score
function will be discussed in Section 2.5.

To construct a score test for θ∗ = 0 based on S(θ,γ ), one needs to estimate
the nuisance parameter γ and the unknown vector w. The whole procedure is de-
scribed in Algorithm 2.3. The output of this algorithm is the estimated decorrelated
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Algorithm 1 Calculate the estimated decorrelated score function Ŝ(θ, γ̂ )

Require: Negative log-likelihood �(θ,γ ), penalty function P(·) and tuning pa-
rameters λ and λ′.
(i): Calculate β̂ in (1.1) and partition β̂ as β̂ = (θ̂ , γ̂ );
(ii): Estimate w by the Dantzig type estimator ŵ,

(2.9) ŵ = argmin‖w‖1 s.t.
∥∥∇2

θγ �(β̂) − wT ∇2
γ γ �(β̂)

∥∥∞ ≤ λ′,

(iii): Calculate the estimated decorrelated score function

(2.10) Ŝ(θ, γ̂ ) = ∇θ �(θ, γ̂ ) − ŵT ∇γ �(θ, γ̂ ).

return Ŝ(θ, γ̂ ).

score function Ŝ(θ, γ̂ ), where γ is estimated by γ̂ in (1.1) and w is estimated by
ŵ in (2.9). Hence, we can calculate the value of the estimated decorrelated score
function Ŝ(θ, γ̂ ) at θ = 0 to evaluate the validity of the null hypothesis. Note that
the key step in the algorithm is to estimate w, which essentially searches for the
best sparse linear combination of the nuisance score functions ∇γ �(θ,γ ) to ap-
proximate the score function ∇θ �(θ,γ ), in a computationally efficient way. This
can be also seen from the alternative formulation in (2.12). Since the nuisance
score functions ∇γ �(β) and w have dimension d −1, we may need to impose some
sparsity assumption on w to control the estimation error. The implication of this
assumption and the comparison with the existing methods are further discussed in
Section 4.1.

REMARK 1. Our method allows a wide range of penalty functions P(·) in-
cluding nonconvex penalties, whereas most of the existing works mainly consider
the Lasso penalty. For instance, the method in [34] is based on inverting Karush–
Kuhn–Tucker (KKT) conditions of Lasso, which seems not directly applicable to
nonconvex estimators obtained by a statistical optimization algorithm [37, 38].

REMARK 2. Based on our numerical experience, we find that a refitted Lasso
estimator, which takes the support set of β̂ in (1.1) and on its support re-estimate β
by the MLE, usually leads to better finite sample performance of the score test. The
intuition is that this refitted estimator may have less bias, and is also less sensitive
to the choice of tuning parameters in (1.1).

REMARK 3. In fact, our framework also allows a variety of procedures for
estimating w in step (ii). Besides (2.9), some examples are given by the following
penalized M-estimators w̃ and w̄:

w̃ = argmin
w

1

2n

n∑
i=1

{
wT ∇γ γ �i(β̂)w − 2wT ∇γ θ�i(β̂)

} + Qλ′(w),(2.11)
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w̄ = argmin
w

1

2n

n∑
i=1

{∇θ �i(β̂) − wT ∇γ �i(β̂)
}2 + Qλ′(w),(2.12)

where Q(·) is a general penalty function.
We note that a similar refitted estimator of w may also improve the finite sample

performance of the test.

REMARK 4. For notational simplicity, we assume that β = (θ,γ ) is estimated
under the full model and γ̂ is the corresponding component of β̂ . It is well known
that the classical Rao’s score test requires the estimator under the null hypothe-
sis. Indeed, we can use the similar strategy to estimate the nuisance parameters.
Specifically, instead of plugging γ̂ into the decorrelated score function, we can es-
timate γ by γ̂ 0 = argminγ {�(0,γ ) + Pλ(γ )}, and replace β̂ in (2.9) with (0, γ̂ 0).
As shown in Theorem 3.1, under mild conditions, no matter which estimator (γ̂
or γ̂ 0) is plugged in, the estimated decorrelated score function is asymptotically
equivalent to S(θ∗,γ ∗).

In this section, to ease presentation, we confine our attention to the univariate
parameter of interest and the likelihood framework. Similar to (2.8), we can define
the decorrelated score function for a multi-dimensional parameter of interest; see
the supplementary materials [27] for the extension. In addition, for the general
loss function �(β), we can still define the estimated decorrelated score function
Ŝ(θ, γ̂ ) following the procedures in Algorithm 2.3. In Section 3, we show that the
general theory is applicable even if �(β) is a loss function other than the negative
log-likelihood.

2.4. One-step estimator and confidence regions. Though the decorrelated
score method is target to hypothesis testing, in what follows, we consider how
to use the decorrelated score function to construct a valid confidence interval for
the parameter of interest θ . This is based on the key observation that the estimated
decorrelated score function Ŝ(θ, γ̂ ) in (2.10) can be regarded as an approximately
unbiased estimating function for θ [10]. Thus, one general strategy to define an
estimator through the estimating function Ŝ(θ, γ̂ ) is to solve this equation, that is,
Ŝ(θ, γ̂ ) = 0. However, as commented in Chapter 5 of [35], this Z-estimation ap-
proach may have several drawbacks. For instance, the estimating function Ŝ(θ, γ̂ )

may have multiple roots, such that the estimator becomes ill-posed. To overcome
these issues, similar to [4], we consider the one-step method, which solves a first-
order approximation of Ŝ(θ, γ̂ ) = 0. Given the penalized M-estimator θ̂ , a one-step
estimator θ̃ is the solution to Ŝ(β̂) + Îθ |γ (θ − θ̂ ) = 0, defined as

(2.13) θ̃ = θ̂ − Ŝ(β̂)/Îθ |γ where Îθ |γ = ∇2
θθ �(β̂) − ŵT ∇2

γ θ �(β̂).

In Section 3, we show that, under mild conditions on �(β) and the penalized
M-estimator, the one-step estimator θ̃ is asymptotically normal with mean θ∗ and
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is semiparametrically efficient. Based on the asymptotic normality of θ̃ , we can
easily construct the optimal confidence interval for θ∗. A similar method can be
used to construct the optimal confidence region for a multi-dimensional parameter
of interest; see the supplementary materials [27].

2.5. Geometric interpretation and further discussion. Given the random vari-
able U , consider SU(θ,γ ) = ∇θ logf (U ;β)−wT ∇γ logf (U ;β), where f (U ,β)

is the probability density of U under the model Pβ , and the decorrelated score
function is S(θ,γ ) = n−1 ∑n

i=1 SUi
(θ,γ ). For simplicity, we focus on the ge-

ometric interpretation for SU(θ,γ ). For any β = (θ,γ T )T , the linear space
spanned by the score functions can be expressed by T = {aβ∇θ logf (U ;β) +
bT

β ∇γ logf (U ;β)}, where aβ is a nonrandom scalar and bβ is a nonrandom
(d − 1) dimensional vector. As suggested by the notation, aβ and bβ can de-
pend on β . It is shown by [31] that the space T is a Hilbert space with in-
ner product given by 〈g1(U ;β), g2(U ;β)〉 = Eβ(g1(U ;β)g2(U ;β)), for any
g1(U ;β), g2(U ;β) ∈ T . Consider the linear space spanned by the nuisance
score functions TN = {bT

β ∇γ logf (U ;β)}, where bβ is a nonrandom (d − 1)

dimensional vector, and its orthogonal complement UN := T ⊥
N = {g(U ;β) ∈

T , 〈g(U ;β), s(U ;β)〉 = 0,∀s(U ;β) ∈ TN }. Since ∇θ logf (U ;β) ∈ T and UN is
a closed space, the projection of ∇θ logf (U ;β) to UN is well defined and identical
to the decorrelated score function SU(θ,γ ). Note that, for the estimation purpose,
we assume that the projection of ∇θ logf (U ;β) to TN is identical to the projection
of ∇θ logf (U ;β) to a low dimensional subspace TN(S) of TN . Here, TN(S) is de-
fined as TN(S) = {cT

β ∇γ S
logf (U ;β)}, where S is a subset of {1, . . . , d − 1} with

|S| � n, and cβ is a nonrandom |S| dimensional vector. In other words, TN(S) is
a linear space spanned by the components of nuisance score functions correspond-
ing to γ S . For the clarification purpose, we illustrate these geometric structures in
Figure 1.

FIG. 1. Geometric illustration. The entire space is T . Each point in the space represents a function.
The plane is the nuisance space TN and the perpendicular line is its orthogonal space UN . Within the
space TN , there exists a low dimensional subspace TN(S), such that the projection of ∇θ logf (U)

to TN is in TN(S). The 0 in TN is the 0 function.
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Recall that in semiparametric models, the efficient score function is defined as
the projection of ∇θ logf (U ;β) to the orthogonal complement of the tangent set
for nuisance parameters; see Section 25.4 in [35] for a rigorous definition. Note
that our decorrelated score function has a similar projection interpretation. How-
ever, the main difference is as follows. In high dimensional settings, to ensure the
projection is estimable, we introduce a more refined low dimensional structure
TN(S) within the high dimensional Hilbert space TN . This makes our decorrelated
score function different from the efficient score function in semiparametric litera-
ture.

Finally, we comment on the connection between the decorrelated score and pro-
file score function. Recall that the profile score function is given by ∇θ �(θ, γ̂ θ ),
where �(θ, γ̂ θ ) is the negative profile log-likelihood, and γ̂ θ is the constrained
maximum likelihood estimator, that is, γ̂ θ = argminγ �(θ,γ ). It is easily seen that
the decorrelated score function S(θ, γ̂ θ ) with γ estimated by γ̂ θ is identical to the
profile score function, due to ∇γ �(θ, γ̂ θ ) = 0. Hence, in low dimensional prob-
lems, the profile score function implicitly performs decorrelation. From this per-
spective, we view our decorrelated score function as a natural high dimensional
extension of the profile score function.

3. A general theory for tests and confidence regions. The goal of this sec-
tion is to develop a general theory for the score test and the confidence regions.
We first establish the pointwise weak convergence of score test under the null hy-
pothesis. Then we establish the asymptotic normality of the one-step estimator. In
Appendix A, we further strengthen the pointwise results to the uniform conver-
gence of score test under the null and alternative hypotheses.

In this section, we focus on correctly specified models and allow �(β) to be a
general loss function.

3.1. Weak convergence of score test under null hypothesis. To study the prop-
erties of the decorrelated score test under the null hypothesis, we impose some
technical conditions.

These conditions can be classified into four categories: (i) Consistency condi-
tions for initial parameter estimation (Assumption 3.1); (ii) Concentration of the
gradient and Hessian matrix (Assumption 3.2); (iii) Local smoothness on the loss
function (Assumption 3.3); (iv) Central limit theorem for the score function (As-
sumption 3.4).

ASSUMPTION 3.1 (Consistency conditions for initial parameter estimation).
Recall that w∗ = I∗−1

γ γ I∗
γ θ . For some sequences η1(n) and η2(n) converging to 0,

as n → ∞, it holds

lim
n→∞Pβ∗

(∥∥β̂ − β∗∥∥
1 � η1(n)

) = 1 and lim
n→∞Pβ∗

(∥∥ŵ − w∗∥∥
1 � η2(n)

) = 1.
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The estimation error bounds for β∗ in terms of the L1 norm have been thor-
oughly studied for a variety of estimators, including the Lasso estimator, noncon-
vex estimator and Dantzig selector; see [5, 6, 37, 38], among many others. The
estimation error bound for w∗ can be derived by the similar method. But the key
difference is that ŵ may depend on β̂ , which causes some extra technical difficulty
in bounding ‖ŵ − w∗‖1. The following lemma shows that Assumption 3.1 holds
for all five models in Section 2.

LEMMA 3.1. In linear models (Example 1), logistic models (Example 2), Pois-
son models (Example 3), Gaussian graphical models (Example 4) and additive
hazards models (Example 5), we have

∥∥β̂ − β∗∥∥
1 = OP

(
s∗√

logd/n
)
,

∥∥ŵ − w∗∥∥
1 = OP

(
s′√logd/n

)
,

where β̂ and ŵ are defined in Section 4, s∗ = ‖γ ∗‖0 and s′ = ‖w∗‖0.

PROOF. A detailed proof is shown in the supplementary materials [27]. �

ASSUMPTION 3.2 (Concentration of the gradient and Hessian). Let v∗ =
(1,−w∗T )T . We assume ‖∇�(β∗)‖∞ = OP(

√
logd/n) and

∥∥v∗T ∇2�
(
β∗) −Eβ∗

(
v∗T ∇2�

(
β∗))∥∥∞ = OP(

√
logd/n).

Assumption 3.2 holds for i.i.d. data provided there exists a constant K such that
for all 1 ≤ j ≤ d ,

max
{∥∥∇j �i

(
β∗)∥∥

ψ1
,
∥∥[

v∗T ∇2�i

(
β∗)]

j

∥∥
ψ1

} ≤ K.

Thus, this assumption essentially imposes the sub-exponential conditions for some
random variables related to the gradient and Hessian matrix. In low dimensional
settings, it is often sufficient to prove asymptotic normality of estimators under
some finite moment assumptions on the gradient and Hessian matrix. In contrast, to
apply sharper exponential inequalities (i.e., Bernstein inequality) to bound the rate
of convergence in high dimensions as in Assumption 3.2, we may need stronger
sub-exponential type conditions. The following lemma shows that Assumption 3.2
holds for all five models considered in Section 2.

LEMMA 3.2. Assumption 3.2 holds for linear models (Example 1), logistic
models (Example 2), Poisson models (Example 3), Gaussian graphical models
(Example 4) and additive hazards models (Example 5).

PROOF. A detailed proof is shown in the supplementary materials [27]. �
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ASSUMPTION 3.3 (Local smoothness conditions on the loss function). Let
β̂0 = (0, γ̂ T

)T , v̂ = (1,−ŵT )T and v∗ = (1,−w∗T )T . Assume that for both β̌ =
β̂0 and β̌ = β̂ , it holds that

(3.1) v∗T {∇�(β̌) − ∇�
(
β∗) − ∇2�

(
β∗)(

β̌ − β∗)} = oP
(
n−1/2)

,

and (v̂ − v∗)T (∇�(β̌) − ∇�(β∗)) = oP(n
−1/2).

In this assumption, we implicitly assume that the loss function is second- or-
der differentiable. This assumption essentially quantifies the smoothness of �(β)

around a small neighborhood of β∗. It is easy to check that (3.1) always holds if
�(β) is a quadratic function of β . For nonquadratic loss functions, for example,
the negative log-likelihood in Poisson regression, applying the Taylor expansion,
we find that (3.1) reduces to

1

n

n∑
i=1

v∗T Qi exp
(
β∗T Qi

)
R

(
�̌T Qi

){
�̌T Qi

}2
,

where �̌ = β̌ −β∗ and R(·) is the remainder. Then it can be further bounded from
above by the prediction error n−1 ∑n

i=1(�̌
T Qi )

2 up to a constant. Similarly, we
can show that the last part of Assumption 3.3 is also related to both prediction
errors n−1 ∑n

i=1{(β̌ − β∗)T Qi}2 and n−1 ∑n
i=1{(v̂ − v∗)T Qi}2. The following

lemma shows that Assumption 3.3 holds for all five models considered in Sec-
tion 2.

LEMMA 3.3. Assumption 3.3 holds for linear models (Example 1), logistic
models (Example 2), Poisson models (Example 3), Gaussian graphical models
(Example 4) and additive hazards models (Example 5).

PROOF. A detailed proof is shown in the supplementary materials [27]. �

ASSUMPTION 3.4 (Central limit theorem for the score function). Let �∗ =
limn→∞ Varβ∗(n1/2∇�(β∗)). It holds that

√
nv∗T ∇�

(
β∗)

/
√

σ ∗
s � N(0,1) where σ ∗

s = v∗T �∗v∗

and σ ∗
s ≥ C for some constant C > 0.

Assumption 3.4 is the central limit theorem for a linear combination of the score
functions, which can be obtained by verifying the Lindeberg’s condition. When
�(β) is the negative log-likelihood function, we have the information identity or
the second Bartlett identity: �∗ = I∗ [19]. However, for general loss functions, �∗
and I∗ could be different. The following lemma shows that Assumption 3.4 holds
for all five models considered in Section 2.
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LEMMA 3.4. Assumption 3.4 holds for linear models (Example 1), logistic
models (Example 2), Poisson models (Example 3), Gaussian graphical models
(Example 4) and additive hazards models (Example 5).

PROOF. A detailed proof is shown in the supplementary materials [27]. �

Given the decorrelated score function, we define the test statistic as

(3.2) Ûn = n1/2Ŝ(0, γ̂ )/

√
σ̂s ,

where σ̂s is a consistent estimator of σ ∗
s . The following theorem shows that the

decorrelated score function n1/2Ŝ(0, γ̂ ) and the associated test statistic Ûn are
asymptotically normal.

THEOREM 3.1. Under Assumptions 3.1–3.4, if (η1(n)+η2(n))
√

logd = o(1),
then we have

(3.3) n1/2Ŝ(0, γ̂ )σ ∗−1/2
s � N(0,1),

and for any t ∈R,

(3.4) lim
n→∞

∣∣Pβ∗(Ûn ≤ t) − �(t)
∣∣ = 0.

PROOF. Recall that β̂0 = (0, γ̂ T
)T , v̂ = (1,−ŵT )T and v∗ = (1,−w∗T )T . By

the definition of Ŝ(0, γ̂ ), we have the following decomposition:

(3.5)

n1/2∣∣Ŝ(β̂0) − S
(
β∗)∣∣

= n1/2∣∣v̂T ∇�(β̂0) − v∗T ∇�
(
β∗)∣∣

≤ n1/2∣∣v∗T {∇�(β̂0) − ∇�
(
β∗)}∣∣ + n1/2∣∣(v̂ − v∗)T ∇�(β̂0)

∣∣
:= I1 + I2.

By Assumption 3.3, we can show that

|I1| ≤ n1/2∣∣v∗T ∇2�
(
β∗)(

β̂0 − β∗)∣∣ + oP(1)

≤ n1/2∥∥β̂0 − β∗∥∥
1

∥∥∇2
θγ �

(
β∗) − w∗T ∇2

γ γ �
(
β∗)∥∥∞ + oP(1).

By Assumptions 3.1 and 3.2, we have |I1| � η1(n)
√

logd + oP(1) = oP(1). For
I2, Assumption 3.3 yields

|I2| ≤ n1/2∣∣(v̂ − v∗)T ∇�
(
β∗)∣∣ + oP(1) ≤ n1/2∥∥v̂ − v∗∥∥

1

∥∥∇�
(
β∗)∥∥∞ + oP(1).

By Assumptions 3.1 and 3.2, we have |I2| � η2(n)
√

logd + oP(1) = oP(1). To-
gether with (3.5), the bounds for I1 and I2 imply n1/2|Ŝ(β̂0) − S(β∗)| = oP(1). In
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addition, n1/2S(β∗)σ ∗−1/2
s � N(0,1) by Assumption 3.4. By σ ∗

s ≥ C in Assump-
tion 3.4, we obtain that

n1/2∣∣Ŝ(0, γ̂ )σ ∗−1/2
s − S

(
0,γ ∗)

σ ∗−1/2
s

∣∣ = oP(1).

This completes the proof by applying the Slutsky’s theorem. �

REMARK 5. Based on the test statistic Ûn, the score test with significance
level α, for the null hypothesis H0 : θ∗ = 0 versus the two-sided alternative H1 :
θ∗ �= 0 is given by

Tn =
⎧⎨
⎩0 if |Ûn| ≤ �−1(1 − α/2),

1 if |Ûn| > �−1(1 − α/2),
(3.6)

where �(·) is the cdf of a standard normal distribution. Given the value of Tn, we
reject the null hypothesis if and only if Tn = 1. The type I error of Tn, that is the
probability of rejecting H0 (i.e., Tn = 1) when H0 is true, can be controlled by α

asymptotically. This is limn→∞Pβ∗(Tn = 1) = α.

3.2. Theoretical results for optimal confidence regions. The following theo-
rem shows that the one-step estimator θ̃ is asymptotically normal.

THEOREM 3.2. Under Assumptions 3.1–3.4, if (η1(n)+η2(n))
√

logd = o(1),
Îθ |γ is consistent for I ∗

θ |γ and I ∗
θ |γ ≥ C for some constant C > 0, then

(3.7) n1/2(
θ̃ − θ∗)

I ∗
θ |γ /σ ∗1/2

s = −S
(
β∗)

/σ ∗1/2
s + oP(1) � N(0,1),

where σ ∗
s is defined in Assumption 3.4.

PROOF. A detailed proof is provided in Appendix B.1. �

Since Îθ |γ is consistent for I ∗
θ |γ and σ̂s is consistent for σ ∗

s , we can construct a

(1−α)×100% confidence interval for θ∗ as [θ̃ −n−1/2�−1(1−α/2)Î−1
θ |γ σ̂

1/2
s , θ̃ +

n−1/2�−1(1 − α/2)Î−1
θ |γ σ̂

1/2
s ]. In addition, if �(β) is the negative log-likelihood,

then I ∗
θ |γ = σ ∗

s and, therefore, (3.7) implies that the asymptotic variance of θ̃ is
identical to the inverse of the partial information matrix I ∗

θ |γ , which is also known
as the efficient information in the presence of nuisance parameters; see Chapter 25
of [35]. This implies that the one-step estimator θ̃ is semiparametrically efficient.
A similar criterion on optimality under the linear model is considered by [34].

4. Examples. Given Lemmas 3.1–3.4, in this section, we summarize the in-
ferential results for linear regression, logistic regression, Poisson regression, Gaus-
sian graphical model and additive hazards model.
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4.1. Example 1: Linear regression model. Recall that the linear regression
model is given by Yi = θ∗Zi + γ ∗T Xi + εi , where Zi ∈ R, Xi ∈ R

d−1, and the
error εi satisfies E(εi) = 0, E(ε2

i ) = σ 2 for i = 1, . . . , n. Let Qi = (Zi,X
T
i )T . For

simplicity, we first assume that the variance σ 2 is known. Later, we will show that
the same results are obtained if σ 2 is estimated. Recall that we assume the noise εi

is sub-Gaussian, the minimum and maximum eigenvalues of E(Q⊗2
i ) are bounded

away from 0 and infinity by constants, and Qi is a sub-Gaussian vector. These
assumptions are standard for the analysis of high dimensional linear regression
models; see [5, 13, 34, 42].

We consider the penalized M-estimator β̂ in (1.1) with possibly nonconvex
penalty functions. As shown by [37, 38] and many others, if the nonconvex penalty
function satisfies the conditions (a)–(e) in [38], the penalized M-estimator β̂ sat-
isfies the rate of convergence in Lemma 3.1. Based on the Gaussian quasi-log-
likelihood, the decorrelated score function is

S(θ,γ ) = − 1

σ 2n

n∑
i=1

(
Yi − θZi − γ T Xi

)(
Zi − wT Xi

)
,

where w = Eβ(X⊗2
i )−1

Eβ(ZiXi ). Since the distribution of the design matrix does
not depend on β , we can replace Eβ(·) by E(·) for notational simplicity. In prac-
tice, under the null hypothesis H0 : θ∗ = 0, the decorrelated score function can be
estimated by

(4.1) Ŝ(0, γ̂ ) = − 1

σ 2n

n∑
i=1

(
Yi − γ̂ T Xi

)(
Zi − ŵT Xi

)
,

where

(4.2) ŵ = argmin‖w‖1 s.t.

∥∥∥∥∥1

n

n∑
i=1

Xi

(
Zi − wT Xi

)∥∥∥∥∥∞
≤ λ′.

In this example, the information identity holds, that is, I∗ = �∗, where the (partial)
information matrices are given by

I∗ = σ−2
E

(
Q⊗2

i

)
and I ∗

θ |γ = σ−2(
E

(
Z2

i

) −E
(
ZiX

T
i

)
E

(
X⊗2

i

)−1
E(XiZi)

)
.

They can be easily estimated by

Î = 1

σ 2n

n∑
i=1

Q⊗2
i and Îθ |γ = 1

σ 2

{
1

n

n∑
i=1

Z2
i − ŵT

(
1

n

n∑
i=1

XiZi

)}
,

respectively. This leads to the score test statistic Ûn = n1/2Ŝ(0, γ̂ )Î
−1/2
θ |γ . The fol-

lowing corollary of the general results in Theorem 3.1 establishes the asymptotic
null distribution of Ûn.
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COROLLARY 4.1. Let S = supp(β∗) and S′ = supp(w∗) satisfy |S| = s∗ and

|S′| = s′. If n−1/2(s′ ∨ s∗) logd = o(1) and λ � λ′ �
√

logd
n

, then under H0 : θ∗ =
0 for each t ∈ R,

(4.3) lim
n→∞

∣∣Pβ∗(Ûn ≤ t) − �(t)
∣∣ = 0.

PROOF. A detailed proof is shown in the supplementary materials [27]. �

Note that the estimator ŵ in (4.2) has the same form as the Dantzig selector [6].
Using the L1 penalty, an alternative estimator w̃ in (2.11) is

(4.4) w̃ = argmin
w

{
1

2n

n∑
i=1

(
Zi − wT Xi

)2 + λ′‖w‖1

}
.

Under the same conditions in Corollary 4.1, the score test Ûn with ŵ replaced by
w̃ in (4.4) satisfies limn→∞ |Pβ∗(Ûn ≤ t) − �(t)| = 0, for any t ∈ R.

The following corollary of Theorem 3.2 shows that the one-step estimator θ̃ is
asymptotically normal and semiparametrically efficient.

COROLLARY 4.2. If n−1/2(s′ ∨ s∗) logd = o(1) and λ � λ′ �
√

logd
n

, then

n1/2(θ̃ − θ∗)Î 1/2
θ |γ � N(0,1), where θ̃ and Îθ |γ are constructed based on either ŵ

or w̃.

PROOF. A detailed proof is shown in the supplementary materials [27]. �

REMARK 6. In Corollary 4.1, we assume the sparsity of β∗ and w∗. Note
that, by the block matrix inversion formula, the sparsity of w∗ is implied by the
sparsity of the precision matrix (E(Q⊗2

i ))−1, assumed in [34]. If Q = (Z,XT )T

follows a Gaussian graphical model, then ‖w∗‖0 is identical to the degree of the
node Z in the graph, which can be much smaller than the maximum degree in the
graph. Thus, to conduct the inference on the coefficient of Z, we only require the
degree of the node Z to be relatively small. This is a more refined assumption than
assuming the whole graph is sparse for the inference on a single component.

In the supplementary materials [27], we show that the weak convergence in
(4.3) holds uniformly over β∗ ∈ �0, where �0 = {(0,γ ) : ‖γ ‖0 ≤ s∗}. This im-
plies the honesty of the proposed test. We also establish the uniform conver-
gence of Ûn over β∗ in the space of alternative hypothesis �1(C̃,1/2), where
�1(C̃,1/2) = {(θ,γ ) : θ = C̃n−1/2,‖γ ‖0 ≤ s∗}, for some constant C̃. This es-
tablishes the asymptotic local power of the proposed score test. The decorrelated
score inference under the deterministic design is also discussed in the supplemen-
tary materials [27].
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4.1.1. Estimation of unknown variance σ 2. In the previous section, we assume
σ 2 is known. In this section, we consider the estimation of σ 2 and the asymptotic
properties of the score test with estimated σ 2. With the estimator β̂ , one can esti-

mate σ 2 by σ̂ 2 = n−1 ∑n
i=1(Yi − β̂

T
Qi )

2. Consider the following score statistic
with σ̂ 2:

Ũn = − 1

σ̂ n1/2

n∑
i=1

(
Yi − γ̂ T Xi

)(
Zi − ŵT Xi

)(
HZ − ŵT HXZ

)−1/2
,

where HZ = n−1 ∑n
i=1 Z2

i and HXZ = n−1 ∑n
i=1 ZiXi . The following corollary

characterizes the asymptotic null distribution of Ũn. In particular, we show that Ũn

and Ûn are uniformly asymptotically equivalent, where Ûn is the score test statistic
with known σ 2.

COROLLARY 4.3. Assume that the conditions in Corollary 4.1 hold and the
true parameter satisfies σ ∗2 ≥ C for some constant C > 0. Then for any t ∈ R,

lim
n→∞

∣∣Pβ∗(Ũn ≤ t) − �(t)
∣∣ = 0.

PROOF. A detailed proof is shown in the supplementary materials [27]. �

REMARK 7. Note that Corollary 4.3 holds due to the orthogonality of param-
eters β and σ 2 in the quasi-log-likelihood function. In practice, there exist many
alternative estimators such as the scaled Lasso [32],

(β̃scale, σ̃scale) = argmin
β∈Rd ,σ>0

{
1

2σn

n∑
i=1

(
Yi − βT Qi

)2 + σ

2
+ λ‖β‖1

}
.

By Theorem 1 and Corollary 1 of [32], we can show that the decorrelated score
test with (β̃scale, σ̃scale) is asymptotically equivalent to Ũn and Ûn and, therefore,
has the same type I error and local asymptotic power. Moreover, the estimator
(β̃scale, σ̃scale) has the additional advantage of being tuning insensitive. We refer to
[2, 32] for more details.

4.1.2. Comparison with existing inferential methods. In this subsection, we
compare our decorrelated score test method for linear models to the desparsifying
estimator in [34] and the debiased estimator in [13]. From the methodological
perspective, the proposed decorrelated score method is new and different from [34]
and [13]. Our method directly aims to construct a test statistic to test the validity of
the null hypothesis. In contrast, both [34] and [13] focused on how to correct the
bias of the Lasso estimator and construct an asymptotically normal estimator. In
addition, our framework allows a variety of methods for estimating w∗, including
the Dantzig selector (4.2) and the Lasso type estimator (4.4). Van de Geer et al.
[34] only considered the Lasso estimator and [13] proposed to solve an alternative



GENERAL THEORY OF HIGH DIMENSIONAL INFERENCE 177

constrained optimization problem. The proposed one-step estimator with the Lasso
estimator (4.4) is identical to the desparsifying estimator in [34].

We now comment on the assumptions and results. We do not assume the noise is
Gaussian. Thus, our Theorem 4.1 and Corollary 4.2 are comparable to Theorem 2.4
of [34] and Theorem 4.1 of [13]. In terms of estimation efficiency, the proposed
one-step estimator and the desparsifying estimator are both semiparametrically
efficient, that is, n1/2(θ̃ − θ∗) � N(0, I ∗−1

θ |γ ). This follows from Corollary 4.2 and

Îθ |γ − I ∗
θ |γ = oP(1) (shown in the proof of Corollary 4.1). However, it is unclear

whether the debiased estimator is semiparametrically efficient, because the sparsity
assumption on the precision matrix (E(Q⊗2

i ))−1 is relaxed. We refer to Remark 6
for further discussion on the sparsity assumption. Finally, we comment on the
model misspecification. When the linear model assumption is invalid, the results
in [34] and [13] are not directly applicable. However, the proposed decorrelated
score test is robust to the model misspecification in the sense that it can infer the
oracle parameter with theoretical guarantees; see Section 5 for details.

4.2. Example 2: Logistic regression model. Under the logistic regression
model, the estimated decorrelated score function reduces to

Ŝ(0, γ̂ ) = −1

n

n∑
i=1

(
Yi − exp(γ̂ T Xi )

1 + exp(γ̂ T Xi )

)(
Zi − ŵT Xi

)
,

where β̂ is taken as the penalized M-estimator in (1.1) with the L1-penalty and ŵ
in the context of logistic regression models is given by

ŵ = argmin‖w‖1 s.t.

∥∥∥∥∥1

n

n∑
i=1

exp(β̂
T
Qi )

[1 + exp(β̂
T
Qi )]2

(
Zi − wT Xi

)
Xi

∥∥∥∥∥∞
≤ λ′.

Alternatively, we can also use the estimator w̃ in (2.11) with the L1-penalty,

w̃ = argmin
w

{
1

n

n∑
i=1

exp(β̂
T
Qi )

[1 + exp(β̂
T
Qi )]2

(
Zi − wT Xi

)2 + λ′‖w‖1

}
.

In this example, the information identity also holds. Thus, we can calculate the
Fisher information matrix as I∗ = Eβ∗(exp(β∗T Qi )Q

⊗2
i /(1 + exp(β∗T Qi ))

2).
The partial Fisher information matrix is I ∗

θ |γ = Eβ∗(Zi(Zi −w∗T Xi ) exp(β∗T Qi )/

(1 + exp(β∗T Qi))
2), which is estimated by

Îθ |γ = 1

n

n∑
i=1

exp(β̂
T
Qi )

[1 + exp(β̂
T
Qi )]2

Zi

(
Zi − ŵT Xi

)
.

Thus, the decorrelated score test statistic is Ûn = n1/2Ŝ(0, γ̂ )Î
−1/2
θ |γ .
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Recall that, for the theoretical development, we assume λmin(I∗) ≥ κ2 for some
constant κ > 0, ‖Qi‖∞ ≤ K , and |w∗T Xi | ≤ K for some constant K > 0. It is
easy to see that the conditions in Theorem 3.3 of [34] imply our conditions. More
importantly, our conditions are strictly weaker, because we do not require that the
mean regression effect is bounded as in [34] [i.e., max1≤i≤n |β∗T Qi | = O(1)].
This is accomplished by utilizing a more refined self-concordance property for
logistic regressions [1]. We refer to the supplementary materials [27] for further
discussion. The following corollary is an application of Theorems 3.1 and 3.2 in
the context of logistic regression. In particular, we can see that the one-step esti-
mator θ̃ defined in (2.13) is semiparametrically efficient.

COROLLARY 4.4. With λ � λ′ �
√

logd
n

, if n−1/2(s′ ∨ s∗) logd = o(1), then

under the null hypothesis H0 : θ∗ = 0, for each t ∈ R, limn→∞ |Pβ∗(Ûn ≤ t) −
�(t)| = 0, and n1/2(θ̃ −θ∗)Î 1/2

θ |γ � N(0,1), where Ûn and θ̃ are constructed based
on either ŵ or w̃.

PROOF. A detailed proof is shown in the supplementary materials [27]. �

4.3. Example 3: Poisson regression model. Under the Poisson regression
model, the estimated decorrelated score function reduces to

Ŝ(0, γ̂ ) = −1

n

n∑
i=1

(
Yi − exp

(
γ̂ T Xi

))(
Zi − ŵT Xi

)
,

where ŵ in the context of Poisson regression is given by

ŵ = argmin‖w‖1 s.t.

∥∥∥∥∥1

n

n∑
i=1

exp
(
β̂

T
Qi

)(
Zi − wT Xi

)
Xi

∥∥∥∥∥∞
≤ λ′.

Recall that, for the theoretical development, we assume λmin(I∗) ≥ κ2 for some
constant κ > 0, ‖Qi‖∞ ≤ K , |w∗T Xi | ≤ K and |β∗T Qi | ≤ K for some constant
K > 0. It is seen that the conditions in Theorem 3.3 of [34] imply our condi-
tions. Compared to the logistic regression, we need the extra technical condition
|β∗T Qi | ≤ K , because exp(β∗T Qi ) may diverge to infinity very fast as β∗T Qi

increases. The following corollary is an application of Theorems 3.1 and 3.2 in the
context of Poisson regression.

COROLLARY 4.5. With λ � λ′ �
√

logd
n

, if n−1/2(s′ ∨ s∗) logd = o(1), then

under the null hypothesis, for each t ∈ R, limn→∞ |Pβ∗(Ûn ≤ t) − �(t)| = 0, and

n1/2(θ̃ − θ∗)Î 1/2
θ |γ � N(0,1), where Ûn = n1/2Ŝ(0, γ̂ )Î

−1/2
θ |γ .

PROOF. A detailed proof is shown in the supplementary materials [27]. �
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REMARK 8 (Extension to more generalized linear models). The results in
Corollary 4.5 can be further extended to a broader class of generalized lin-
ear models, where the p.d.f. of Y given the covariates Q is f (Y | Q) =
h(Y ) exp(Yβ∗T Q − b(β∗T Q)). Here, h(·) and b(·) are two known univariate
functions. In the supplementary materials [27], we show that Corollary 4.5 holds
if the following condition on b(·) holds. Let b′′(·) be a continuous function.
For some K1,K2 and any t ∈ [K1 − ε,K2 + ε] with some constant ε > 0,
and a sequence t1 satisfying |t1 − t | = o(1), it holds that 0 < b′′(t) ≤ C and
|b′′(t1) − b′′(t)| ≤ C|t1 − t |b′′(t) for some constant C > 0.

In the supplementary materials [27], we show that the logistic regression, ex-
ponential regression and Poisson regression models all satisfy this condition. It is
easy to check that this condition is equivalent to the conditions in [34]; see the
supplementary materials [27] for the detailed results on generalized linear models.

4.4. Example 4: Gaussian graphical model. To estimate the precision matrix
of a Gaussian graphical model, [21] proposed the following SCIO estimator β̂ =
arg min�(β) + λ‖β‖1, where �(β) is a quadratic loss defined in (2.1). Given the
loss function �(β), the decorrelated score function reduces to Ŝ(β) = v̂T (�̂β −
ek), where �̂ is the sample covariance matrix and v̂ = (1,−ŵT )T . Let �̂12 ∈ R

d−1

be the first row of �̂ with the first element �̂11 removed, and �̂22 be a (d − 1) ×
(d − 1) submatrix of �̂ with the first row and column removed. In this example, ŵ
is defined as

ŵ = argmin‖w‖1 s.t.
∥∥�̂12 − wT �̂22

∥∥∞ ≤ λ′.

With straightforward algebra, we can show that the asymptotic variance of the
decorrelated score function is σ ∗

s = (
∗
kk


∗
11 + 
∗2

k1)/
∗2
11 and I ∗

θ |γ = 1/
∗
11.

Based on the SCIO estimator, one can estimate 
∗
kk , 
∗

11 and 
∗
k1 by 
̂kk ,


̂11 and 
̂k1, respectively. This leads to the plug-in estimators σ̂s and Îθ |γ .
The resulting score test statistic becomes Ûn = n1/2Ŝ(0, γ̂ )/

√
σ̂s . Let s∗ =

max1≤j≤d

∑d
k=1 I (
jk �= 0) denote the maximum degree of the graph.

COROLLARY 4.6. With λ � λ′ �
√

logd
n

, if n−1/2s∗ logd = o(1), then un-

der the null hypothesis, for each t ∈ R, limn→∞ |Pβ∗(Ûn ≤ t) − �(t)| = 0 and

n1/2(θ̃ − θ∗)Îθ |γ /σ̂
1/2
s � N(0,1), where θ̃ is the one-step estimator.

PROOF. A detailed proof is shown in the supplementary materials [27]. �

The inferential problems for high dimensional Gaussian graphical models have
been studied by several authors. For instance, [12] extended the desparsifying
method to the log-likelihood for Gaussian graphical model. Their analysis required
the irrepresentable condition and the assumption s∗3(logd)/n = o(1). In addition,
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nodewise regression based approaches are considered by [20, 30]. Compared to
these existing methods, our assumption n−1/2s∗ logd = o(1) is weaker than [12]
and is identical to [20, 30]. In addition, we find that the asymptotic variance of
n1/2(θ̃ −θ∗) is 
∗

kk

∗
11 +
∗2

k1, which matches the inverse of the information lower
bound for Gaussian graphical models. Thus, our estimator has the same asymptotic
efficiency as [12, 20, 30] and is semiparametrically efficient.

4.5. Example 5: Additive hazards model. In this section, we apply the general
results in Theorems 3.1 and 3.2 to the additive hazards model. Recall that the
inference on the regression coefficient β is conducted based on the loss function
�(β) in (2.3). To estimate β , [18, 23] proposed the estimator β̂ in (1.1) with both
convex and nonconvex penalty functions. For simplicity, we focus on the Lasso
type estimator. The estimated decorrelated score function has the form Ŝ(β) =
v̂T (Vβ − b), where b and V are defined in (2.2) and v̂ = (1,−ŵT )T with

ŵ = argmin‖w‖1 s.t.
∥∥Vθγ − wT Vγ γ

∥∥∞ ≤ λ′,

where Vθγ and Vγ γ are partitions of V corresponding to β = (θ,γ T )T . By taking
derivatives, it can be show that I∗ = V∗, where V∗ is defined in (2.4). As shown in
[17], ∇�(β∗) is a martingale integral. Applying the martingale theory, we find that
�∗ in Assumption 3.4 has the form of �∗ = W∗, where W∗ is defined in (2.4).
Notice that V does not depend on the unknown parameters, and it is a consistent
estimator of V∗. In addition, W∗ can be also consistently estimated by W, where

W = 1

n

n∑
i=1

∫ τ

0

{
Qi (t) − Q̄(t)

}⊗2
dNi(t).

Thus, we can estimate I ∗
θ |γ by Îθ |γ = Vθθ − ŵT Vγ θ , and estimate the asymptotic

variance σ ∗
s in Assumption 3.4 by σ̂s = v̂T Wv̂. The resulting score test statistic is

Ûn = n1/2Ŝ(0, γ̂ )/
√

σ̂s . The following corollary is an application of Theorems 3.1
and 3.2 to the additive hazards model.

COROLLARY 4.7. With λ � λ′ �
√

logd
n

, if n−1/2(s′ ∨ s∗) logd = o(1), un-

der the null hypothesis, for each t ∈ R, limn→∞ |Pβ∗(Ûn ≤ t) − �(t)| = 0, and

n1/2(θ̃ − θ∗)Îθ |γ /σ̂
1/2
s � N(0,1), where θ̃ is the one-step estimator.

PROOF. A detailed proof is shown in the supplementary materials [27]. �

Recently, [44] proposed a variance reduced partial profiling method to con-
struct valid confidence interval for θ in the additive hazards model. However, their
method requires some strong conditions which are not needed in our decorrelated
score framework. For instance, let η > 0 be a pre-specified value. Define the set

S1 =
{
j ∈ {1, . . . , d − 1} :

∣∣∣∣E
[∫ τ

0
Y(t)Z(t)Xj (t) dt

]∣∣∣∣ > η

}
.
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The condition (C5) of [44] required the cardinality of S1 to increase with n in a
suitable rate. Such a condition imposes stringent assumptions on the correlation
between Z(t) and Xj(t), which is not needed in our framework.

5. Model misspecification. In the previous sections, an implicit assumption
is that the probability model for Yi given the covariate Qi is correctly specified. In
this section, we establish the theoretical properties of the decorrelated score test,
if the true probability distribution P

∗ does not belong to the assumed statistical
model P = {Pβ : β ∈ �}. To ease presentation, we let �(β) denote the negative log-
likelihood of the assumed model. The method and theory can be straightforwardly
extended to inference based on general loss functions. We define the Kullback–
Leibler divergence as

KL(β) = E
∗
{

log
f ∗(Yi,Qi )

f (Yi,Qi;β)

}
,

where f ∗(Yi,Qi ) is the true density function of (Yi,Qi ), and f (Yi,Qi;β) is
the density corresponding to the model Pβ . Here, we use P

∗(·) and E
∗(·) to de-

note the probability and the expectation with respect to the true density func-
tion f ∗(Yi,Qi ). Let βo denote the oracle parameter (or least false parameter)
that minimizes the Kullback–Leibler divergence, that is, βo = argminβ KL(β),
where βo = (θo,γ o). Note that, if the model is correctly specified, we have
f ∗(Yi,Qi ) = f (Yi,Qi;β∗) and the oracle parameter reduces to β∗. Although,
under the misspecified model, the true distribution is not estimable, it is often
of interest to understand the behavior of the oracle parameter. In particular, as-
sume that the inferential problem can be formulated as testing Ho

0 : θo = 0 versus
Ho

1 : θo �= 0. Similarly, we define Io = E
∗(∇2�(βo)), and woT = Io

θγ Io−1
γ γ . Denote

�o = limn→∞ Var∗(n1/2∇�(βo)). The theoretical properties of the decorrelated
score function under misspecified models are shown in the following theorem.

THEOREM 5.1. Assume that the Assumptions 3.1–3.4 hold with β∗, w∗ and
�∗ replaced by βo, wo and �o. Under the null hypothesis H0 : θo = 0, if (η1(n)+
η2(n))

√
logd = o(1), then

(5.1) n1/2Ŝ(0, γ̂ )/
√

σo
s � N(0,1),

where σo
s = voT �ovo with vo = (1,−woT )T . In addition, the decorrelated score

test statistic Ûo
n = n1/2Ŝ(0, γ̂ )/

√
σ̂s , where σ̂s is a consistent estimator of σo

s , sat-
isfies for any t ∈ R

lim
n→∞

∣∣P∗(
Ûo

n ≤ t
) − �(t)

∣∣ = 0.

The proof is similar to that of Theorem 3.1. We omit it for simplicity. As seen in
Theorem 5.1, in the misspecified model, we need to standardize the score function
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Ŝ(0, γ̂ ) by
√

voT �ovo, which reduces to the root of the partial information, that is,
I

∗1/2
θ |γ under the correctly specified model. In addition, the proposed decorrelated

score test statistic Ûo
n has the same form as Ûn defined in (3.2), even if the specified

model is incorrect. This implies that the proposed test statistic Ûo
n has the desired

robustness property under model misspecification [40]. Specifically, the test based
on Ûo

n can correctly control the type I error no matter the model is correct or not.
As an illustration of the general results in Theorem 5.1, we now consider the

linear regression under model misspecification. Since the linear model assump-
tion is no longer true, we cannot use the simple identity εi = Yi − β∗T Qi . This
makes the arguments in [13] and [34] not directly applicable to misspecified mod-
els. Assume that β̂ is the Lasso estimator. By definition, the oracle parameter βo

is defined as βo = argminβ E
∗(Yi − βT Qi )

2, and the decorrelated score function
for testing θo = 0 is

Ŝ(0, γ̂ ) = −1

n

n∑
i=1

(
Yi − γ̂ T Xi

)(
Zi − ŵT Xi

)
.

By definition, �o = E
∗(Q⊗2

i (Yi − βoT Qi )
2), which can be estimated by

�̂ = 1

n

n∑
i=1

Q⊗2
i

(
Yi − β̂

T
Qi

)2
.

This leads to the decorrelated score test statistic Ûo
n = n1/2Ŝ(0, γ̂ )/

√
v̂T �̂v̂, where

v̂ = (1,−ŵT )T and ŵ is defined in (4.2). We can obtain the following corollary of
Theorem 5.1.

COROLLARY 5.1. Assume that (1) 2κ ≤ λmin(E(Q⊗2
i )) ≤ λmax(E(Q⊗2

i )) ≤
2/κ and λmin(�

o) ≥ 2κ for some constant κ > 0, (2) Yi − γ oT Xi is sub-
Gaussian, and Qi is a sub-Gaussian vector. Denote s ′ = ‖wo‖0 and s∗ = ‖βo‖0.

If n−1s∗(log(nd))5 = o(1), n−1/2(s′ ∨ s∗) logd = o(1), and λ � λ′ �
√

logd
n

, then
under Ho

0 : θo = 0, for each t ∈ R,

lim
n→∞

∣∣P∗(
Ûo

n ≤ t
) − �(t)

∣∣ = 0.

PROOF. A detailed proof is shown in the supplementary materials [27]. �

6. Numerical results. In this section, we conduct simulation studies to inves-
tigate the finite sample performance of the proposed score test. In particular, we
simulate the response from the following three models: the linear regression with
the standard Gaussian noise, the logistic regression and Poisson regression. To gen-
erate the covariates, we simulate n = 200 independent samples from a multivariate
Gaussian distribution Nd(0,�), where d = 100,200,500 and � is a Toeplitz ma-
trix with �jk = ρ|j−k|. Here, we consider four possible values for ρ, that is, 0.25,
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FIG. 2. Power of the decorrelated score test, Lasso-Pro and SSLasso for linear regression.

0.4, 0.6 and 0.75. The true value β∗ satisfies ‖β∗‖0 = s, with s = 2 and 3. We
consider two scenarios for generating β∗ on its support set S. In the first setting,
we set β∗

S = (1, . . . ,1), which is a Dirac measure. In the second setting, we gen-
erate each component of β∗

S from a uniform distribution on [0,2]. Our goal is to
test H0 : β1 = 0 versus H1 : β1 �= 0. To check the validity of the type I error, we set
β∗

1 = 0.
The tuning parameters λ and λ′ are chosen by cross-validations. In the linear

regression, we compare the performance of the score test with the desparsifying
method (Lasso-Pro) in [34] and the de-bias method (SSLasso) in [13]. Both of their
methods are equivalent to certain types of Wald tests. The type I errors of the three
tests are reported in Tables 1. We find that all three tests have similar performance
and their type I errors are close to the desired significance level, which is consistent
with the asymptotic equivalence among these three tests. To evaluate the power of
the tests, we regenerate the data with the values of β∗

1 ranging from 0 to 0.55.
The power of the three tests is shown in Figure 2. We find that the decorrelated
score test is slightly more powerful than the existing tests. This agrees with the
statistical literature that the score test can be more powerful than the Wald test.
To conclude this section, we note that the decorrelated score test also performs
well in the logistic and Poisson regressions; see Table 2 for the type I errors and
Figure 3 for the power. Further simulation results on the power of the proposed
test are shown in the supplementary materials [27].

7. Discussion. In this paper, we propose a general framework for high di-
mensional inference based on the decorrelated score function. It can be used to
test statistical hypotheses and construct confidence intervals. To broaden the ap-
plicability of the method, the theory is presented under a general setting. We note
that the inferential problems for many high dimensional models can be analyzed
by using the current framework. For example, [9] provided analysis to the high
dimensional proportional hazards model. Unlike the additive hazards model, the
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TABLE 1
Averaged type I error of the decorrelated score test, Lasso-Pro and SSLasso for the linear

regression at 5% significance level

ρ = 0.25 ρ = 0.4 ρ = 0.6 ρ = 0.75

Method s d Dirac Unif Dirac Unif Dirac Unif Dirac Unif

Score 2 100 5.3% 4.9% 5.1% 4.8% 5.2% 5.5% 5.3% 5.0%
200 5.1% 4.8% 5.3% 4.8% 5.9% 5.6% 4.7% 5.2%
500 5.7% 5.7% 5.8% 5.8% 5.4% 5.7% 4.2% 4.3%

3 100 5.1% 5.3% 5.2% 4.9% 5.0% 4.8% 4.4% 4.6%
200 4.7% 4.8% 5.1% 5.4% 5.3% 4.9% 5.1% 4.8%
500 4.4% 4.1% 4.3% 4.0% 4.1% 4.3% 4.0% 4.1%

Lasso-Pro 2 100 5.1% 5.2% 5.0% 4.7% 5.4% 5.1% 4.9% 5.1%
200 5.3% 4.9% 4.8% 5.1% 5.4% 5.1% 4.9% 5.3%
500 5.6% 5.7% 5.3% 4.7% 5.1% 4.6% 3.9% 4.1%

3 100 5.0% 4.9% 5.2% 4.8% 5.3% 5.2% 4.7% 4.6%
200 5.4% 5.3% 5.3% 5.2% 4.7% 5.6% 5.4% 5.5%
500 5.5% 5.9% 5.1% 4.6% 4.7% 5.3% 6.2% 6.3%

SSLasso 2 100 5.0% 5.1% 5.2% 4.8% 4.8% 4.7% 5.2% 5.4%
200 5.2% 4.7% 4.6% 5.4% 4.7% 5.1% 5.2% 4.8%
500 5.4% 5.5% 4.5% 4.4% 4.5% 4.8% 6.2% 5.9%

3 100 5.4% 5.3% 4.9% 4.7% 5.1% 5.0% 5.1% 4.9%
200 5.3% 5.2% 4.9% 4.8% 5.3% 4.8% 4.5% 4.7%
500 5.8% 5.6% 5.5% 5.7% 5.3% 5.6% 6.5% 6.1%

nonlinearity structure of the proportional hazards model poses additional technical
challenges. We refer to [9] for a comprehensive investigation.

From a technical perspective, the sparsity assumption on w∗ can be relaxed. The
reason we assume w∗ to be sparse is that we need the high dimensional vector w∗
to be consistently estimated with a sufficiently fast rate of convergence.

One possible extension is to consider the weak sparsity case which imposes a
certain decaying rate on the ordered entries of w∗. This direction is left for further
investigation.

APPENDIX A: UNIFORM CONVERGENCE OF SCORE TEST

In this appendix, we establish the general results for the uniform convergence of
the decorrelated score test under the null and alternative hypotheses. In particular,
we focus on the case that the information identity holds, for example, �(β) is
the negative log-likelihood. We note that the results can be easily extended to the
general loss functions.
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TABLE 2
Average type I error of the decorrelated score test for the logistic and Poisson regressions at 5%

significance level

ρ = 0.25 ρ = 0.4 ρ = 0.6 ρ = 0.75

Method s d Dirac Unif Dirac Unif Dirac Unif Dirac Unif

Logistic 2 100 5.4% 5.3% 4.8% 4.9% 5.0% 4.9% 4.8% 5.1%
200 5.1% 4.5% 4.9% 5.4% 4.6% 4.7% 4.4% 4.2%
500 3.7% 4.2% 4.7% 4.4% 6.7% 5.9% 6.9% 6.1%

3 100 5.6% 5.2% 5.4% 5.5% 4.8% 4.5% 4.7% 5.0%
200 4.3% 4.5% 4.7% 4.9% 5.3% 5.5% 4.8% 4.6%
500 3.6% 3.4% 3.6% 4.1% 3.7% 3.2% 5.5% 5.2%

Poisson 2 100 5.6% 5.0% 5.8% 5.7% 4.3% 4.9% 6.0% 6.1%
200 5.5% 4.6% 5.9% 6.2% 6.0% 5.8% 6.2% 6.2%
500 7.0% 6.8% 7.4% 6.6% 6.5% 6.0% 7.1% 7.4%

3 100 5.3% 4.7% 5.8% 5.2% 5.6% 6.0% 5.8% 6.0%
200 6.1% 6.5% 5.7% 6.8% 6.2% 6.1% 5.8% 6.4%
500 6.7% 6.7% 7.0% 6.6% 7.3% 7.0% 7.3% 6.8%

A.1. Uniform weak convergence under the null hypothesis. Although in
the previous section the limiting distribution of the score test statistic Ûn is
established, the convergence is shown under the fixed probability distribution
Pβ∗ = P(0,γ ∗). However, in practice, γ ∗ is unknown. To guarantee that the conver-
gence properties are not affected by the values of γ ∗, it is of interest to strengthen

FIG. 3. Power of the decorrelated score test for the logistic regression (left panel) and Poisson
regression (right panel) with d = 200, s = 3 and β∗

S = (1, . . . ,1).
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the weak convergence results in Theorem 3.1 to the weak convergence uniformly
over the values of γ ∗. In particular, consider the following parameter space:

�0 = {
(0,γ ) : ‖γ ‖0 ≤ s∗, for some s∗ � n

}
.

To ensure that the parameter β can be still consistently estimated, we assume �0
only contains sparse parameters. Similarly, to study the weak convergence uni-
formly over β∗ ∈ �0, we impose the following conditions.

ASSUMPTION A.1. It holds that limn→∞ infβ∗∈�0
Pβ∗(Fβ∗

1 ) = 1 and

limn→∞ infβ∗∈�0
Pβ∗(Fβ∗

2 ) = 1, where Fβ∗
1 = {‖γ̂ − γ ∗‖1 � η1(n)} and Fβ∗

2 =
{‖ŵ − w∗‖1 � η2(n)}, for some η1(n) and η2(n) → 0, as n → ∞.

ASSUMPTION A.2. Assume that limn→∞ infβ∗∈�0
Pβ∗(Fβ∗

3 ) = 1, where

Fβ∗
3 = {‖∇γ �(β∗)‖∞ � √

logd/n}, as n → ∞.

ASSUMPTION A.3. Assume that limn→∞ infβ∗∈�0
Pβ∗(Fβ∗

4 ) = 1, where

Fβ∗
4 =

{
sup

v∈[0,1]
∥∥∇2

θγ �(0,γ v) − ŵT ∇2
γ γ �(0,γ v)

∥∥∞ �
√

logd

n

}
.

Here, γ v = vγ ∗ + (1 − v)γ̂ with v ∈ [0,1], as n → ∞.

ASSUMPTION A.4. For v∗ = (1,−w∗T )T , it holds that

lim
n→∞ sup

β∗∈�0

sup
t∈R

∣∣∣∣Pβ∗
(√

nv∗T ∇�(β∗)√
v∗T I∗v∗ ≤ t

)
− �(t)

∣∣∣∣ = 0.

Assume that C′ ≤ v∗T I∗v∗ ≤ 1/C′, for some C′ > 0.

These assumptions are verified for linear models in the supplementary materials
[27].

Here, η1(n) and η2(n) are deterministic and do not depend on β∗. Note that
Assumptions A.1, A.2, A.3 and A.4 intrinsically play the same role as Assumptions
3.1, 3.2, 3.3 and 3.4.

But, to study the uniform convergence, we need to assume that the events Fβ∗
1 ,

Fβ∗
2 , Fβ∗

3 and Fβ∗
4 hold under the distribution Pβ∗ uniformly over β∗ ∈ �0. The

following theorem establishes the uniform convergence of the score test statistic
Ûn in (3.2).

THEOREM A.1. Assume that the Assumptions A.1–A.4 hold. It also holds that
(η1(n) + η2(n))

√
logd = o(1). Then

(A.1) lim
n→∞ sup

β∗∈�0

sup
t∈R

∣∣Pβ∗
(
n1/2Ŝ(0, γ̂ )I

∗−1/2
θ |γ ≤ t

) − �(t)
∣∣ = 0.
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Moreover, for any ε > 0, if limn→∞ infβ∗∈�0
Pβ∗(|Îθ |γ − I ∗

θ |γ | < ε) = 1, then

(A.2) lim
n→∞ sup

β∗∈�0

sup
t∈R

∣∣Pβ∗(Ûn ≤ t) − �(t)
∣∣ = 0.

PROOF. A detailed proof is shown in Appendix B. �

REMARK 9. Theorem A.1 implies that the type I error of the score test Tn in
(3.6) converges to its significance level α uniformly over β∗ ∈ �0, that is,

lim
n→∞ sup

β∗∈�0

sup
α∈(0,1)

∣∣Pβ∗(Tn = 1) − α
∣∣ = 0.

The hypothesis test with such uniform convergence property is called the honest
test. See [3, 13, 34] for further examples.

A.2. Uniform weak convergence under the alternative hypothesis. In this
section, we consider the power of the score test for detecting the alternative hy-
pothesis. In particular, we are interested in the limiting behavior of Tn under the
sequence of local alternative hypothesis H1n : θ∗ = C̃n−φ , where C̃ is a constant,
and φ is a positive constant. Consider the following parameter space:

�1(C̃, φ) = {
(θ,γ ) : θ = C̃n−φ,‖γ ‖0 ≤ s∗, for some s∗ � n

}
.

The parameter space �1(C̃, φ) describes the local alternatives around the null
hypothesis θ∗ = 0, in the sense that θ∗ = C̃n−φ gradually shrinks to 0 as
n → ∞. Similar to �0, we only consider sparse local alternatives. The fol-
lowing theorem characterizes the limiting distributions of the score test statistic
Ûn = n1/2Ŝ(0, γ̂ )Î

−1/2
θ |γ , with respect to different values of φ.

THEOREM A.2. Assume that the Assumptions A.1–A.4 with �0 replaced by
�1(C̃, φ) hold. In addition, we assume uniformly over β∗ ∈ �1(C̃, φ),

√
n
∣∣S(

θ∗,γ ∗) − S
(
0,γ ∗) − θ∗I∗

θ |γ
∣∣ = oP(1),

and Îθ |γ − I ∗
θ |γ = oP(1). If (η1(n) + η2(n))

√
logd = o(1), then

lim
n→∞ sup

β∗∈�1(C̃,φ)

sup
t∈R

∣∣Pβ∗(Ûn ≤ t) − �(t)
∣∣ = 0 if φ > 1/2,(A.3)

lim
n→∞ sup

β∗∈�1(C̃,φ)

sup
t∈R

∣∣Pβ∗(Ûn ≤ t) − �
(
t + C̃I

∗1/2
θ |γ

)∣∣ = 0 if φ = 1/2,(A.4)

lim
n→∞ sup

β∗∈�1(C̃,φ)

Pβ∗
(|Ûn| ≤ t

) = 0 if φ < 1/2.(A.5)

Here, (A.5) holds for any fixed t ∈ R and C̃ �= 0.
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PROOF. A detailed proof is shown in Appendix B. �

REMARK 10. This theorem implies that the score test statistic Ûn has distinct
limiting behaviors in terms of the magnitude of φ. In particular, (A.3) implies that
Ûn � N(0,1) if φ > 1/2 and (A.4) implies that Ûn � N(−C̃I

∗1/2
θ |γ ,1) if φ =

1/2. These results agree with the classical Rao’s score test for low dimensional
parameters.

REMARK 11. Note that the power of the two-sided test Tn in (3.6) is given by
the probability of Tn = 1 when β∗ ∈ �1(C̃, φ). Given the fact that the type I error
of Tn can be controlled at level α asymptotically, Theorem A.2 characterizes the
uniform asymptotic power of Tn under the local alternative hypothesis H1n : θ∗ =
C̃n−φ . In particular, Theorem A.2 implies

lim
n→∞ sup

β∗∈�1(C̃,φ)

sup
α∈(0,1)

∣∣Pβ∗(Tn = 1) − α
∣∣ = 0 if φ > 1/2,(A.6)

lim
n→∞ sup

β∗∈�1(C̃,φ)

sup
α∈(0,1)

∣∣Pβ∗(Tn = 1) − ψα)
∣∣ = 0 if φ = 1/2,(A.7)

lim
n→∞ inf

β∗∈�1(C̃,φ)

Pβ∗(Tn = 1) = 1 if φ < 1/2,(A.8)

where ψα = 1−�(�−1(1−α/2)+C̃I
∗1/2
θ |γ )+�(−�−1(1−α/2)+C̃I

∗1/2
θ |γ ). Here,

(A.8) holds for any α ∈ [δ,1) with some constant δ > 0 and C̃ �= 0. In particular,
(A.6) implies that the test Tn has no power beyond the type I error to distinguish
H0 from H1n if φ > 1/2. Moreover, it is seen that ψα > α for any C̃ �= 0. Hence,
(A.7) shows that the test Tn is asymptotically unbiased. That means the proposed
score test Tn has asymptotic power larger than the type I error for detecting H1n :
θ∗ = C̃n−1/2. Finally, (A.8) implies that the minimal power of Tn increases to 1 as
n → ∞, if φ < 1/2.

REMARK 12. Recall that the hypothesis test Tn is for H0 : θ∗ = 0 versus H1 :
θ∗ �= 0, which is two-sided. To test the one-sided alternative hypothesis, say H ′

1 :
θ∗ > 0, with the significance level α, we can define the score test T ′

n, such that
T ′

n = 1 if and only if Ûn < −�−1(1 − α). Theorem A.1 shows that the type I error
of T ′

n converges to its significance level α uniformly. In addition, by Theorem A.2,
the uniform asymptotic power of T ′

n under the local alternative hypothesis H1n :
θ∗ = C̃n−1/2 for some C̃ > 0 is given by (A.7) with ψα replaced by ψ ′

α = 1 −
�(�−1(1 − α) − C̃I

∗1/2
θ |γ ).
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APPENDIX B: PROOFS OF MAIN RESULTS

B.1. Proof of Theorem 3.2. Recall that we have defined v̂ = (1,−ŵT )T and
v∗ = (1,−w∗T )T . Our goal is to show that

(B.1) n1/2∣∣(θ̃ − θ∗)
I ∗
θ |γ /σ ∗1/2

s + v∗T ∇�
(
β∗)

/σ ∗1/2
s

∣∣ = oP(1).

By the definition of θ̃ , we have the following decomposition:

n1/2∣∣(θ̃ − θ∗)
I ∗
θ |γ + v∗T ∇�

(
β∗)∣∣

= n1/2∣∣(θ̂ − θ∗)
I ∗
θ |γ − I ∗

θ |γ Î−1
θ |γ v̂T ∇�(β̂) + v∗T ∇�

(
β∗)∣∣

≤ n1/2∣∣(θ̂ − θ∗)
I ∗
θ |γ − v∗T (∇�(β̂) − ∇�

(
β∗))∣∣

+ n1/2∣∣(v̂ − v∗)T ∇�(β̂)
∣∣ + n1/2∣∣(I ∗

θ |γ Î−1
θ |γ − 1

)
v̂T ∇�(β̂)

∣∣
:= I1 + I2 + I3.

The proof of Theorem 3.1 implies that n1/2v̂T ∇�(β̂)/σ
∗1/2
s = OP(1). Thus, by

the consistency of Îθ |γ , we have I3/σ
∗1/2
s = oP(1). Following the same proof of

Theorem 3.1, it is easy to show that

|I2| � η2(n)
√

logd + oP(1) = oP(1).

It remains to control the term I1. By the smoothness condition in Assumption 3.3,
we can show that

|I1| ≤ n1/2∣∣(θ̂ − θ∗)
I ∗
θ |γ − v∗T ∇2�

(
β∗)(

β̂ − β∗)∣∣ + oP(1)

≤ n1/2∣∣(θ̂ − θ∗)
I ∗
θ |γ − (

θ̂ − θ∗)(∇2
θθ �

(
β∗) − w∗T ∇2

γ θ �
(
β∗))∣∣

+ n1/2∣∣(γ̂ − γ ∗)(∇2
θγ �

(
β∗) − w∗T ∇2

γ γ �
(
β∗))∣∣ + oP(1)

� n1/2∥∥β̂ − β∗∥∥
1‖T‖∞ + oP(1),

where T = [I ∗
θ |γ − (∇2

θθ �(β
∗) − w∗T ∇2

γ θ �(β
∗)),∇2

θγ �(β∗) − w∗T ∇2
γ γ �(β∗)] is a

d dimensional vector. By Assumption 3.2, ‖T‖∞ � √
logd/n. Thus,

|I1| � η1(n)
√

logd + oP(1) = oP(1).

This completes the proof of (B.1).

B.2. Proof of Theorem A.1. We first present the following lemma.

LEMMA B.1. Under the Assumption A.1–A.4, it also holds that (η1(n) +
η2(n))

√
logd = o(1). Then

lim
n→∞ sup

β∗∈�0

sup
t∈R

∣∣Pβ∗
(
n1/2Ŝ(0, γ̂ )I

∗−1/2
θ |γ ≤ t

) − �(t)
∣∣ = 0.
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PROOF. A detailed proof is shown in the supplementary materials [27]. �

We now present the proof of Theorem A.1.

PROOF OF THEOREM A.1. Let ψn denote a sequence converging to 0 and
satisfying |Îθ |γ − I ∗

θ |γ | � ψn. Denote Un = n1/2Ŝ(0, γ̂ )I
∗−1/2
θ |γ . To show (A.2), for

any t and a sequence of positive δn → 0 to be determined later, we have

Pβ∗(Ûn ≤ t) − �(t) = {
Pβ∗(Ûn ≤ t) − Pβ∗(Un ≤ t + δn)

}
+ {

Pβ∗(Un ≤ t + δn) − �(t + δn)
} + {

�(t + δn) − �(t)
}

:= I1 + I2 + I3.

In the following, we first show that lim supn→∞ supβ∗∈�0
supt∈R I1 ≤ 0. By the

triangle inequality, it is easily seen that

(B.2)
sup
t∈R

I1 ≤ Pβ∗
(|Ûn − Un| ≥ δn

) = Pβ∗
(|Un|

∣∣1 − Î
−1/2
θ |γ I

∗1/2
θ |γ

∣∣ ≥ δn

)

≤ Pβ∗
(|Un| ≥ δ−1

n

) + Pβ∗
(∣∣1 − Î

−1/2
θ |γ I

∗1/2
θ |γ

∣∣ ≥ δ2
n

)
.

The first term of (B.2) can be bounded by

Pβ∗
(|Un| ≥ δ−1

n

) ≤ ∣∣Pβ∗
(|Un| ≥ δ−1

n

) − P
(|N | ≥ δ−1

n

)∣∣ + P
(|N | ≥ δ−1

n

)
,

where N ∼ N(0,1). By Lemma B.1,

lim sup
n→∞

sup
β∗∈�0

sup
δn∈R

∣∣Pβ∗
(|Un| ≥ δ−1

n

) − P
(|N | ≥ δ−1

n

)∣∣ = 0.

The tail bound for the standard normal distribution yields P(|N | ≥ δ−1
n ) ≤

2 δn√
2π

exp(− 1
2δ2

n
) → 0, as δn → 0. Thus, we can show that lim supn→∞ supβ∗∈�0

supδn∈R Pβ∗(|Un| ≥ δ−1
n ) ≤ 0. That means, the first term of (B.2) is bounded above

by 0. For the second term of (B.2), we have

Pβ∗
(∣∣1 − Î

−1/2
θ |γ I

∗1/2
θ |γ

∣∣ ≥ δ2
n

) = Pβ∗
( |Îθ |γ − I ∗

θ |γ |
(Î

1/2
θ |γ + I

∗1/2
θ |γ )Î

1/2
θ |γ

≥ δ2
n

)
.

By the assumption C′ ≤ I ∗
θ |γ , we can show that∣∣Îθ |γ − I ∗

θ |γ
∣∣{(Î 1/2

θ |γ + I
∗1/2
θ |γ

)
Î

1/2
θ |γ

}−1 �
∣∣Îθ |γ − I ∗

θ |γ
∣∣ � ψn,

since Îθ |γ ≥ C′ − ψn ≥ C′/2 for n large enough. Hence, with δn = Cψ
1/2
n ,

for some sufficiently large constant C, we obtain that the second term of
(B.2), Pβ∗(|1 − Î

−1/2
θ |γ I

∗1/2
θ |γ | ≥ δ2

n) = 0, for n large enough. As a result,
lim supn→∞ supβ∗∈�0

supt∈R I1 ≤ 0. By Lemma B.1, we can show that

lim sup
n→∞

sup
β∗∈�0

sup
t∈R

I2 ≤ lim sup
n→∞

sup
β∗∈�0

sup
t ′∈R

∣∣Pβ∗
(
Un ≤ t ′

) − �
(
t ′

)∣∣ = 0.
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Finally, I3 ≤ (2π)−1/2δn, which implies that lim supn→∞ supβ∗∈�0
supt∈R I3 ≤ 0.

Combining these results, we obtain

lim sup
n→∞

sup
β∗∈�0

sup
t∈R

{
Pβ∗(Ûn ≤ t) − �(t)

} ≤ 0.

Similar arguments yields the bound for the minimum,

lim inf
n→∞ inf

β∗∈�0

inf
t∈R

{
Pβ∗(Ûn ≤ t) − �(t)

} ≥ 0.

This completes the proof of (A.2). �

B.3. Proof of Theorem A.2. We start from the Lemma B.2.

LEMMA B.2. Under the Assumptions in Theorem A.2, we have

lim
n→∞ sup

β∗∈�1(C̃,φ)

sup
t∈R

∣∣Pβ∗
(
n1/2Ŝ(0, γ̂ )I

∗−1/2
θ |γ ≤ t

) − �(t)
∣∣ = 0,(B.3)

lim
n→∞ sup

β∗∈�1(C̃,φ)

sup
t∈R

∣∣Pβ∗
(
n1/2Ŝ(0, γ̂ )I

∗−1/2
θ |γ ≤ t

) − �
(
t + C̃I

∗1/2
θ |γ

)∣∣ = 0,(B.4)

for φ > 1/2 and φ = 1/2, respectively. For any fixed t ∈ R and C̃ �= 0,

(B.5) lim
n→∞ sup

β∗∈�1(C̃,φ)

Pβ∗
(∣∣n1/2Ŝ(0, γ̂ )I

∗−1/2
θ |γ

∣∣ ≤ t
) = 0 if φ < 1/2.

PROOF. A detailed proof is shown in the supplementary materials [27]. �

Given Lemma B.2, we now prove Theorem A.2.

PROOF OF THEOREM A.2. The proof is similar to that of Theorem A.1. To
highlight the difference, we only present the proofs of (A.4) and (A.5). Let ψn

denote a sequence converging to 0 and satisfying |Îθ |γ − I ∗
θ |γ | � ψn. Denote Un =

n1/2Ŝ(0, γ̂ )I
∗−1/2
θ |γ . For any t and a sequence of positive δn → 0 to be determined

later,

Pβ∗(Ûn ≤ t) − �
(
t + C̃I

∗1/2
θ |γ

) = {
Pβ∗(Ûn ≤ t) − Pβ∗(Un ≤ t + δn)

}
+ {

Pβ∗(Un ≤ t + δn) − �
(
t + C̃I

∗1/2
θ |γ + δn

)}
+ {

�
(
t + C̃I

∗1/2
θ |γ + δn

) − �
(
t + C̃I

∗1/2
θ |γ

)}
:= I1 + I2 + I3.

By the triangle inequality, it is easily seen that

(B.6)
sup
t∈R

I1 ≤ Pβ∗
(|Ûn − Un| ≥ δn

) = Pβ∗
(|Un|

∣∣1 − Î
−1/2
θ |γ I

∗1/2
θ |γ

∣∣ ≥ δn

)

≤ Pβ∗
(|Un| ≥ δ−1

n

) + Pβ∗
(∣∣1 − Î

−1/2
θ |γ I

∗1/2
θ |γ

∣∣ ≥ δ2
n

)
.
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The first term of (B.6) can be further bounded by

Pβ∗
(|Un| ≥ δ−1

n

) ≤ ∣∣Pβ∗
(|Un| ≥ δ−1

n

) − P
(∣∣N − C̃I

∗1/2
θ |γ

∣∣ ≥ δ−1
n

)∣∣
+ P

(∣∣N − C̃I
∗1/2
θ |γ

∣∣ ≥ δ−1
n

)
,

where N ∼ N(0,1). By Lemma B.2,

lim sup
n→∞

sup
β∗∈�1(C̃,φ)

sup
δn∈R

∣∣Pβ∗
(|Un| ≥ δ−1

n

) − P
(∣∣N − C̃I

∗1/2
θ |γ

∣∣ ≥ δ−1
n

)∣∣ = 0,

and the tail bound for the standard normal distribution yields

P
(∣∣N − C̃I

∗1/2
θ |γ

∣∣ ≥ δ−1
n

) ≤ P
(|N | ≥ δ−1

n − |C̃|I ∗1/2
θ |γ

)

≤ 2√
2π(δ−1

n − |C̃|I ∗1/2
θ |γ )

exp
(
−(δ−1

n − |C̃|I ∗1/2
θ |γ )2

2

)

→ 0,

as δ → 0, uniformly over β∗, due to I ∗
θ |γ ≤ C′′. Thus, the first term of (B.6) is

bounded above by 0. For the second term of (B.6), we have

Pβ∗
(∣∣1 − Î

−1/2
θ |γ I

∗1/2
θ |γ

∣∣ ≥ δ2
n

) = Pβ∗
( |Îθ |γ − I ∗

θ |γ |
(Î

1/2
θ |γ + I

∗1/2
θ |γ )Î

1/2
θ |γ

≥ δ2
n

)
.

Applying the similar arguments, we can show that the second term of (B.6) goes
to 0, and lim supn→∞ supβ∗∈�0

supt∈R I1 ≤ 0. By Lemma B.2, we can obtain that
lim supn→∞ supβ∗∈�1(C̃,φ)

supt∈R I2 is less than

lim sup
n→∞

sup
β∗∈�1(C̃,φ)

sup
t ′∈R

∣∣Pβ∗
(
Un ≤ t ′

) − �
(
t ′ + C̃I

∗1/2
θ |γ

)∣∣ = 0.

Finally, I3 ≤ (2π)−1/2δn, which implies lim supn→∞ supβ∗∈�1(C̃,φ)
supt∈R I3 ≤ 0.

Combining these results, we obtain

lim sup
n→∞

sup
β∗∈�1(C̃,φ)

sup
t∈R

{
Pβ∗(Ûn ≤ t) − �

(
t + C̃I

∗1/2
θ |γ

)} ≤ 0.

Similar arguments yield the following lower bound:

lim inf
n→∞ inf

β∗∈�1(C̃,φ)

inf
t∈R

{
Pβ∗(Ûn ≤ t) − �

(
t + C̃I

∗1/2
θ |γ

)} ≥ 0.

This completes the proof of (A.4). For (A.5), since supβ∗∈�1(C̃,φ)
|Îθ |γ − I ∗

θ |γ | =
oP(1) and C′ ≤ I ∗

θ |γ , we have |Îθ |γ /I ∗
θ |γ − 1| ≤ 3, for n large enough (not depend-

ing on β∗). Given any t ∈ R, for n sufficiently large,

Pβ∗
(|Ûn| ≤ t

) = Pβ∗
(|Un| ≤ t

(
Îθ |γ /I ∗

θ |γ
)1/2) ≤ Pβ∗

(|Un| ≤ 2t
)
.
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Hence, by (B.5) in Lemma B.2, we finally obtain

lim
n→∞ sup

β∗∈�1(C̃,φ)

Pβ∗
(|Ûn| ≤ t

) ≤ lim
n→∞ sup

β∗∈�1(C̃,φ)

Pβ∗
(|Un| ≤ 2t

) = 0.
�
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