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A PHASE TRANSITION IN EXCURSIONS FROM INFINITY OF
THE “FAST” FRAGMENTATION-COALESCENCE PROCESS

BY ANDREAS E. KYPRIANOU1,∗, STEVEN W. PAGETT∗,
TIM ROGERS2,∗ AND JASON SCHWEINSBERG3,†

University of Bath∗ and University of Califronia, San Diego†

An important property of Kingman’s coalescent is that, starting from a
state with an infinite number of blocks, over any positive time horizon, it
transitions into an almost surely finite number of blocks. This is known as
“coming down from infinity”. Moreover, of the many different (exchange-
able) stochastic coalescent models, Kingman’s coalescent is the “fastest” to
come down from infinity. In this article, we study what happens when we
counteract this “fastest” coalescent with the action of an extreme form of
fragmentation. We augment Kingman’s coalescent, where any two blocks
merge at rate c > 0, with a fragmentation mechanism where each block frag-
ments at constant rate, λ > 0, into its constituent elements. We prove that
there exists a phase transition at λ = c/2, between regimes where the result-
ing “fast” fragmentation-coalescence process is able to come down from in-
finity or not. In the case that λ < c/2, we develop an excursion theory for the
fast fragmentation-coalescence process out of which a number of interesting
quantities can be computed explicitly.

1. Introduction. This paper considers the occurrence of a phenomenon which
appears when we interplay the opposing effects of fragmentation and coalescence.
Our setting is that of an adaptation of Kingman’s coalescent, in which an aggres-
sive form of fragmentation (splitting blocks up into their constituent elements) is
introduced.

Recall that Kingman’s coalescent describes a system of disjoint subsets cover-
ing N, later referred to as blocks, such that any individual pair of blocks merge
at a constant rate, say c > 0, until the system has been reduced to a single block.
Suppose we write Pn for the associated law of K := (K(t) : t ≥ 0), the number
of blocks in the process, when issued from n ∈ N. Kingman [12] addresses the
question as to whether an entrance law of the chain K exists at {+∞}. Roughly
speaking, he proved that, independently of the value of c, P∞ := limn↑∞ Pn is well
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defined in the appropriate sense. In particular, Kingman showed that when the co-
alescent is issued with an infinite number of blocks, it “comes down from infinity”
meaning that P∞(K(t) < ∞) = 1 for all t > 0. Moreover, it has been shown [2]
that, P∞-almost surely

lim
t↓0

tK(t) = 2

c
.

This is what we refer to by the “speed” of coming down from infinity. King-
man’s coalescent can be considered as the most basic model within a certain class
of so-called exchangeable coalescent processes [18] in which multiple mergers of
blocks are permitted (irrespective of any notion of their size). Berestycki et al. [4]
show that Kingman’s coalescent is the “fastest” coalescent to come down from in-
finity, in that 2/ct , for suitably small t , is a lower bound for the number of blocks
at time t for all such processes.

Berestycki [3] has also studied a very general class of (exchangeable) fragmen-
tation-coalescent models, showing, amongst other things, that a stationary distri-
bution always exists. In addition, he found a subclass of such processes combining
Kingman’s coalescent with certain forms of fragmentation that still come down
from infinity. In light of this, we hypothesise that, in order for additionally interest-
ing phenomena to emerge, we must choose a more extreme form of fragmentation
to “compete” against Kingman’s coalescent.

The “fast” fragmentation-coalescence process that we will work with follows
the dynamics of Kingman’s coalescent, but with the modification that each block
in the system, at constant rate λ > 0, is shattered into its constituent elements.
A more precise definition and construction of the process as an exchangeable
fragmentation-coalescent process will be given in Section 2, but for now, we are
interested in a Markov chain N := (N(t) : t ≥ 0) on N ∪ {∞}, which represents
the number of blocks in the fast fragmentation-coalescence process. Its transitions
are specified by the Q-matrix having entries given by the aforesaid Kingman and
fragmentation dynamic, so that

Qi,j =
⎧⎪⎨⎪⎩c

(
i

2

)
, if j = i − 1,

λi, if j = ∞.

We are interested in understanding whether the state {∞} is absorbing or recurrent
for N . That is to say, we want to know whether it is possible to construct a recurrent
extension of the process N beyond its first hitting time of {∞}, when issued from
a point in N. The idea that N “comes down from infinity” is then clearly captured
in the notion that the process instantaneously visits N after entering the state {∞}.
In Proposition 15 of [3], Berestycki gives sufficient conditions for an EFC process
to come down from infinity. In doing so, he makes assumptions which specifically
exclude our setting. Specifically, his assumptions (L) and (H) are violated by our
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model as they require that blocks split into a finite number of of sub-blocks at a
fragmentation event.

It turns out to be more convenient, however, to study the reciprocal process
M := 1/N . The case that there is a recurrent extension of M from 0 corresponds
to the ability of the fast fragmentation-coalescence process to come down from
infinity. Moreover, if M = 0 is an absorbing state then the fast fragmentation-
coalescence process stays infinite. It transpires that θ := 2λ/c is the quantity that
governs this behaviour. Our main result in this respect is as follows.

THEOREM 1.1 (Phase transition). (i) If 0 < θ < 1, then M := (M(t) : t ≥ 0)

is a recurrent Feller process on {1/n : n ∈ N} ∪ {0} such that 0 is instantaneously
regular (that is to say 0 is a not a holding point) and not sticky (that is to say∫ ∞

0 1{M(s)=0} ds = 0 almost surely).
(ii) If θ ≥ 1, then 0 is an absorbing state for M .

Theorem 1.1(i) also alludes to the existence of an excursion theory for the pro-
cess M away from 0 (equivalently N from {+∞}). Indeed combined with the re-
currence properties of the point 0 given in Theorem 1.1(i) standard theory dictates
that a local time exists for M at 0 such that its inverse is a pure jump subordinator
with infinite activity. Moreover, accompanying this local time is an excursion mea-
sure, Q. Following classical excursion theory in Chapter XIX.46 of Dellacherie
and Meyer [8], we can write down an invariant measure for the transition semi-
group of M in terms of this excursion measure. On account of the fact that M is a
bounded recurrent process in [0,1], we would expect this invariant measure to be
a stationary distribution, that is to say, we would expect M to possess an ergodic
limit. With some additional work, the next theorem shows that the computations
can be pushed even further to obtain an explicit stationary distribution.

THEOREM 1.2 (Stationary distribution). If 0 < θ < 1, then M has stationary
distribution given by

ρM(1/k) = (1 − θ)

�(θ)

�(k − 1 + θ)

�(k + 1)
, k ∈N,

which is a Beta-Geometric(1 − θ, θ) distribution and accordingly its probability
generating function can be written in the form

G(s) = 1 − (1 − s)1−θ s ∈ (0,1).

Another property that can be captured in the recurrent case is that, in the ap-
propriate sense, the rate of coming down from infinity matches that of Kingman’s
coalescent. To this end, let us denote by P1/n, for n ∈N∪ {+∞}, the probabilities
of M .
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FIG. 1. A computer simulation of the trajectories of N (blue) and M (black) restricted to n = 106

integers, with c = 1 and λ = 0.2. The inset shows detail of typical behaviour near M = 0; the red line
here illustrates the “speed” predicted by Theorem 1.3.

THEOREM 1.3 (Speed of coming down from infinity). Suppose that 0 <

θ < 1:

(i) Let e
(∞)
1/k be the expected first hitting time of 1/k by M under P0. Then

e
(∞)
1/k = 2

c(1 − θ)k
.

(ii) Let ε denote an excursion of M , then

lim
t↓0

t

ε(t)
= 2

c
, Q-a.e.

We can see the phenomenon in Theorem 1.3(ii) in Figure 1 by zooming on
the entrance of an excursion of M from 0. Since the local behaviour of an excur-
sion only has coalescing events as in Kingman’s coalescent, albeit that the coales-
cence rates are slightly adjusted to accommodate for suppressing fragmentation,
and since M = 1/N one might expect (ii) in view of (1). In fact, the proof of
this result will actually use part of the proof in [2]. Finally, a natural question in
excursion theory is to ask for the Hausdorff dimension of the zero set of M .

THEOREM 1.4 (Hausdorff dimension). Suppose 0 < θ < 1. Let Z = {t :
M(t) = 0}. Then the Hausdorff dimension of Z equals θ almost surely.

The rest of the paper is organised as follows. The basis of the analysis as to
whether {0} is an absorbing or recurrent state for M centres around the represen-
tation of our fast fragmentation-coalescent process as a path functional of a richer
Markov process on the space of exchangeable partitions of the natural numbers.
We therefore commit the next section to addressing this representation. We then
prove the four main results in Sections 3, 4, 5 and 6.
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2. Background. We start by reviewing the notion of an exchangeable ran-
dom partition of the natural numbers. A partition of N is a set of subsets π =
{π1, π2, . . .}, such that

⋃∞
i=1 πi = N and πi ∩ πj = ∅, ∀i �= j , where for conve-

nience, the blocks are ordered by least element. We denote the set of partitions of
N by P . We are also interested in such partitions restricted to {1, . . . , n}, which we
denote by Pn.

It is straightforward to see that a partition π ∈ P admits an equivalence relation
j

π∼ k ⇐⇒ j, k ∈ πi for some i ∈ N. Suppose σ is a permutation of N with finite
support, then it can be applied to π to define a new partition σ(π) using this

equivalence relation by letting j
σ(π)∼ k ⇐⇒ σ(j)

π∼ σ(k). In other words, apply
σ−1 to the blocks of π to make the blocks of σ(π), then reorder these blocks by
least element. This can be used to define an exchangeable measure.

DEFINITION 2.1. A sigma-finite measure, say μ, on P is said to be exchange-
able if for all permutations σ with finite support, σ(π) has the same law under μ

as π .

We will now state several previous important results to do with exchange-
able probability measures. First, we can link measures on the partition space to
mass partition measures. A mass partition is a sequence, in decreasing order,
s = (s1, s2, . . . , ), with positive elements that sum to at most 1, and the space of
all mass partitions is denoted S↓. If we have a mass partition s, we can use this
to partition the unit interval [0,1] into subintervals of length s1, s2, . . . We then
sample from the uniform distribution on [0,1] recursively U1,U2, . . . to see where
they are positioned in this partition of the unit interval. We can define a partition
π ∈ P (known as a paintbox) as follows:

j
π∼ k ⇐⇒ j = k or Uj and Uk are in the same block

in the unit interval partition.

Note, it may be the case that
∑∞

i=1 si < 1 and so part of the unit interval is not
covered by the partition. In this case, if Uj does not land in any of the {si : i ≥ 1},
then {j} is taken to be a singleton block of π . Suppose that for a given s ∈ S↓
we write ρs for the law of the associated paintbox. Kingman [11] shows that μ

is an exchangeable probability measure if and only if, for π ∈ P , there exists a
probability measure, ν, on S↓ such that

(2.1) μ(dπ) =
∫
S↓

ρs(dπ)ν(ds).

It is also worthy of note that if ν is not a probability measure, but instead a sigma-
finite measure, then μ is also an exchangeable sigma-finite measure.
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As is suggested by (2.1), the asymptotic frequencies of block partitions, defined
as

|πi | = lim
n→∞

1

n
#
{
πi ∩ {1, . . . , n}},

exist μ-almost everywhere and, when ranked in decreasing order, correspond in
law to {si : i ≥ 1} under ν. A more subtle version of this statement is that all
partition blocks contain a either positive fraction of the integers or just a singleton.
Moreover if there are singletons, there are infinitely many of them and the union
of all of them has positive asymptotic frequency almost surely.

Exchangeable fragmentation-coalescence processes (EFC processes) were in-
troduced by Berestycki [3] with applications in physical chemistry and mathemat-
ical genetics (amongst others). In short, they superimpose the stochastic mech-
anisms that drive homogeneous fragmentation processes (introduced by Bertoin
[6], with other examples from Aldous and Pitman [1], Bertoin [5] and Pitman
[15]) and exchangeable coalescence processes (first studied by Kingman [12] and
later generalised by Pitman [15], Sagitov [17], Schweinsberg [18] and Möhle and
Sagitov [13]).

Little has been done on EFCs in the probabilistic literature beyond the seminal
work of Berestycki [3] and we know only of the works [7] and [9]. The former
computes the stationary distribution for a specific class of EFCs (different from
ours) and the latter considers how other some EFCs, which may be regarded as
logistic branching processes, can be analysed in the light of a duality relation with
certain SDEs. The work we present here adds a third contribution in this respect.

The following definitions are mostly taken from Berestycki [3]. First, we say
that a family of Pn-valued processes, (
(n))n∈N, is compatible if the restriction of

(n+1) to {1, . . . , n} is almost surely equal to 
(n). If we have such a family then
almost surely this determines a unique P-valued process 
 such that the restriction
of 
 to {1, . . . , n} is 
(n).

DEFINITION 2.2. A P-valued process 
 := (
(t), t ≥ 0), is an EFC process
if:

1. for each t ≥ 0, 
(t) = (
1(t),
2(t), . . .) is an exchangeable partition,
2. its restrictions, 
(n), are càdlàg Markov chains which can only evolve by

fragmentation of one block or by coagulation.

Note, in the above definition, by càdlàg, we mean with respect to the metric
d(π ′, π ′′) = 1/max{n ∈N : π ′ ∩ [n] = π ′′ ∩ [n]} for π ′, π ′′ ∈ P .

Berestycki [3] shows that all EFC processes can be decomposed in terms of two
independent Poisson point processes, one for coalescence and one for fragmenta-
tion. Rather than give a full exposition here, we focus on the specific EFC that will
lead to the fast fragmentation-coalescent process that we are interested in.
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In order to do so, we need to define the fragmentation and coalescence operators
which will form the dynamics of EFC processes. If we have π,π ′ ∈ P, we define
the coagulation of π by π ′, written Coag(π,π ′) as a third partition π ′′ where

π ′′
i = ⋃

j∈π ′
i

πj .

In addition, the fragmentation of the kth block of π by π ′, written Frag(π,π ′, k)

is a third partition π̃ whose blocks are πi for i �= k and πk ∩ π ′
j for j ∈ N. These

blocks may need to be reordered to ensure that they are still ordered by least ele-
ment. With these dynamics in place we can define an EFC process.

Next, we need to introduce two measures, C and F , which give the rates at
which fragmentation and coalescence will occur in the aforesaid Poisson point
processes. For all i, j ∈ N such that i �= j , let εi,j be the partition which has only
one block that is not a singleton, namely the block {i, j}. We take κ = ∑

i<j δεi,j

and C = cκ . This is the exchangeable measure which corresponds to all pairs of
blocks coalescing at constant rate c.

For the fragmentation measure, F , as alluded to in the Introduction, we will
work with an extreme case. Specifically, if we define 0 = ({1}, {2}, . . .), then we
take F = λδ0, for λ > 0. That is to say, each block is fragmented entirely into
its constituent singletons. This is a valid exchangeable measure as we can take
νDisl = λδ0, where 0 is the mass partition made of an infinite sequence of zeros.
Then, with no erosion present, the paintbox of νDisl gives F as required.

Finally, we introduce the two independent Poisson point processes and show
how they are composed to generate the paths of the exchangeable fast fragmenta-
tion-coalescence process (EFFC processes). Let PPPC be a Poisson point pro-
cess on [0,∞) × P with intensity dt × C(dπ) and let PPPF be a Poisson point
process on [0,∞) × P × N with intensity dt × F(dπ) × #(dk) (here # is the
counting measure on N and we understand the set [0,∞) to take the role of
time). Pick 
(0) = π ∈ P for the starting value of 
 and we evolve the pro-
cess 
 according to arrivals as points in PPPC and PPPF as follows. If t is
not an atom time of PPPC or PPPF , then 
(t) = 
(t−). If t is an atom time
of PPPC , then 
i(t) = Coag(
i(t−),π(t)), where π(t) is the accompanying
mark in P at the atom time t . Finally, if t is a an atom time of PPPF then

(t) = Frag(
(t−),π(t), k(t)), where (π(t), k(t)) is the accompanying mark in
P × N at the atom time t . A direct consequence of this construction is that 


is a strong Markov process. We shall denote its probabilities by Pπ , π ∈ P . Let
[n] = {1, . . . , n}, for each n ∈N.

One of the main results in Berestycki [3] concerns the existence of a stationary
distribution of all EFC processes. In particular, for the EFFC process, we have the
following result.

THEOREM 2.3 (Berestycki [3]). For all π ∈ P such that 
(0) = π , there
exists an exchangeable probability measure ρ on P such that 
(t) ⇒ ρ as t → ∞.
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Recall that we write N(t) for the number of blocks in the system 
(t) at time
t ≥ 0 (with the understanding that its value may be +∞). In completing this sec-
tion, let us remark on how the property of right-continuity of 
 transfers to the
setting of the number of blocks.

PROPOSITION 2.4. The process (N(t), t ≥ 0) has a right-continuous version.

PROOF. Berestycki [3] showed that 
 is a Feller process and, therefore, has
a right-continuous version. Proposition 2.4 does not follow immediately from
Berestycki’s result because the function which maps a partition in P to its number
of blocks is not a continuous function with respect to the metric d(·, ·) defined
above. However, note that, for all k ∈ N, the set of times during which the process
has k blocks is a union of intervals of the form [s, t). Therefore, if N(t) < ∞, then
N is right-continuous at t . That N is right-continuous at t when N(t) = ∞ follows
from the fact that 
 has a right-continuous version, and if (πn)

∞
n=1 is a sequence

in P that converges to a partition π with infinitely many blocks, then the number
of blocks of πn tends to infinity as n → ∞. �

3. Proof of Theorem 1.1. Let T = inf{t > 0 : N(t) < ∞}. The next lemma
shows that when θ ∈ (0,1), we have T = 0 a.s., which establishes that the process
instantaneously comes down from infinity.

LEMMA 3.1. If θ ∈ (0,1) and π ∈ P , then Pπ(T = 0) = 1.

PROOF. We first look at the probability of hitting the state with 1 block without
any fragmentation event occurring when the process starts with n blocks. Suppose
we label this probability pn,1. Recall that θ := 2λ/c. From the definition of the
model, it is straightforward to see that

(3.1) pn,1 =
n∏

k=2

c
(k
2

)
λk + c

(k
2

) =
n∏

k=2

k − 1

k − 1 + θ
= �(n)�(1 + θ)

�(n + θ)
∼ �(1 + θ)n−θ ,

as n tends to infinity. We now find an expression for the expected time until the first
fragmentation event. Write Pn to denote probabilities when the process starts with
n blocks. First, we find the probability that the first fragmentation event occurs
when the process is in a state with k blocks, which we denote r

(n)
k . To this end,

define τk = inf{t > 0 : N(t) = k} for k ∈ N∪ {+∞}, and see that

r
(n)
k = Pn

(
N(τ∞−) = k

) = λk

λk + c
(k
2

) n∏
j=k+1

c
(j
2

)
λj + c

(j
2

)
= θ

k − 1 + θ

n∏
j=k+1

j − 1

j − 1 + θ
= θ

k − 1 + θ

�(k + θ)�(n)

�(n + θ)�(k)
(3.2)

= θ�(n)�(k − 1 + θ)

�(n + θ)�(k)
.
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Next, we aim to bound the expected time for the process to reach a state with k

blocks if there is no fragmentation event. Note that N has skip-free downward
paths so that

t
(n)
k = En[τk|τk < τ∞] =

n∑
j=k+1

Ej [τj−1|τj−1 < τ∞]

=
n∑

j=k+1

2

2λj + cj (j − 1)
≤

n∑
j=k+1

2

cj (j − 1)
(3.3)

≤ 2

ck
.

We can combine these last two quantities to bound the expected time until the first
fragmentation event. We split over the number of blocks when the first fragmenta-
tion event can occur to see that, with the help of (3.2) and (3.3),

En[τ∞] =
n∑

k=1

(
t
(n)
k + 1

λk + c
(k
2

))
r
(n)
k

≤
n∑

k=1

(
2

ck
+ 1

λk + c
(k
2

))
θ�(n)�(k − 1 + θ)

�(n + θ)�(k)

≤ �(n)

λc�(n + θ)

n∑
k=1

(2λ + c)θ�(k − 1 + θ)

�(k + 1)
.

For the next part of the proof, consider a slightly different Markov process on
Pn, say 
̂(n), where the rates of coalescence and fragmentation are the same as

(n) (the process 
 restricted to {1, . . . , n}), but when fragmentation occurs, we
return to the state ({1}, {2}, . . . , {n}). We can consider, for 
̂(n), the number of
times the system attempts to descend to the state [n] in which all integers are in
a single block from the initial state ({1}, {2}, . . . , {n}). (The “failure” event corre-
sponds to the event that a fragmentation occurs during a sojourn from singletons
to [n].) It is a geometric random variable with success rate pn,1 and the expected
value of this random variable (expected number of attempts until success) will be
p−1

n,1. The above tells us the expected amount of time each failure will take, so
recalling that 0 denotes the partition of N into singletons, we have

E0
[
Time for 
̂(n) to hit [n]] ≤ p−1

n,1En[τ∞].
The expected time for 
̂(n) to hit [n] could only decrease if the process started
from a different initial state. Furthermore, it is easy to see that the expected time
to hit [n] from any given initial state is larger for 
̂(n) than for 
(n). Therefore,
letting π ∈ P be a partition with infinitely many blocks, we have

e
(n)
1 := Eπ

[
Time for 
(n) to hit [n]] ≤ p−1

n,1En[τ∞].
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Hence, by (3.1), we have

e
(n)
1 ≤ 1

λc

(
�(n + θ)

�(n)�(1 + θ)

)
�(n)

�(n + θ)

n∑
k=1

(2λ + c)θ�(k − 1 + θ)

�(k + 1)

≤ 1

λc�(θ)

n∑
k=1

(2λ + c)�(k − 1 + θ)

�(k + 1)

≤ D

n∑
k=1

kθ−2

≤ D

∞∑
k=1

kθ−2,

where D is a constant that does not depend on n or on the initial state π . The above
is finite if and only if 0 < θ < 1, uniformly for all n. It follows that if θ ∈ (0,1),
then supn e

(n)
1 < ∞.

Now let τ
(n)
1 = inf{t : 
(n)(t) = [n]} be the first time that the integers 1, . . . , n

are all in the same block. Then τ
(1)
1 ≤ τ

(2)
1 ≤ · · · , and so τ

(n)
1 increases to some

limit τ
(∞)
1 . As supn e

(n)
1 < ∞, it follows from the monotone convergence theorem

that Eπ [τ (∞)
1 ] < ∞ and so τ

(∞)
1 < ∞ a.s. Hence, N(τ

(∞)
1 ) = 1, and so τ

(∞)
1 = τ1.

It follows that τ1 and thus T are almost surely finite.
To prove that T = 0 almost surely, we bound the expected time for N to hit k

from initial state n uniformly in n and prove that this converges to 0 as k → ∞. The
proof is very similar to the argument above. To this end, let pn,k be the probability
of N hitting the state with k blocks before a fragmentation event occurs. A similar
calculation to (3.1) gives

(3.4) pn,k = �(k + θ)�(n)

�(n + θ)�(k)
.

Then using the same argument as for e
(n)
1 , the expected time to hit a state with k

blocks, written e
(n)
k , satisfies

e
(n)
k ≤ p−1

n,kEn[τ∞]

≤
(

�(n + θ)�(k)

�(k + θ)�(n)

)
�(n)

λc�(n + θ)

n∑
j=1

(2λ + c)θ�(j − 1 + θ)

�(j + 1)

≤ �(k)

λc�(k + θ)

∞∑
j=1

(2λ + c)θ�(j − 1 + θ)

�(j + 1)
,
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and so

sup
n

e
(n)
k ≤ �(k)

λc�(k + θ)

∞∑
j=1

(2λ + c)θ�(j − 1 + θ)

�(j + 1)
→ 0,

as k → ∞, because the series is finite for 0 < θ < 1. Let τ
(n)
k denote the first time

the process 
n has k blocks. Then τ
(k)
k ≤ τ

(k+1)
k ≤ · · · , so τ

(n)
k increases to some

limit τ
(∞)
k . Also, by a similar argument to one given earlier, N(τ

(∞)
k ) = k and so

τ
(∞)
k = τk . Thus,

0 ≤ Eπ [T ] ≤ e
(∞)
k → 0,

as k → ∞. It follows that T = 0 almost surely, as required. �

The next result shows that, when the process starts from the partition of the
positive integers into singletons, although the process immediately comes down
from infinity, there are also fragmentation events at arbitrarily small times which
cause the number of blocks to become infinite.

LEMMA 3.2. Let S = inf{t > 0 : N(t) = ∞}. If θ ∈ (0,1) and π is a partition
with infinitely many blocks, then Pπ(S = 0) = 1.

PROOF. Let Fk be the number of fragmentations that occur before the first
time the number of blocks reaches k, so that pn,k = Pn(Fk = 0) is the probability
that N drops from n to k without a fragmentation occurring. When a fragmentation
occurs, the process N must first return to a state with n blocks before it can reach a
state with k blocks. Hence, we can conclude that, for all n ≥ k, the random variable
Fk stochastically dominates a geometric random variable with success probability
pn,k . Therefore, appealing to (3.4), for all j, k ∈ N, and n ≥ k we have

Pπ(Fk > j) ≥
(

1 − �(k + θ)�(n)

�(n + θ)�(k)

)j

.

Hence, as the right-hand side converges to 1 as n → ∞, we can therefore conclude
that for all k ∈ N, the number of fragmentation events that occur before the process
reaches any state with k blocks is infinite almost surely. The result follows. �

LEMMA 3.3. If θ ∈ (0,1) and π ∈ P , then
∫ ∞

0 1{N(t)=∞} dt = 0,Pπ -almost
surely.

PROOF. Let Nn(t) be the number of blocks in the partition 
(n)(t). For k,n ∈
N∪ {+∞} with 2 ≤ k ≤ n, let

g
(n)
k = Eπ

[∫ τ
(n)
1

0
1{Nn(t)=k} dt

]
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be the expected amount of time for which the process 
(n) has k blocks, before the
time τ

(n)
1 . To calculate g

(∞)
k , note that each time the process N visits the state k, it

has probability pk,1 of reaching the state 1 before fragmentation, and if there is a
fragmentation the process must return to k before reaching the state 1. Therefore,
assuming there are initially at least k blocks, the process makes p−1

k,1 visits to k on

average before time τ
(∞)
1 , and thus

g
(∞)
k = 1

pk,1
· 1

λk + c
(k
2

) .
When the process Nn visits k, there is still probability pk,1 that the process reaches
the state with one block before fragmentation, but the process could have fewer
than k blocks after fragmentation in which case it could still have another chance
to reach the state 1 before returning to k. It follows that

g
(n)
k ≤ g

(∞)
k

for 2 ≤ k ≤ n. Thus,

Eπ

[
τ

(∞)
1

] =
∞∑

k=2

g
(∞)
k + g(∞)∞ ≥

n∑
k=2

g
(n)
k + g(∞)∞ = Eπ

[
τ

(n)
1

] + g(∞)∞ .

Because the times τ
(n)
1 increase to τ

(∞)
1 , which has finite mean as shown in the

proof of Lemma 3.1, it follows by letting n → ∞ and using the monotone conver-
gence theorem that g

(∞)∞ = 0. That is, with probability one, the set of times that
N spends in the state ∞ before time τ

(∞)
1 has Lebesgue measure zero. This is

sufficient to establish the result. �

To prove part (i) of Theorem 1.1, it remains to show that M and N are strong
Markov processes. It is known from results of Berestycki [3] that the partition-
valued EFFC process 
 is a Feller process. However, while the processes M and
N clearly evolve in a Markovian way when there are only finitely many blocks,
one could be concerned about whether the Markov property holds when there are
infinitely many blocks, especially in view of the unusual behavior described in
Lemmas 3.1 and 3.2. In particular, there is the question of whether knowing that
the partition has infinitely many blocks provides sufficient information about the
partition to determine how the number of blocks evolves in the future. The lemma
below settles this question.

LEMMA 3.4. If θ(0,1), then (M(t), t ≥ 0) and (N(t), t ≥ 0) are Feller pro-
cesses.

PROOF. For k ∈ N and t ≥ 0, let Sk(t) = inf{u : ∫ u
0 1{N(s)≤k} ds > t}. Then let

N̂k(t) = N
(
Sk(t)

)
, t ≥ 0.
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Note that the process N̂k is the same as the original process N , except that the
periods during which the partition has more than k blocks are cut out. After ev-
ery fragmentation event, the process N̂k jumps to k. Therefore, (N̂k(t), t ≥ 0) is
a continuous-time Markov chain with state space {1, . . . , k} and transition rates
Q̂j,j−1 = c

(j
2

)
for 2 ≤ j ≤ k and Q̂j,k = λj for 1 ≤ j ≤ k − 1. Let pk

t (i, j) =
P(N̂k(s + t) = j |N̂k(s) = i), t ≥ 0, i, j ∈ {1, . . . , k}, denote the transition proba-
bilities associated with this chain.

Because
∫ ∞

0 1{N(t)=∞} dt = 0 a.s. by Lemma 3.3, it follows that for all t ≥
0, we have Sk(t) ↓ t a.s. as k → ∞. Since (N(t), t ≥ 0) is right-continuous by
Proposition 2.4, it follows that N̂k(t) → N(t) a.s. as k → ∞. Therefore, for all
times t1 < · · · < tm and positive integers j1, . . . , jm, we have

lim
k→∞P

(
N̂k(t1) = j1, . . . , N̂k(tm) = jm

) = P
(
N(t1) = j1, . . . ,N(tm) = jm

)
by the dominated convergence theorem. By applying this result when m = 1 and
the initial partition has i blocks, we obtain for all i ∈ N, j ∈ N, and t > 0, the
existence of the limit

pt(i, j) := lim
k→∞pk

t (i, j).

Likewise, by considering an initial condition in which the partition has infinitely
many blocks, we obtain for all j ∈N and t > 0 the existence of the limit:

pt(∞, j) := lim
k→∞pk

t (k, j).

Also, because
∫ ∞

0 1{N(t)=∞} dt = 0 a.s., it is not hard to see that Pπ(N(t) = ∞) =
0 for all t > 0 and π ∈ P . Therefore, for all t > 0, we let pt(i,∞) := 0 for all i ∈
N∪{+∞}. It then follows that, if π has i blocks, then for j1, . . . , jm ∈N∪{+∞},

Pπ(N(t1) = j1, . . . ,N(tm) = jm)

= pt1(i, ji)pt2−t1(j1, j2) · · ·ptm−tm−1(jm−1, jm).

Thus, (N(t), t ≥ 0) is a continuous-time Markov process with transition probabil-
ities pt .

It remains to check that N and, therefore, M , is Feller. Let f : N ∪ {+∞} →
(0,∞) be a continuous function, which in this setting means that limn→∞ f (n) =
f (∞). Note that the function f must be bounded. Using Pn to denote the law of
N started from n, we need to show that:

1. For all n ∈ N∪ {+∞}, we have limt→0 En[f (N(t))] = f (n).
2. For all t > 0, the function n �→ En[f (N(t))] is continuous.

The first of these claims follows immediately from the right continuity of
(N(t), t ≥ 0); see Proposition 2.4, the boundedness of f and the dominated con-
vergence theorem. To prove the second claim, we need to show that

lim
n→∞En

[
f

(
N(t)

)] = E∞
[
f

(
N(t)

)]
.
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It suffices to show that for all j ∈N and t > 0, we have

lim
n→∞pt(n, j) = pt(∞, j).

For n ≤ k < ∞, let ζn,k = inf{t : N̂k(t) = n}. Observe that Sk(t + ζn,k) ↓ t + τn

as k → ∞. Also, if the initial partition has infinitely many blocks, then τn ↓ 0 as
n → ∞ by Lemma 3.1. Therefore, using the right continuity on (N(t), t ≥ 0) in
the first two lines and the strong Markov property of (N̂k(t), t ≥ 0) in the third
line, we get

pt(∞, j) = lim
n→∞ P0

(
N(t + τn) = j

)
= lim

n→∞ lim
k→∞ P0

(
N̂k(t + ζn,k) = j

)
= lim

n→∞ lim
k→∞pk

t (n, j)

= lim
n→∞pt(n, j),

which completes the proof. �

PROOF OF THEOREM 1.1. The process M is a Feller process, and thus strong
Markov, by Lemma 3.4. That 0 is a regular point of M follows from Lemma 3.2,
and that 0 is not a holding point follows from Lemma 3.1. That 0 is nonsticky is a
consequence of Lemma 3.3. The proof of part (i) of Theorem 1.1 is now complete.

To prove part (ii) of the theorem, we consider the excursions from infinity of
the process N and show that no such excursions can exist. Let uk be the expected
waiting time in a state with k blocks, specifically

uk = 2

2λk + ck(k − 1)
.

Fix t > 0, and let sk(t) be the expected time spent in a state with k blocks during
excursions that started before time t . Also, let Ek(t) be the expected number of
excursions started before time t that reach a state with k blocks. Then

sk(t) = Ek(t) · uk,

and in particular

s1(t) = E1(t) · u1

= 1

λ
Ek(t) · pk,1,

because once an excursion has reached a state with k blocks, the probability that it
reaches a state with just 1 block is pk,1 from (3.1). Hence, for all k ∈ N we have

sk(t)

s1(t)
= λuk

pk,1
,
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as long as sk(t) > 0 for all k. Thus, assuming for a contradiction, that this is the
case we have that

∞∑
k=1

sk(t)

s1(t)
= 2λ

c

∞∑
k=1

1

pk,1

1

k(k − 1 + θ)

= θ

∞∑
k=1

�(k + θ)

�(k)�(1 + θ)k(k − 1 + θ)
,

which is +∞ if, and only if, λ/c ≥ 1/2, as then θ ≥ 1. However, the expected total
time spent on excursions that start before time t is finite almost surely, so we must
conclude that sk(t) = 0 for all k ∈ N, that is, 
 stays infinite almost surely. �

4. Proof of Theorem 1.2. On account of the fact that M is a Feller (and hence
strong Markov) process, standard theory now allows us to invoke the existence of
a local time at zero for M , denoted by L = (Lt : t ≥ 0), such that the right inverse
of L, say L−1, is a pure jump subordinator. As 0 is instantaneous regular for M ,
it follows that L−1 has infinite activity. The periods of time where the process is
in a state with finitely many blocks correspond to the the excursions away from
zero for M . Moreover, the fact that the state 0 is not sticky for M implies that
L−1 is pure jump with no drift component. Classical results from excursion theory
(cf. Chapter XIX.46 of Dellacherie and Meyer [8]) give us a way to construct the
stationary distribution, ρM , of M using the excursion measure. To this end, let us
introduce the canonical space of excursions, that is càdlàg measurable mappings
ε : (0, ζ ] → {1/n : n ∈ N} ∪ {0}, where ζ = inf{t > 0 : ε(t) = 0} and limt↓0 ε(t) =
0, with associated excursion measure (not a probability measure) Q.

First note, that ρM has no atom at zero as it is not a sticky point, equivalently,
the inverse local time has no linear component. Again, referring to Chapter XIX.46
of Dellacherie and Meyer [8], we have that, when Q(ζ ) < ∞, for k ∈ N,

ρM(1/k) = Q(
∫ ζ

0 1{ε(t)=1/k} dt)

Q(ζ )
.

It is difficult to compute this quantity directly starting from zero, however, we can
appeal to a technique that uses the strong Markov property for excursions; see
Section VI.48 of [16]. Let σ1/n = inf{t > 0 : ε(t) = 1/n}, then we see that, for
n > k,

Q

(∫ ζ

0
1{ε(t)=1/k} dt

)
= Q(σ1/n < ζ)En

[∫ S

0
1{N(t)=k} dt

]
,

where En is expectation of the process given we start in any state with n blocks
and S is the time of the first fragmentation event and, therefore, matches ζ . In any
excursion, ε, 
 visits a state with k blocks only once at most. This is because once
we are in a state with fewer than k blocks there must be a fragmentation event
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before 
 can be in a state with k blocks again, which means it will be a different
excursion. Hence, the above expectation can break down into the probability of
reaching a state with k blocks given you start in one with n, times the expected
amount of time spent in a state k blocks before leaving, thus, appealing to (3.4) we
see that

Q

(∫ ζ

0
1{ε(t)=1/k} dt

)
= Q(σ1/n < ζ)pn,k

2

ck(k − 1) + 2λk
(4.1)

= Q(σ1/n < ζ)
�(n)

�(n + θ)

2

c

�(k − 1 + θ)

�(k + 1)
.

Therefore, as the left-hand side is positive and finite, we may conclude that there
exists a constant C such that

(4.2) Q(σ1/n < ζ)
�(n)

�(n + θ)
= C.

As excursion measures are only defined up to a multiplicative constant we can take
C = 1 without loss of generality. In addition, from (4.1), we have that

ρM(1/k) ∝ 2

c

�(k − 1 + θ)

�(k + 1)
.

Note that the right-hand side of this equation is O(k−(2−θ)) and so, as θ ∈ (0,1),
we can normalise this into a probability measure using the constant Z−1 where

Z−1 := 2

c

∞∑
k=1

�(k − 1 + θ)

�(k + 1)
= �(1 + θ)

λ(1 − θ)
,

which gives the desired result.

5. Proof of Theorem 1.3. (i) Basic Markov chain theory tells us that the sta-
tionary distribution probabilities for each state are the inverse of the mean return
time from that state multiplied by the jump rate from that state. Hence,

1

ρM(1/k)
=

(
c

(
k

2

)
+ λk

)
E1/k[Time for M to return to 1/k]

=
(
c

(
k

2

)
+ λk

)(
E1/k[Time to hit 0] + e

(∞)
1/k

)
,

as to return to a state with k blocks you must first fragment, then come down from
infinity and reach a state with k blocks once more. Rearranging this shows that

e
(∞)
1/k = 1

ρM(1/k)(c
(k
2

) + λk)
−E1/k[Time to first fragmentation event].
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Using Theorem 1.2, we see that

e
(∞)
1/k = �(θ)�(k + 1)

(1 − θ)�(k − 1 + θ)(c
(k
2

) + λk)
−

k∑
j=1

pk,j

λj

c
(j
2

) + λj

k∑
i=j

1

c
(i
2

) + λi
,

as the expected time to the first fragmentation event can be split over how many
blocks you have just before you fragment. Therefore, using (3.4),

e
(∞)
1/k = 2�(θ)�(k)

c(1 − θ)�(k − 1 + θ)(k − 1 + θ)

−
k∑

j=1

�(j + θ)�(k)

�(k + θ)�(j)

θ

j − 1 + θ

k∑
i=j

2

ci(i − 1) + 2λi

= 2�(θ)�(k)

c(1 − θ)�(k + θ)
− θ

k∑
j=1

�(j − 1 + θ)�(k)

�(k + θ)�(j)

k∑
i=j

2

ci(i − 1) + 2λi

= 2�(θ)�(k)

c(1 − θ)�(k + θ)
− 2θ�(k)

c�(k + θ)

k∑
i=1

1

i(i − 1 + θ)

i∑
j=1

�(j − 1 + θ)

�(j)
,

which, by standard results for sums of Gamma functions, gives us that

e
(∞)
1/k = 2�(θ)�(k)

c(1 − θ)�(k + θ)
− 2�(k)

c�(k + θ)

�(θ)�(k + 2) − (k + 1)�(k + θ)

(1 − θ)�(k + 2)

= 2

c(1 − θ)k
,

as required.
(ii) Let k ∈ N. Denote by Qk the measure Q conditioned on {ζ > σ1/k}, where

ζ is the excursion length. As the reasoning below shows, under Qk , an excursion
from 0 of M looks like a scaled Kingman coalescent, but with slightly accelerated
rates, until it reaches a state with k blocks. Hence, we can use Aldous’ construction
of Kingman’s coalescent [2]. Define random variables ϕj , for j ≥ 1, as

ϕj =
∞∑

i=j+1

ξi,

where ξi are independent exponential, with rate c
(i
2

) + λi. Under the aforemen-
tioned conditioning, ϕj is the hitting time of a state with j blocks when j ≥ k.
Let Uj be i.i.d. uniform random variables on (0,1), j ≥ 1. Then for all j ,
draw a vertical line of length ϕj at point Uj on the unit interval. At time t ,
where ϕj < t < ϕj−1, j ≥ k, look at the subintervals of [0,1] with endpoints
{0,1,U1, . . . ,Uj−1}. The lengths of the subintervals have the same distribution
as the asymptotic frequencies of the blocks of 
 conditional on ζ > σ1/k , when 


has j blocks.
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Then, under the measure Qk , for large j we have

E[ϕj ] =
∞∑

i=j+1

1

c
(i
2

) + λi
∼ 2

cj
, and Var[ϕj ] =

∞∑
i=j+1

(
1

c
(i
2

) + λi

)2
∼ 4

3c2j3 ,

which is the exact same asymptotic behaviour as for a Kingman coalescent of
rate c. Hence, we may conclude, using Aldous’ method as used for the Kingman
coalescent case, that

lim
t↓0

t

ε(t)
= lim

t↓0
tN(t) = 2

c
,

Qk-almost surely. As this is independent of k, we may conclude this occurs Q-
almost everywhere.

6. Proof of Theorem 4. Horowitz [10] gives a standard result for the Haus-
dorff dimension of the range of the inverse local time as the polynomial growth of
Laplace exponent. Specifically,

dim(Z) = lim inf
q→∞

log�(q)

logq
,

where � is the Laplace exponent of the inverse local time. However, for the present
case this computation is neither straightforward nor enlightening, so we instead
pursue direct upper and lower bounds. Hence, we will need two well-known facts
about the Hausdorff dimension. The first is the countable stability property, which
is discussed in Section 4.1 of [14]. If E = ⋃∞

i=1 Ei , then

dim(E) = sup
i≥1

dim(Ei).

The second is the mass distribution principle, which is discussed in Section 4.2 of
[14]. If there is a finite nonzero measure μ on E and positive constants C > 0 and
δ > 0 such that μ(V ) ≤ C|V |α for all closed subsets V of E with |V | ≤ δ, then
dim(E) ≥ α.

PROOF OF THEOREM 1.4. Recall that τ1 = inf{t : M(t) = 1}. Let Z′ =
Z ∩ [0, τ1]. By the Markov property of the EFFC process and the countable sta-
bility property of Hausdorff dimension, to show that dim(Z) ≤ θ almost surely, it
suffices to show that dim(Z′) ≤ θ almost surely.

Choose α ∈ (θ,1), and fix a large positive integer k. Let Gk be the number
of excursions of M that reach 1/k before the process M reaches 1, which has a
geometric distribution with parameter pk,1. Therefore, by (3.1), there is a positive
constant C1 such that E[Gk] ≤ C1k

θ .
Set γ1,k = 0, and for positive integers n, let βn,k = inf{t > γn,k : M(t) =

1/k} and γn+1,k = inf{t > βn,k : M(t) = 0}. Then, for i = 1, . . . ,Gk , let Ei,k =
[γi,k, βi,k], the interval of time after the (i − 1)th excursion to reach state 1/k,
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needed for an excursion to reach state 1/k again. Then E1,k, . . . ,EGk,k is a cover-
ing of Z′. By part (i) of Theorem 1.3, we have

E[|Ei,k|] = 2

c(1 − θ)k
, for all i = 1, . . . ,Gk .

By Jensen’s inequality, there is a positive constant C2 such that

E

[
Gk∑
i=1

|Ei,k|α
]

= E
[|E1,k|α]

E[Gk] ≤ (
E

[|E1,k|])αE[Gk] ≤ C2k
θ−α,

which tends to zero as k → ∞. By Markov’s inequality, for all ε > 0, we have

lim
k→∞P

(
Gk∑
i=1

|Ei,k|α > ε

)
= 0,

which is sufficient to establish that dim(Z′) ≤ α for all α ∈ (θ,1). Thus, dim(Z′) ≤
θ , and thus dim(Z) ≤ θ almost surely.

It remains to establish the lower bound on the Hausdorff dimension. Recall that
L denotes the local time at zero of the process M , and L−1 denotes the inverse local
time. Let Z∗ = Z∩[0,L−1

1 ]. By monotonicity it suffices to show that dim(Z∗) ≥ θ

almost surely. We will use the mass distribution principle.
Let μ be the probability measure on Z∗ whose distribution function is given by

the inverse local time, so

μ
(
(s, t]) = Lt − Ls, for 0 ≤ s < t ≤ L−1

1 .

Choose α ∈ (0, θ), and let η = (θ/α) − 1 > 0. Recall from (4.2) (with C taken to
be 1) that Q(σ1/n < ζ) = �(n + θ)/�(n) ∼ nθ as n → ∞. Therefore, there exists
a positive constant C3 such that for all r ≥ 1, excursions of M from 0 which reach
1/r or higher occur at rate at least C3r

θ on the local time scale. In particular, if k

is a positive integer and 1 ≤ m ≤ 2k , then while the accumulated local time at zero
is between (m − 1)2−k and m2−k , the number of excursions which reach height
2−k/α or higher has a Poisson distribution with mean at least 2−k · C3(2k/α)θ =
C32ηk .

Once the number of blocks gets down to 2k/α , fragmentations are happening at
the rate at most λ2k/α , and so the probability that the excursion lasts for a time
2−k/α or larger is at least e−λ. It follows that while the accumulated local time at
zero is between (m−1)2−k and m2−k , the expected number of excursions that last
for a time at least 2−k/α is at least C42ηk , where C4 = C3e

−λ. Since we will have
L−1

m2−k − L−1
(m−1)2−k < 2−k/α only if there are no such excursions, it follows that

P
(
L−1

m2−k − L−1
(m−1)2−k < 2−k/α) ≤ e−C42ηk

and, therefore,

P
(
L−1

m2−k − L−1
(m−1)2−k < 2−k/α for some m ∈ {

1, . . . ,2k}) ≤ 2ke−C42ηk

.
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Since
∑∞

k=1 2ke−C42ηk
< ∞, by the Borel–Cantelli lemma, there almost surely ex-

ists a random positive integer K such that for k ≥ K , we have

L−1
m2−k − L−1

(m−1)2−k ≥ 2−k/α for all k ≥ K and m ∈ {
1, . . . ,2k}.

Now let δ = 2−K/α . Let V be a closed subset of Z∗ with |V | ≤ δ. Let t = inf{s :
s ∈ V } and γ = |V |, so V ⊂ [t, t + γ ]. We have

μ(V ) ≤ μ
([t, t + γ ]) = Lt+γ − Lt .

Let k be the positive integer such that 2−(k+1)/α < γ ≤ 2−k/α . Note that because
γ ≤ δ, we have k ≥ K . Choose m such that (m − 1)2−k ≤ Lt < m2−k . If m < 2k ,
then

L−1
(m+1)2−k − L−1

m2−k ≥ 2−k/α ≥ γ,

so Lt+γ ≤ (m + 1)2−k . It follows that

μ(V ) ≤ Lt+γ − Lt ≤ (m + 1)2−k − (m − 1)2−k = 4 · 2−(k+1) ≤ 4γ α.

Likewise, if m = 2k , then since t + γ ∈ V ⊂ Z∗, we have Lt+γ ≤ 1 and, therefore,

μ(V ) ≤ Lt+γ − Lt ≤ 1 − (m − 1)2−k ≤ 2γ α.

It now follows from the mass distribution principle that dim(Z∗) ≥ α and thus
dim(Z∗) ≥ θ . The proof of Theorem 1.4 is now complete. �
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