
The Annals of Probability
2017, Vol. 45, No. 3, 1351–1447
DOI: 10.1214/16-AOP1089
© Institute of Mathematical Statistics, 2017
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A homomorphism height function on the d-dimensional torus Z
d
n is a

function on the vertices of the torus taking integer values and constrained to
have adjacent vertices take adjacent integer values. A Lipschitz height func-
tion is defined similarly but may also take equal values on adjacent vertices.
For each of these models, we consider the uniform distribution over all such
functions with predetermined values at some fixed vertices (boundary con-
ditions). Our main result is that in high dimensions and with zero boundary
values, the random function obtained is typically very flat, having bounded
variance at any fixed vertex and taking at most C(logn)1/d values with high
probability. This result matches, up to constants, a lower bound of Benjamini,
Yadin and Yehudayoff. Our results extend to any dimension d ≥ 2; if one re-

places the torus Zd
n by an enhanced version of it, the torus Zd

n ×Z
d0
2 for some

fixed d0. Consequently, we establish one side of a conjectured roughening
transition in two dimensions. The full transition is established for a class of
tori with nonequal side lengths, including, for example, the n × � 1

10 logn�
torus. In another case of interest, we find that when the dimension d is taken
to infinity while n remains fixed, the random function takes at most r values
with high probability, where r = 5 for the homomorphism model and r = 4
for the Lipschitz model. Suitable generalizations are obtained when n grows
with d. Our results have consequences also for the related model of uniform
3-coloring and establish that for certain boundary conditions, a uniformly
sampled proper 3-coloring of Zd

n will be nearly constant on either the even or
odd sublattice.

Our proofs are based on the construction of a combinatorial transforma-
tion suitable to the homomorphism model and on a careful analysis of the
properties of a class of cutsets which we term odd cutsets. For the Lipschitz
model, our results rely also on a bijection of Yadin. This work generalizes
results of Galvin and Kahn, refutes a conjecture of Benjamini, Yadin and
Yehudayoff and answers a question of Benjamini, Häggström and Mossel.
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1. Introduction. In this paper, we study the models of homomorphism and
Lipschitz height functions. Given a graph G and function f : V [G] → Z, where
V [G] is the vertex set of G and Z is the set of integers, we call f a homomorphism
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height function if |f (v) − f (w)| = 1 whenever v and w are adjacent in G (and
thus f is a graph homomorphism of G to Z). We call it a Lipschitz height func-
tion if |f (v) − f (w)| ≤ 1 whenever v and w are adjacent in G. Homomorphism
height functions are a subclass of Lipschitz height functions and G admits them
if and only if it is bipartite. We are interested in the typical properties of random
height functions chosen uniformly at random from the set of homomorphism, or
Lipschitz, functions satisfying specified boundary conditions. This model was in-
troduced by Benjamini, Häggström and Mossel [3] (when G is a tree, the model
was investigated earlier, see [4]) and further investigated in [5, 6, 11, 17, 21] and
[9]. To define the model precisely, we assume that G is finite, connected and bi-
partite and take a subset ∅ �= B ⊆ V [G] and function μ : B → Z. We then restrict
attention to the sets Hom(G,B,μ) and Lip(G,B,μ) of homomorphism and Lip-
schitz height functions f , respectively, for which f (b) = μ(b) for all b ∈ B . The
pair (B,μ) is called the boundary condition, or BC. The special case when B is
a singleton and μ equals zero on B is of particular interest and we term it—a
one-point BC. Assuming Hom(G,B,μ) �= ∅, we denote by f ∈R Hom(G,B,μ)

a function sampled uniformly at random from Hom(G,B,μ). Such an f is called
the random height function for the homomorphism model with boundary condi-
tion (B,μ). Assuming Lip(G,B,μ) �= ∅, we similarly define f ∈R Lip(G,B,μ),
the random height function for the Lipschitz model. Our main object of study are
the fluctuations of the random height function f around its mean, as realized, for
example, by Var(f (v)) for vertices v ∈ V [G], by the number of values f takes, or
by a global structure f may exhibit.

We concentrate attention on the special case in which G = Z
d
n = (Z/nZ)d ,

a cube with side length n in the hyper-cubic lattice Z
d with periodic boundary

conditions (a torus). In this case, the above height functions are strongly related
to models of statistical mechanics, for example, simple random walk, the square
ice model and the uniform 3-coloring model (the anti-ferromagnetic 3-state Potts
model at zero temperature). The height functions are also examples of discrete
surface models with nearest neighbor interactions and it is of interest to compare
them with other surface models of this kind such as the discrete Gaussian free field,
lozenge and domino tilings and solid-on-solid models; see, for example, [10, 16,
18, 22] and [25] for details of these other models. By such comparison, one may
expect that the random height function (for both the homomorphism and Lipschitz
models) in dimension 2 will exhibit some roughness, meaning, for example, that
when G = Z

2
n with the one-point BC (B,μ), the variance of the height at a fixed

vertex v will grow with the distance of v from B . In contrast, when the dimension
d is 3 or higher, one may expect that when G = Z

d
n with the one-point BC, the

random height function will be localized, having variance at each vertex bounded
uniformly in the side length of the torus. Numerical simulations appear to support
these expectations; see Figures 1 and 2 for samples of the random height functions
on Z

2
300, Z2

100 and Z
3
100. However, none of these predictions has been confirmed

rigorously prior to this work. In this paper, we give a proof of the high-dimensional
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FIG. 1. A sample of the random homomorphism height function on a 300×300 torus with boundary
values set to 0 on every second vertex [see (6)]. In this sample, values range from −5 to 6. Sampled
using coupling from the past [23].

case of the above predictions, when the dimension d is above a certain threshold
d0. Furthermore, we introduce the graph G = Z

d
n × Z

m
2 (a torus with d sides of

length n and m sides of length 2) which, for fixed m, is just an enhanced version
of the torus Z

d
n , and prove that for a fixed large m and any d ≥ 2, the random

height function on G is localized. More precisely, letting Range(f ) be the number
of values taken by f , we have the following theorem.

THEOREM 1.1. There exist d0 ∈ N, Cd, cd > 0 such that the following
holds. If:
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FIG. 2. Top row: samples of the random homomorphism height function on a 100 × 100 torus (top
left) and on the middle slice (at height 50) of a 100×100×100 torus (top right), both with boundary
values set to 0 on every second vertex [see (6)]. Bottom row: samples of the random Lipschitz height
function on a 100×100 torus (bottom left) and on the middle slice (at height 50) of a 100×100×100
torus (bottom right), both constrained to have boundary values in the set {− 1

2 , 1
2 } (see zero–one BC

in Section 2.3) so that the values taken are in the set Z + 1
2 (the purpose of this shift is to obtain a

more symmetric picture). Sampled using coupling from the past [23].

• G = Z
d
n for even n and d ≥ d0, or

• G = Z
d
n ×Z

d0
2 for even n and d ≥ 2,

then for all boundary conditions (B,μ) with nonpositive boundary values, that is,
μ(b) ≤ 0 for b ∈ B , if:

• Hom(G,B,μ) �= ∅ and f is sampled uniformly from Hom(G,B,μ), or
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• Lip(G,B,μ) �= ∅ and f is sampled uniformly from Lip(G,B,μ),

then

P
(
f (x) ≥ t

) ≤ exp
(−cdtd

) ∀t ≥ 3 and x ∈ V [G].
If, in addition, we have zero boundary values, that is, μ(b) = 0 for all b ∈ B , then

P
(
Range(f ) ≥ Cd log1/d n

) ≤ n−4d

and if (B,μ) is the one-point boundary condition then

(1) P
(
cd log1/d n ≤ Range(f ) ≤ Cd log1/d n

) ≥ 1 − n−3d .

Thus, the situation resembles that of percolation and the lace expansion [26].
One expects the results to hold starting from a certain low dimension, but the
proofs are available either for large enough dimension, or in any dimension, but
for an enhanced version of the graph (in the case of percolation, the enhanced ver-
sion is the spread-out lattice). We remark that the lower bound on the range in (1)
follows from a theorem of Benjamini, Yadin and Yehudayoff [6] (see Theorem 2.4
below) and our upper bound matches it up to constants. We remark also that Yadin
has found a bijection between the Lipschitz model on a graph G and the homo-
morphism model on G × Z2 (Theorem 2.11). Our proof of Theorem 1.1 uses this
bijection by establishing the theorem first for the homomorphism model and then
deducing the Lipschitz case via the bijection. Thus, although the requirement that
n be even is essential only for the homomorphism model (to make G bipartite), we
require it also for the Lipschitz model for our proof to apply.

The careful reader may have noticed that while we expect the random height
function to be rough in two dimensions, the theorem above states that it is local-
ized for the enhanced two-dimensional torus Z

2
n × Z

d0
2 . Thus, if our expectation

is true, the fluctuations of the random height function in two dimensions are quite
sensitive to the local features of the graph; small enhancements may change the
model from a rough to a localized regime. Analogous phenomenon (in terms of
temperature) have been observed in Solid-On-Solid models taking integer values
[10] and are termed roughening transitions. Our work establishes only one side
of this transition since we do not show that the random height function in two di-
mensions is indeed rough; however, we are able to establish the full transition on a
class of tori with nonequal side lengths including, for example, the n × � 1

10 logn�
torus. As a result, we refute a conjecture of [6] and are able to answer a question
of [3]. In [6], it was conjectured that on any graph G, the typical ranges of the
random homomorphism and Lipschitz height functions are of the same order of
magnitude. In [3], it was asked whether local changes to the graph (in the sense
of rough isometries) can affect the typical range of the random height function
by more than a constant factor. Thus, the transition we establish provides, via the
Yadin bijection, a refutation of the conjecture of [6] and an affirmative answer to
[3]’s question. More details are provided in Section 2.2.3 below.
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As mentioned above, the homomorphism model is strongly related to the uni-
form 3-coloring model. Let us introduce this model in more detail and explain how
our results apply to it. For a graph G, ∅ �= B ⊆ V [G] and ν : B → {0,1,2}, we
let Col(G,B, ν) be the set of all proper 3-colorings (with colors 0,1,2) of V [G]
taking the values ν on B . We are interested in the structure of a uniformly sampled
coloring from Col(G,B, ν). Suppose now that f ∈ Hom(G,B,μ) for some BC
(B,μ). We note trivially that the map f �→ (f mod 3) sends Hom(G,B,μ) into
Col(G,B,μ mod 3). Specializing to the case G = Z

d
n , it can be shown that this

map becomes a bijection for certain boundary conditions (B,μ). In these cases,
our results apply and give an understanding of the structure of the uniform 3-
coloring. We illustrate this here with one example (see Section 2.2.4 for more
details). For G = Z

d
n , the zero BC are boundary conditions which, in some coor-

dinate system which turns Z
d
n into a box, put zero at every second vertex on the

boundary of this box. See (6) for a precise definition and Figures 1 and 2 for a
sample from these boundary conditions. For this BC, the set B is contained in one
of the two bipartite classes of G, we call this class the even sublattice and denote
it by V even. We then find that in high dimensions, a uniformly sampled 3-coloring
with the zero BC will take the color zero on most of the even sublattice, as follows.

THEOREM 1.2. There exist d0 ∈ N, c > 0 such that for all d ≥ d0, if G = Z
d
n

for even n and g is a uniformly sampled coloring from Col(G,B,μ) with the zero
BC (B,μ) then

E|{v ∈ V even|g(v) �= 0}|
|V even| ≤ exp

(
− cd

log2 d

)
.

As in Theorem 1.1, the theorem also applies to the graph G = Z
d
n × Z

d0
2 , with

appropriate BC, for any d ≥ 2, sufficiently large d0 and even n; see Section 2.2.4
for more details.

One of the main existing results about the homomorphism model is the result
of Galvin [11], improving an earlier result of Kahn [17] who proved a conjecture
of [3]. Galvin studied the model when G = Z

d
2 , the hyper-cube graph, for large

dimensions d . He proved that with high probability, the random homomorphism
height function, with the one-point BC, takes at most 5 values. He furthermore
calculated the asymptotic (strictly positive) probabilities for taking exactly 3, 4
and 5 values. We cite (the first part of) Galvin’s result here.

THEOREM 1.3 (Galvin [11]). If G = Z
d
2 and f is sampled uniformly from

Hom(G,B,μ), with the one-point boundary condition (B,μ), then

P
(
Range(f ) > 5

) ≤ exp
(−�(d)

)
as d → ∞.

Our techniques are flexible enough to provide a significant generalization of
Galvin’s theorem.
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THEOREM 1.4. For any integer k ≥ 2, there exist d0(k) and ck > 0 such that

the following holds. If G = Z
d
n with d ≥ d0 and even n ≤ exp( ckd

k−1

log2 d
), then:

• For f sampled uniformly from Hom(G,B,μ), with the one-point boundary con-
dition (B,μ),

P
(
Range(f ) > 2k + 1

) ≤ exp
(
− ckd

k

log2 d

)
.

• For f sampled uniformly from Lip(G,B,μ), with the one-point boundary con-
dition (B,μ),

P
(
Range(f ) > 2k

) ≤ exp
(
− ckd

k

log2 d

)
.

The case k = 2, G = Z
d
2 and f ∈R Hom(G,B,μ) recovers the theorem of

Galvin with an improved probability bound. Moreover, the theorem shows that
the same phenomenon holds also when G = Z

d
n with n ≤ exp( cd

log2 d
) and a simi-

lar phenomenon holds with 5 replaced by 7,9,11, etc., when the torus has larger
side-length. Furthermore, we are able to treat random Lipschitz height functions
and find that they exhibit even stronger concentration, taking at most 2k values
with high probability in the situations when random homomorphism height func-
tions take at most 2k+1 values. Our results are in fact even more general, applying
for more general tori and boundary conditions; see Theorems 2.6 and 2.18 below.

Our understanding of the typical structure of the random height function in high
dimensions extends beyond the understanding of its height at fixed points and its
range. Theorem 2.8, which lies at the heart of all our other proofs, shows that for
a random homomorphism height function with, say, a one-point BC, the proba-
bility that a level set of length L surrounds a given vertex is exponentially small
in L (see Figures 3 and 4 for illustration of level sets). Thus, with high probabil-
ity, the height function will not have any level sets longer than the logarithm of
the size of the graph (Corollary 2.9). We believe that the structure of the typical
homomorphism height function is that on either the even or odd sublattice; it takes
predominantly one value. Furthermore, in places where this pattern is broken, an
occurrence which is exponentially rare in the boundary length of the break-up, the
function “switches phase” and predominantly takes a different value on the other
sublattice. This structure then continues recursively inside each such break-up. We
believe our results can be used to make this picture precise, but do not pursue
this in this work. Instead, we content ourselves with proving elements of the full
picture such as the above-mentioned level set theorem and such as showing that
under certain boundary conditions, with high probability the function takes pre-
dominantly one value on one of the sublattices (Corollary 2.2). We also believe
that for certain (sequences of) boundary conditions, the homomorphism model has
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FIG. 3. The outermost height 1 level sets of two samples of homomorphism height functions, the left
on a 40×40 torus and the right on a 300×300 torus, both with zero boundary conditions (dual edges
to the level sets are marked in black). Trivial level sets—those surrounding a single vertex—have been
removed to obtain a less cluttered picture. Unlike these pictures, it is expected that in 3 dimensions
and higher, the length of the longest level set is only logarithmic in the side of the torus. This is proven
in sufficiently high dimensions in Corollary 2.9. Picture produced by Steven M. Heilman.

a thermodynamic limit and we indicate how our theorems may be used to prove
this fact; see Section 2.2.5 below.

We expect a similar typical structure for random Lipschitz height functions. In-
deed, this will follow from the Yadin bijection (see Section 2.3) by establishing the
typical structure of homomorphism height functions described above. We expect

FIG. 4. An illustration of the shift transformation. The function on the left is a homomorphism
height function on a 6 × 6 torus with zero boundary conditions and the shaded blue line is a level
set of it on which the shift transformation is applied. The transformation replaces the value at each
vertex inside the level set by the value at its neighbor to the right, minus one. The resulting function,
depicted on the right, is again a homomorphism height function, and has the property that each
vertex which is inside and immediately to the left of the level set is surrounded by zeros. The shaded
blue line is drawn on the right function for convenience only, it is not a level set of that function.
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that for, say, the one-point BC, the function takes predominantly two consecutive
values everywhere, where again, in places where this pattern is broken, an oc-
currence which is exponentially rare in the boundary length of the break-up, the
function switches to take predominantly two different consecutive values and the
structure repeats inside.

As indicated above, our theorems require the understanding of the random
height functions (homomorphism or Lipschitz) on tori of varying side lengths such
as Zd

n , Zd
n × Z

m
2 and Zn × Z� 1

10 logn� × Z
m
2 . To be able to deal with all these cases

under a unified framework, we shall consider in the sequel tori with general side
lengths: nd ≥ nd−1 ≥ · · · ≥ n1 ≥ 2. However, as one may expect, the above pic-
ture, in which the random height function is localized, does not hold for all choices
of side-lengths, even when d is large. For example, if nd = n and ni = 2 for all
1 ≤ i ≤ d − 1, the torus is essentially one-dimensional and for large enough n,
a random height function on it (with the one-point BC) will resemble a simple
random walk bridge. We distinguish two cases: when nd ≤ exp(cd

∏d−1
i=1 ni) and

when nd ≥ exp(Cd

∏d−1
i=1 ni) for some specific Cd, cd > 0 [see (4) and (5) below]

which we term a nonlinear torus and linear torus, respectively. We are then able to
show that on nonlinear tori in high dimensions (with, say, the one-point BC), the
random height function is localized, having essentially the same features described
above for Zd

n in high dimensions, whereas on linear tori in all dimensions (with the
one-point BC), the random height function is rough, resembling a simple random
walk bridge. The results presented above are, perhaps, the most interesting special
cases of these general results.

The main tool in our proofs is the analysis of a special class of cutsets which we
term odd cutsets. These are minimal edge cutsets on the torus which have all their
interior vertex boundary on the odd sublattice [see Section 3 and definition (21) for
precise definitions]. The cutsets appear naturally in our model as the level sets of
homomorphism height functions (see Figures 3 and 4 for examples). We find that
such cutsets have many special properties not shared by standard minimal cutsets
(see Sections 3 and 4.3) and believe that they may be of use in the analysis of other
models as well. Our main structure theorems for odd cutsets, Theorems 4.5 and
4.13, provide information on the regularity of their boundaries and on a certain
way of approximating them. Understanding such cutsets better and, in particular,
improving the bounds of these theorems (see also the open questions in Section 7)
is the main “bottleneck” in reducing the minimal dimension d0 above which our
theorems apply.

We end the Introduction with some historical comments. Theorem 1.2 on the
existence of multiple Gibbs states for the 3-coloring model on Z

d was conjectured
by Kotecký circa 1985, although the explicit conjecture seems not to have appeared
in print (see, e.g., [19] for context and [14] for additional details). The conjecture
was made in the stronger form that there are 6 distinct Gibbs states with maxi-
mal entropy, specified by a predominance of one color on one of the sublattices.
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Theorem 1.2 was first announced by Galvin, Kahn, Randall and Sorkin at a 2002
Newton Institute programme and was later discussed by Kahn in talks and com-
munications with Kotecký and others. The theorem was first mentioned in print in
the 2007 work of Galvin and Randall [15]. The present author who was unaware of
these developments until late into his work published the present work on the arXiv
in May 2010. Galvin, Kahn, Randall and Sorkin published their work on the arXiv
in October 2012 [14], in which they establish a version of Theorem 1.2, showed
in addition that the resulting Gibbs states have maximal entropy and proved torpid
mixing results for related dynamics. Though similar in spirit, the approach of [14]
is different from the present argument in that it stays within the world of colorings
and does not exploit the connection with height functions. Finally, we remark that
the ideas of using cutsets with the “odd” property and approximating them have
been used in several previous works, for example, in [8, 12, 13, 24].

2. Results and discussion. We begin this section with several definitions
which are required for the statement of our main theorems. We then state our main
theorems for homomorphism and Lipschitz height functions, together with a dis-
cussion of the above-mentioned roughening transition, the relation of the homo-
morphism model with proper 3-colorings and square ice, and the thermodynamic
limit for the homomorphism model. We conclude this section with proof sketches
for our main theorems and a reader’s guide.

2.1. Definitions. For integer n ≥ 2, let Zn be the n-cycle graph. In our con-
vention, Zn is a simple graph with vertices {0,1, . . . , n − 1} such that i is adjacent
to i + 1 and i − 1 modulo n. For even integers,

(2) nd ≥ nd−1 ≥ · · · ≥ n1 ≥ 2

we let G := Zn1 × · · · × Znd
be the d-dimensional torus with side lengths

n1, . . . , nd (our × refers to the Cartesian product of graphs, also denoted � in
certain literature). Henceforth, a torus will always refer to a graph G as above (and
in particular, we will always assume that the ni are even). When needed, we shall
assume a bipartition (V even,V odd) is chosen on G and a natural coordinate system
placed on it, using its product structure, so that

(3) V [G] = {
(x1, . . . , xd)|0 ≤ xi ≤ ni − 1 for 1 ≤ i ≤ d

}
.

For an integer r ≥ 0, we define the volume of a ball of radius r by

Vol(r) := ∣∣{w ∈ V [G]|dG(v,w) ≤ r
}∣∣,

where dG is the graph distance in G (Vol(r) does not depend on the choice of
v ∈ V [G]).

As explained in the Introduction, we distinguish two types of tori. We call G

nonlinear if

(4) nd ≤ exp

(
1

d log3 d

d−1∏
i=1

ni

)
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and we call it λ-linear for some λ > 0 if

(5) nd ≥ exp

(
1

λ

d−1∏
i=1

ni

)
.

Recalling that a pair (B,μ) with ∅ �= B ⊆ V [G] and μ : B → Z is called a
boundary condition, we say that μ is nonpositive if μ(b) ≤ 0 for all b ∈ B and μ is
zero if μ(b) = 0 for all b ∈ B . We call (B,μ) a legal (homomorphism) boundary
condition if Hom(G,B,μ) �= ∅ and μ takes even values on V even and odd values
on V odd. We call it a legal Lipschitz boundary condition if Lip(G,B,μ) �= ∅.

We remark that our theorems below apply also to a slightly weaker definition
of nonlinear torus, when the 1

log3 d
is replaced by c

log2 d
for a small enough c > 0.

Definition (4) was chosen to simplify some of the notation. However, we note that
in this definition and all our theorems below where a power of logd appears, it
may well be the case that these log factors are an artifact of our proof and the
theorems remain true without them.

2.2. Homomorphism height functions. In this section, we concentrate our at-
tention on the homomorphism height function model and its properties. The results
will then be extended to the Lipschitz height function model via the Yadin bijection
in Section 2.3.

2.2.1. Height and range. We say that a set B ⊆ V [G] has full projection if,
in the coordinate system (3), there exists 1 ≤ i0 ≤ d such that every line of the
form {(x1, . . . , xd)|0 ≤ xi0 ≤ ni0 − 1}, for fixed x1, . . . , xi0−1, xi0+1, . . . , xd , inter-
sects B . Our next theorem shows that on nonlinear tori in high dimensions, the
height of a uniform homomorphism at a fixed vertex has very light tails.

THEOREM 2.1. There exist d0 ∈ N, c > 0 such that for all d ≥ d0, nonlinear
tori G, legal boundary conditions (B,μ) with nonpositive μ and x ∈ V [G], if
f ∈R Hom(G,B,μ) then

P
(
f (x) ≥ t

) ≤ exp
(
−c Vol(
t/2� − 1)

min(t, d) log2 d

)
for all t ≥ 3.

Furthermore, if t ≥ 3 satisfies Vol(
t/2� − 1) ≤ 1
3nd then

P
(
f (x) ≥ t

) ≤ exp
(
−c Vol(
t/2� − 1)

log2 d

)
.

Finally, if B has full projection then

P
(
f (x) ≥ t

) ≤ exp
(
−c Vol(t − 1)

log2 d

)
for all t ≥ 2.
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As an immediate corollary of the third part of the theorem, we obtain that if our
boundary condition has full projection and zero μ, then the random height function
is zero on most of the even sublattice (see also Section 2.2.5).

COROLLARY 2.2. Under the assumptions of Theorem 2.1, there exists c > 0
such that if B has full projection and μ is zero then

E|{v ∈ V even|f (v) �= 0}|
|V even| ≤ exp

(
− cd

log2 d

)
.

A particularly important example of a full projection BC with zero μ is the zero
BC:

B := {
(x1, . . . , xd) ∈ V even|∃i s.t. xi ∈ {0, ni − 1}},

(6)
μ(b) := 0 for all b ∈ B.

Uniformly sampled homomorphisms with this boundary condition on Z
2
300, Z2

100
and on Z

3
100 are depicted in Figures 1 and 2 (only a slice of the torus is depicted

in the 3-dimensional case) and suggest that the corollary holds in dimension 3 and
fails in dimension 2.

We proceed to analyze the range of the uniform homomorphism on high-
dimensional nonlinear tori.

THEOREM 2.3. There exist d0 ∈ N, C,c > 0 such that for all d ≥ d0, nonlin-
ear tori G and legal boundary conditions (B,μ) with zero μ, if we set

k := min
{
m ∈ N|Vol(m) ≥ C log2 d · log

∣∣V [G]∣∣}
and let f ∈R Hom(G,B,μ), then

P
(
Range(f ) > 2k + 1

) ≤ exp
(
−c Vol(k)

log2 d

)
≤ 1

|V [G]|4 .

We remark that the theorem remains true if we change the power of |V [G]| in
the probability bound to any larger power; the current statement was chosen for
simplicity. We note also that the conclusion of the theorem implies ERange(f ) ≤
4k, say, since Range(f ) is deterministically bounded by |V [G]|.

A result of an opposite nature was obtained in [6]. The result there is for an
arbitrary graph G and we present below a version of it specialized to tori (this is
the line before last in the proof of Theorem 2.1 there).

THEOREM 2.4 (Benjamini, Yadin, Yehudayoff [6]). For a torus G, if f ∈R

Hom(G,B,μ) with a one-point BC (B,μ) and if r ≥ 0 is an integer for which
Vol(r) ≤ ε log2 |V [G]| for some 0 < ε < 1 then

P
(
Range(f ) ≤ r

) ≤ e2 exp
(
− |V [G]|1−ε

ε2 log2
2 |V [G]|

)
.
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Comparing Theorems 2.3 and 2.4 we see that the bound on the range given by
the former is of the right order of magnitude for one-point BC.

COROLLARY 2.5. There exist d0 ∈ N, Cd, cd > 0 such that for all d ≥ d0,
nonlinear tori G and the one-point BC (B,μ), if f ∈R Hom(G,B,μ) then

P
(
cdr ≤ Range(f ) ≤ Cdr

) ≥ 1 − 1

|V [G]|3 ,

where r := min{m ∈ N|Vol(m) ≥ log |V [G]|}.

As noted in the Introduction, our techniques are sufficiently flexible to recover
and extend the result of Galvin, Theorem 1.3 above. For homomorphism height
functions, we have the following result.

THEOREM 2.6. For any integer k ≥ 2, there exist d0(k) and ck > 0 such that
for all d ≥ d0(k), nonlinear tori G and legal boundary conditions (B,μ) with zero

μ, if |V [G]| ≤ exp( ckd
k

log2 d
) and f ∈R Hom(G,B,μ) then

P
(
Range(f ) > 2k + 1

) ≤ exp
(
− ckd

k

log2 d

)
.

The case k = 2, G = Z
d
2 and the one-point BC recovers the theorem of Galvin

with an improved probability bound and shows that when G is the hyper-cube, the
range is at most 5 with high probability as d → ∞. Moreover, the theorem shows
that the same phenomenon holds for any boundary condition with zero μ and in
any nonlinear torus in which the side lengths are at most 2d1−ε

, say, for some fixed
ε > 0. Furthermore, a similar phenomenon holds with 5 replaced by 7,9,11, etc.

The results presented above show that on nonlinear tori in high dimensions,
the random homomorphism height function is very localized. In contrast, the fol-
lowing theorem shows that for linear tori, the situation is drastically different and
the fluctuations of the random height function resemble more those of a simple
random walk—the one-dimensional case.

THEOREM 2.7. For all 0 < λ < 1
2 log 2 , there exist α = α(λ) > 0 and C =

C(λ) > 0 such that for all dimensions d ≥ 2 and all λ-linear tori G, if f ∈R

Hom(G,B,μ) with the one-point BC (B,μ) then

(7) P
(
Range(f ) ≤ ∣∣V [G]∣∣α) ≤ C

|V [G]|α .

As a final remark to this section, we note that not all possible tori fall under
our definitions of nonlinear and linear tori. The remaining cases are left as open
questions; see Section 7.
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2.2.2. Level sets. Our understanding of the height and range of the random
homomorphism height function on a nonlinear torus stems from a detailed analysis
of the level sets of such functions. To explain this further, we introduce a few
more definitions. Fixing a legal boundary condition (B,μ) for a nonpositive μ,
x ∈ V [G] and f ∈ Hom(G,B,μ), we denote by A the union of those connected
components of {v ∈ V [G]|f (v) ≤ 0} which contain points of B , and by Ac

x the
connected component of x in V [G] \ A (defined to be empty if x ∈ A). We then
define

LS(f, x,B) :=
{

set of all edges between A and Ac
x, x /∈ A,

∅, x ∈ A.

LS(f, x,B) is the outermost height 1 level set of f around x when coming
from B . The level sets (around all vertices x) are depicted in Figure 3 for height
functions on two-dimensional tori. For an integer L ≥ 1, we let �x,L (implicitly
�x,L,B,μ) be the set of f ∈ Hom(G,B,μ) for which |LS(f, x,B)| = L. Similarly,
for x1, . . . , xk ∈ V [G] and integers L1, . . . ,Lk ≥ 1 we let �(x1,...,xk),(L1,...,Lk) be
the set of f ∈ ⋂k

i=1 �xi,Li
satisfying that LS(f, xi,B) ∩ LS(f, xj ,B) = ∅ for all

i �= j (one can show that these level sets are either identical or disjoint). The fol-
lowing theorem is at the heart of our analysis of random homomorphism height
functions.

THEOREM 2.8. There exist d0 ∈ N, c > 0 such that for all d ≥ d0, k ∈ N,
nonlinear tori G, legal boundary conditions (B,μ) with nonpositive μ, ver-
tices x1, . . . , xk ∈ V [G] and integers L1, . . . ,Lk ≥ 1 we have that if f ∈R

Hom(G,B,μ) then

P(f ∈ �(x1,...,xk),(L1,...,Lk)) ≤ dk exp
(
−c

∑k
i=1 Li

d log2 d

)
.

This theorem is used in Section 5 below to prove the height and range theorems
of Section 2.2.1. The underlying idea is that we may define, in an analogous way
to LS(f, x,B), also the outermost height i level set of f around a point. Then
one can apply the above theorem inductively and conclude that the chance that
surrounding a given point, for each i, the outermost level set of height i has length
Li is exponentially small in the sum of these Li’s. Thus, one may conclude that
it is very unlikely that f is large at any given point. See the proof sketches in
Section 2.4 for more details.

As a corollary, we obtain that the largest level set of a random homomorphism
height function is at most logarithmic in size with high probability.

COROLLARY 2.9. Under the assumptions of Theorem 2.8, there exists C > 0
such that

P

(
max

x∈V [G]
∣∣LS(f, x,B)

∣∣ > Cd log2 d · log
∣∣V [G]∣∣) ≤ 1

|V [G]|4 .
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The corollary follows directly from Theorem 2.8 by a union bound. Figure 3
presents some evidence that the corollary is false on Z

2
n, but we expect it to hold

on Z
d
n for all d ≥ 3, as Figure 2 suggests.

2.2.3. Roughening transition. As explained in the Introduction, we expect the
random homomorphism height function on Z

2
n to be rough. Indeed, as is the case

for some similarly defined models (e.g., the height function of the dimer model,
see [18]), we expect that if f ∈R Hom(Z2

n,B,μ) for a one-point BC (B,μ), then
f converges weakly to the Gaussian-free field, and has Var(f (v)) = �(logn) for
generic vertices v and E(Range(f )) = �(logn) as n → ∞. In contrast, if we take
f ∈R Hom(Z2

n × Z
d0
2 ,B,μ) for some large, but fixed, d0 and the one-point BC,

then Theorem 1.1 implies that Var(f (v)) = O(1) and E(Range(f )) = �(
√

logn)

as n → ∞. Thus, we expect a transition in the roughness of the random height
function on the graphs Z2

n ×Z
m
2 as m increases from 0 to the fixed value d0. Anal-

ogous transitions (in terms of temperature) have been observed in Solid-On-Solid
models taking integer values (see [10]) and are termed roughening transitions. We
emphasize that we view the passage from the graph Z

2
n to the graph Z

2
n × Z

d0
2

as being a finite enhancement, replacing each vertex of the graph Z
2
n by a fixed-

dimensional hypercube, which leaves the graph essentially two-dimensional as n

grows. Analogous enhancements have been used in the study of the mean-field
behavior of statistical physics models where one considers the spread-out lattice
[26]; the lattice Z

d with added long-range connections up to a fixed distance.
Our work establishes only one side of the above transition as we do not show

that the random homomorphism height function on Z
2
n is indeed rough; however,

we are able to establish the full transition on a class of tori with nonequal side
lengths. Indeed, we may take as our starting point any sequence of λ-linear tori Gn

[see (5)] for λ < 1
2 log 2 and side lengths satisfying nd = n and

∏d−1
i=1 ni ≥ c logn

for some c > 0. As a concrete example, one may take Gn = Zn × Z� 1
10 logn�.

We then note that by Theorem 2.7, we have some α,C > 0 such that if f1 ∈R

Hom(Gn,B,μ) for the one-point BC (B,μ) then

(8) P
(
Range(f1) ≤ nα) ≤ Cn−α for all n.

We now let Gn,m := Gn × Z
m
2 for m ≥ 0 (so that Gn,0 = Gn) and observe that

for some large m0, fixed and independent of n, we have that Gn,m is nonlinear
[see (4)] for all m ≥ m0. Thus, fixing a sufficiently large m ≥ m0, still independent
of n, we may apply Corollary 2.5 to f2 ∈R Hom(Gn,m,B,μ) with the one-point
BC (B,μ) and obtain

(9) P
(
cm

√
logn ≤ Range(f2) ≤ Cm

√
logn

) ≥ 1 − 1

(2mn)3 for all n.

Putting together (8) and (9), we obtain

(10)
ERange(f1)

ERange(f2)
≥ cnβ for all n
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and some β, c > 0. We call this transition a roughening transition.
We conclude this section by observing that the roughening transition just de-

scribed answers a question posed in [3] and refutes a conjecture of [6]. We first
define the concept of rough-isometry (or quasi-isometry) of graphs. We say that
two graphs H and H ′ are rough-isometric with constant C > 0 if there exists
T : V [H ] → V [H ′] such that

(11)
1

C
dH(v,w) − C ≤ dH ′

(
T (v), T (w)

) ≤ CdH(v,w) + C

for every two vertices v,w ∈ V [H ] and dH ′(v, T (V [H ])) ≤ C for every v ∈
V [H ′]. It was asked in [3] whether there exists a pair of sequences Hn and H ′

n of
(finite, connected and bipartite) graphs such that Hn is rough-isometric to H ′

n with
some constant C > 0, independent of n, and E(Range(f1))

E(Range(f2))
→ ∞ as n → ∞, where

f1 ∈R Hom(Hn,B,μ) and f2 ∈R Hom(H ′
n,B,μ) for the one-point BC. Noting

that for Gn,m defined above, Gn is rough-isometric to Gn,m with some constant
Cm, we may fix an m for which (10) holds and obtain an affirmative answer to the
question of [3] with a polynomial (in the size of the graphs) rate of convergence to
infinity.

Lastly, in [6] it was conjectured that for any sequence of (finite, connected
and bipartite) graphs Hn having maximal degree C (independent of n) and
|V [Hn]| → ∞, we have E(Range(f1))

E(Range(f2))
= �(1) where now f1 ∈R Hom(Hn,B,μ)

and f2 ∈R Lip(Hn,B,μ), both with a one-point BC, where the �(1) may depend
on C. We note that (10) implies that for some m1 (independent of n), if we take
f1 ∈R Hom(Gn,m1,B,μ) and g1 ∈R Hom(Gn,m1+1,B,μ), both with a one-point
BC, we have

(12)
ERange(f1)

ERange(g1)
≥ cnγ for infinitely many n

and some γ, c > 0. Here, we need to restrict to infinitely many n since (10) does
not guarantee that the change of behavior between the ranges of Gn,k and Gn,k+1

occurs at the same k for all n, only that such a k exists and is at most some m

which is independent of n. The Yadin bijection implies (see Section 2.3 and Corol-
lary 2.13 below) that if we define f2 ∈R Lip(Gn,m1,B,μ), with a one-point BC,
then ERange(f2) = ERange(g1) − 1. Thus, (12) shows that a subsequence of
Hn := Gn,m1 refutes the conjecture, giving a polynomially large (in |V [Hn]|) ratio
between the expected ranges. We remark that it may still be true that this ratio of
expected ranges is uniformly bounded below for every sequence of graphs Hn, as
in the conjecture.

2.2.4. Relation to the 3-coloring and square ice models. For a graph G,
∅ �= B ⊆ V [G] and ν : B → {0,1,2}, let Col(G,B, ν) be the set of all proper
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3-colorings (with colors 0,1,2) taking the values ν on B . Suppose now that
f ∈ Hom(G,B,μ) for some BC (B,μ). We note trivially that

(13) f �→ f mod 3

sends Hom(G,B,μ) into Col(G,B,μ mod 3). The situation becomes more inter-
esting when G is a box in Z

d (with nonperiodic boundary), that is, letting Pn be the
path graph on n vertices, G = Pn1 × · · ·×Pnd

for some (ni) ⊆N. In this case, one
may check that the above mapping is in fact a bijection between Hom(G,B,μ)

and Col(G,B,μ mod 3) for the one-point BC (B,μ) (in [11], this observation,
for G = Z

d
2 , is attributed to Randall, but it may well go back farther). From this

fact, it follows directly that for general BC (B,μ), Hom(G,B,μ) is in bijection
with Col(G,B,μ mod 3) by (13) if and only if

For any μ′ : B → Z satisfying μ − μ′ ≡ 0 mod 3 we either have
μ − μ′ constant or Hom(G,B,μ′) = ∅.

(14)

In our theorems, however, the graph G is always a torus (i.e., with periodic
boundary) with even side-lengths. If it were the case that Hom(G,B,μ) was in
bijection with Col(G,B,μ) via (13), then we could apply our theorems to obtain
information about a uniformly sampled coloring in Col(G,B,μ). However, even
in very simple examples this may fail. Indeed, taking G = Z6 with the one-point
BC (B,μ), the coloring (0,1,2,0,1,2) does not correspond to any function in
Hom(G,B,μ) via (13). We do not attempt here to find conditions under which
(13) is a bijection and instead give just one example. Letting G′ be the box in Z

d

with the same dimensions as G, we note that for the zero BC (B,μ) [defined in (6)]
we have that Hom(G,B,μ) = Hom(G′,B,μ), Col(G,B,μ) = Col(G′,B,μ) and
condition (14) holds for Hom(G′,B,μ). Thus, the map (13) is a bijection of
Hom(G,B,μ) and Col(G,B,μ) for the zero BC (B,μ). As one application of
this fact, we deduce from Corollary 2.2 that under some conditions, a uniformly
chosen 3-coloring takes the same color on most of the even sublattice. The follow-
ing theorem makes this statement precise.

THEOREM 2.10. There exist d0 ∈ N, c > 0 such that for all d ≥ d0 and non-
linear tori G, if g is a uniformly sampled coloring from Col(G,B,μ) with the zero
BC [defined in (6)] then

E|{v ∈ V even|g(v) �= 0}|
|V even| ≤ exp

(
− cd

log2 d

)
.

We remark that the above theorem is meaningless for a torus for which one
of the side-lengths is 2, since then the zero BC already assigns the value 0 to all
vertices in V even of such a torus. However, one can check simply that one may
modify the zero BC to exclude those dimensions for which the side-length is 2 and
still deduce from the above discussion that Hom(G,B,μ) and Col(G,B,μ) are



HIGH-DIMENSIONAL LIPSCHITZ FUNCTIONS ARE TYPICALLY FLAT 1369

in bijection, and thus the above theorem holds. Explicitly, this modified BC will
be (B,μ) with B := {(x1, . . . , xd) ∈ V even|∃i s.t. ni �= 2 and xi ∈ {0, ni − 1}} and
μ ≡ 0.

We also discuss briefly the square ice model. Square ice, also called the 6-vertex
model, is a model defined on a 2-dimensional torus (or on a square in Z

2 with some
boundary conditions). A configuration of square ice is a choice of orientation for
each edge satisfying that every vertex has exactly 2 incoming edges and 2 outgoing
edges (so that each vertex is in one of 6 states). One then assigns weights to each
of the 6 states and samples a configuration from a Gibbs measure with the assigned
weights; see, for example, [2] for details. In particular, if all the weights are equal,
one samples a configuration uniformly at random. We call this case uniform square
ice. It is well known that square ice configurations are in bijection with proper 3-
colorings of the underlying torus (where in the bijection, one colors the dual torus).
Hence, for certain boundary conditions, they correspond to homomorphism height
functions by the bijection described above. Unfortunately, our work does not apply
to the most interesting case of the n×n torus, and hence does not shed further light
on uniform square ice on it.

2.2.5. Thermodynamic limit. Consider Gn := Z
d
n (for even n), with the zero

BC (Bn,μn) [see (6)] and let f ∈R Hom(Gn,Bn,μn). We think of Gn as em-
bedded in Z

d as [−n/2, n/2 − 1]d (with the zero BC on the boundary of this
box) and say that the distribution of f converges weakly as n → ∞ if for ev-
ery finite S ⊆ Z

d , the distribution of f restricted to S converges. In this case,
we call the limiting measure the thermodynamic limit of the homomorphism
model with zero BC in dimension d . We believe, but do not prove, that for suf-
ficiently high dimension, the homomorphism model has a thermodynamic limit
with zero BC. We next outline a strategy which can possibly be used to prove
this claim. Making this strategy rigorous is left for future research. Fix a dimen-
sion d large enough for the following arguments and a finite set S ⊆ Z

d . Consider
f ∈R Hom(Gn1,Bn1,μn1) and independently g ∈R Hom(Gn2,Bn2,μn2) for some
n1 ≥ n2 with n2 large enough so that S ⊆ V [Gn2]. Let Zf := {v ∈ V even|f (v) = 0}
and Zg := {v ∈ V even|g(v) = 0}. Let also Z := Zf ∩ Zg ⊆ V [Gn2]. Finally, let �

be the event that every path from S to the boundary of the cube [−n2/2, n2/2−1]d
intersects Z. We observe that conditioned on �, the distribution of f restricted to
S coincides with the distribution of g restricted to S (see Lemma 5.16 for a similar
statement). Hence, the total variation distance of the distribution of f restricted
to S from the distribution of g restricted to S is at most P(�c). Thus, it will be
sufficient to show that as n1, n2 → ∞, P(�) → 1. This can be seen as a percola-
tion question, in which Z is the set of closed sites [explicitly, all sites in V odd are
open and a site in V even is open if and only if f (v) �= 0 or g(v) �= 0]. In this ter-
minology, what we need to show is that the probability that the set S is connected
to distance n (taking n1, n2 much larger than n) by a path of open sites decays
to 0 with n. The reason for this is heuristically clear, Theorem 2.1 shows us that
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for v ∈ V even we have P(v is open) ≤ exp(−cd/ log2 d) for some c > 0 (since the
zero BC has full projection) whereas the critical probability for independent per-
colation on Z

d is only polynomially small in d . The main difficulty in completing
this argument is to show that this percolation model is indeed subcritical although
there are dependencies between the different sites.

We now turn to the case of Gn with the one-point BC (B,μ), embedded in
Z

d as before with B = {�0} (where �0 is the origin of Zd ). We believe, but do not
prove, that in sufficiently high dimension the homomorphism model also has a
thermodynamic limit with the one-point BC. We expect this thermodynamic limit
to have the following form: There is a distribution L on the integers, symmetric
around zero with rapidly decaying tails (L is the “average height” of the limiting
distribution) such that in order to obtain a sample from the thermodynamic limit
with the one-point BC, one samples an integer h from L and a height function
f from the thermodynamic limit with zero BC conditioned to have f (�0) = −h,
and then returns f + h as the sample from the thermodynamic limit with the one-
point BC.

2.3. Lipschitz height functions. In this section, we show how to extend the
results described in the previous section to Lipschitz height functions. The possi-
bility and ease of this extension are a direct consequence of a bijection discovered
by Ariel Yadin [28]. We start by describing this bijection.

Let G be a finite, connected and bipartite graph. For ∅ �= B ⊆ V [G] and
μ : B → Z, we recall that (B,μ) is a Lipschitz legal boundary condition if
Lip(G,B,μ) �= ∅. We let G2 := G × Z2. We note that G2 is also bipartite and
fix on it a bipartition (V even

2 ,V odd
2 ). We think of G2 as two copies of the graph G

with edges between the two copies of each vertex and denote the two vertices in
G2 corresponding to the vertex v ∈ G by (v,0) and (v,1). The labeling is chosen
so that (v,0) ∈ V even

2 and (v,1) ∈ V odd
2 . Note that if v,w ∈ V [G] and v ∼G w

then (v, i) ∼G2 (w,1 − i) for i ∈ {0,1}. We remind that for ∅ �= B ′
2 ⊆ V [G2]

and μ′
2 : B ′

2 → Z, the pair (B ′
2,μ

′
2) is called a (homomorphism) legal bound-

ary condition if Hom(G2,B
′
2,μ

′
2) �= ∅ and μ′

2 takes even values on V even
2 and

odd values on V odd
2 . Finally, fixing a boundary condition (B,μ) on G, we set

B2 := {(v, i)|v ∈ B, i ∈ {0,1}} and define μ2 : B2 → Z by

μ2(v, i) :=
{
μ(v), i = μ(v) mod 2,

μ(v) − 1, i �= μ(v) mod 2.

THEOREM 2.11 (Yadin Bijection [28]).

1. (B,μ) is a Lipschitz legal boundary condition if and only if (B2,μ2) is a ho-
momorphism legal boundary condition.

2. If (B,μ) is a Lipschitz legal boundary condition then the mapping T :
Hom(G2,B2,μ2) → Lip(G,B,μ) defined by

(15) T (f )(v) := max
(
f

(
(v,0)

)
, f

(
(v,1)

))
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is a bijection. Furthermore, in this case

(16) Range
(
T (f )

) = Range(f ) − 1

for all f ∈ Hom(G2,B2,μ2).

We note that there is no boundary condition (B,μ) on G (with B �= ∅) for
which the corresponding (B2,μ2) has μ2(b) = 0 for all b ∈ B2. To remedy this,
we generalize slightly the definition of Lip(G,B,μ). Given ∅ �= B ⊆ V [G] and
a set 
 of functions μ : B → Z we let Lip(G,B,
) := ⋃

μ∈
 Lip(G,B,μ). We
say that 
 is zero–one if 
 is the set of all functions of the form μ : B → {0,1}
and we say that (B,
) is a Lipschitz legal BC if Lip(G,B,
) �= ∅. As usual, we
write g ∈R Lip(G,B,
) when g is sampled uniformly from Lip(G,B,
). We
then obtain the following corollaries from the Yadin bijection.

COROLLARY 2.12. For every Lipschitz legal BC (B,
) with zero–one 
 , the
Yadin bijection T defined in (15) maps Hom(G2,B

′
2,μ

′
2), where B ′

2 := {(v,0)|v ∈
B} and μ′

2 is zero, bijectively to Lip(G,B,
), with the relation (16) holding for
all f ∈ Hom(G2,B

′
2,μ

′
2).

COROLLARY 2.13. Let g ∈R Lip(G,B,μ) and f ∈R Hom(G2,B
′
2,μ

′
2)

where (B,μ) and (B ′
2,μ

′
2) are one-point BCs on G and G2, respectively. Then

Range(g)
d= Range(f ) − 1.

Using the bijection and its corollaries, we deduce analogs of the theorems of
Section 2.2. We start with an analogue of Theorem 2.1 on the height of a uniform
height function.

THEOREM 2.14. There exist d0 ∈N, c > 0 such that for all d ≥ d0, nonlinear
tori G, Lipschitz legal boundary conditions (B,μ) with nonpositive μ and x ∈
V [G], if g ∈R Lip(G,B,μ) then

P
(
g(x) ≥ t

) ≤ exp
(
−c Vol(
t/2� − 1)

min(t, d) log2 d

)
for all t ≥ 3.

Furthermore, if t ≥ 3 satisfies Vol(
t/2� − 1) ≤ 1
6nd then

P
(
g(x) ≥ t

) ≤ exp
(
−c Vol(
t/2� − 1)

log2 d

)
.

Finally, if B has full projection then

P
(
g(x) ≥ t

) ≤ exp
(
−c Vol(t − 1)

log2 d

)
for all t ≥ 2.
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Corollary 2.2 and the bijection now imply that for special boundary conditions,
the random Lipschitz function is highly concentrated, taking only two values on
most of the torus. We demonstrate this for one specific BC [see (3) for the coordi-
nate system],

(17) B� := {
(x1, . . . , xd) ∈ V [G]|∃i s.t. xi ∈ {0, ni − 1}}.

COROLLARY 2.15. There exist d0 ∈N, c > 0 such that for all d ≥ d0, nonlin-
ear tori G, if g ∈R Lip(G,B�,
) with zero–one 
 then

E|{v ∈ V [G]|g(v) /∈ {0,1}}|
|V [G]| ≤ exp

(
− cd

log2 d

)
.

This phenomena can be observed in Figure 2 where a slice of a sample of a Lips-
chitz function on Z

3
100 with these boundary conditions (shifted by 1

2 for symmetry)
is depicted.

We continue with a theorem about the range of a random Lipschitz function.

THEOREM 2.16. There exist d0 ∈ N, C > 0 such that for all d ≥ d0 and non-
linear tori G, if we set

k := min
{
m ∈ N|Vol(m) ≥ C log2 d log

∣∣V [G]∣∣}
and let g ∈R Lip(G,B,
) for Lipschitz legal BC (B,
) with zero–one 
 , or let
g ∈R Lip(G,B,μ) for a one-point BC (B,μ), then

P
(
Range(g) > 2k

) ≤ 1

|V [G]|4 .

Corollary 2.5 and the bijection show that our range bounds are sharp for one-
point BCs.

COROLLARY 2.17. There exist d0 ∈ N, Cd, cd > 0 such that for all d ≥ d0,
nonlinear tori G and the one-point BC (B,μ), if g ∈R Lip(G,B,μ) then

P
(
cdr ≤ Range(g) ≤ Cdr

) ≥ 1 − 1

|V [G]|3 ,

where r := min{m ∈ N|Vol(m) ≥ log |V [G]|}.
We also obtain an analogue of Theorem 2.6.

THEOREM 2.18. For any integer k ≥ 2, there exist d0(k) and ck > 0 such

that for all d ≥ d0(k) and nonlinear tori G with |V [G]| ≤ exp( ckd
k

log2 d
), if we let

g ∈R Lip(G,B,
) for Lipschitz legal BC (B,
) with zero–one 
 , or let g ∈R

Lip(G,B,μ) for a one-point BC (B,μ), then

P
(
Range(g) > 2k

) ≤ exp
(
− ckd

k

log2 d

)
.
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Note that the range of g is one less than the range of f in the corresponding
Theorem 2.6. This follows from (16).

Perhaps surprisingly, if we take in the above theorem g ∈R Lip(G,B,μ) for
Lipschitz legal BC (B,μ) with zero μ [instead of (B,
) with zero–one 
], then
we do not expect the theorem to remain true in general. Indeed, if G = Z

d
2 and

B = {(x1, . . . , xd)|∑d
i=1 xi = �d

2 �}, say, then the boundary conditions divide the
torus into two, roughly equal, connected components. Now if, as the theorem sug-
gests, the typical random function will take 4 values on each of these components.
Then, by symmetry of the distribution of the function on each component under
taking negations, there would be positive probability (bounded away from 0 with
d) that these 4 values would not be the same on both components, thus leading to
the function taking at least 5 values overall (with probability bounded away from
0 with d). In other words, we expect that for some boundary sets B , a random
Lipschitz function can be more concentrated when its boundary values consist of
zeros and ones than when they consist only of zeros.

Theorem 2.7 concerning the behavior of the random height function on linear
tori also has an analogue for Lipschitz functions.

THEOREM 2.19. For all 0 < λ < 1
4 log 2 , there exist α = α(λ) > 0 and

C = C(λ) > 0 such that for all dimensions d ≥ 2 and all λ-linear tori G, if
g ∈R Lip(G,B,μ) with the one-point BC (B,μ) then

P
(
Range(g) ≤ ∣∣V [G]∣∣α) ≤ C

∣∣V [G]∣∣−α
.

Consequently, the roughening transition discussed in Section 2.2.3 occurs also
for the Lipschitz height function model.

2.4. Proof sketches, reader’s guide. As explained in the Introduction and pre-
vious sections, we first prove our theorems for the homomorphism model and
then use the Yadin bijection (Theorem 2.11) to transfer our results to the Lips-
chitz model. For simplicity, we will assume throughout this sketch (except in the
section on linear tori) that G = Z

d
n (for even n ≥ 4 and large d), but our proofs

remain essentially unchanged for more general nonlinear tori in high dimensions.
The main ingredient in proving our results for the homomorphism model on non-
linear tori is to prove the level set theorem (Theorem 2.8). We start by explaining
some key ideas which go into the proof. We will then explain how these ideas are
put together. Related ideas have appeared in the work of Galvin and Kahn [13].

Expanding transformation. Given a finite set U , a subset � ⊆ U and a trans-
formation T : � → P(U) [where P(U) is the power set of U ], we define two
parameters:

Out(T ) := min
f ∈�

∣∣T (f )
∣∣,

In(T ) := max
g∈U

∣∣{f ∈ �|g ∈ T (f )
}∣∣.
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We call τ(T ) := Out(T )
In(T )

the expansion factor of T and call T an expanding trans-
formation if τ > 1. It is not difficult to verify that the mere existence of an expand-
ing transformation T implies that |�|

|U | ≤ 1
τ(T )

. We will apply this idea to the space
U = Hom(G,B,μ) [for some BC (B,μ)] in order to deduce that certain sets of
homomorphism height functions � ⊆ U have small probability.

Odd cutsets. Given ∅ �= B ⊆ V [G] and x ∈ V [G], a minimal edge cutset �

separating x and B is a set of edges of G which separate x and (every vertex of) B

and have the property that if any edge is removed from � then they no longer sep-
arate x and B . We denote the set of such cutsets by MCut(x,B). The interior (ver-
tex) boundary of such a cutset � is the set of vertices incident to � and connected
to x in G by a path which does not cross �. We distinguish a special subclass of
MCut(x,B), the odd (minimal edge) cutsets, which we denote by OMCut(x,B),
which are those � ∈ MCut(x,B) whose interior boundary lies completely in the
odd bi-partition class of G. Such cutsets arise naturally as the level sets of ho-
momorphism height functions (see Figures 3 and 4 for an illustration) and their
understanding is fundamental to our analysis.

It will be important to distinguish a subset of the interior boundary of an odd
cutset � by the following definition. We say that a vertex in the interior boundary
is exposed if it is incident to at least 2d − √

d edges of �. Thus, exposed vertices
“see” the cutset in nearly all directions.

We do not address the question of the number of odd cutsets in this work (see
also the open questions in Section 7), but use related facts and hence remark to the
reader (this fact is neither proved nor used) that in the whole of Zd , the number
of odd cutsets separating the origin from infinity and having at least L edges is at
least 2(1+εd )L/2d for d ≥ 2, some εd > 0 and large L. This can be seen by counting
those odd cutsets which approximate closely the boundary of a large cube with
sides orthogonal to the axes of Zd .

We shall need two structural results on odd cutsets which we now explain.

Odd cutsets with rough boundary. For an odd cutset � (fixing some x and B),
we introduce the parameter R� to be

∑
v min(P�(v),2d −P�(v)) where the sum is

over all vertices in the interior boundary of � and P�(v) is the number of � edges
incident to v (the R is for regularity and the P is for plaquette). This parameter is
a measure of the regularity of �, with a value significantly smaller than d times
the size of the interior boundary indicating some roughness of �. In the first of our
structural results, Theorem 4.5, we prove that

∣∣OMCut(x,B,R)
∣∣ ≤ exp

(
C log2 d

d
R

)
for some C > 0, where OMCut(x,B,R) is the set of odd cutsets � ∈ OMCut(x,B)

having R� = R.
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We shall not sketch in detail here the way this theorem is proved, but only
mention that it proceeds roughly by describing an odd cutset by a “skeleton” of
it (which, in a certain graph, is a dominating set for the interior boundary of the
cutset), and showing that the number of such skeletons is not too large. The odd
property of the cutset is fundamentally used (and indeed, the analogous theorem
for general cutsets, those in MCut, may well be false).

We will use this theorem in the following way. Consider an odd cutset � having
exactly L edges and at least (1 − λ

log2 d
) L

2d
exposed vertices, for some λ > 0. Since

an exposed vertex is incident to at least 2d − √
d edges of �, and these edges are

distinct from one exposed vertex to the other, it follows that the exposed vertices

alone are “responsible” for (1 − λ

log2 d
) (2d−√

d)L
2d

of the L edges of �. Thus, the

boundary of � is, in a sense, quite rough, and we may suspect that there are not that
many odd cutsets with this property [L edges and (1 − λ

log2 d
) L

2d
exposed vertices].

Indeed, from the above theorem it is not difficult to deduce that their number is at
most exp(Cλ

d
L) for some C > 0, which is the estimate we shall use in the sequel.

Interior approximation to odd cutsets. The second of our two structure theo-
rems for odd cutsets, Theorem 4.13, shows that odd cutsets may be approximated
well in a certain sense. To explain this, we let � be an odd cutset (fixing some x

and B) and say that a set of vertices E is an interior approximation to � if it is
contained in the interior of � (those vertices reachable from x by a path which
does not cross �) and contains all the nonexposed vertices in the interior boundary
of �. Theorem 4.13 then shows that, when B is a singleton, there exists a family of

subsets of V [G] of size at most 2 exp(
C log2 d

d3/2 L) for some C > 0, which contains
an interior approximation to every odd cutset of size L. Thus, while the total num-
ber of such odd cutsets may exceed 2(1+εd )L/2d (as remarked above), they may be
grouped into sets having the same interior approximation with the number of such

sets not exceeding 2 exp(
C log2 d

d3/2 L).
As before, we shall not sketch in detail the proof of this theorem, but mention

that it proceeds roughly similar to the proof of our first structural result, by de-
scribing an odd cutset by a “skeleton” of it, and showing that the number of such
skeletons is not too large. The main added ingredient is a classification of the in-
terior boundary of � into three types of vertices: the exposed vertices, the vertices
incident to at most

√
d edges of � and the vertices incident to between

√
d and

2d − √
d edges of �. It turns out that, compared to our first structural theorem, a

much smaller skeleton suffices in this theorem since one is only interested in re-
covering the vertices of the second and third type (with the third type being much
easier to handle than the second). Again, the odd property of the cutset is funda-
mentally used.
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The level set theorem. We now explain how the previous ingredients are put to-
gether to prove the level set theorem, Theorem 2.8. We shall explain only the case
of one level set, k = 1. The cases in which k > 1 follow in a simple manner from
the proof of this case (see Section 4.1). Fixing a graph G, boundary conditions
(B,μ), x ∈ V [G] and L, we aim to show that the set �x,L, of homomorphism
height functions having a level set of length L around x, is very small compared to
the whole of Hom(G,B,μ). We will do so using the concept of expanding trans-
formation described above. We will construct a T : �x,L → P(Hom(G,B,μ))

and show that there exists a partition of �x,L into (not too many) subsets such that
T is expanding (with a large expansion factor) on each of these subsets.

We start the construction of T by defining Shift : �x,L → Hom(G,B,μ),
the shift transformation (see Figure 4). For f ∈ �x,L, we denote its level set
LS(f, x,B) by � and recall that it is an odd cutset separating x and B . We let
C1 be the set of vertices in the interior of � (so that x ∈ C1) and define Shift(f )(v)

to equal f (v) for v /∈ C1 and to equal f (v+e1)−1 for vertices v ∈ C1, where v+e1
is the vertex located one unit from v in the first coordinate direction (see Figure 4).
Informally, on vertices of C1, Shift shifts the function f by one lattice space (in the
first coordinate direction) and subtracts one from its values. One can then verify
that Shift(f ) is indeed in Hom(G,B,μ) for f ∈ �x,L. The next step is to define
the set E1,1 of vertices v in the interior of � for which (v, v+e1) ∈ �, and to check
that if v ∈ E1,1, then necessarily Shift(f )(w) = 0 for all neighbors w of v (as in
Figure 4). In other words, denoting g := Shift(f ), we observe that for vertices
v ∈ E1,1, placing either +1 or −1 in g(v) results in a valid homomorphism height
function. This leads naturally to the definition of T1 : �x,L → P(Hom(G,B,μ))

as the transformation which replaces each f by the set of all functions formed
from Shift(f ) by placing ±1 at the points of E1,1. We have that for each f ,
|T1(f )| = 2|E1,1| where E1,1 potentially depends on f . However, somewhat cu-
riously, odd cutsets have the additional property that exactly 1

2d
of their edges are

of the form (v, v + e1) for vertices v in their interior. Thus, for all f ∈ �x,L,
|T1(f )| = 2L/2d .

The transformation T1 is a good candidate for our expanding transformation
since, as we have just explained, Out(T1) = 2L/2d . However, it is not so simple
to bound the parameter In(T1) of this transformation. One approach is to note
that the transformation Shift is invertible given the level set �, that is, for any
f ∈ �x,L, one can reconstruct f from knowing Shift(f ) and LS(f, x,B). The
same then holds for T1 for any f ∈ �x,L, one can reconstruct f from knowing any
g ∈ T1(f ) and LS(f, x,B). Thus, In(T1) is bounded by the number of possibilities
for LS(f, x,B), which is itself bounded by the number of odd cutsets of length L

surrounding x. This approach amounts, more or less, to a Peierls-type argument.
Unfortunately, as we remarked above, the number of odd cutsets may well exceed
2L/2d , and thus this approach fails to show that T1 is expanding. Instead, we deduce
a more modest result. First, we recall from our first structure theorem for odd
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cutsets that the number of odd cutsets having L edges and at least (1 − λ

log2 d
) L

2d

exposed vertices in their interior boundary is bounded by exp(Cλ
d

L) for some C >

0. Then we define �x,L,1 ⊆ �x,L to be those f ∈ �x,L whose level set LS(f, x,B)

has at least (1 − λ

log2 d
) L

2d
exposed vertices in its interior boundary. We conclude

that In(T1) ≤ exp(Cλ
d

L) on �x,L,1, and thus if λ is chosen small enough then T1 is

expanding on �x,L,1 and P(�x,L,1) ≤ 2− cL
d for some c > 0.

It remains to bound P(�x,L,2) for �x,L,2 := �x,L\�x,L,1. Our second structure
theorem for odd cutsets, Theorem 4.13, motivates a change in the definition of T1.
We define the transformation T2 : �x,L → P(Hom(G,B,μ)) as follows: For each
f , T2(f ) is the set of functions obtained by modifying each g ∈ T1(f ) to equal 1
on all the exposed vertices of LS(f, x,B). The modification is achieved by noting
that g must equal either 1 or −1 on each exposed vertex, identifying for each
exposed vertex v for which g(v) = −1 the component of it in G \ {v|g(v) = 0}
and negating the values of g on this component. The advantage of T2 over T1 is
that it preserves more information on the positions of the exposed vertices of the
level set of its input. Its disadvantage is that |T2(f )| can be much smaller than
2L/2d if f has many exposed vertices.

Next, we observe that if f ∈ �x,L and h ∈ T2(f ), then knowledge of h and
an interior approximation to LS(f, x,B) is sufficient to recover LS(f, x,B) com-
pletely. This follows directly from the fact that LS(f, x,B) is defined solely in
terms of the union of components of B in G \ {v|f (v) = 1}. By definition of T2

and interior approximations, this union of components is the same as the union of
components of B in G \ ({v|h(v) = 1} ∪ E) where E is an interior approxima-
tion to LS(f, x,B). We would like to use this to bound In(T2) by the bound on
the number of interior approximations given by Theorem 4.13. However, unlike
T1, it is not true that for any f ∈ �x,L, one can reconstruct f from knowing any
h ∈ T2(f ) and LS(f, x,B). To recover f , we need to recover LS(f, x,B) and, in
addition, enumerate on which negations (of the values of h on exposed vertices)
were performed in the definition of T2(f ). Potentially, this enumeration factor is
as large as 2 to the power of the number of exposed vertices.

The above discussion shows that the expansion properties of T2 improve when
restricted to subsets of �x,L on which the level set of the function has few ex-
posed vertices in its interior boundary. Indeed, we can show that when restricted
to (suitable partitions of) the subset of functions having exactly m such exposed

vertices, then the expansion factor of T2 is at least 2L/2d−m−1 exp(−C log2 d

d3/2 L) (this

is slightly worse on general nonlinear tori). Recalling that m ≤ (1 − λ

log2 d
) L

2d
on

�x,L,2, we deduce that T2 is expanding on (suitable subsets of) �x,L,2 and con-
clude that P(�x,L,2) ≤ dC exp(− cL

d log2 d
) for some C,c > 0, proving the level set

theorem.
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Height and range. We now explain how Theorem 1.1 (for the homomorphism
model) and its more general versions, Theorems 2.1 and 2.3, follow from the level
set theorem. Fix t ≥ 1. Assuming that our boundary values μ are nonpositive, we
note that if our random height function f has f (x) ≥ t then, since the function
changes by one between adjacent vertices, we must have f (v) ≥ 1 for all vertices
v whose (graph) distance from x is at most t − 1. Thus, the level set LS(f, x,B)

must surround a (graph) ball of radius t − 1. If we could deduce from this fact that
|LS(f, x,B)| is large, when t is large, then we would deduce from our level set the-
orem that the event {f (x) ≥ t} has small probability. However, LS(f, x,B) need
not be large. For example, if our boundary set B is a singleton {b} then it is pos-
sible that the level set contains only the 2d incident edges to b. To overcome this
difficulty, we define for each i ≥ 1 the level set LSi (f, x,B): the outermost height
i level set of f around x, which is defined analogously to LS(f, x,B) [in fact, it
equals LS(f̃ , x,B) for f̃ := f − (i − 1)]. We then observe, again using that our
boundary values μ are nonpositive and that the function changes by one between
adjacent vertices, that if f (x) ≥ t then LSi (f, x,B) must separate a (graph) ball
of radius i − 1 from a ball of radius t − i. In Section 5.1, we develop isoperimetric
estimates which show that these conditions (and a technical assumption involving
n, the side-length of the torus) imply that LSi (f, x,B) is at least as large as the
size of the boundary of a ball of radius min(i − 1, t − i). Thus, we finally obtain,
by taking i = 
 t

2� (and assuming that t ≥ 3), that f has a level set of length at least
cdtd−1. Combined with the level set theorem, this implies that the probability of
the event {f (x) ≥ t} is at most exp(−cdtd−1).

Theorem 1.1 states an even stronger fact that P(f (x) ≥ t) ≤ exp(−cdtd). This
implies the estimate on P(Range(f ) ≥ Cd log1/d n) by a union bound. As men-
tioned in the Introduction, in the case of a one-point BC, the matching lower bound
on Range(f ) follows from Theorem 2.4 of [6]. To obtain this stronger estimate on
P(f (x) ≥ t), we observe that the level set LSi (f, x,B) is defined solely in terms of
the values of f on the exterior of the level set and on the interior vertex boundary
of the level set. Thus, given LSi (f, x,B), the distribution of f in the interior of
the level set equals the distribution of a random homomorphism height function, on
this interior, with boundary values i on the interior boundary of LSi (f, x,B) (this
fact is formalized in Lemma 5.16). This implies that the level set theorem may be
applied inductively, first to LS1(f, x,B), then to LS2(f, x,B) given LS1(f, x,B)

and so on, until applying it to LSt (f, x,B) given LSi (f, x,B) for all 1 ≤ i < t . We
conclude that the probability that f (x) ≥ t and, for 1 ≤ i < t , |LSi (f, x,B)| = Li

is at most exp(−cd

∑t
i=1 Li). But the isoperimetric estimates mentioned in the

previous paragraph imply that if f (x) ≥ t , then necessarily at least order t of the
level sets LSi (f, x,B) have size of order td−1, thus giving the required estimate
P(f (x) ≥ t) ≤ exp(−cdtd).

Linear tori. Finally, we explain the ideas behind the proof of Theorem 2.7,
which shows that random homomorphism height functions on λ-linear tori, with
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λ < 1
2 log 2 and the one-point BC, have large range with high probability. For con-

creteness, we focus on the case that G = Zn × Z�λ logn� for some λ < 1
2 log 2 , but

the general case follows similarly. For such a torus, we introduce the notion of a
“wall” in the homomorphism function f . A wall consists of two adjacent, roughly
vertical, lines of vertices (crossing the torus in the “short” direction) on which f

is constant (a different constant on each of the lines). Intuitively, such walls form
since the chance that they occur for any particular horizontal coordinate is of order
2−2λ logn (since the function f has to change in a prescribed way on, approxi-
mately, 2λ logn edges), but there are n possibilities for this coordinate, and hence
many walls will form if λ < 1

2 log 2 . Our proof formalizes this argument. The proof
then concludes by comparing the behavior of f on these walls to the behavior of
a random walk bridge. Since such bridges have large range with high probability,
we are able to deduce that f does as well.

Reader’s guide. The rest of the paper is structured as follows. In Section 3,
definitions and preliminary results which will be needed throughout the paper are
given. The proof of the level set theorem, Theorem 2.8, is given in Section 4,
which is divided into several parts: Section 4.1 introduces the notion of expanding
transformation and the properties required of it for our proof. Section 4.2 defines
the expanding transformation T we will use. In Section 4.3, we state and prove
our structure theorems for odd cutsets. Finally, Section 4.4 puts together the pre-
vious ingredients to deduce that the transformation T has the required expansion
properties. In Section 5, we deduce our theorems for the height and range of ho-
momorphism and Lipschitz height functions from the level set theorem. To this
end, isoperimetric estimates for cutsets on tori are developed in Section 5.1. Sec-
tion 6 proves Theorem 2.7 on the typical range of values taken by random homo-
morphisms on linear tori. Finally, in Section 7 we conclude with a list of open
questions.

3. Preliminaries. In this section, we introduce notation used throughout the
paper and prove some preliminary results that we will need. The first time a nota-
tion is introduced it is highlighted in boldface.

The torus G: For a torus G, with even side lengths (ni)
d
i=1 as in (2), we denote

by �(G) the degree of (any vertex in) G. We have 
(G) := 2d − ∑d
i=1 1(ni=2)

and we will frequently use that

(18) d ≤ 
(G) ≤ 2d.

We shall denote

(19) α :=
d−1∏
i=1

ni,
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the size of the smallest “section” of the torus. We let dG stand for the graph dis-
tance and for v,w ∈ V [G] write v ∼G w if dG(v,w) = 1. Denote by S(v) :=
{w ∈ V [G]|w ∼G v}, the set of neighbors of v in G and S(E) := ⋃

v∈E S(v)

for E ⊆ V [G]. By definition, |S(v)| = 
(G). As in (3), we fix a coordinate
system for the torus G so that V [G] = {(x1, . . . , xd)|0 ≤ xi ≤ ni − 1}. For v =
(v1, . . . , vd) ∈ V [G] and 1 ≤ i ≤ d , we denote by v + ei the vertex whose coor-
dinates are (v1, . . . , vi−1, vi + 1 (mod ni), vi+1, . . . , vd) and by v − ei the vertex
whose coordinates are (v1, . . . , vi−1, vi − 1 (mod ni), vi+1, . . . , vd). We similarly
define v + kei for all k ∈ Z. We note that v + ei = v − ei iff ni = 2. Letting
k = max{i|ni = 2} (k = 0 if n1 > 2) we define (f i)

�(G)
i=1 by fi = ei for 1 ≤ i ≤ d

and fi = −ei−d+k for d < i ≤ 
(G). By our definitions {v + fi |1 ≤ i ≤ 
(G)} =
S(v).

We note a simple expansion property of G.

PROPOSITION 3.1. Let v ∈ V [G] and Q := {(i, j)|1 ≤ i, j ≤ 
(G), fi �=
−fj }. Then for any (i, j) ∈ Q we have |{(k, �) ∈ Q|v+fi +fj = v+fk +f�}| ≤ 2.

PROOF. Let (i, j), (k, �) ∈ Q and suppose that (i, j) �= (k, �) and

(20) v + fi + fj = v + fk + f�.

Suppose first that fi = fj . If fi = em or fi = −em, we must have nm = 4 and
fk = f� = −fi for (20) to hold, proving the proposition in this case. If fi �= fj ,
then v + fi + fj differs from v in two coordinates and we must have k = j and
� = i for (20) to hold, proving the proposition in this case as well. �

We let G⊗r for integer r > 0 be the graph with the same vertex set as G and with
u, v ∈ V [G] adjacent if and only if 1 ≤ dG(u, v) ≤ r . With this notation G⊗1 = G.
Note also that the degree of the vertices in G⊗r is bounded above by

∑r
i=1(2d)i ≤

(2d)r+1 − 1. We shall need the following standard counting lemma.

PROPOSITION 3.2. Given v ∈ V [G] and integers M,r > 0, the number of
sets E ⊆ V [G] with |E| = M and E ∪ {v} connected in G⊗r does not exceed
(2d)2(r+1)M .

PROOF. To avoid dealing separately with the cases where v ∈ E and v /∈ E,
let Gr be the graph G⊗r with the vertex v doubled in the following sense: Gr has
as vertex set the vertex set of G union one additional vertex called v′, and has as
edges the edges that G⊗r has, an edge from v′ to each of the neighbors of v and an
edge between v and v′. Note that the maximal degree in Gr is bounded by (2d)r+1.

For every E as in the proposition, we note that E ∪ {v′} is connected in Gr

and we fix a spanning tree TE for it. Starting from v′, we can perform a depth
first search of TE , starting and ending at v′ and passing through each edge exactly
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twice. Since TE has exactly M edges, we obtain that the number of possibilities
for TE (and hence for E) is upper bounded by the number of walks of length 2M

in Gr which start at v′. This gives the required bound. �

In this paper, a cycle is a closed walk having no repeated vertices (besides its
starting and ending point). An edge cycle is the set of edges of a cycle. A basic
4-cycle is a cycle of the form v, v + fi, v + fi + fj , v + fj , v for some v ∈ V [G],
fi �= fj and fi �= −fj . We let G� be the graph with the same vertex set as G

and with u, v ∈ V [G] adjacent if and only if they lie on some basic 4-cycle. Let
k := min{1 ≤ i ≤ d|ni > 2} (k = ∞ if nd = 2, that is, on the hypercube) and for
each k ≤ i ≤ d and v ∈ V [G], let Pi(v) be the cycle v, v + ei, v +2ei, . . . , v +niei

which starts at v and wraps around the torus once in the ei direction. We use
without proof the fact that on the torus, for any (vi)

d
i=k ⊆ V [G], the edge sets

of basic 4-cycles and the edge sets of (Pi(vi))
d
i=k (these are not needed on the

hypercube) generate the cycle space of G over Z2, that is, any edge cycle can
be written as the exclusive or of some subset of these edge cycles (this can be
seen by taking the tree whose root is at O = (0, . . . ,0) and in which the parent of
x ∈ V [G] \ {O} is x − em where m = min{1 ≤ i ≤ d|xi > 0} and observing that its
fundamental cycles are in the span of the given generating set). Let G+((vi)

d
i=k)

be the graph with the same vertex set as G and in which u, v are adjacent if they
are adjacent in G� or both lie on Pi(vi) for some i (G+ = G� on the hypercube).
A clever result of Timár [27] showing connectivity of boundaries of connected sets
implies the following.

THEOREM 3.3 (Special case of Lemma 2 in [27]). Letting k = min{1 ≤ i ≤
d|ni > 2}, for any (vi)

d
i=k ⊆ V [G], x ∈ V [G] and G-connected C ⊆ V [G], the set

E1 := {
connected component of x in V [G] \ C} ∩ {

v ∈ V [G]|dG(v,C) = 1
}

(i.e., the outer boundary of C visible from x), is connected in G+((vi)
d
i=k).

Vertex cutsets: For x, y ∈ V [G], let VCut(x,y) be the set of all vertex cutsets
(not necessarily minimal) separating x and y, that is, the set of all E ⊆ V [G] such
that any path from x to y must intersect E (possibly at x or y). Recalling the
definition of α from (19), we will need the following proposition.

PROPOSITION 3.4. Let x, y ∈ V [G] and M > 0 an integer. If M < 2α then
there exists a set A = A(x, y,M) ⊆ V [G] with |A| ≤ 30M such that every E ∈
VCut(x, y) with |E| ≤ M intersects A. If M ≥ 2α, the same is true with a set A

satisfying |A| ≤ 31M + nd .

We use the following lemmas.
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LEMMA 3.5. Let x, y ∈ V [G] and Bx,By ⊆ V [G] be connected sets with
x ∈ Bx and y ∈ By . Suppose there exist k paths between Bx and By , pairwise
disjoint in their interior. Then every E ∈ VCut(x, y) either intersects Bx ∪ By or
has |E| ≥ k.

PROOF. Let P1, . . . ,Pk be paths between Bx and By , pairwise disjoint in their
interior. Let Qj be a walk from x to y which travels inside Bx to the starting
point of Pj , then travels along Pj and finally travels inside By to y. All the Qj

must intersect E by its definition. Hence, if E does not intersect Bx ∪ By then it
intersects each Pj in its interior, and hence has at least k points. �

LEMMA 3.6. Let x, y ∈ V [G]. Every E ∈ VCut(x, y) satisfies either E ∩
{x, y} �= ∅ or |E| ≥ d .

PROOF. The lemma is standard, but we give a proof for completeness. Sup-
pose E ∩ {x, y} = ∅, then by the previous lemma it is enough to exhibit d paths
from x to y, disjoint in their interior. By applying translations and reflections to
the torus, we may assume without loss of generality that x = (0,0, . . . ,0) and y =
(a1, a2, . . . , ad) with 0 ≤ aj ≤ nj

2 . For each 1 ≤ j ≤ d , if aj �= 0, define the path
Pj as the path from x to y going from x to x + aj ej by adding ej each step, then
to x + aj ej + aj+1ej+1 by adding ej+1, then to x + aj ej + aj+1ej+1 + aj+2ej+2
by adding ej+2 and so on until y, where all subscripts are interpreted cyclically (so
that ed+1 = e1, ad+2 = a2, etc.). If aj = 0, we define the path Pj as going from x

to x + ej then to x + ej + aj+1ej+1 and so on until x + ej + ∑d−1
k=1 aj+kej+k and

finally to y (by subtracting ej ). It is straightforward to verify that these paths are
all disjoint in their interiors. �

PROOF OF PROPOSITION 3.4. By applying translations and reflections to
the torus, we may assume without loss of generality that x = (0,0, . . . ,0) and
y = (a1, a2, . . . , ad) with 0 ≤ aj ≤ nj

2 . Let P be the path from x to y which
goes in straight lines, in the positive coordinate directions, from (0,0,0, . . . ,0)

to (a1,0,0, . . . ,0) to (a1, a2,0, . . . ,0) and so on up to y. We start by supposing
that |E| = M ′ for some M ′ ≤ M and divide into cases:

1. M ′ < d . By Lemma 3.6, letting A1
M ′ := {x, y} we have E ∩ A1 �= ∅ and

|A1
M ′ | = 2 ≤ 10M ′.

2. d ≤ M ′ < 1
4

∑d−1
j=1 nj . Define

B ′ =
{
z ∈ V [G]|∃1 ≤ j ≤ d − 1 and 0 ≤ i ≤ nj

2
− 1 s.t. z = x − iej + ied

}
.

We have |B ′| = 1
2

∑d−1
j=1 nj − (d − 2) and we check that for any z1, z2 ∈ B ′,

z1 �= z2, the paths P + z1 and P + z2 are disjoint. Indeed, the last statement
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is equivalent to saying (P − P) ∩ (B ′ − B ′) = {(0, . . . ,0)}, but if we write
z1 − z2 = (i1, . . . , id) if z1 = z2 + ∑d

j=1 ij ej and −nj

2 + 1 ≤ ij ≤ nj

2 , then each
point in B ′ − B ′ has sum of coordinates 0 (using the fact that nd ≥ nj for all
j ) and cannot have its j th coordinate equal nj

2 for any j , while each point in
P −P either has its j th coordinate equal to nj

2 for some j , or all its coordinates
are simultaneously nonnegative or nonpositive.

Continuing, for any 1 ≤ a ≤ |B ′|, we may find a connected set B with x ∈ B

such that |B| ≤ 2a and |B ∩ B ′| = a. Taking such a set for a = M ′ + 1 (using
that 1

4
∑d−1

j=1 nj > d by the assumption of this item) and letting A2
M ′ := B ∪

(B + y), by Lemma 3.5, E intersects A2
M ′ and |A2

M ′ | ≤ 10M ′.
3. 1

4
∑d−1

j=1 nj ≤ M ′ < 2
∏d−1

j=1 nj . In this case, we may find a connected set B ⊆
{x ∈ V [G]|xd = 0} which contains a path from x to (a1, a2, . . . , ad−1,0) and
such that 
M ′+1

2 � ≤ |B| ≤ 2M ′ + 1. This set is connected by 2|B| disjoint paths
to the set B + (0, . . . ,0, ad) (the paths are simply straight lines along the last
direction, going in both directions around the torus). Letting A3

M ′ := B ∪ (B +
(0, . . . ,0, ad)), by Lemma 3.5, E intersects A3

M ′ and |A3
M ′ | ≤ 10M ′.

4. M ′ ≥ 2
∏d−1

j=1 nj . Letting A4
M ′ := P , the path A4

M ′ must intersect E by its defi-

nition and its length is
∑d

j=1 aj ≤ 1
2

∑d
j=1 nj ≤ ∏d−1

j=1 nj +nd ≤ M +nd (using
that nj ≥ 2).

Next, for M ′ ≤ M , let 1 ≤ j (M ′) ≤ 4 be the “case” above in which M ′ is treated.

We note that we may choose the (A
j(M ′)
M ′ )MM ′=1 so that A

j(M ′′)
M ′′ ⊆ A

j(M ′)
M ′ whenever

M ′′ ≤ M ′ and j (M ′′) = j (M ′). Hence, we may define AM := ⋃M
M ′=1 A

j(M ′)
M ′ and

have E ∩ AM �= ∅ and |AM | ≤ 30M if M < 2
∏d−1

j=1 nj and |AM | ≤ 31M + nd if

M ≥ 2
∏d−1

j=1 nj , as required. �

Minimal edge cutsets: For nonempty X,Y ⊆ V [G], let MCut(X,Y ) be the
set of all minimal edge cutsets separating X and Y , that is, the set of all
� ⊆ E[G] such that any path from some x ∈ X to some y ∈ Y must cross an
edge of � and any strict subset �′ ⊂ � does not share this property. Note that
MCut(X,Y ) = MCut(Y,X) and that MCut(X,Y ) �= ∅ if and only if X ∩ Y = ∅.
For x, y ∈ V [G], we shall write MCut(x,Y ),MCut(X,y) and MCut(x, y) instead
of MCut({x}, Y ),MCut(X, {y}) and MCut({x}, {y}).

For � ∈ MCut(X,Y ) and v ∈ V [G], define comp(�,v) to be the connected
component of v in G when removing the edges of �, P �(v) to be the num-
ber of edges in � incident to v and Ein(�,v) := comp(�, v) ∩ {w|P�(w) > 0},
the inner boundary of comp(�, v). By definition, for any v1, v2 ∈ V [G] we have
that comp(�, v1) and comp(�, v2) are either disjoint or identical. We define
subcut(�,v) to be all edges between comp(�, v) and its complement. We have
the following.
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PROPOSITION 3.7. For any nonempty X,Y ⊆ V [G], � ∈ MCut(X,Y ) and
x ∈ X we have subcut(�, x) ⊆ � and subcut(�, x) ∈ MCut(x,Y ). In addition, if
x1, x2 ∈ X then subcut(�, x1) and subcut(�, x2) are either disjoint or identical.

PROOF. Let �x := subcut(�, x) and Cx := comp(�, x). By definition of �x

and Cx , we have �x ⊆ �. Furthermore, since � ∈ MCut(X,Y ), any path from x

to a vertex in Y must pass through an edge of �x . To show that �x is minimal, fix
e = {v,w} ∈ �x with v ∈ Cx . We need to show that there exists a path P from x to
some y ∈ Y whose only intersection with subcut(�, x) is at e. Since �x ⊆ � and
� ∈ MCut(X,Y ), there exists x′ ∈ X and a path P ′ from x′ to some y ∈ Y which
only intersects �x at e. It is not possible that P ′ crosses e from w to v since by
definition of Cx , any path from v to some y ∈ Y must cross �x (so P ′ will have
crossed �x at least twice). Hence, we may take P to be a path from x to v which
avoids �x and then continues along P ′ to y. This shows �x ∈ MCut(x,Y ).

Now let x1, x2 ∈ X, Cx1 := comp(�, x1), Cx2 := comp(�, x2), �x1 :=
subcut(�, x1) and �x2 := subcut(�, x2). As remarked before the lemma, Cx1 and
Cx2 are either identical or disjoint. If they are identical, then �x1 = �x2 . We will
show that �x1 ∩ �x2 �= ∅ implies Cx1 = Cx2 . Indeed, suppose, to get a contradic-
tion, that e = {v,w} ∈ (�x1 ∩ �x2), but Cx1 �= Cx2 . Since Cx1 ∩ Cx2 = ∅, we have
WLOG that v ∈ Cx1 and w ∈ Cx2 . But since � ∈ MCut(X,Y ), there exists a path
P from x1 to some y ∈ Y intersecting �x1 only at e, and crossing e from v to w.
Hence, we may walk from x2 to w and then along P to y without crossing � at
all, contradicting that � ∈ MCut(X,Y ). �

The following proposition puts in a convenient form the simple fact that if a
vertex is completely surrounded by a cutset then it forms its own component with
respect to it.

PROPOSITION 3.8. For any nonempty X,Y ⊆ V [G], � ∈ MCut(X,Y ) and
v ∈ V [G] we either have Ein(�, v) = {v} or 1 ≤ P�(w) ≤ 
(G) − 1 for all w ∈
Ein(�, v).

PROOF. Let w ∈ Ein(�, v) and note that by definition P�(w) ≥ 1. If P�(w) =

(G) we must have w = v since otherwise any path from w to v will cross �

contradicting the fact that w ∈ comp(�, v). �

The next proposition discusses the connectivity properties of cutsets on the
torus.

PROPOSITION 3.9. For any x, y ∈ V [G] and � ∈ MCut(x, y), we have that
either Ein(�, x) has a unique G�-connected component, or each of its G�-
connected components has full projection on at least one direction.
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Here we mean that the projection of E′ ⊆ V [G] on direction 1 ≤ i ≤ d is
{(v1, . . . , vi−1, vi+1, . . . , vd)|∃v = (v1, . . . , vi−1, vi, vi+1, . . . , vd) ∈ E′}. We re-
mark that it seems that Ein(�, x) as in the proposition may have at most 2 G�-
connected components. However, this seems more difficult to prove and we do not
need it in the sequel.

PROOF OF PROPOSITION 3.9. Set C = comp(�, y) and E = Ein(�, x). Then

E = {
connected component of x in V [G] \ C} ∩ {

v ∈ V [G]|dG(v,C) = 1
}
,

by minimality of �. As in Theorem 3.3, let k = min{1 ≤ i ≤ d|ni > 2}. Let E′ be
a G�-connected component of E. Suppose that E′ does not have full projection
on any direction. Then we can pick (vi)

d
i=k such that E′ does not intersect Pi(vi)

for any i. Theorem 3.3 implies that E is connected in G+((Pi(vi)
d
i=k)), but by

our assumption, the connected component of E′ in G+((Pi(vi)
d
i=k)) is E′ itself.

Hence, E has a unique G�-connected component. �

The next proposition allows to find a point in each G�-connected component
of a cutset with relative ease.

PROPOSITION 3.10. For any x, y ∈ V [G] and integer M > 0, there ex-
ists A = A(x, y,M) ⊆ V [G] with |A| ≤ 40Mn

1(M≥α)
d such that for any � ∈

MCut(x, y) and G�-connected component E′ of Ein(�, x) with |E′| ≤ M , we have
E′ ∩ A �= ∅.

We remark that the proof gives the stronger conclusion that if |E′| ≤ M then all
G�-connected components of Ein(�, x) intersect A, but we shall not need this.

PROOF OF PROPOSITION 3.10. Note that Ein(�, x) ∈ VCut(x, y). We divide
into two cases:

1. M < α. In this case, we take A to be the set A(x, y,M) of Proposition 3.4. For
any � ∈ MCut(x, y) with |Ein(�, x)| ≤ M , by that proposition, Ein(�, x)∩A �=
∅ and |A| ≤ 30M . By Proposition 3.9, Ein(�, x) can have at most one G�-
connected component since otherwise each of its connected components would
have at least α vertices.

2. M ≥ α. Writing x = (x1, . . . , xd), we set, for 1 ≤ i ≤ d , Pi := {(v1, . . . ,

vd)|vj = xj for all j �= i}. We then take A to be the union of A(x, y,M)

of Proposition 3.4 and
⋃d

i=1 Pi . Note that |A| ≤ 31M + nd + ∑d
i=1 ni ≤

32M + 2nd ≤ 40Mnd (using that ni ≥ 2). For any � ∈ MCut(x, y) with
|Ein(�, x)| ≤ M , we have Ein(�, x) ∩ A �= ∅ by Proposition 3.4. If Ein(�, x)

has a unique G�-connected component we are done. Otherwise, by Proposi-
tion 3.9, each of its G�-connected components intersects

⋃d
i=1 Pi . �
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Odd minimal edge cutsets: For nonempty sets X,B ⊆ V [G], we define
OMCut(X,B), the set of odd minimal edge cutsets, to be those

(21) � ∈ MCut(X,B) satisfying that for any x ∈ X, Ein(�, x) ⊆ V odd.

Note that it follows that for any b ∈ B , Ein(�, b) ⊆ V even and that unlike
MCut(X,B), we generally have OMCut(X,B) �= OMCut(B,X). We remark that
“oddness” is preserved under taking subcut, that is, if x ∈ X then subcut(�, x) ∈
OMCut(x,B) and if b ∈ B then subcut(�, b) ∈ OMCut(X,b). This follows simply
using Proposition 3.7.

Odd minimal cutsets have special properties not shared by the more familiar
minimal cutsets (which are not odd) that will be essential to our proofs. Such
cutsets arise naturally in our context as follows.

PROPOSITION 3.11. Let x ∈ V [G], (B,μ) legal boundary conditions with
nonpositive μ and f ∈ Hom(G,B,μ). If LS(f, x,B) �= ∅ then LS(f, x,B) ∈
OMCut(x,B).

PROOF. By its definition, if LS(f, x,B) �= ∅ then it consists of all edges be-
tween a set C ⊆ V [G] and its complement where x ∈ C and B ∩ C = ∅ (since μ

is nonpositive). Hence, LS(f, x,B) ∈ MCut(x,B). In addition, by its definition,
f (v) = 1 for all points v ∈ Ein(LS(f, x,B), x). Since our boundary conditions are
legal, LS(f, x,B) ∈ OMCut(x,B). �

For nonempty X,B ⊆ V [G] and � ∈ OMCut(X,B), we denote E1(�) :=⋃
x∈X Ein(�, x) and E0(�) := ⋃

b∈B Ein(�, b). By definition, E1(�) ⊆ V odd and
E0(�) ⊆ V even. We shall repeatedly use that for 1 ≤ i ≤ 
(G),

(22) if v ∈ Ein(�, v) and {v, v + fi} /∈ � then S(v + fi) ⊆ comp(�, v).

We also define E1,1(�) := {v ∈ E1(�)|{v, v + e1} ∈ �} and E1,e(�) := {v ∈
E1(�)|P�(v) ≥ 
(G) − √

d}. The letter “e” stands for “exposed” as vertices in
E1,e(�) are exposed to � from many directions. E1,1 and E1,e will play an im-
portant role in the definition of the transformation T in Section 4.2. Finally note,
following Proposition 3.7, that subcut(�, x) ∈ OMCut(x,B) and subcut(�, b) ∈
OMCut(X,b) for x ∈ X and b ∈ B .

For the following propositions, fix nonempty X,B ⊆ V [G] and � ∈ OMCut(X,

B). These propositions are generally false for MCut cutsets. Our first proposition
establishes the somewhat surprising property that surrounding every vertex, � has
the same number of edges in every direction.

PROPOSITION 3.12. Setting Ev,j := {w ∈ Ein(�, v)|{w,w+fj } ∈ �} for v ∈
V [G] and 1 ≤ j ≤ 
(G), we have |Ev,j | = |Ev,k| for all 1 ≤ j, k ≤ 
(G).
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PROOF. Set Ev := Ein(�, v) and Cv := comp(�, v). By definition of OMCut,
Ev ⊆ V odd or Ev ⊆ V even. Assume WLOG that Ev ⊆ V odd, then |{w ∈ Ev|{w,w+
fj } ∈ �}| = |Cv ∩V odd|−|Cv ∩V even| since the mapping w �→ w+fj maps points
of (Cv ∩ V odd) \ {w ∈ Ev|{w,w + fj } ∈ �} bijectively to Cv ∩ V even. Hence,
|Ev,j | = |Ev,k| as required. �

The next proposition shows a connection between the number of �-edges inci-
dent to adjacent vertices.

PROPOSITION 3.13. If v,w ∈ V [G], v ∼G w and {v,w} ∈ �, then

P�(v) + P�(w) ≥ 
(G).

PROOF. If P�(v) = 
(G) or P�(v) = 
(G) − 1, the statement is trivial. Oth-
erwise, write w = v + fj and let fi1, . . . , fi
(G)−P�(v)

be such that {v, v + fik } /∈ �

for all k. By (22), v + fik + fj ∈ comp(�, v). Since w is adjacent to (v + fik +
fj )


(G)−P�(v)
k=1 , it follows that P�(w) ≥ 
(G) − P�(v). �

A similar property holds for interior vertices of the components comp(�, v), as
follows.

PROPOSITION 3.14. For u, v ∈ V [G], v ∼G u and {v,u} /∈ � we have |{v′ ∈
Ein(�,u)|v′ ∼G u}| ≥ P�(v).

PROOF. If P�(v) = 0, the claim is trivial. Otherwise, note that v ∈ Ein(�,u)

and hence by (22), u + fi ∈ comp(�,u) for all i. Let fi1, . . . , fiP�(v)
be such that

{v, v + fik } ∈ �. We deduce that for all k, u + fik ∈ Ein(�,u) since it is adjacent
to v + fik . �

Based on �, we define another graph structure on V [G] which is a subgraph of
G�. We say that v, v′ ∈ V [G] are �-adjacent,denoted v ∼� v′, if v′ = v + fi + fj

for some 1 ≤ i, j ≤ 
(G) such that i �= j , fi �= −fj , {v, v + fi} ∈ � and {v, v +
fj } /∈ �. Note that if v ∼� v′ then necessarily v, v′ ∈ Ein(�, v) [v ∈ Ein(�, v) since
{v, v+fi} ∈ � and v′ ∈ Ein(�, v) by (22) and since v+fi /∈ comp(�, v)]. We have
the following.

PROPOSITION 3.15. Each v ∈ V [G] is �-adjacent to at least

(23) P�(v)
(

(G) − P�(v)

) − min
(
P�(v),
(G) − P�(v)

)
v′ ∈ V [G]. In particular, if P�(v) /∈ {0,
(G)} then v has at least d − 2 �-
neighbors.
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PROOF. If P�(v) ∈ {0,
(G)}, the claim is trivial. Otherwise, let fi1, . . . ,

fiP�(v)
be the directions such that {v, v +fik } ∈ � and let fj1, . . . , fj
(G)−P (v)

be the
other directions. Then every v′ of the form v′ = v+fik +fjm where fik �= −fjm is a
�-neighbor of v and there are at least P�(v)(
(G)−P�(v))−min(P�(v),
(G)−
P�(v)) such choices. The second part of the proposition follows by noting that (23)
is minimized at P�(v) = 1 over P�(v) ∈ [1,
(G)− 1], giving 
(G)− 2 ≥ d − 2.

�

Next, fix x, b ∈ V [G]. We say that � ∈ OMCut(x, b) is trivial if � consists only
of the edges incident to x or only of the edges incident to b. If � is trivial, then
|�| = 
(G). The next proposition gives some properties of nontrivial � and shows
in particular that they must have many more edges than trivial ones.

PROPOSITION 3.16. For � ∈ OMCut(x, b) and dimension d > 2, the follow-
ing are equivalent:

1. � is nontrivial.
2. For all v ∈ V [G], P�(v) ≤ 
(G) − 1.
3. |�| ≥ 
(G)2

2 .

Note that the third item does not necessarily hold for � ∈ MCut(x, b) since we
may have that � is all edges surrounding x and one of its neighbors.

PROOF OF PROPOSITION 3.16. For a trivial �, it is clear that none of the prop-

erties hold [since 
(G)2

2 > 
(G) when d > 2]. Suppose now that � is nontrivial. If
there exists v ∈ V [G] with P�(v) = 
(G), then we would have to have v ∈ {x, b}
by minimality of � and then � would be trivial, again by minimality.

Next, we claim that there exists v ∈ V [G] with 
(G)
2 ≤ P�(v) ≤ 
(G) − 1.

Indeed, there exists w ∈ V [G] with 1 ≤ P�(w) ≤ 
(G) − 1. If P�(w) < 
(G)
2 ,

then by Proposition 3.13 and the previous characterization of nontrivial �, any
neighbor v ∼G w with {v,w} ∈ � satisfies 
(G)

2 ≤ P�(v) ≤ 
(G) − 1. Fix such a
v, let 1 ≤ i ≤ 
(G) be such that {v, v −fi} /∈ � and let j1, . . . , j

(G)

2 � be such that

{v, v + fjk
} ∈ � for all k (here, we allow fjk

= fi for some k). We have v + fjk
/∈

comp(�, v), and by (22), v − fi + fjk
∈ comp(�, v) for all k. Finally, recalling the

definition of Ev,i from Proposition 3.12, it follows that v − fi + fjk
∈ Ev,i for all

k, and hence |Ev,i | ≥ 
(G)
2 so that by Proposition 3.12, |�| ≥ 
(G)|Ev,i | ≥ 
(G)2

2 .
�

REMARK 3.1. The proof in fact shows that in all dimensions we have that

a � ∈ OMCut(x, b) is either trivial or has |�| ≥ 
(G)2

2 . The assumption d > 2 is
only needed so that these two properties cannot coexist.
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Combinatorics: We shall need the following basic counting result.

PROPOSITION 3.17. Given integers s1, s2,L > 0 with s2 > s1, the number of
solutions in integers k and (xm)km=1 to

(24)
k∑

m=1

xm = L

with each xm satisfying either xm = s1 or xm ≥ s2 is at most

exp
(

6L log s2

s2

)
.

PROOF. Suppose that in the sum in (24) there are exactly k2 factors of size at
least s2 and denote them, in order of appearance in the sum, by (ym)

k2
m=1. As

(25)
k2∑

m=1

(ym − s2) ≤ L − k2s2,

it follows from standard combinatorial enumeration that the number of possibilities
for (ym)

k2
m=1, given k2, is at most

(L−k2(s2−1)
k2

)
. In addition, suppose that in (24)

there are exactly k1 factors xm of size equal to s1 and note that k1 can be determined
from k2 and (ym)

k2
m=1. Thus, given k2 and (ym)

k2
m=1, the solution (xm)km=1 to (24)

is determined by the choice of which of the k1 + k2 factors are the k2 factors
corresponding to the (ym). As k1 + k2 ≤ L, we see that we have at most(

L − k2(s2 − 1)

k2

)(
L

k2

)
≤

(
L

k2

)2

solutions to (24) with a given k2. Since k2 ≤ L
s2

, we see that (24) has at most

�L/s2�∑
i=0

(
L

i

)2

≤ e
6L log s2

s2

solutions where we used that
∑n

i=0
(L
i

) ≤ r−n(1 + r)L ≤ erL−n log r for r ≤ 1 and
then substituted n = � L

s2
�, r = 1

s2
and squared. �

4. Proof of level set theorem. In this section, we prove theorem 2.8.

4.1. Reduction to an expanding transformation. Our probabilistic estimates
are all based on the idea of an expanding transformation (as explained in the proof
sketch). For an � ⊆ Hom(G,B,μ) [for some legal boundary condition (B,μ)], we
shall find a transformation T : � → P(Hom(G,B,μ)), that is, a transformation
taking f ∈ � to a subset of Hom(G,B,μ). With a slight abuse of notation, we
denote T (�) := ⋃

f ∈� T (f ). We have the following simple lemma.
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LEMMA 4.1. Let (B,μ) be a legal boundary condition, � ⊆ Hom(G,B,μ)

and T : � → P(Hom(G,B,μ)). If f ∈R Hom(G,B,μ) then

P(f ∈ �) = |�|
|T (�)|P

(
f ∈ T (�)

)
.

In particular, P(f ∈ �) ≤ |�|
|T (�)| .

PROOF. By definition,

P(f ∈ �) = |�|
|Hom(G,B,μ)| = |�|

|T (�)| · |T (�)|
|Hom(G,B,μ)|

= |�|
|T (�)|P

(
f ∈ T (�)

)
. �

The previous lemma is of course true also when the set T (�) is replaced by
an arbitrary �′ ⊆ Hom(G,B,μ), however, we wish to emphasize the role of the
transformation T since our main use of the lemma will be through it.

THEOREM 4.2. There exist d0 ∈ N, c > 0 such that for all d ≥ d0, nonlinear
tori G, legal boundary conditions (B,μ) with nonpositive μ, x ∈ V [G] and integer
L ≥ 1, there exists T : �x,L → P(Hom(G,B,μ)) satisfying:

1. For all ∅ �= � ⊆ �x,L we have

|�|
|T (�)| ≤ d3 exp

(
− cL

d log2 d

)
.

2. For all k ≥ 2, x1, . . . , xk−1 ∈ V [G] and integers L1, . . . ,Lk−1 ≥ 1 we have
T (�(x1,...,xk−1,x),(L1,...,Lk−1,L)) ⊆ �(x1,...,xk−1),(L1,...,Lk−1).

Note that by definition �(x1,...,xk−1,x),(L1,...,Lk−1,L) ⊆ �x,L so that the second
part of the theorem makes sense. Theorem 2.8 follows immediately from this the-
orem and the previous lemma, as follows.

PROOF OF THEOREM 2.8. Let d0 and c > 0 be the numbers from Theorem 4.2
and fix d ≥ d0, nonlinear tori G, legal boundary conditions (B,μ) with nonpos-
itive μ. Let k ≥ 1, x1, . . . , xk ∈ V [G] and integers L1, . . . ,Lk ≥ 1. Taking the
transformation T : �xk,Lk

→ P(Hom(G,B,μ)) given by Theorem 4.2, we obtain
using Lemma 4.1 and both parts of Theorem 4.2 that

P(f ∈ �(x1,...,xk),(L1,...,Lk))

= |�(x1,...,xk),(L1,...,Lk)|
|T (�(x1,...,xk),(L1,...,Lk))|

P
(
f ∈ T (�(x1,...,xk),(L1,...,Lk))

)
≤ d3 exp

(
− cLk

d log2 d

)
P(f ∈ �(x1,...,xk−1),(L1,...,Lk−1)),
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where we interpret 0
0 as 0 and, for k = 1, define �∅,∅ := Hom(G,B,μ). By in-

duction on k, we have

P(f ∈ �(x1,...,xk),(L1,...,Lk)) ≤ min
(
d3k exp

(
−c

∑k
i=1 Li

d log2 d

)
,1

)

≤ dk exp
(
−c′ ∑k

i=1 Li

d log2 d

)
for some c′ > 0, as required. �

Hence, all our efforts will be concentrated toward proving Theorem 4.2. In the
next section we define the transformation T and show why it satisfies the second
part of Theorem 4.2. Section 4.3 develops the structural results on odd cutsets we
shall need for the proof of the first part of the theorem, which is subsequently
proved in Section 4.4.

4.2. Definition of the transformation. In this section, we define the transfor-
mation T of Theorem 4.2, establish some of its basic properties and prove that it
satisfies the second property in Theorem 4.2. Fix a torus G [for some dimension d

and any even side lengths ni satisfying (2)], legal boundary conditions (B,μ) with
nonpositive μ, x ∈ V [G] and integer L ≥ 1.

Throughout the section, we denote, for f ∈ �x,L, � := LS(f, x,B) [note that
� ∈ OMCut(x,B) by Proposition 3.11], C1 := comp(�, x), E1 := E1(�), E0 :=
E0(�), E1,1 := E1,1(�) and E1,e := E1,e(�). We note especially that

(26) f (v) = j for j ∈ {0,1} and v ∈ Ej .

The transformation T will take one of two possible forms, which we now describe.

4.2.1. The shift transformation. We define the “shift transformation” Shift :
�x,L → Hom(G,B,μ) by

Shift(f )(v) =
{
f (v + e1) − 1, for v ∈ C1,

f (v), otherwise.

LEMMA 4.3. We indeed have Shift(f ) ∈ Hom(G,B,μ).

PROOF. Since � ∈ OMCut(x,B) we have B ∩ C1 = ∅. It follows that
Shift(f )(b) = μ(b) for all b ∈ B . Now fix v ∈ G and 1 ≤ i ≤ 
(G). It remains to
check that |Shift(f )(v)−Shift(f )(v +fi)| = 1. If v, v +fi ∈ C1 or v, v +fi /∈ C1,
this follows from the corresponding property of f [using that (v + e1) + fi =
(v + fi) + e1 in G]. Otherwise, assume WLOG that v ∈ C1 and v + fi /∈ C1. It
follows from (26) that f (v) = 1 and f (v + fi) = 0. Hence, f (v + e1) ∈ {0,2} and
we have |Shift(f )(v) − Shift(f )(v + fi)| = |f (v + e1) − 1| = 1. �

The following lemma is key to our definitions.
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LEMMA 4.4. For all v ∈ E1,1 and 1 ≤ i ≤ 
(G), we have Shift(f )(v +fi) =
0.

PROOF. Let v ∈ E1,1 and 1 ≤ i ≤ 
(G). By definition, v+e1 ∈ E0. If v+fi ∈
E0 then Shift(f )(v + fi) = f (v + fi) = 0 by (26). If v + fi /∈ E0, then by (22),
v + fi + e1 ∈ E1 (since it is adjacent to v + e1) implying that Shift(f )(v + fi) =
f (v + fi + e1) − 1 = 0 by (26). �

We continue to define the transformation T1 : �x,L → P(Hom(G,B,μ)).
T1(f ) is the set of all functions g of the form

g(v) =
{

Shift(f )(v), v /∈ E1,1,

εv, otherwise,

where {εv}v∈E1,1 is a sequence of ±1. The previous lemma shows that these 2|E1,1|
functions are indeed a subset of Hom(G,B,μ). Since we wish to define a trans-
formation T with |T (f )| large, one may wonder if |T1(f )| can be increased by
shifting in a direction other than e1 in the definition of Shift. However, by Propo-
sition 3.12 we have

|E1,1| =
∣∣{v ∈ E1|{v, v + fi} ∈ �

}∣∣
for all 1 ≤ i ≤ 
(G). It follows that |E1,1| = L


(G)
and consequently |T1(f )| =

2
L


(G) .

4.2.2. The shift+flip transformation. We now define the transformation T2 :
�x,L → P(Hom(G,B,μ)) as follows. Let g ∈ T1(f ). By definition of T1, we
know that g(v) ∈ {−1,1} for all v ∈ E1 [since g(v) = 0 for all v ∈ E0]. For v ∈
E1,e, we let Rv be the connected component of v in V [G] \ {w ∈ V [G]|g(w) =
0}. We note that it may happen that Rv = Rw for v �= w, but then we must have
g(v) = g(w) since otherwise any path between them will cross a zero of g. We
also note that Rv ⊆ C1 for all v ∈ E1,e since g(w) = 0 for all w ∈ E0. Finally, we
define T2(f ) to be all functions g̃ formed by taking a g ∈ T1(f ) and defining

(27) g̃(w) :=
{−g(w), if w ∈ Rv for some v ∈ E1,e with g(v) = −1,

g(w), otherwise.

Less formally, g̃ is formed from g by flipping some values to ensure that g̃(v) = 1
for all v ∈ E1,e. By our definition of Rv and since Rv ⊆ C1, it follows that g̃ ∈
Hom(G,B,μ) in a straightforward manner. Comparing the definitions of T1 and

T2, we see that |T2(f )| = 2
L


(G)
−|E1,1∩E1,e| = 2|E1,1\E1,e| since by Lemma 4.4, Rv =

{v} for v ∈ E1,1 ∩ E1,e.
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4.2.3. The transformation T . We are now ready to define the transforma-
tion T :

(28) T (f ) :=
⎧⎪⎨⎪⎩T1(f ), if |E1,e| ≥

(
1 − λ

log2 d

)
L


(G)
,

T2(f ), otherwise,

for some small enough constant λ (independent of d) to be determined later (in
Section 4.4). From our previous discussion, we have

(29)
∣∣T (f )

∣∣ =
⎧⎪⎨⎪⎩

2
L


(G) , if |E1,e| ≥
(

1 − λ

log2 d

)
L


(G)
,

2
L


(G)
−|E1,1∩E1,e|, otherwise,

and also that

(30) g(v) = f (v) for all g ∈ T (f ) and v /∈ C1.

As promised, we now show that the second property of Theorem 4.2 holds for
this transformation.

PROOF OF SECOND PROPERTY IN THEOREM 4.2. Fix k ≥ 2, x1, . . . , xk−1 ∈
V [G] and integers L1, . . . ,Lk−1 ≥ 1 and assume that

f ∈ �(x1,...,xk−1,x),(L1,...,Lk−1,L).

We need to show that T (f ) ⊆ �(x1,...,xk−1),(L1,...,Lk−1). Fix g ∈ T (f ) and 1 ≤
i ≤ k − 1. It is sufficient to show that LS(f, xi,B) = LS(g, xi,B). Let Cx :=
comp(LS(f, x,B), x). We shall need only that by (30), g(v) = f (v) for all v /∈ Cx .
Let A and A′ be the union of those connected components which contain points of
B in {v ∈ V [G]|f (v) ≤ 0} and in {v ∈ V [G]|g(v) ≤ 0}, respectively. Let Cxi

and
C′

xi
be the connected components of xi in V [G] \ A and V [G] \ A′, respectively.

The claim will follow once we show that Cxi
= C′

xi
. Note first that since Cx is

the connected component of x in V [G] \ A, Cx and Cxi
must be identical or dis-

joint. But by definition of �(x1,...,xk−1,x),(L1,...,Lk−1,L), it follows that Cx ∩Cxi
= ∅.

Next, let E
xi

1 := {v ∈ Cxi
|∃w /∈ Cxi

,w ∼G v}. By our definitions, f (v) = 1 for
all v ∈ E

xi

1 , and hence also g(v) = 1 by (30). It follows that A′ ∩ Cxi
= ∅, and

hence Cxi
⊆ C′

xi
. To see the opposite inequality, note that a point in A is char-

acterized by having a path connecting it to some b ∈ B which avoids Cx and
{v ∈ V [G]|f (v) ≥ 1}. This same path shows that point is also in A′, and hence
A ⊆ A′ so that Cxi

⊇ C′
xi

. �

4.3. Structure theorems for odd cutsets. In this section, we shall prove sev-
eral theorems estimating the number of odd minimal cutsets in various settings. In
Section 4.3.1, we estimate the number of such cutsets in terms of their boundary
roughness. In Section 4.3.2, we show that if one is content with finding only an
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approximation to the cutset, identifying clearly only vertices whose P�(v) is less
than 
(G) − √

d , then one can find a relatively small set of approximations, con-
taining such an approximation to every cutset. This is used in that section to bound
the number of “possible level sets” for a function f given a function g ∈ T2(f ) (T2
is defined in Section 4.2.2).

4.3.1. Counting cutsets with rough boundary. To state the main theorem of
this section, fix B ⊆ V [G], x ∈ V [G] \ B and for a cutset � ∈ OMCut(x,B),
v ∈ V [G] and subset E ⊆ V [G] define

R�(v) := min
(
P�(v),
(G) − P�(v)

)
,

R�(E) := ∑
v∈E

R�(v).
(31)

A value of R�(E1(�))
|E1(�)| significantly smaller than d indicates some roughness of

E1(�). Our theorem will allow us to estimate the number of cutsets having such
roughness. For integers M,R ≥ 0, let

OMCut(x,B,M,R) := {
� ∈ OMCut(x,B)|∣∣E1(�)

∣∣ = M,R�

(
E1(�)

) = R
}
.

Recalling from (19) that α = ∏d−1
i=1 ni , we will prove

THEOREM 4.5. There exist C,d0 > 0 such that for all d ≥ d0 and integers
M,R ≥ 0, ∣∣OMCut(x,B,M,R)

∣∣ ≤ n
�M

α
�

d exp
(

C log2 d

d
R

)
.

For � ∈ OMCut(x,B) and a G�-connected component E of E1(�), we say that
E is associated with b ∈ B if E ∩ E1(subcut(�, b)) �= ∅, that is, if the part of �

which separates b and x has an edge incident to E. Note that E may be associated
to several b ∈ B . The following proposition is the main step in proving the above
theorem.

PROPOSITION 4.6. There exist C,d0 > 0 such that for d ≥ d0, integers
M,R ≥ 0 and b ∈ B , the number of possibilities for a G�-connected compo-
nent E, associated with b and having |E| = M and R�(E) = R, of E1(�) for
some � ∈ OMCut(x,B) is at most

n
�M

α
�

d exp
(

C log2 d

d
R

)
.

We emphasize that in the above proposition, � is not given. We are estimating
the number of possibilities for E from all possible �’s.

We note the following simple lemma for later reference.
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LEMMA 4.7. For � ∈ OMCut(x,B), either E1(�) = {x}, in which case
|E1(�)| = 1 and R�(E1(�)) = 0, or all G�-connected components E of E1(�)

have R�(E) ≥ |E| ≥ d − 1.

PROOF. Let � ∈ OMCut(x,B) and E a G�-connected component of E1(�).
First, if E = {x} then E1(�) = {x} by Propositions 3.8 and 3.15. Second, the same
propositions imply that if E �= {x} then R�(E) ≥ |E| ≥ d − 1. �

Proof of Proposition 4.6. Let � ∈ OMCut(x,B) and E a G�-connected compo-
nent of E1(�). Assume

E �= {x}.
The next proposition shows that E is “dominated” by a small subset of it.

PROPOSITION 4.8. There exists d0 > 0, independent of � and E, such that
for all d ≥ d0 there exists Et ⊆ E with the properties:

1. |Et| ≤ 10 logd
d

|E| and R�(Et) ≤ 10 logd
d

R�(E).
2. For every v ∈ E, either v ∈ Et or there exists v′ ∈ Et such that v′ ∼� v (in other

words, Et is a �-dominating set for E).

PROOF. Choose a subset Es randomly by adding each v ∈ E to it indepen-
dently with probability 3 logd

d
(assuming d is large enough so that this probability

is at most 1). We have E|Es| = 3 logd
d

|E| and ER�(Es) = 3 logd
d

R�(E) so that by
Markov’s inequality

P

(∣∣Es∣∣ ≥ 9
logd

d
|E|

)
≤ 1

3
and(32)

P

(
R�

(
Es) ≥ 9

logd

d
R�(E)

)
≤ 1

3
.(33)

Let End ⊆ E be those vertices which are not �-dominated by Es. That is, vertices
in E such that they and their �-neighbors are not in Es. Using the assumption
E �= {x}, by Propositions 3.8 and 3.15, the minimal �-degree of vertices in E

is at least d − 2. Hence, the probability that some vertex is in End is at most
(1 − 3 logd

d
)d−1 implying

E
∣∣End∣∣ ≤

(
1 − 3

logd

d

)d−1
|E| ≤ e− 3(d−1) logd

d |E| < |E|
d5/2

for large enough d . By Markov’s inequality,

(34) P

(∣∣End∣∣ ≥ |E|
d2

)
<

1

3
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for large enough d . Finally, we take Et := Es ∪ End. Noting that R�(End) ≤
d|End| and putting together (32), (33) and (34), we see that Et satisfies the re-
quirements of the proposition with positive probability (and in particular, such a
set exists). �

LEMMA 4.9. If Et ⊆ E is as in Proposition 4.8, then Et is connected in G⊗6.

PROOF. Fix vs, vt ∈ Et and let vs = v1, v2, . . . , vm = vt be a G�-path between
them of vertices of E. By Proposition 4.8, we may find for each 2 ≤ i ≤ m − 1,
a vertex v′

i ∈ Et such that dG(v′
i , vi) ≤ 2. We also take v′

1 = vs and v′
m = vt . It

follows that for each 1 ≤ i ≤ m − 1

dG

(
v′
i , v

′
i+1

) ≤ dG

(
v′
i , vi

) + dG(vi, vi+1) + dG

(
vi+1, v

′
i+1

) ≤ 6.

Hence, vs = v′
1, v

′
2, . . . , v

′
m = vt is a G⊗6-walk, proving the lemma. �

We continue by defining for each v ∈ E, a vector N�(v) ∈ {0,1}
(G) by
N�(v)i = 1(v+fi∈comp(�,x)) and letting N�(Et) := (N�(v))v∈Et . We have the fol-
lowing.

LEMMA 4.10. The set Et and the vector N�(Et) uniquely determine E among
all G�-connected components of E1(�) for all � ∈ OMCut(x,B).

We emphasize that what we mean in the lemma is that if we are not given �

or E, but instead are only given Et and N�(Et) corresponding to some � and E

(Et ⊆ E is as in Proposition 4.8), then we may reconstruct E. In other words,
there is a function satisfying that for every � ∈ OMCut(x,B), E a G�-connected
component of E1(�) and Et ⊆ E a subset as in Proposition 4.8, the function takes
Et and N�(Et) and returns E.

PROOF OF LEMMA 4.10. By property (2) of Proposition 4.8 and since E is
G�-connected, E equals the set of v ∈ V [G] satisfying that either v ∈ Et or there
exists a v′ ∈ Et such that v ∼� v′ (such v are necessarily in E as noted before
Proposition 3.15). It remains to note that given v′ ∈ Et, we can identify which
v satisfy v ∼� v′ using only N�(v′). Indeed, these are exactly those v such that
for some i �= j , fi �= −fj , we have v = v′ + fi + fj , v′ + fi ∈ comp(�, x) and
v′ + fj /∈ comp(�, x). �

We are finally ready for the following.

PROOF OF PROPOSITION 4.6. We first consider the case R = 0. By Lem-
ma 4.7, the only � ∈ OMCut(x,B) having a G�-connected component E with
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R�(E) = 0 is the trivial � having E1(�) = {x}. Hence, the proposition is straight-
forward in this case. For the rest of the proof, we assume that R > 0 in which case
we may also assume that

(35) R ≥ M ≥ d − 1,

since Lemma 4.7 shows this is necessary for there to exist � ∈ OMCut(x,B) with
G�-connected components E having |E| = M and R�(E) = R.

Let A′ denote the set of all (�,E) where � ∈ OMCut(x,B) and E is a G�-
connected component of E1(�) associated with b and satisfying E �= {x}, |E| = M

and R�(E) = R. Let A := {E|∃� s.t. (�,E) ∈ A′}. Our goal is to upper bound |A|.
For (�,E) ∈A′, we define

S(�,E) = (
Et,N�

(
Et)),

where Et ⊆ E is as in Proposition 4.8 (taking d sufficiently large). By Lemma 4.10,
E is uniquely determined by Et and N�(Et), and hence

(36) |A| ≤ ∣∣S(
A′)∣∣.

We estimate |S(A′)| by showing how to describe succinctly a (Et,N) ∈ S(A′). Fix
some (�,E) ∈ A′ such that S(�,E) = (Et,N). We describe Et by prescribing a
point v ∈ E, the size |Et| and the location of the vertices of Et, given v and |Et|. To
estimate the number of possibilities for such a description, let A = A(x, b,M) be
the set from Proposition 3.10. By that proposition and the fact that E is associated

with b, we have |A| ≤ 40Mn
�M

α
�

d and E ∩A �= ∅. Hence, v ∈ E may be prescribed

as one of 40Mn
�M

α
�

d possibilities. We continue by noting that |Et| ≤ |E| = M ,
hence the size |Et| may be prescribed as one of M possibilities. Lastly, note that
Et ∪{v} is connected in G⊗6 by Lemma 4.9 and Proposition 4.8. Thus, Lemma 3.2
implies that given v ∈ E and |Et|, the number of possibilities for Et is at most

(2d)14|Et| which by Proposition 4.8 is at most (2d)
140 logd

d
M . Summing up, the num-

ber of possibilities for Et is at most

(37) 40M2n
�M

α
�

d (2d)
140 logd

d
M.

We continue by describing N . To do so, we prescribe (P�(v))v∈Et and then
N = N�(Et) given (P�(v))v∈Et . The number of possibilities for (P�(v))v∈Et is

at most (2d)|Et| which by Proposition 4.8 is at most (2d)
10 logd

d
M . For each v ∈ Et,

given P�(v) we may describe N�(v) using at most
(
(G)
P�(v)

) ≤ (2d)R�(v) possibili-
ties. Hence, given (P�(v))v∈Et , the number of possibilities for N�(Et) is at most

(2d)R�(Et) which by Proposition 4.8 is at most (2d)
10 logd

d
R . In conclusion, the num-

ber of possibilities for N given Et is at most

(38) (2d)
10 logd

d
(M+R).
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Putting together (36), (37) and (38), we obtain

|A| ≤ ∣∣S(
A′)∣∣ ≤ 40M2n

�M
α

�
d (2d)

150 logd
d

(M+R) ≤ CM2n
�M

α
�

d e
C log2 d

d
(M+R)

for some C > 0. Using that R ≥ M ≥ d − 1 by (35), this implies

|A| ≤ n
�M

α
�

d e
C′ log2 d

d
R

for some C′ > 0, as required. �

Proof of Theorem 4.5. In the proof, we shall always assume that d ≥ d0 for some
large constant d0. Fix a total order ≺ on V [G]. For � ∈ OMCut(x,B), we say
that a G�-connected component E of E1(�) is min-associated to b ∈ B if E is
associated to b and E is not associated to any b′ ∈ B with b′ ≺ b. Let c(�) be
the number of G�-connected components of E1(�) and (Ei)

c(�)
i=1 be these com-

ponents. We order the (Ei) in such a way that if i < j , Ei is min-associated to b

and Ej is min-associated to b′ then either b ≺ b′, or both b = b′ and the ≺-least
element of Ei is smaller than the ≺-least element of Ej . We now inductively de-
fine m(�) and a vector (bj )

m(�)
j=1 ⊆ B as follows: b1 is the ≺-smallest element

of B . Assuming that (b1, . . . , b�) have already been defined, we set m(�) := � if
B ⊆ ⋃�

j=1 comp(�, bj ) or otherwise set b�+1 to be the ≺-smallest element of B \⋃�
j=1 comp(�, bj ). We finally let cj for 1 ≤ j ≤ m(�) be the number of Ei which

are min-associated to bj (note that cj may be 0). We will write Ei(�), bj (�) and
cj (�) for Ei , bj and cj when we want to emphasize their dependence on �. Note
that our definitions imply that each Ei is min-associated to one of the bj , and hence

(39)
m(�)∑
j=1

cj (�) = c(�).

In this section, we say that the type of � is the vector(
c(�),

(∣∣Ei
∣∣,R�

(
Ei))c(�)

i=1 ,m(�),
(
cj (�)

)m(�)
j=1

)
.

Recalling the definition of OMCut(x,B,M,R) from the beginning of Sec-
tion 4.3.1, we define T (M,R), for M,R ≥ 0, to be the set of all types of
� ∈ OMCut(x,B,M,R). We shall need the following.

LEMMA 4.11. There exists C > 0 such that for all M,R ≥ 0 we have∣∣T (M,R)
∣∣ ≤ exp

(
C logd

d
R

)
.

PROOF. By Lemma 4.7, we have that for R = 0 the set OMCut(x,B,M,R)

contains at most one �, the one with E1(�) = {x}. Hence, the current lemma
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follows trivially in this case. For the rest of the proof, we assume that R > 0 in
which case Lemma 4.7 implies that every G�-connected component E of E1(�)

for every � ∈ OMCut(x,B,M,R) satisfies

(40) R�(E) ≥ |E| ≥ d − 1.

We continue by noting that if � ∈ OMCut(x,B,M,R) then

(41)
c(�)∑
i=1

∣∣Ei
∣∣ = M and

c(�)∑
i=1

R�

(
Ei) = R.

By Proposition 3.17, given an integer L > 0, the number of solutions in integers k

and (xm)km=1 to

k∑
m=1

xm = L

with each xm ≥ d −1 is at most exp(
6 logd

d
L). Hence, by (40) and (41), the number

of possibilities for (c(�), (|Ei |,R�(Ei))
c(�)
i=1 ) over all � ∈ OMCut(x,B,M,R) is

at most exp(
6 logd

d
(M + R)) which by (40) is at most exp(

12 logd
d

R).
Next, we note that for � ∈ OMCut(x,B,M,R) we have

(42) c(�) ≤ R

d − 1
and m(�) ≤ R.

The first assertion follows simply from (40) and (41). To see the second asser-
tion, first note that for any 1 ≤ j ≤ m(�), subcut(�, bj ) ∈ OMCut(x, bj ) by the
remark after the definition of OMCut. Then, by Proposition 3.12 we have that
| subcut(�, bj )| ≥ 
(G) for all j . Since by Proposition 3.7 (and since identicality
of the subcuts occurs only when their interior components are also equal, for ex-
ample, since the cutsets are odd), subcut(�, bj1) ∩ subcut(�, bj2) = ∅ for distinct
1 ≤ j1, j2 ≤ m(�), it follows that m(�) ≤ |�|


(G)
. The second assertion now follows

by noting that |�| ≤ 
(G)M ≤ 
(G)R by (40).
Using the relations (39) and (42), it follows that the number of possibilities for

(m(�), (cj (�))
m(�)
j=1 ) over all � ∈ OMCut(x,B,M,R) is bounded by the number

of solutions in integers c,m and (cj )mj=1 to

(43)
m∑

j=1

cj = c

for 1 ≤ m ≤ R, cj ≥ 0 for all j and c ≤ R
d−1 . By standard combinatorial enu-

meration, the number of solutions to (43) for fixed m and c is
(m+c−1

c

)
. Thus,

standard estimates show that (43) has at most R2 exp(
C logd

d
R) solutions, for some
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C > 0. Combining this estimate with the estimate for the number of possibilities
for (c(�), (|Ei |,R�(Ei))

c(�)
i=1 ) obtained previously, we see that

∣∣T (M,R)
∣∣ ≤ R2 exp

(
C′ logd

d
R

)
for some C′ > 0. Since R ≥ d − 1 by (40), the lemma follows. �

For M,R ≥ 0 and γ ∈ T (M,R), let

OMCut(x,B,M,R,γ ) := {
� ∈ OMCut(x,B,M,R)|� has type γ

}
.

Fix γ ∈ T (M,R) and 1 ≤ k < m(�) where here, m(�) is the third element
of γ . By our definitions, bk+1(�) is well defined for � ∈ OMCut(x,B,M,R,γ ).
The next lemma notes that bk+1(�) is determined also from partial information
about �.

LEMMA 4.12. The point bk+1(�) is determined as a function only of
(b1(�), . . . , bk(�)) and the set of all Ei(�) which are associated to some bj for
j ≤ k.

PROOF. Knowing (bj (�))kj=1 and the given Ei(�) determines comp(�,

bj (�)) for all j ≤ k. By our definitions, bk+1(�) is the ≺-smallest point of B

which is not in
⋃k

j=1 comp(�, bj ). �

We finally reach the following.

PROOF OF THEOREM 4.5. As in the proof of Proposition 4.6, we count by
showing that a � ∈ OMCut(x,B,M,R) may be described succinctly. We describe
a � ∈ OMCut(x,B,M,R) by:

1. The type (c(�), (|Ei |,R�(Ei))
c(�)
i=1 ,m(�), (cj (�))

m(�)
j=1 ) of �.

2. For each 1 ≤ j ≤ m(�), in this order:
(a) For each of the cj (�) of the Ei which are min-associated to bj , in the order

they appear in (Ei)
c(�)
i=1 :

(i) A description of Ei .

We emphasize that in step 2(a) above, if cj (�) = 0, we do not describe anything
and go on to the next j .

We first need to show that � can indeed be recovered from the above description.
Then we will estimate the number of possibilities for this description in order to
obtain a bound for |OMCut(x,B,M,R)|. To see that � can be recovered, note that
the above description gives all the G�-connected components (Ei)

c(�)
i=1 of E1(�)

(since each component is min-associated to some b ∈ B). These, in turn, suffice to
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recover comp(�, b) for all b ∈ B from which we get that � is all edges between⋃
b∈B comp(�, b) and its complement.
We next estimate the number of possibilities for the above description. We start

with a definition. For b ∈ B and M ′,R′ ≥ 0, define A(b,M ′,R′) to be the set of all
G�-connected components E, associated to b and having |E| = M ′ and R�′(E) =
R′, of E1(�

′) for some �′ ∈ OMCut(x,B) (which is not fixed in advance). In
Proposition 4.6, we showed that∣∣A(

b,M ′,R′)∣∣ ≤ n
�M′

α
�

d exp
(

C log2 d

d
R′

)
for some C > 0.

Fix γ ∈ T (M,R) and let us estimate the number of possibilities for the above
description for � ∈ OMCut(x,B,M,R,γ ). Part 1 has just one option since the
type of � is fixed. Hence, we need only estimate how many possibilities there are
for Ei each time we reach part 2(a)(i) above, given the partial information about
� described up to that point.

We claim that whenever we reach part 2(a)(i) above for a particular bj and Ei ,
we have already described the point bj itself, |Ei | and R�(Ei). To see this, note
that by our definitions, the Ei which are min-associated to bj are exactly those
for which i ∈ {i0 + 1, i0 + 2, . . . , i0 + cj } where i0 = ∑j−1

k=1 ck , and hence |Ei |
and R�(Ei) are known from γ . We use induction to show that bj has also been
described. For j = 1, this follows since b1 is the ≺-smallest point in B . Assuming
the claim is true for all 1 ≤ k < j , the claim for j follows from Lemma 4.12 since
when we reach part 2(a)(i) for that j , we have already described (bk)

j−1
k=1 and all

the Ei which are associated to some bk for k < j . We see that we may describe Ei

as an element of A(bj , |Ei |,R�(Ei)), and hence have at most

n
� |Ei |

α
�

d exp
(

C log2 d

d
R�

(
Ei))

possibilities for its description. In conclusion, we see that the number of possibili-
ties for the above description for � ∈ OMCut(x,B,M,R,γ ) is at most

c(�)∏
i=1

n
� |Ei |

α
�

d exp
(

C log2 d

d
R�

(
Ei)) ≤ n

�M
α

�
d exp

(
C log2 d

d
R

)
which is independent of γ . Hence, the number of possibilities for the above de-
scription for � ∈ OMCut(x,B,M,R) is at most∣∣T (M,R)

∣∣n�M
α

�
d exp

(
C log2 d

d
R

)
which by Lemma 4.11 is at most

n
�M

α
�

d exp
(

C′ log2 d

d
R

)
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for some C′ > 0. Since � may be recovered from the above description, this is also
a bound for |OMCut(x,B,M,R)|, proving the theorem. �

4.3.2. Counting interior approximations to cutsets. We start with a definition.
For x, b ∈ V [G] and � ∈ OMCut(x, b), recalling the definition of E1,e(�) from
Section 3, we say that E ⊆ V [G] is an interior approximation to � if

E1(�) \ E1,e(�) ⊆ E ⊆ comp(�, x).

The following is the main theorem of this section [recall from (19) that α =∏d−1
i=1 ni ].

THEOREM 4.13. There exist d0,C > 0 such that for all d ≥ d0, L ∈ N and
x, b ∈ V [G], there exists a family E of subsets of V [G] satisfying

|E | ≤ 2n
�L

α
�

d exp
(

C log2 d

d3/2 L

)
and such that for every � ∈ OMCut(x, b) with |�| = L there is an E ∈ E which is
an interior approximation to �.

Aiming toward an application of this theorem, we make the following defini-
tions. For x ∈ V [G], legal boundary conditions (B,μ) with nonpositive μ and
f ∈ Hom(G,B,μ), denoting � := LS(f, x,B) and assuming � �= ∅, we say that
a function g ∈ Hom(G,B,μ) is a (x,B)-interior modification of f if f (v) = g(v)

for all v /∈ comp(�, x) and g(v) = 1 for all v ∈ E1,e(�). Recalling the transforma-
tion T2 of Section 4.2.2, we note that any g ∈ T2(f ) is a (x,B)-interior modifica-
tion of f . In addition, for x and (B,μ) as above, L ∈ N and g ∈ Hom(G,B,μ),
we define

PLS(g, x,B,L)

= {
LS(f, x,B)|f ∈ �x,L, g is a (x,B)-interior modification of f

}
,

the “possible level sets for f given g”. Note that any � ∈ PLS(g, x,B,L) satisfies
� ∈ OMCut(x,B) and |�| = L. We will use Theorem 4.13 to prove the following.

THEOREM 4.14. There exist d0,C > 0 such that for all d ≥ d0, L ∈
N, x ∈ V [G], legal boundary conditions (B,μ) with nonpositive μ and g ∈
Hom(G,B,μ), we have

∣∣PLS(g, x,B,L)
∣∣ ≤ 2n

�L
α
�

d exp
(

C log2 d

d3/2 L

)
.
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Proof of Theorem 4.13. Throughout the proof, we fix x, b ∈ V [G] and shall al-
ways assume that d ≥ d0 for some large constant d0. Also, for � ∈ OMCut(x, b)

we adapt the notation E1 := E1(�),C1 := comp(�, x),E0 := E0(�) and C0 :=
comp(�, b) where the dependence on � is implicit and the choice of � will be
understood from the context. Note that C0 = V [G] \ C1 by minimality of �. We
will also write, for j ∈ {0,1} and a condition c(·),

Ej,c(·) := {
v ∈ Ej |c(

P�(v)
)

holds
}
.

For example, E1,
√

d<·<
(G)−√
d = {v ∈ E1|

√
d < P�(v) < 
(G) − √

d} and
E1,·≥
(G)−√

d = E1,e(�). Finally, for j ∈ {0,1} and v ∈ Ej , we let

A1(v) := {
v′ ∈ Ej |∃u ∈ Cj such that v ∼G u, u ∼G v′},

A2(v) := {
u ∈ S(v) ∩ Cj |

∣∣S(u) ∩ Ej

∣∣ <
√

d
}
,

A3(v) := S
(
A2(v)

) ∩ Ej .

We remind that a � ∈ OMCut(x, b) is called trivial if it consists only of the
edges incident to x or only of the edges incident to b (see Proposition 3.16), we
remind the definition of R� from (31) and we start our proof with the following
“dominating set” proposition.

PROPOSITION 4.15. There exists C > 0 such that for all nontrivial � ∈
OMCut(x, b), there exist Et

0 ⊆ E0 and Et
1 ⊆ E1 satisfying for both j ∈ {0,1}:

(a) R�(Et
j ) ≤ C logd

d3/2 |�|.
(b) If v ∈ Ej and |A1(v)| ≥ 1

5d3/2 then A1(v) ∩ Et
j �= ∅.

(c) If v ∈ Ej,·≥
(G)/2 then |S(v) ∩ E1−j ∩ S(Et
j )| ≥

√
d .

(d) If v ∈ Ej,·≤√
d and |A2(v)| ≥ 
(G)

2 then A3(v) ∩ S(Et
1−j ) �= ∅.

PROOF. Fix a nontrivial � ∈ OMCut(x, b). Note that the nontriviality and
Proposition 3.16 imply

(44) P�(v) ≤ 
(G) − 1 for all v ∈ V [G].

For j ∈ {0,1}, we choose Es
j ⊆ Ej randomly by adding each v ∈ Ej to Es

j inde-

pendently with probability 30 logd

(
(G)−P�(v))
√

d
. These probabilities are indeed at most

1 for sufficiently large d by (44).
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Fix j ∈ {0,1}. Using that
∑
(G)

k=1 k|Ej,·=k| = |�|, since the subsets of � incident
to distinct vertices in Ej are disjoint, we have

ER�

(
Es

j

) = 30 logd√
d

∑
v∈Ej

min(P�(v),
(G) − P�(v))


(G) − P�(v)

= 30 logd√
d

(
|Ej,·≥
(G)/2| +



(G)/2�−1∑
k=1

k|Ej,·=k|

(G) − k

)

≤ 30 logd√
d

(
2|�|

(G)

+ 2|�|

(G)

)

≤ 120 logd|�|
d3/2 .

Markov’s inequality now implies that

(45) P

(
R�

(
Es

j

) ≥ 360 logd|�|
d3/2

)
≤ 1

3
.

Let v1 ∈ Ej be such that |A1(v1)| ≥ 1
5d3/2. We have

(46) P
(
Es

j ∩ A1(v1) =∅
) ≤

(
1 − 30 logd


(G)
√

d

) 1
5 d3/2

≤ exp(−3 logd) = 1

d3 .

Let v2 ∈ Ej,·≥
(G)/2. With part (c) of the proposition in mind, we would like to
estimate P(|S(v2)∩E1−j ∩ S(Es

j )| <
√

d). We first let B(v2) := S(v2)∩E1−j,·≥2
and note that

(47)
∣∣B(v2)

∣∣ ≥ 
(G)

2
− 1.

To see this, note that by (44), there exists 1 ≤ i ≤ 
(G) such that v2 + fi ∈ Cj .
Hence, v2 + fi + fk ∈ Cj for all k by (22). Thus, each 1 ≤ i ′ ≤ 
(G) for which
v2 + fi′ /∈ Cj and fi′ �= −fi satisfies v2 + fi′ ∈ B(v2) since v2 + fi′ is adjacent to
both v2 and v2 + fi + fi′ .

Next, for each w ∈ B(v2), let E(w) := (S(w) ∩ Ej) \ {v2} and define a random
set E(w)s by taking each v′ ∈ E(w) into E(w)s with probability 15 logd

(
(G)−P�(v′))
√

d

independently for each such v′ and w. We note that by Proposition 3.1, each v′ is
contained in at most 2 of the E(w)’s, and hence

(48)
⋃

w∈B(v2)

E(w)s is stochastically dominated by Es
j .

Noting that for w ∈ B(v2), P�(w) ≥ 2 by definition of B(v2) and 
(G)−P�(v′) ≤
P�(w) for all v′ ∈ E(w) by Proposition 3.13, we obtain for sufficiently large d ,

P
(
S(w) ∩ E(w)s =∅

) ≤
(

1 − 15 logd

P�(w)
√

d

)P�(w)−1
≤ 1 − 15√

d
.
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Finally, letting N := |{w ∈ B(v2)|S(w) ∩ E(w)s �= ∅}|, it follows that N

stochastically dominates a Bin(|B(v2)|, 15√
d
) random variable. Using (47), (48) and

standard properties of binomial RV’s, we deduce that for large enough d ,

(49) P
(∣∣S(v2) ∩ E1−j ∩ S

(
Es

j

)∣∣ <
√

d
) ≤ P(N <

√
d) ≤ 1

d3 .

Having now part (d) of the Proposition in mind, we let v3 ∈ Ej,·≤d sat-
isfy |A2(v3)| ≥ 
(G)

2 . Let 1 ≤ i ≤ 
(G) be such that v3 + fi ∈ E1−j . Let
1 ≤ i ′ ≤ 
(G) be such that v3 + fi + fi′ ∈ C1−j , such i′ exists by (44). It fol-
lows from (22) that S(v3 + fi + fi′) ⊆ C1−j . Let i1, . . . , i

(G)/2� be such that
v3 + fik ∈ A2(v3) for all k. Again, (22) implies that S(v3 + fik ) ⊆ Cj for all k.
We deduce that for all k, v3 + fi + fik ∈ A3(v3) and v3 + fi + fik + fi′ ∈ E1−j .
Furthermore, by Proposition 3.14 and the definition of A2(v3) (with v3 + fik as
u and v3 + fi + fik as v), P�(v3 + fi + fik ) <

√
d . Hence, by Proposition 3.13,

P�(v3 + fi + fik + fi′) ≥ 
(G) − √
d . We deduce that

P
(
A3(v3) ∩ S

(
Es

1−j

) = ∅
)

≤ P
(
(v3 + fi + fik + fi′)



(G)/2�
k=1 ∩ Es

1−j =∅
)

(50)

≤
(

1 − 30 logd

d

)
(G)/2
≤ 1

d3 .

We now aim to “correct” the sets Es
j by enlarging them slightly to create new sets

Et
j which will satisfy the requirements of the proposition. Defining

Bj,1 :=
{
v ∈ Ej |

∣∣A1(v)
∣∣ ≥ 1

5
d3/2,Es

j ∩ A1(v) = ∅

}
,

Bj,2 := {
v ∈ Ej,·≥
(G)/2|

∣∣S(v) ∩ E1−j ∩ S
(
Es

j

)∣∣ <
√

d
}
,

Bj,3 :=
{
v ∈ Ej,·≤√

d |∣∣A2(v)
∣∣ ≥ 
(G)

2
,A3(v) ∩ S

(
Es

1−j

) =∅

}
,

and using the three probabilistic estimates (46), (49) and (50), we see that

(51) max
(
E|Bj,1|,E|Bj,2|,E|Bj,3|) ≤ |Ej |

d3 .

Let M := maxj∈{0,1},k∈{1,2,3} |Bj,k|. For j ∈ {0,1}, we let Et
j := Es

j ∪ Dj where
the Dj satisfy Dj ⊆ Ej and |Dj | ≤ 3M and are chosen in such a way that parts
(b), (c) and (d) of the proposition hold. The exact choice of Dj does not matter
and for sufficiently large d , one may take, for example, Dj to be Bj,1 ∪Bj,2 union
with a set containing a neighbor in Ej for each v ∈ B1−j,3. It follows directly that
for each j ∈ {0,1},

R�

(
Et

j

) ≤ R�

(
Es

j

) + R�(Dj) ≤ R�

(
Es

j

) + 3M

(G)

2
≤ R�

(
Es

j

) + 3dM.
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Hence, it is sufficient to show that with positive probability maxj∈{0,1} R�(Es
j ) ≤

C|�| logd

d3/2 and M ≤ C|�|
d3 for some C > 0. Using (51), Markov’s inequality and

the fact that |Ej | ≤ |�| we have P(M ≥ 20|�|
d3 ) ≤ P(

∑
j∈{0,1},k∈{1,2,3} |Bj,k| ≥

20|Ej |
d3 ) < 1

3 . Combined with (45) and a union bound, this proves the proposition.
�

For � ∈ OMCut(x, b), v ∈ V [G] and E ⊆ V [G], define N�(v) ∈ {0,1}
(G) by

N�(v)i := 1(v+fi∈C1) and N�(E) := (
N�(v)

)
v∈E.

The next proposition formalizes the fact that for a nontrivial � ∈ OMCut(x, b)

knowing only the (Et
j )j∈{0,1} of Proposition 4.15 and (N�(Et

j ))j∈{0,1}, we can
determine a set E satisfying E1,·<
(G)−√

d ⊆ E ⊆ C1. E is determined by the
following algorithm:

1. For j ∈ {0,1}, let:
(a) Ra

j be all v ∈ V [G] satisfying that there exist v′ ∈ Et
1−j and 1 ≤ i ≤ 
(G)

such that N�(v′)i = j and v = v′ + fi .
(b) Rb

j be all v ∈ V [G] satisfying that there exist v′ ∈ Et
j and 1 ≤ i ≤ 
(G)

such that N�(v′)i = j and v ∼G v′ + fi .
2. For j ∈ {0,1}, let Vj := {v ∈ V [G]||S(v) ∩ Ra

1−j | <
√

d} and define

U := {
u ∈ V0 \ Rb

0|S(u) ∩ V1 ∩ Ra
1 �=∅

}
.

Set E := Rb
1 ∪ S(U).

PROPOSITION 4.16. For any nontrivial � ∈ OMCut(x, b), the set E obtained
from the previous algorithm, taking as input the sets (Et

j )j∈{0,1} of Proposi-
tion 4.15 and (N�(Et

j ))j∈{0,1}, satisfies

E1,·<
(G)−√
d ⊆ E ⊆ C1.

In other words, E is an interior approximation to �.

To gain some intuition for the above algorithm, one should have in mind the fol-
lowing claims which are used in the proof of the proposition. Ra

j and Rb
j consist

of vertices we know are in Ej and Cj , respectively, directly from the definitions
of (Et

j )j∈{0,1} and (N�(Et
j ))j∈{0,1}. E1,

√
d<·<
(G)−√

d is seen to be a subset of Rb
1

in a relatively straightforward manner and our main difficulty lies in showing that
vertices of E1,·≤√

d can also be recovered from the given input. To this end, we
define Vj which is shown to be disjoint from Ej,·≥
(G)/2. We deduce that U con-
sists only of vertices in C1 ∩ V even. It follows from the definition of OMCut that
S(U) ⊆ C1. Finally, we are able to show that if v ∈ E1,·≤√

d \ Rb
1 then v ∈ S(U).

PROOF OF PROPOSITION 4.16. The proof is via several claims.
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Claim 1: Ra
j ⊆ Ej and Rb

j ⊆ Cj for j ∈ {0,1}.
We prove the claim for Ra

0 and Rb
0 . The proofs for Ra

1 and Rb
1 are similar. Let

v ∈ Ra
0 and v′ ∈ Et

1 be such that v = v′ + fi and N�(v′)i = 0. Then v ∈ E0 by
definition of N�(v′) and E0. Let v ∈ Rb

0 and v′ ∈ Et
0 be such that v ∼G v′ +fi and

N�(v′)i = 0. Then v ∈ C0 by definition of N�(v′) and (22).
Claim 2: For j ∈ {0,1}, Ej,

√
d<·<
(G)−√

d ⊆ Rb
j .

Fix j ∈ {0,1} and v ∈ Ej,
√

d<·<
(G)−√
d . By Proposition 3.15 we know that v

has at least
√

d(
(G)−√
d)−√

d ≥ 1
2d3/2 �-neighbors. Since all these neighbors

are in A1(v), part (b) of Proposition 4.15 implies that there exists v′ ∈ Et
j ∩A1(v).

Hence, v ∈ Rb
j .

Claim 3: For j ∈ {0,1}, Ej,·≥
(G)/2 ∩ Vj = ∅.
Fix j ∈ {0,1} and v ∈ Ej,·≥
(G)/2. Any vertex in S(v) ∩ E1−j ∩ S(Et

j ) is in
Ra

1−j . Thus, the claim follows from part (c) of Proposition 4.15.
Claim 4: U ⊆ C1 ∩ V even.
Let u ∈ U . u ∈ V even since S(u)∩Ra

1 �= ∅ and Ra
1 ⊆ E1 ⊆ V odd by Claim 1 and

the definition of OMCut. Assume, in order to get a contradiction, that u /∈ C1. Since
S(u) ∩ Ra

1 �= ∅ and Ra
1 ⊆ E1 by Claim 1, it follows that u ∈ E0. If

√
d < P�(u) <


(G)−√
d then u ∈ Rb

0 by Claim 2, contradicting the definition of U . If P�(u) ≥

(G)/2 we have u /∈ V0 by Claim 3, contradicting again the definition of U . Fi-
nally, if P�(u) ≤ √

d , let v ∈ S(u) ∩ V1 ∩ Ra
1 (which exists by the definition of U )

and note that by Claim 1 and Proposition 3.13, P�(v) ≥ 
(G)−√
d ≥ 
(G)

2 . It fol-
lows from Claim 3 that v /∈ V1, a contradiction. The contradiction proves the claim.

Claim 5: S(U) ⊆ C1.
This follows immediately from Claim 4 since E1, the boundary of C1, is a subset

of V odd.
Claim 6: E1,·≤√

d ⊆ E.

Let v ∈ E1,·≤√
d . We distinguish two cases:

1. |A2(v)| < 
(G)
2 . We note that by definition of A2(v), for any 1 ≤ i ≤ 
(G)

such that v + fi ∈ C1 \ A2(v), we have at least
√

d vertices v′ ∈ E1 of the form
v′ = v + fi + fk for some k (v being one of these vertices). Since |S(v) ∩ (C1 \
A2(v))| ≥ 
(G)

2 − √
d by our assumption, we see using Proposition 3.1 that

|A1(v)| ≥ 1
2(
(G)

2 − √
d)(

√
d − 1) ≥ d3/2

5 for large enough d . Hence, by part
(b) of Proposition 4.15, Et

1 ∩ A1(v) �= ∅ implying that v ∈ Rb
1 .

2. |A2(v)| ≥ 
(G)
2 . In this case, by part (d) of Proposition 4.15 there exists v′ ∈

A3(v) ∩ S(Et
0) implying that v′ ∈ Ra

1. By definition of A3(v), we may write
v′ = v + fi + fk for some 1 ≤ i, k ≤ 
(G) where u := v + fi ∈ A2(v). Using
that Ra

1 ⊆ E1 and Rb
0 ⊆ C0 by Claim 1 and using the definition of A2(v), we

deduce u ∈ V0 \ Rb
0. Proposition 3.14 implies that P�(v′) <

√
d by definition

of A2(v). Hence, since Ra
0 ⊆ E0 by Claim 1, we have v′ ∈ V1. It follows that

u ∈ U , and hence v ∈ S(U).
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Claims 1, 2, 5 and 6 prove the proposition. �

LEMMA 4.17. For all nontrivial � ∈ OMCut(x, b), denoting F := E0 ∪ E1
and F t := Et

0 ∪Et
1 for the (Et

j )j∈{0,1} of Proposition 4.15, if F c is a G�-connected
component of F then:

(a) F c ∩ F t �= ∅.
(b) For every v ∈ F c, (F t ∩ F c) ∪ {v} is connected in G⊗8.

PROOF. Fix a nontrivial � ∈ OMCut(x, b) and a G�-connected component
F c of F . By part (c) of Proposition 4.15, for any v ∈ Ej,·≥
(G)/2 ∩ F c for some
j ∈ {0,1} we have dG(v,F t ∩ F c) ≤ 2. For any v ∈ Ej,·<
(G)/2 ∩ F c for some
j ∈ {0,1}, we have by Proposition 3.13 that S(v) ∩ E1−j,·≥
(G)/2 �= ∅. Thus,
dG(v,F t ∩F c) ≤ 3 for all v ∈ F c. In particular, F t ∩F c �= ∅ since F c is nonempty,
proving part (a) of the lemma.

Fix v ∈ F c, vs, vt ∈ (F t ∩ F c) ∪ {v} and let vs = v1, v2, . . . , vm = vt be a G�-
path of vertices of F c. For each 2 ≤ i ≤ m − 1, let v′

i ∈ F t ∩ F c be such that
dG(v′

i , vi) ≤ 3. We also take v′
1 = vs and v′

m = vt . It follows that for each 1 ≤ i ≤
m − 1,

dG

(
v′
i , v

′
i+1

) ≤ dG

(
v′
i , vi

) + dG(vi, vi+1) + dG

(
vi+1, v

′
i+1

) ≤ 3 + 2 + 3 = 8.

Hence, vs = v′
1, v

′
2, . . . , v

′
m = vt is a G⊗8-walk, proving part (b) of the lemma. �

LEMMA 4.18. Given M,R ∈ N and E ⊆ V [G] with |E| = M , we have∣∣{N�(E)|� ∈ OMCut(x, b) satisfies R�(E) = R
}∣∣ ≤ (3d)M+R.

PROOF. We use the fact that for v ∈ E, given P�(v), the number of pos-
sibilities for N�(v) is at most

(
(G)
P�(v)

)
since we need only choose the directions

1 ≤ i ≤ 
(G) for which v + fi ∈ comp(�, x) and in the case that v ∈ V odd, these
are the directions for which {v, v + fi} /∈ � and in the case that v ∈ V even, these
are the directions for which {v, v + fi} ∈ �. Let

� :=
{
X ∈ {

0, . . . ,
(G)
}E

∣∣∣ ∑
v∈E

min
(
Xv,
(G) − Xv

) = R

}
.

Then if � ∈ OMCut(x, b) satisfies R�(E) = R then P�(E) ∈ �. Hence,∣∣{N�(E)|� ∈ OMCut(x,B) satisfies R�(E) = R
}∣∣

≤ ∑
X∈�

∏
v∈E

(

(G)

Xv

)
≤ ∑

X∈�

∏
v∈E

(2d)min(Xv,
(G)−Xv)

= (2d)R|�| ≤ (2d)R(2d + 1)M ≤ (3d)M+R. �

We are finally ready for the following.
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PROOF OF THEOREM 4.13. Fix L ∈ N and define

OMCut(x, b,L) := {
� ∈ OMCut(x, b)||�| = L

}
.

By Proposition 3.16, if OMCut(x, b,L) �= ∅ we must either have L = 
(G) in

which case |OMCut(x, b,L)| = 2 or L ≥ 
(G)2

2 . The theorem follows simply
when L = 
(G) by taking E := {E1(�)|� ∈ OMCut(x, b,
(G))}. Thus, we as-

sume henceforth that L ≥ 
(G)2

2 . We note that then OMCut(x, b,L) consists only
of nontrivial cutsets.

Define a function S on OMCut(x, b,L) by

S(�) := (
Et

0,E
t
1,N�

(
Et

0
)
,N�

(
Et

1
))

,

where Et
0,E

t
1 are some sets satisfying the requirements of Proposition 4.15 (ar-

bitrarily chosen from the possible sets) and N�(Et
0),N�(Et

1) are defined af-
ter Proposition 4.15. We shall use the notation Et

0,�,Et
1,�,N�(Et

0,�),N�(Et
1,�)

for the components of S(�). We define E to be the family of sets E obtained
by running the algorithm appearing before Proposition 4.16 on each vector in
S(OMCut(x, b,L)). Proposition 4.16 ensures that the E thus defined satisfies the
requirements of the theorem. Since |E | ≤ |S(OMCut(x, b,L))|, the rest of the
proof is devoted to bounding |S(OMCut(x, b,L))|.

We start by partitioning OMCut(x, b,L) into types. We say that � ∈ OMCut(x,

b,L) has type γ , where γ := (k, (Mi)
k
i=1, (M

t
i )

k
i=1, (R

t
i)

k
i=1) for integers k,

(Mi)
k
i=1, (M

t
i )

k
i=1, (R

t
i)

k
i=1, if E0(�)∪E1(�) has exactly k G�-connected compo-

nents F1, . . . ,Fk (ordered in some predetermined manner) and for each 1 ≤ i ≤ k

we have |Fi | = Mi , |Fi ∩ (Et
0,� ∪ Et

1,�)| = M t
i and R�(Fi ∩ (Et

0,� ∪ Et
1,�)) = Rt

i .
Let T be the set of possible types for � ∈ OMCut(x, b,L) and for γ ∈ T , de-
note OMCut(x, b,L,γ ) := {� ∈ OMCut(x, b,L)|� has type γ }. The following
sequence of claims proves the theorem (it follows directly from claim 5).

Claim 1: For any γ = (k, (Mi)
k
i=1, (M

t
i )

k
i=1, (R

t
i)

k
i=1) ∈ T and any 1 ≤ i ≤ k

we have Rt
i ≥ M t

i ≥ 1.
Fix γ = (k, (Mi)

k
i=1, (M

t
i )

k
i=1, (R

t
i)

k
i=1) ∈ T , � ∈ OMCut(x, b,L,γ ) and 1 ≤

i ≤ k. Part (a) of Lemma 4.17 implies that M t
i ≥ 1. Since Et

j,� ⊆ Ej(�) for j ∈
{0,1} by Proposition 4.15, we have P�(v) ≥ 1 for all v ∈ Et

0,� ∪ Et
1,� . Hence,

part 2 of Proposition 3.16 implies that Rt
i ≥ M t

i .

Claim 2: |T | ≤ 2L3 exp(
C logd

d3/2 L) for some C > 0.

For every γ = (k, (Mi)
k
i=1, (M

t
i )

k
i=1, (R

t
i)

k
i=1) ∈ T and � ∈ OMCut(x, b,L,γ ),

we obtain using Claim 1,

k∑
i=1

Mi ≤ L,(52)
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k∑
i=1

M t
i ≤

k∑
i=1

Rt
i = R�

(
Et

0,� ∪ Et
1,�

) ≤ C′ logd

d3/2 L,(53)

k∑
i=1

Rt
i = R�

(
Et

0,� ∪ Et
1,�

) ≤ C′ logd

d3/2 L(54)

for some C′ > 0, where we used part (a) of Proposition 4.15 to bound R�(Et
0,� ∪

Et
1,�). These inequalities imply that the number of γ ∈ T having k = 1 is at most

L3 (for d sufficiently large). Next, we note that if γ has k ≥ 2 then Mi ≥ α for all
1 ≤ i ≤ k by Proposition 3.9. We also note that for all γ and 1 ≤ i ≤ k, Rt

i ≥ M t
i ≥

1 by Claim 1. Hence, applying Proposition 3.17 with s1 = α, s2 = α+1 to (52) and
applying it again with s1 = 1, s2 = 2 to (53) and (54), we see that the number of
γ ∈ T having k ≥ 2 is at most L3 exp(

6L log(α+1)
α+1 + C′′L logd

d3/2 ) ≤ L3 exp(
2C′′L logd

d3/2 )

for some C′′ > 0 and d sufficiently large. Together with the bound on the number
of γ ∈ T having k = 1, this proves the claim.

Claim 3: For every M > 0, there exists A ⊆ V [G] with |A| ≤ 40Mn
1(M≥α)
d

such that for every � ∈ OMCut(x, b,L) and every G�-connected component F c

of E0(�) ∪ E1(�) with |F c| ≤ M , we have F c ∩ A �= ∅.
The claim follows directly from Proposition 3.10 by noting that each such F c

contains a G�-connected component of E1(�).
Claim 4: There exists C > 0 such that for each γ ∈ T ,

∣∣S(
OMCut(x, b,L,γ )

)∣∣ ≤ Ln
�L

α
�

d exp
(

C log2 d

d3/2 L

)
.

Denote γ := (k, (Mi)
k
i=1, (M

t
i )

k
i=1, (R

t
i)

k
i=1) and for 1 ≤ i ≤ k, let Ai be

the set of Claim 3 corresponding to M = Mi . For p := (Et
0,E

t
1,N0,N1) ∈

S(OMCut(x, b,L,γ )) we pick an arbitrary �(p) ∈ OMCut(x, b,L,γ ) such that
S(�(p)) = p. Let F1(p), . . . ,Fk(p) be the G�-connected components (ordered in
the same predetermined manner as before) of E0(�(p))∪E1(�(p)). The vector p

is uniquely described by specifying the following for each 1 ≤ i ≤ k:

1. A point vi ∈ Ai ∩ Fi(p).
2. The set F t

i := Fi(p) ∩ (Et
0 ∪ Et

1) [which has |F t
i | = M t

i and R�(F t
i ) = Rt

i].
3. For each v ∈ F t

i , whether it is in Et
0 or in Et

1.
4. The set N�(p)(F

t
i ).

Hence, we may bound |S(OMCut(x, b,L,γ ))| by bounding the number of possi-
bilities for each item of the above list, given its predecessors. For fixed 1 ≤ i ≤ k,
we have at most |Ai | ≤ 40Min

1(Mi≥α)
d possibilities for the first item. By part (b)

of Lemma 4.17 and Proposition 3.2, we have at most (2d)18M t
i possibilities for the

second item (given the point vi ). We have at most 2M t
i possibilities for the third
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item. By Lemma 4.18, we have at most (3d)M
t
i+Rt

i possibilities for the fourth item.
Thus, for a given 1 ≤ i ≤ k, we have at most

40Min
1(Mi≥α)
d (2d)18M t

i 2M t
i (3d)M

t
i+Rt

i ≤ Min
�Mi

α
�

d exp
(
CRt

i logd
)

possibilities for the above list for some C > 0, where we used that Rt
i ≥ M t

i ≥ 1 by
Claim 1. Hence, multiplying over all i, denoting Rt := ∑k

i=1 Rt
i = R�(p)(E

t
0 ∪Et

1)

and noting that Rt ≤ C′ logd

d3/2 L for some C′ > 0 by Proposition 4.15, we find

∣∣S(
OMCut(x, b,L,γ )

)∣∣ ≤
k∏

i=1

Min
�Mi

α
�

d exp
(
CRt

i logd
)

≤
(

k∏
i=1

Mi

)
n

�M
α

�
d exp

(
CRt logd

)

≤
(

k∏
i=1

Mi

)
n

�L
α
�

d exp
(

C′′ log2 d

d3/2 L

)

for some C′′ > 0. Finally, noting that
∑k

i=1 Mi ≤ L and that if k ≥ 2 then by
Proposition 3.9, Mi ≥ α ≥ 2d−1 for all 1 ≤ i ≤ k, we deduce that(

k∏
i=1

Mi

)
≤ L

(
k∏

i=2

Mi

)
≤ L exp

(
C̃ log2 d

d3/2

k∑
i=2

Mi

)
≤ L exp

(
C̃ log2 d

d3/2 L

)

for some C̃ > 0 and sufficiently large d , from which the claim follows.
Claim 5: There exists C > 0 such that

∣∣S(
OMCut(x, b,L)

)∣∣ ≤ n
�L

α
�

d exp
(

C log2 d

d3/2 L

)
.

By Claims 2 and 4, we have∣∣S(
OMCut(x, b,L)

)∣∣ = ∑
γ∈T

∣∣S(
OMCut(x, b,L,γ )

)∣∣
≤ Ln

�L
α
�

d exp
(

C′ log2 d

d3/2 L

)
|T |

≤ 2L4n
�L

α
�

d exp
(

C′′ log2 d

d3/2 L

)

for some C′,C′′ > 0. The claim follows since L ≥ 
(G)2

2 ≥ d2

2 . �



1412 R. PELED

Proof of Theorem 4.14. Throughout the proof, we fix L ∈ N, x ∈ V [G], legal
boundary conditions (B,μ) with nonpositive μ and g ∈ Hom(G,B,μ) and we
shall always assume that d ≥ d0 for some large constant d0. An important step in
proving our theorem is to prove a slightly stronger version of it for the case B = {b}
for some b ∈ V [G]. We start with two definitions. As in the previous section, we
set OMCut(x,B,L) := {� ∈ OMCut(x,B)||�| = L}. We also set, for v ∈ V [G],
Trivv to be the set of edges incident to v [so that |Trivv | = 
(G)]. We then have
the following.

PROPOSITION 4.19. There exists C > 0 such that if B = {b} for some b ∈
V [G] then ∣∣PLS(g, x,B,L) \ {Trivx}

∣∣ ≤ n
�L

α
�

d exp
(

C log2 d

d3/2 L

)
.

PROOF. Fix b ∈ V [G] and assume B = {b}. If L = 
(G) then by Proposi-
tion 3.16, OMCut(x, b,L) contains at most two elements: Trivx and Trivb. Since
PLS(g, x,B,L) ⊆ OMCut(x, b,L), the proposition follows.

Assume now that L �= 
(G). Using Proposition 3.16 again, we see that we

may assume that L ≥ 
(G)2

2 since otherwise OMCut(x, b,L) = ∅. Assume this
and let f ∈ �x,L be such that g is a (x,B)-interior modification of f . Denote
� := LS(f, x,B). We claim that given any set E ⊆ V [G] which is an interior
approximation to �, we may recover � as a function only of g and E. Letting E
be the family of Theorem 4.13, this implies that for some C,C′ > 0,

∣∣PLS(g, x,B,L)
∣∣ ≤ |E | ≤ 2n

�L
α
�

d exp
(

C log2 d

d3/2 L

)
≤ n

�L
α
�

d exp
(

C′ log2 d

d3/2 L

)
,

since L ≥ 
(G)2

2 , proving the proposition. To see this claim, fix an interior approx-
imation E to �. Let A be the connected component of b in {v ∈ V [G]|f (v) ≤ 0}
and A′ be the connected component of b in {v ∈ V [G] \ E|g(v) ≤ 0}. Since
� is, by definition, all edges between A and the connected component of x in
V [G] \ A and since A′ is determined solely from g and E, it is sufficient to show
that A = A′. To see this, recall that g(v) = f (v) for every v /∈ comp(�, x) and
g(v) = f (v) = 1 for v ∈ E1,e(�). This implies A′ ⊇ A since A ∩ comp(�, x) =∅

and E ⊆ comp(�, x). Next, note that by �’s definition, every w ∈ V [G] \ A such
that w ∼G v for some v ∈ A satisfies f (w) = 1 and either w /∈ comp(�, x),
w ∈ E1,e(�) or w ∈ E1(�) \ E1,e(�). In the first two cases, g(w) = 1 implying
w /∈ A′ and in the third case, w /∈ A′ since E1(�) \ E1,e(�) ⊆ E. Thus A′ ⊆ A, as
required. �

We proceed to prove the theorem for the case of general B . As in Sec-
tion 4.3.1, we fix a total order ≺ on V [G] and for � ∈ OMCut(x,B), define in-
ductively m(�) and a vector (bi)

m(�)
i=1 ⊆ B as follows: b1 is the ≺-smallest element
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of B . Assuming that (b1, . . . , b�) have already been defined, we set m(�) := �

if B ⊆ ⋃�
i=1 comp(�, bi) or otherwise set b�+1 to be the ≺-smallest element of

B \ ⋃�
i=1 comp(�, bi). For 1 ≤ i ≤ m(�), we also set �i := subcut(�, bi) and

Li := |�i |. Note that �i ∈ OMCut(x, bi) by the remark after the definition of
OMCut in Section 3. In this section, we define the type of � to be the vector
γ := (m(�), (Li)

m(�)
i=1 ). As in the previous section, we set

T := set of possible types for � ∈ OMCut(x,B,L),

OMCut(x,B,L,γ ) := {
� ∈ OMCut(x,B,L)|� has type γ

}
for γ ∈ T .

We note that since for any � ∈ OMCut(x,B,L) with type (m(�), (Li)
m(�)
i=1 ) we

have
∑m(�)

i=1 Li = L and for each i, Li = 
(G) or Li ≥ 
(G)2

2 by Proposition 3.16,

it follows from Proposition 3.17 with s1 = 
(G) and s2 = 

(G)2

2 � that

(55) |T | ≤ exp
(

30 logd

d2 L

)
for sufficiently large d . We proceed to state and prove several lemmas from which
the theorem will follow.

LEMMA 4.20. If g is a (x,B)-interior modification of some f ∈ �x,L, then g

is also a (x, b)-interior modification of f for every b ∈ B .

PROOF. Let f ∈ �x,L be such that g is a (x,B)-interior modification of f and
let b ∈ B . Denoting � := LS(f, x,B) and �b := LS(f, x, b) we have �b ⊆ �, and
hence comp(�b, x) ⊇ comp(�, x). Since g(v) = f (v) for every v /∈ comp(�, x),
this holds in particular for every v /∈ comp(�b, x). Furthermore, for every v ∈
V [G] we have P�b

(v) ≤ P�(v). Hence, if v ∈ E1,e(�b) then P�(v) ≥ 
(G)−√
d .

Such a v must belong to comp(�, x) by Proposition 3.7 [one can also see this since
�b ∈ OMCut(x, b) and v ∈ V odd]. Thus, v ∈ E1,e(�) implying g(v) = f (v) = 1,
as required. �

LEMMA 4.21. There is a function satisfying that for every � ∈ OMCut(x,B),
the function takes as input 1 ≤ j < m(�), (b1, . . . , bj ) and (subcut(�, bi))i≤j and
returns bj+1.

PROOF. Knowing (subcut(�, bi))i≤j determines comp(�, bi) for all 1 ≤ i ≤
j . By our definitions, bj+1 is the ≺-smallest element of B \ ⋃j

i=1 comp(�, bi).
�

LEMMA 4.22. There exists C > 0 such that for all γ ∈ T we have∣∣PLS(g, x,B,L) ∩ OMCut(x,B,L,γ )
∣∣ ≤ 2n

�L
α
�

d exp
(

C log2 d

d3/2 L

)
.
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PROOF. Fix γ := (k, (Li)ki=1) ∈ T . We start by assuming that some � ∈
OMCut(x,B,L,γ ) has Trivx ⊆ �. It follows that � = Trivx by minimality of
�, k = 1 and L = 
(G). Let also b ∈ B . Since for any � ∈ OMCut(x,B,L,γ )

we have subcut(�, b) ⊆ � and subcut(�, b) ∈ OMCut(x, b) (see Proposition 3.7
and remark after the definition of OMCut in Section 3), it follows from Propo-
sition 3.16 that OMCut(x,B,L,γ ) can contain at most two elements: Trivx and
Trivb. Thus, the lemma follows in this case.

We assume henceforth that no � ∈ OMCut(x,B,L,γ ) has Trivx ⊆ �. We note
the following facts: A � ∈ PLS(g, x,B,L) ∩ OMCut(x,B,L,γ ) is uniquely de-
scribed by specifying (subcut(�, bi))i≤k . By definition, b1 is the ≺-smallest el-
ement of B and by Lemma 4.21, for each 1 ≤ j < k, bj+1 is determined as a
function of (bi)i≤j and (subcut(�, bi))i≤j . By Lemma 4.20 and Proposition 4.19,
for each 1 ≤ i ≤ k, the number of possibilities for subcut(�, bi), other than Trivx ,
given g, bi and Li is at most

n
�Li

α
�

d exp
(

C log2 d

d3/2 Li

)
for some C > 0. Putting these facts together, we see that

∣∣PLS(g, x,B,L) ∩ OMCut(x,B,L,γ )
∣∣ ≤

k∏
i=1

n
�Li

α
�

d exp
(

C log2 d

d3/2 Li

)

≤ n
�L

α
�

d exp
(

C log2 d

d3/2 L

)
as required. �

PROOF OF THEOREM 4.14. By Lemma 4.22 and (55), we have∣∣PLS(g, x,B,L)
∣∣ = ∑

γ∈T

∣∣PLS(g, x,B,L) ∩ OMCut(x,B,L,γ )
∣∣

≤ 2n
�L

α
�

d exp
(

C log2 d

d3/2 L

)
|T | ≤ 2n

�L
α
�

d exp
(

C′ log2 d

d3/2 L

)
for some C′ > 0, as required. �

4.4. Proof of Theorem 4.2. In this section, we prove the first part of Theo-
rem 4.2 for the transformation T of Section 4.2. The second part was proved in
Section 4.2.

Fix d large enough for the arguments of the section, a nonlinear torus G,
legal boundary conditions (B,μ) with nonpositive μ, x ∈ V [G],L ∈ N and
∅ �= � ⊆ �x,L. For f ∈ �, introduce the notation E1,1(f ) and E1,e(f ) for
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E1,1(LS(f, x,B)) and E1,e(LS(f, x,B)), respectively. Recall the role of λ from
(28). Denote Mλ := 
(1 − λ

log2 d
) L

(G)

� and for 0 ≤ k ≤ m < Mλ, let

�x,L,1 := {
f ∈ �x,L|∣∣E1,e(f )

∣∣ ≥ Mλ

}
,

�x,L,2,m,k := {
f ∈ �x,L|∣∣E1,e(f )

∣∣ = m,
∣∣E1,1(f ) ∩ E1,e(f )

∣∣ = k
}
.

Note that �x,L = �x,L,1 ∪ (
⋃

0≤k≤m<Mλ
�x,L,2,m,k). From (28) and (29), we have

T (f ) = T1(f ) for f ∈ �x,L,1,(56)

T (f ) = T2(f ) for f ∈ �x,L,2,m,k,(57)

∣∣T (f )
∣∣ =

⎧⎨⎩2
L


(G) , if f ∈ �x,L,1,

2
L


(G)
−k

, if f ∈ �x,L,2,m,k.
(58)

We note that

|�|
|T (�)| ≤ |� ∩ �x,L,1|

|T1(� ∩ �x,L,1)| + ∑
0≤k≤m<Mλ

|� ∩ �x,L,2,m,k|
|T2(� ∩ �x,L,2,m,k)| ,(59)

where, as before, we interpret T (�) := ⋃
f ∈� T (f ) and 0

0 = 0. We also have the
simple lemma.

LEMMA 4.23. Let N,M > 0, X,Y be finite sets and R : X → P(Y ) a func-
tion satisfying for each f ∈ X and g ∈ Y ,∣∣R(f )

∣∣ ≥ N and
∣∣{h ∈ X|g ∈ R(h)

}∣∣ ≤ M.

Then for each ∅ �= X′ ⊆ X we have |X′|
|⋃f ∈X′ R(f )| ≤ M

N
.

PROOF. It is straightforward that |⋃f ∈X′ R(f )| ≥ N
M

|X′|, implying the
lemma. �

Aiming to use this lemma to estimate the RHS of (59), we will show the follow-
ing.

PROPOSITION 4.24. For λ ≥
√

d log2 d

(G)

and g ∈ T1(�x,L,1), we have |{f ∈
�x,L,1|g ∈ T1(f )}| ≤ (1 + λL)2 exp(CλL

d
) for some C > 0.

PROPOSITION 4.25. For 0 ≤ k ≤ m < Mλ and g ∈ T2(�x,L,2,m,k), we have
|{f ∈ �x,L,2,m,k|g ∈ T2(f )}| ≤ 2m−k+1 exp( CL

d log3 d
) for some C > 0.

We remark that these propositions are the only place in our proof where the
nonlinearity of G is used. Let us first show how these propositions can be used to
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prove the (first part of the) theorem and then proceed to prove them. The propo-

sitions along with (56), (59) and Lemma 4.23 imply that for
√

d log2 d

(G)

≤ λ ≤ 1 we
have

|�|
|T (�)| ≤ (1 + λL)2 exp(CλL

d
)

2
L


(G)

+ ∑
0≤k≤m<Mλ

2m−k+1 exp( CL

d log3 d
)

2
L


(G)
−k

≤ 4L2
(

exp
(

CλL

d

)
+ exp

(
CL

d log3 d

)
2Mλ−1

)
2− L


(G)

≤ 4L2
(

exp
(

CλL

d

)
2− L


(G) + exp
(

CL

d log3 d

)
2
− λL


(G) log2 d

)
.

Hence, if λ is a small enough constant (independent of d) and d is sufficiently
large, we have

|�|
|T (�)| ≤ 8L2 exp

(
− cL

d log2 d

)
≤ d3 exp

(
− c′L

d log2 d

)
for some c, c′ > 0, proving the theorem.

PROOF OF PROPOSITION 4.24. Fix g ∈ T1(�x,L,1). We note that for any
� ∈ OMCut(x,B) with |�| = L there is at most one f ∈ �x,L,1 such that
LS(f, x,B) = � and g ∈ T1(f ). This follows from the fact that if f satisfies these
two properties then we may recover it from g by performing the inverse of the shift
transformation Shift, that is,

(60) f (v) =
{
g(v − e1) + 1, for v ∈ C1,

g(v), otherwise,

where C1 := comp(�, x). Let us verify this claim. First, note that g may differ
from Shift(f ) only on E1,1(�) = {v ∈ C1|v + e1 /∈ C1} and the values of g on these
points are not used in (60). Next, note that for all v /∈ C1 we have g(v) = f (v) and
for all v ∈ C1 such that v − e1 ∈ C1 we have g(v − e1) = f (v) − 1 by definition of
Shift. Finally, note that if v ∈ C1 is such that v − e1 /∈ C1 then necessarily f (v) = 1
and f (v−e1) = g(v−e1) = 0 by definition of LS(f, x,B). These facts prove (60).

We deduce that

(61)
∣∣{f ∈ �x,L,1|g ∈ T1(f )

}∣∣ ≤ ∣∣{LS(f, x,B)|f ∈ �x,L,1
}∣∣.

This is a rough bound since the RHS is independent of g, but we will see that it
will suffice for this proposition because of the irregularities in LS(f, x,B) for f ∈
�x,L,1. For � ∈ OMCut(x,B), recalling the definition of R� from Section 4.3.1,
we denote M(�) := |E1(�)|, R(�) := R�(E1(�)) = ∑

v∈E1(�) min(P�(v),


(G) − P�(v)) and for 1 ≤ i ≤ 
(G), ai(�) := |{v ∈ E1(�)|P�(v) = i}|. Let



HIGH-DIMENSIONAL LIPSCHITZ FUNCTIONS ARE TYPICALLY FLAT 1417

O := {� ∈ OMCut(x,B)||�| = L, |E1,e(�)| ≥ (1 − λ

log2 d
) L

(G)

}. By definition of

�x,L,1, we have

(62)
{
LS(f, x,B)|f ∈ �x,L,1

} ⊆ O.

We continue by estimating M(�) + R(�) for � ∈ O . Note that for � ∈ O ,∑
(G)
i=1 iai(�) = L and

∑
(G)

i=

(G)−√
d� ai(�) ≥ (1 − λ

log2 d
) L

(G)

. Hence, for

� ∈ O ,

M(�) + R(�) =

(G)∑
i=1

(
1 + min

(
i,
(G) − i

))
ai(�)

≤ 2


(G)−√

d�−1∑
i=1

iai(�) +

(G)∑

i=

(G)−√
d�

(
1 + 
(G) − i

)
ai(�)

≤ 2

(
L −


(G)∑
i=

(G)−√

d�
iai

)
+ (1 + √

d)
L


(G) − √
d

≤ 2L

(
1 −

(
1 − λ

log2 d

)
(
(G) − √

d)


(G)

)
+ (1 + √

d)
L


(G) − √
d

≤
(

2λ

log2 d
+ 6

√
d


(G)

)
L ≤ 8λL

log2 d
,

taking λ ≥
√

d log2 d

(G)

in the last step.
By Theorem 4.5 and using that G is nonlinear, if M,R ≥ 0 satisfy M + R ≤

8λL

log2 d
then

∣∣{� ∈ O|M(�) = M,R(�) = R
}∣∣ ≤ n

� M∏d−1
i=1 ni

�
d exp

(
C log2 d

d
R

)

≤ exp
(

C′ log2 d

d
(M + R)

)
≤ exp

(
C′′λ
d

L

)
for some C′,C′′ > 0. Hence,

|O| ≤
∣∣∣∣{M,R ≥ 0|M + R ≤ 8λL

log2 d

}∣∣∣∣ exp
(

C′′λ
d

L

)

≤ (1 + λL)2 exp
(

C′′λ
d

L

)(63)

for large enough d . The proposition follows from (61), (62) and (63). �

PROOF OF PROPOSITION 4.25. Fix 0 ≤ k ≤ m < Mλ and g ∈ T2(�x,L,2,m,k).
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We first claim that for any � ∈ OMCut(x,B) with |�| = L and s ∈
{−1,1}E1,e(�)\E1,1(�) there is at most one f ∈ �x,L,2,m,k such that LS(f, x,B) =
�, f (v + e1) − 1 = s(v) for all v ∈ E1,e(�) \ E1,1(�) and g ∈ T2(f ). To see
this, suppose f is such a function. Define for h ∈ Hom(G,B,μ) and v ∈ V [G],
as in Section 4.2.2, Rv(h) to be the connected component of v in V [G] \ {w ∈
V [G]|h(w) = 0}. Recall from (27) that if g ∈ T2(f ) then there is an h ∈ T1(f )

such that

(64) g(w) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−h(w),

if w ∈ Rv(h) for some v ∈ E1,e(�) with h(v) = −1,

h(w),

otherwise.

Fixing this h we note that, as discussed in Sections 4.2.1 and 4.2.2 (see
Lemma 4.4), for any v ∈ E1,1(�) we have Rv(h) = {v} and flipping h(v) to −h(v)

for such v still results in a function in T1(f ). Hence, we may and will assume
that h(v) = 1 for all v ∈ E1,1(�) so that the flipping in (64) takes place only
for v ∈ E1,e(�) \ E1,1(�). We note also that for v ∈ E1,e(�) \ E1,1(�) we have
h(v) = s(v) by our assumption on f and the definition of T1. Hence, keeping in
mind that Rv(h) = Rv(g) for all v since the zero level set is unchanged by flipping,
we see that h may be recovered from g, given � and s, by

h(w) =

⎧⎪⎪⎨⎪⎪⎩
−g(w), if w ∈ Rv(g) for some v ∈ E1,e(�) \ E1,1(�),

with g(v) = −s(v),

g(w), otherwise.

As in the proof of Proposition 4.24, we know that f is determined from h given �

[since h ∈ T1(f ), see (60)], and hence f is uniquely determined from g given �

and s, as claimed.
Note that by definition of �x,L,2,m,k , if f ∈ �x,L,2,m,k then � = LS(f, x,B)

satisfies |E1,e(�)\E1,1(�)| = |E1,e(�)|− |E1,e(�)∩E1,1(�)| = m−k. Recalling
from Section 4.3.2 the notation for PLS(g, x,B,L) and that g is a (x,B)-interior
modification of f whenever g ∈ T2(f ), it follows from Theorem 4.14 and the fact
G is nonlinear that∣∣{f ∈ �x,L,2,m,k|g ∈ T2(f )

}∣∣ ≤ ∣∣PLS(g, x,B,L)
∣∣ · ∣∣{−1,1}m−k

∣∣
≤ 2n

� L∏d−1
i=1 ni

�
d exp

(
C log2 d

d3/2 L

)
2m−k

≤ 2m−k+1 exp
(

C′

d log3 d
L

)
,

for some C′ > 0. �
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5. Isoperimetry, height, range and Lipschitz.

5.1. Isoperimetry. For integer r ≥ 0 and v ∈ V [G], define the sphere and ball
of radius r around v by Sr(v) := {w ∈ V [G]|dG(v,w) = r} (where dG is the graph
distance in G) and Br(v) := ⋃r

i=0 Si(v). We also recall that Vol(r) = |Br(v)| (it is
independent of v). Let also Er(v) := {w ∈ Br(v)|w + ed /∈ Br(v)}. Finally, let sr
denote the number of edges between Br(v) and its complement in G (sr does not
depend on v). Since we either have Sr(v) ⊆ V odd or Sr(v) ⊆ V even, we have by
Proposition 3.12 that

(65) sr = 
(G)
∣∣Er(v)

∣∣.
For an integer r ≥ 0, we define our isoperimetric functions as

Ir(x, y) := min
{|�||� ∈ OMCut

(
Br(x),Br(y)

)} (
x, y ∈ V [G]),

Ir := min
{
Ir(x, y)|x, y ∈ V [G]} and

Ir(E) := min
{|�||y ∈ V [G],� ∈ OMCut

(
E,Br(y)

) ∪ OMCut
(
Br(y),E

)}
for ∅ �= E ⊆ V [G], where Ir(x, y), Ir and Ir(E) are defined to be infinity if the
sets minimized over are empty. Recalling the definition of full projection sets from
before Theorem 2.1, we will prove the following theorems in the next two sections.

THEOREM 5.1. For all integer r ≥ 0, we have Ir ≥ sr
2 min(4(2r+1),
(G))

. More-
over, if sr ≤ (d − 1)nd then Ir ≥ sr .

THEOREM 5.2. For all integer r ≥ 0 and full projection sets E ⊆ V [G], we
have Ir(E) ≥ sr .

In addition, we collect in Section 5.1.3 several simple relations for sr and Vol(r).

5.1.1. Full projection isoperimetry. In this section, we prove Theorem 5.2. Fix
a full projection set ∅ �= E ⊆ V [G] and let 1 ≤ i0 ≤ d be such that in the coordi-
nate system (3), every cycle of the form {w+kei0 |k ∈ Z}, for w ∈ V [G], intersects
E. Fix an integer r ≥ 0, y ∈ V [G] and � ∈ OMCut(E,Br(y))∪OMCut(Br(y),E)

(noting that if for all y ∈ V [G], OMCut(E,Br(y))∪ OMCut(Br(y),E) = ∅, then
the theorem is trivial). It is sufficient to show that |�| ≥ sr .

Let Er,i0 := {w ∈ Br(y)|w + ei0 /∈ Br(y)}. As in (65), we then have

(66) sr = 
(G)|Er,i0 |.
For w ∈ Er,i0 , let P(w) := {w + kei0 |k ∈ Z} be the cycle in the i0 direction pass-
ing through it. By the definition of Er,i0 and properties of balls in G, the cycles
P(w) and P(w′) do not intersect for distinct w,w′ ∈ Er,i0 . Since each such cycle
intersects E (by the full projection property), it follows that each such cycle must
contain an edge of �. Thus, � contains at least |Er,i0 | edges of the form (v, v +ei0)

for v ∈ comp(�, y). Hence, by Proposition 3.12 and (66), |�| ≥ 
(G)|Er,i0 | = sr ,
as required.
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5.1.2. General isoperimetry. In this section we prove Theorem 5.1. The more-
over part of the theorem follows from the following proposition.

PROPOSITION 5.3. For all integer r ≥ 0, Ir ≥ min(sr , (d − 1)nd).

PROOF. Fix an integer r ≥ 0, x, y ∈ V [G] and � ∈ OMCut(Br(x),Br(y)).
For each v ∈ Er(x) ∪ Er(y), let P(v) := {v + ked |k ∈ Z} be the cycle in G going
in the ed direction and passing through v. We consider three cases:

1. For all v ∈ Er(x), E(P (v))∩� �= ∅ [where E(P (v)) are the edges of the cycle
P(v)]. In this case, since by definition of Er(x) we have for all v ∈ Er(x) that
P(v) ∩ Er(x) = {v}, we deduce that � contains at least |Er(x)| edges of the
form {u,u + nd} for some u ∈ V odd. Hence, by Proposition 3.12 and (65), we
obtain |�| ≥ 
(G)|Er(x)| = sr .

2. For all v ∈ Er(y), E(P (v)) ∩ � �= ∅. As in the first case, we deduce |�| ≥ sr .
3. There exist v ∈ Er(x) and w ∈ Er(y) such that �∩E(P (v)) = �∩E(P (w)) =

∅. For 0 ≤ k ≤ nd −1, let Gk be the subtorus induced by the vertices of G with
dth coordinate equal to k. Let vk and wk be the intersection of V [Gk] with
P(v) and P(w), respectively. By our assumption, for each 0 ≤ k ≤ nd − 1,
� must contain some �k ∈ OMCutGk

(vk,wk) where OMCutGk
is the set of

odd minimal cutsets in Gk . This follows by noting that otherwise, for some
0 ≤ k ≤ nd − 1, there exists a path going from v to vk along P(v) then inside
Gk to wk and then to w along P(w) without intersecting � at all. Thus, since
|�k| ≥ d − 1 for all k, by Proposition 3.12, we deduce |�| ≥ (d − 1)nd .

Hence, in all cases, |�| ≥ min(sr , (d −1)nd). Since this is true for any x, y ∈ V [G]
and � ∈ OMCut(Br(x),Br(y)), the proposition follows. �

The rest of the section is devoted to proving the general case of Theorem 5.1,
see Corollary 5.10 below. Our main tool for finding lower bounds for Ir is the
following.

LEMMA 5.4. For X,Y ⊆ V [G], if there exist k paths, each connecting a ver-
tex of X to a vertex of Y such that each edge in G is traversed by at most m of
these paths, then for every � ∈ MCut(X,Y ) we have |�| ≥ k

m
.

The lemma follows directly from the fact that each � ∈ MCut(X,Y ) must have
an edge in common with every one of the given paths.

We note the following simple geometric lemmas.

LEMMA 5.5. For any x ∈ V [G] and integer r ≥ 0, we have dG(v,w) ≤ 2r for
v,w ∈ Br(x).

The lemma follows directly from the definition of Br and the triangle inequality.
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LEMMA 5.6. For any v,w ∈ V [G], integer r ≥ 0 and 1 ≤ i ≤ d we have∣∣Sr(v) ∩ {w + kei |k ∈ Z}∣∣ ≤ 2.

The lemma is straightforward from the definition of Sr(v).
For i ∈ Z, we introduce the notation

{i} := i mod d and [i] := (
(i − 1) mod d

) + 1.

That is, i normalized to be in the range 0 to d − 1 and in the range 1 to d , respec-
tively. For v,w ∈ V [G], we note that there is a unique way to write

w = v +
d∑

i=1

kiei,

where 0 ≤ ki ≤ ni − 1 for all i. We denote (w − v)i := ki . For u ∈ V [G], we let
u + (w − v) equal the vertex u + ∑d

i=1(w − v)iei . In addition, for a path P , we
denote by P + (w − v) the path obtained from P by adding w − v to each vertex.
We denote by E(P ) the set of edges that P traverses. For any integers m ≥ 1,
1 ≤ i1, . . . , im ≤ d , k1, . . . , km ∈ Z and v ∈ V [G], we let v+P

k1
i1

P
k2
i2

· · ·P km

im
be the

path which starts from v, moves to v +k1ei1 by adding ei1 each step, then moves to
v + k1ei1 + k2ei2 by adding ei2 each step and so on until reaching v + ∑m

j=1 kj eij .
We have the following.

LEMMA 5.7. For v1, v2 ∈ V [G], 1 ≤ i, j ≤ d and k1, . . . , kd ∈ Z satisfying
0 ≤ ki ≤ ni − 1, let

P1 := v1 + P
ki

i P
k[i+1]
[i+1] · · ·P k[i+d−1]

[i+d−1],

P2 := v2 + P
kj

j P
k[j+1]
[j+1] · · ·P k[j+d−1]

[j+d−1].

Then if {u,u + em} ∈ E(P1) ∩ E(P2) for some u ∈ V [G] and 1 ≤ m ≤ d with
{j − i} ≤ {m − i} then for 0 ≤ � < {j − i} we have (v2 − v1)[i+�] = k[i+�] and for
{j − i} ≤ � < d , � �= {m − i} we have (v2 − v1)[i+�] = 0.

PROOF. Assume that {u,u + em} ∈ E(P1) ∩ E(P2) for some u ∈ V [G] and
1 ≤ m ≤ d with {j − i} ≤ {m − i}. Let x1 := v1 + ∑{m−i}−1

�=0 k[i+�]e[i+�] and x2 :=
v1 +∑{m−i}

�=0 k[i+�]e[i+�]. Since the edge {u,u+em} is in the direction of em, it must
lie in P1 in the segment of the path between x1 and x2. For the same reason, it must
lie in P2 in the segment of the path between y1 := v2 + ∑{m−j}−1

�=0 k[j+�]e[j+�]
and y2 := v2 + ∑{m−j}

�=0 k[j+�]e[j+�]. This implies that u differs from each of x1
and y1 only in the mth coordinate, so that y1 = x1 + kem for some k. Hence,
kem = y1 − x1 = v2 − v1 − ∑{j−i}−1

�=0 k[i+�]e[i+�] (using that {j − i} ≤ {m − i})
and the lemma follows. �
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PROPOSITION 5.8. For all integer r ≥ 0 and x, y ∈ V [G], if x and y differ at
exactly k coordinates then Ir(x, y) ≥ ksr

2 min(2r+1,k)
(G)
.

PROOF. Fix an integer r ≥ 0 and x, y ∈ V [G] which differ at exactly k coor-
dinates. Our proof does not depend on the order of the coordinates and we assume
that the coordinates that x and y differ at are the first k coordinates. For 1 ≤ i ≤ d ,
we also let ki := (y − x)i (so that ki = 0 for i > k). Then define, for 1 ≤ i ≤ k,
paths from x to y by

Pi := x + P
ki

i P
k[i+1]
[i+1] · · ·P k[i+d−1]

[i+d−1].

We let P be all paths of the form Pi + (v − x) for some 1 ≤ i ≤ k and v ∈ Er(x).
For an edge {u,u + em} for some u ∈ V [G] and 1 ≤ m ≤ d , let P(u,m) be the
set of all paths P ∈ P which pass through {u,u + em}. Since every P ∈ P con-
nects Br(x) and Br(y), if we show that |P(u,m)| ≤ 2 min(2r + 1, k) for all u and
m then by Lemma 5.4 and (65), Ir(x, y) ≥ k|Er(x)|

2 min(2r+1,k)
= ksr

2 min(2r+1,k)
(G)
, as re-

quired. Fix u ∈ V [G] and 1 ≤ m ≤ d . We note that P(u,m) = ∅ if m > k. Assume
Pi + (v − x),Pj + (w − x) ∈ P(u,m) for some 1 ≤ i, j ≤ k and v,w ∈ Er(x) (in
particular, 1 ≤ m ≤ k). If we also assume that {j − i} ≤ {m − i}, it follows from
Lemma 5.7 that

(w − v)[i+�] = k[i+�]
(
0 ≤ � < {j − i}),(67)

(w − v)[i+�] = 0
({j − i} ≤ � < d, � �= {m − i}).(68)

Let I := {1 ≤ i ≤ k|∃v ∈ Er(x),Pi + (v − x) ∈ P(u,m)}. Fix i to be the i ∈ I for
which {m − i} is maximal. Fix also v ∈ Er(x) satisfying Pi + (v − x) ∈ P(u,m).
Note that the extremality of i implies {j − i} ≤ {m − i} for all j ∈ I . It follows
from (67), (68) and Lemma 5.6 that for any j ∈ I there are at most two w ∈ Er(x)

so that Pj + (w − x) ∈ P(u,m). In addition, since k� �= 0 for 1 ≤ � ≤ k, it follows
from (67) and Lemma 5.5 that |I | ≤ 2r +1 [since for w ∈ Er(x), (w−v) may have
at most 2r nonzero coordinates by Lemma 5.5]. Of course, we also have the trivial
|I | ≤ k. In conclusion, we see that |P(u,m)| ≤ 2 min(2r + 1, k), as required. �

PROPOSITION 5.9. For all integer r ≥ 0 and x, y ∈ V [G], if x and y differ at
k coordinates then Ir(x, y) ≥ (
(G)−k+1)sr

4 min(2r+1,
(G)−k+1)
(G)
.

PROOF. Fix an integer r ≥ 0 and x, y ∈ V [G] which differ at k coordinates.
Denote q := 
(G) − k. Our proof does not depend on the order of the coordinates
and we assume that the equal coordinates of x and y are the first q coordinates.
For 1 ≤ i ≤ d , we also let ki := (y − x)i (so that ki = 0 for i ≤ q). Then define,
for 1 ≤ i ≤ q + 1 paths from x to y by

(69) Pi := x + P 1
i P 1

i+1 · · ·P 1
q P

kq+1
q+1 · · ·P kd

d P −1
q P −1

q−1 · · ·P −1
i ,
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where if i = q + 1, we start the path with P
kq+1
q+1 and end it with P

kd

d . We let P be
all paths of the form Pi + (v − x) for some 1 ≤ i ≤ q + 1 and v ∈ Er(x). For an
edge {u,u + em} for some u ∈ V [G] and 1 ≤ m ≤ d , let P(u,m) be the set of all
paths P ∈ P which pass through {u,u + em}. As in the proof of Proposition 5.8,
it is sufficient to show that |P(u,m)| ≤ 4 min(2r + 1, q + 1) for all u and m. Fix
u ∈ V [G] and 1 ≤ m ≤ d . If m ≤ q , let P1(u,m) [respectively P2(u,m)] be those
P ∈ P(u,m) which traverse the edge in their P 1

m segment (resp., in their P −1
m

segment). If m > q , let P1(u,m) = P2(u,m) = P . Assume Pi + (v − x),Pj +
(w − x) ∈ Pa(u,m) for some 1 ≤ i ≤ j ≤ q + 1, v,w ∈ Er(x) and a ∈ {1,2}. We
observe that we may not have m < j . Thus, by (69) (similarly to Lemma 5.7), we
must have

(70) (w − v)� =
{

1, i ≤ � < j,

0, � /∈ [i, j ] ∪ {m}.
Hence, by Lemma 5.5 and since v,w ∈ Er(x), we must have j − i ≤ 2r . Of course,
we must also have j − i ≤ q . Furthermore, we deduce from (70) and Lemma 5.6
that there are at most two w′ such that Pj + (w′ − x) ∈ Pa(u,m). We conclude
that |Pa(u,m)| ≤ 2 min(2r + 1, q + 1) for each a ∈ {1,2}, and hence |P(u,m)| ≤
4 min(2r + 1, q + 1), as required. �

COROLLARY 5.10. For all r ≥ 0, Ir ≥ sr
2 min(4(2r+1),
(G))

.

PROOF. Fix an integer r ≥ 0 and x, y ∈ V [G]. Let k be the number of coordi-
nates at which x and y differ. Proposition 5.8 gives

Ir(x, y) ≥ ksr

2 min(2r + 1, k)
(G)
≥ sr

2
(G)
.

Furthermore, Propositions 5.8 and 5.9 give

Ir(x, y) ≥ max
(

ksr

2(2r + 1)
(G)
,
(
(G) − k + 1)sr

4(2r + 1)
(G)

)
≥ sr

8(2r + 1)
.

Since both the above bounds hold uniformly in x and y, the corollary follows. �

5.1.3. Isoperimetric relations. In this section, we note several simple relations
for sr and Vol(r).

PROPOSITION 5.11. For any t ≥ 0 and torus G with side lengths satisfying
(2), we have 
(G)

2 Vol(t) ≤ ∑t
r=0 sr ≤ 
(G)Vol(t).

PROOF. Fix v ∈ G. The upper bound follows directly from (65). To see
the lower bound, note that by (65), it is sufficient to show that

∑t
r=0 |Er(v)| ≥

1
2 |Bt(v)|. For 0 ≤ r ≤ t , let E′

r (v) := {w ∈ Sr(v)|w + ed ∈ Sr−1}. Noting that
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Er(v) = {w ∈ Sr(v)|w + ed ∈ Sr+1} and using the fact that nd is even, we have
Sr(v) = Er(v) ∪ E′

r (v) for all r . By our definitions and symmetry, |E′
r (v)| =

|Er−1(v)| for all 1 ≤ r ≤ t . Thus,

∣∣Bt(v)
∣∣ =

t∑
r=0

|Sr | ≤
t∑

r=0

∣∣Er(v)
∣∣ + ∣∣E′

r (v)
∣∣ =

t∑
r=0

∣∣Er(v)
∣∣ + t−1∑

r=0

∣∣Er(v)
∣∣

≤ 2
t∑

r=0

∣∣Er(v)
∣∣

as required. �

PROPOSITION 5.12. There exists c > 0 such that for any d ≥ 4, torus G with
side lengths satisfying (2) and integer 0 ≤ r ≤ diam(G) [where diam(G) is the
diameter of G], we have Vol(r) ≥ crd2.

PROOF. Fix d ≥ 4 and a torus G with side lengths satisfying (2). Fix also
0 ≤ r ≤ diam(G) and v ∈ V [G]. The claim holds for 0 ≤ r ≤ 2 since Vol(0) = 1,
Vol(1) = 
(G) + 1 ≥ d and Vol(2) ≥ (d

2

)
. Thus, we assume that r ≥ 3. Let E be

the set of all vertices of the form v + ei + ej + ek + �ed for 1 ≤ i < j < k ≤ d − 1
and 0 ≤ � ≤ min(r − 3, nd). Note that E ⊆ Br(v). Since r ≤ diam(G) ≤ dnd , we
deduce

|E| =
(
d − 1

3

)(
min(r − 3, nd) + 1

) ≥ cd3(
min(r + 1, nd)

) ≥ crd2

for some c > 0, as required. �

PROPOSITION 5.13. For any torus G with side lengths satisfying (2) and any
integer 0 ≤ r ≤ nd−3

4 , we have Vol(2r + 1) ≥ 2 Vol(r).

PROOF. Fix v0 ∈ V [G] and let B1 := Br(v0) and B2 := B2r+1(v0). B1 ⊆ B2

by definition. Hence, it is sufficient to define a one-to-one T : B1 → B2 satisfying
T (B1)∩B1 =∅. Let w ∈ B1 and write w = v + ked for some integer −r ≤ k ≤ r ,
where v = v0 + ∑d−1

i=0 kiei for some integers ki . If k ≥ 0, define T (w) := v + (k +
r + 1)ed and if k < 0, define T (w) := v + (k − r)ed . It is straightforward to check
that T has the required properties. �

PROPOSITION 5.14. For any λ > 0, there exists d0(λ) such that for all d ≥
d0(λ) and tori G with side lengths satisfying (2), if k := min{m ∈ N|Vol(m) ≥
λ log2 d log |V [G]|} then:

1. If nd ≤ d3 then k = 2.
2. If nd ≥ d3 then s� ≤ (d − 1)nd for all integer 0 ≤ � ≤ k.
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PROOF. Fix λ > 0 and let G be a torus with side lengths satisfying (2). Let k

be as in the lemma.
For part 1, we note first that Vol(1) = 
(G)+1 ≤ 3d and Vol(2) ≥ cd2 for some

c > 0 (independent of d and G). Second, we note that |V [G]| ≥ 2d and |V [G]| ≤
nd

d ≤ d3d . Thus, Vol(1) < λ log2 d log |V [G]| and Vol(2) ≥ λ log2 d log |V [G]| if
d0(λ) is sufficiently large, as required.

For part 2, fix 0 ≤ � ≤ k. By Proposition 5.11, s� ≤ 
(G)Vol(k). Also by our
definitions, Vol(m) ≤ (
(G) + 1)Vol(m − 1) for all m ∈ N. Thus,

s� ≤ 
(G)Vol(k) ≤ 
(G)
(

(G) + 1

)
Vol(k − 1) < 6d2λ log2 d log

∣∣V [G]∣∣.
Since we also have log |V [G]| ≤ d lognd , it follows that s� ≤ (d − 1)nd whenever

nd

lognd

≥ 6d3λ log2 d

d − 1
,

which is satisfied if nd ≥ d3 and d0(λ) is sufficiently large. �

5.2. Height. In this section, we prove Theorem 2.1, Corollary 2.2 and Theo-
rems 1.2 and 2.10.

We start by defining the level set of a function at height i. For a torus G [with
side lengths satisfying (2)], legal boundary conditions (B,μ), g ∈ Hom(G,B,μ)

and i ∈ N, assuming μ(b) ≤ i − 1 for all b ∈ B , we define

Ai := union of the connected components of points of

B in G \ {
v ∈ V [G]|g(v) = i

}
and LSi (g, x,B) to be the empty set if x ∈ Ai or otherwise be all edges between
Ai and the connected component of x in V [G] \ Ai . In words, LSi (g, x,B) is
the outermost height i level set of g around x when coming from B . Note that
if it is not empty then it belongs to OMCut(x,B) ∪ OMCut(B, x). Note also that
LS1(g, x,B) = LS(g, x,B). As a first step in the proof of Theorem 2.1, we estab-
lish the following proposition.

PROPOSITION 5.15. There exist d0 ∈ N, c > 0 such that for all d ≥ d0, non-
linear tori G, legal boundary conditions (B,μ) with nonpositive μ, x ∈ V [G] and
t ∈ N, if we let f ∈R Hom(G,B,μ) and define, for each integer 1 ≤ i ≤ t ,

Li,t := min
(∣∣LSi (g, x,B)

∣∣|g ∈ Hom(G,B,μ), g(x) ≥ t
)
,

where Li,t is defined to be infinity if the set minimized over is empty, then

(71) P
(
f (x) ≥ t

) ≤ d3t exp
(
−c

∑t
i=1 Li,t

d log2 d

)
.



1426 R. PELED

For the proof, we fix a nonlinear torus G, legal boundary conditions (B,μ) with
nonpositive μ and x ∈ V [G], and set f ∈R Hom(G,B,μ). We will need the fol-
lowing definitions and lemma. Define Bi := Ein(LSi (f, x,B), x) if LSi (f, x,B) �=
∅ and otherwise Bi := ∅, and μi : Bi → Z by μi(b) := i for all b ∈ Bi . For a set
C ⊆ V [G], we shall write f |C for the function f restricted to C.

LEMMA 5.16. Conditionally on LS1(f, x,B), we have on the event LS1(f,

x,B) �= ∅ that

f |C d= f ′|C
for C := comp(LS1(f, x,B), x) and f ′ ∈R Hom(G,Bi,μi).

The lemma is standard and follows from the facts that the event LSi (f, x,B) =
�, for some � ∈ MCut(x,B), is determined solely by the values of f outside
of comp(�, x) (since μ is nonpositive), that the constraints on f are of nearest-
neighbor type and that the measure on f is uniform. We omit the detailed proof.

PROOF OF PROPOSITION 5.15. It is sufficient to show that under the assump-
tions of the proposition, for any integers (Li)

t
i=1 ⊆N, we have

(72) P
(∣∣LSi (f, x,B)

∣∣ = Li for all 1 ≤ i ≤ t
) ≤ dt exp

(
−c

∑t
i=1 Li

d log2 d

)
for some c > 0. The proposition follows from this inequality by summing over all
Li ≥ Li,t for 1 ≤ i ≤ t [using that if g ∈ Hom(G,B,μ) satisfies g(x) ≥ t then
necessarily LSi (g, x,B) �=∅ for 1 ≤ i ≤ t].

We prove (72) by induction on t . For t = 1, the inequality follows from Theo-
rem 2.8 (taking d large enough). Assume (72) holds for any legal boundary condi-
tions (B,μ) with nonpositive μ, for t = 1 and for a given t ≥ 1, and let us prove
it for t + 1. Fix a nonlinear torus G, legal boundary conditions (B,μ) with non-
positive μ and integer (Li)

t+1
i=1 ⊆ N, and let f ∈R Hom(G,B,μ). Conditioning on

LS1(f, x,B) and on the event LS1(f, x,B) �= ∅, we let f ′ ∈R Hom(G,B1,μ1)

and note that since, for i ≥ 2, LSi (f, x,B) depends only on f |comp(LS1(f,x,B),x),

we have by Lemma 5.16 that LSi (f, x,B)
d= LSi (f

′, x,B1) for all i ≥ 2. Thus, by
the induction hypothesis for t = 1 we have

P
(∣∣LSi (f, x,B)

∣∣ = Li for all 1 ≤ i ≤ t + 1
)

= P
(∣∣LS1(f, x,B)

∣∣ = L1
)

× P
(∣∣LSi (f, x,B)

∣∣ = Li for all 2 ≤ i ≤ t + 1|∣∣LS1(f, x,B)
∣∣ = L1

)
(73)

≤ d exp
(
− cL1

d log2 d

)
× P

(∣∣LSi

(
f ′, x,B1

)∣∣ = Li for all 2 ≤ i ≤ t + 1|∣∣LS1(f, x,B)
∣∣ = L1

)
.



HIGH-DIMENSIONAL LIPSCHITZ FUNCTIONS ARE TYPICALLY FLAT 1427

We now note that if we set f ′′ := f ′ − 1 then f ′′ ∈R Hom(G,B1,μ − 1),
LSi (f

′, x,B1) = LSi−1(f
′′, x,B1) for i ≥ 2 and (B1,μ1 − 1) are legal bound-

ary conditions (if we switch the roles of V even and V odd or alternatively shift B1
by one coordinate on the torus) having μ1 − 1 nonpositive. Thus, since by our in-
duction hypothesis the bound (72) holds uniformly in the boundary conditions, we
obtain

P
(∣∣LSi

(
f ′, x,B1

)∣∣ = Li for all 2 ≤ i ≤ t + 1|∣∣LS1(f, x,B)
∣∣ = L1

)
= P

(∣∣LSi

(
f ′′, x,B1

)∣∣ = Li+1 for all 1 ≤ i ≤ t |∣∣LS1(f, x,B)
∣∣ = L1

)
(74)

≤ dt exp
(
−c

∑t
i=1 Li+1

d log2 d

)
.

Inequality (72) now follows for t + 1 by (73) and (74), completing the proof of the
induction and the proposition. �

We are now ready to prove the theorem.

PROOF OF THEOREM 2.1. We assume d is sufficiently large for the following
arguments and fix a nonlinear torus G, legal boundary conditions (B,μ) with non-
positive μ, x ∈ V [G] and t ∈ N. Let f ∈R Hom(G,B,μ). By Proposition 5.15,
we have

(75) P
(
f (x) ≥ t

) ≤ d3t exp
(
−c

∑t
i=1 Li,t

d log2 d

)
.

We next aim to estimate Li,t from below. For an integer r ≥ 0, we de-
fine Br(B) := ⋃

v∈B Br(v) and observe that for all integers 1 ≤ i ≤ t and g ∈
Hom(G,B,μ) with g(x) ≥ t we have

(76) LSi (g, x,B) ∈ OMCut
(
Bt−i(x),Bi−1(B)

) ∪ OMCut
(
Bi−1(B),Bt−i(x)

)
since g changes by one between adjacent vertices. Thus, recalling the definitions
of Section 5.1, we have (since B �= ∅)

Li,t ≥ Imin(i−1,t−i) and(77)

Li,t ≥ It−i(B).(78)

We now proceed to examine several cases separately.

1. Assume t ≥ 3. By (77) and Theorem 5.1 we have Li,t ≥ c1smin(i−1,t−i)

min(t,d)
for some

c1 > 0 and all 1 ≤ i ≤ t . Setting r0 := 
t/2� − 1 and plugging the last bound
into (75), we obtain

P
(
f (x) ≥ t

) ≤ d3t exp
(
− c2

∑r0
r=0 sr

min(t, d)d log2 d

)
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for some c2 > 0. Now applying Proposition 5.11 we deduce

P
(
f (x) ≥ t

) ≤ d3t exp
(
− c3 Vol(r0)

min(t, d) log2 d

)
for some c3 > 0. Finally, noting that if t > diam(G) then P(f (x) > t) = 0
since μ is nonpositive, whereas if t ≤ diam(G) then Proposition 5.12 implies
Vol(r0) ≥ c4td

2 for some c4 > 0 (using that t ≥ 3, and hence r0 ≥ 1), from
which it follows (checking separately the cases t ≤ d and t > d) that for some
c5 > 0,

P
(
f (x) ≥ t

) ≤ exp
(
− c5 Vol(r0)

min(t, d) log2 d

)
.

2. Assume t ≥ 3 and Vol(
t/2� − 1) ≤ 1
3nd . Setting r0 := 
t/2� − 1, we observe

that the volume condition and Proposition 5.11 imply that s� ≤ (d − 1)nd for
all 0 ≤ � ≤ r0. Thus, by (77) and Theorem 5.1 we have Li,t ≥ smin(i−1,t−i) for
all 1 ≤ i ≤ t . Continuing in the same way as in the first case above, we deduce
from this that for some c > 0,

P
(
f (x) ≥ t

) ≤ exp
(
−c Vol(r0)

log2 d

)
.

3. Assume t ≥ 2 and B has full projection. By (78) and Theorem 5.2, we have
Li,t ≥ st−1 for all 1 ≤ i ≤ t . Continuing in the same way as in the first case
above, we deduce from this that for some c > 0,

P
(
f (x) ≥ t

) ≤ exp
(
−c Vol(t − 1)

log2 d

)
. �

PROOF OF COROLLARY 2.2. Under the assumptions of Theorem 2.1, we
have for any v ∈ V even, by the third part of Theorem 2.1, that P(f (v) ≥ 2) ≤
exp(− c Vol(1)

log2 d
) ≤ exp(− cd

log2 d
). Since μ is zero, we also obtain P(f (v) ≤ −2) ≤

exp(− cd

log2 d
) by symmetry of the distribution of f (v) around 0. The corollary fol-

lows. �

PROOF OF THEOREMS 1.2 AND 2.10. As explained before Theorem 2.10,
for the zero BC (B,μ), the set Hom(G,B,μ) is in bijection with Col(G,B,μ)

under the map f �→ f mod 3. Thus, Theorem 2.10 is an immediate corollary of
Corollary 2.2. Theorem 1.2 is the special case of Theorem 2.10 when G = Z

d
n . �

5.3. Range. In this section, we prove Theorems 2.3 and 2.6, and Corollary 2.5.
We deduce Theorems 1.1 and 1.4 for the homomorphism case. We start with a
proposition which relates the range to isoperimetric quantities.
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PROPOSITION 5.17. There exists c, d0 > 0 such that for all d ≥ d0, nonlinear
tori G and legal boundary conditions (B,μ) with zero μ, if f ∈R Hom(G,B,μ)

and k ∈N, we have

P
(
Range(f ) > 2k + 1

) ≤ 9d6k+3∣∣V [G]∣∣4 exp
(
−c

∑k
i=0 Ii

d log2 d

)
.

PROOF. We assume d is sufficiently large for the following arguments and
fix a nonlinear torus G and legal boundary conditions (B,μ) with zero μ. Let
f ∈R Hom(G,B,μ) and k ∈ N. We denote by A the set of 4-tuples (x, y, t, s) with
x, y ∈ V [G], t, s ∈ Z, and t − s = 2k + 1 for which there exists g ∈ Hom(G,B,μ)

satisfying g(x) = t and g(y) = s. We observe that |A| ≤ (2|V [G]|+1)2|V [G]|2 ≤
9|V [G]|4 since μ is zero and diam(G) ≤ |V [G]|. Defining the events � :=
{Range(f ) > 2k + 1} and, for γ = (x, y, t, s) ∈ A, �γ := {f (x) = t and f (y) =
s}, we note that

� ⊆ ⋃
γ∈A

�γ .

Hence, by a union bound, it is sufficient to show that for each fixed γ ∈A we have

(79) P(�γ ) ≤ d6k+3 exp
(
−c

∑k
i=0 Ii

d log2 d

)
for some c > 0.

We proceed to prove (79). Fix γ = (x, y, t, s) ∈ A. We note that since μ is
zero, we have that (y, x,−s,−t) ∈ A and P(�γ ) = P(�(y,x,−s,−t)) by symmetry
of the model under replacing f by −f . Hence, we can, and do, assume WLOG
that t ≥ k + 1 (using that t − s = 2k + 1). We observe that

(80) P(�γ ) = P
(
f (y) = s

)
P

(
f (x) = t |f (y) = s

) ≤ P
(
f (x) ≥ t |f (y) = s

)
.

We let B ′ := B ∪ {y} and μ′ : B ′ → Z be defined by μ′(v) = μ(v) for v ∈ B

and μ′(y) = s. We then let f ′ ∈R Hom(G,B ′,μ′) and note that conditioned on

f (y) = s, f
d= f ′. Hence, by (80), we have

(81) P(�γ ) ≤ P
(
f ′(x) ≥ t

)
.

Define r := max(s,0). We define μ′′ : B ′ → Z by μ′′(v) := μ′(v) − r . We ob-
serve that (B ′,μ′′) is a legal boundary condition with nonpositive μ′′ (if needs
be, we exchange V even and V odd to ensure this). Furthermore, letting f ′′ ∈R

Hom(G,B ′,μ′′), we note that f ′′ d= f ′ − r . Thus,

(82) P
(
f ′(x) ≥ t

) = P
(
f ′′(x) ≥ t − r

)
.
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Denoting m := t −r , we note that k+1 ≤ m ≤ 2k+1 since t ≥ k+1, t −s = 2k+1
and by the definition of r . Furthermore, m − μ′′(y) = t − r − (s − r) = t − s =
2k + 1. By Proposition 5.15 applied to f ′′ (using that μ′′ is nonpositive), we have

(83) P
(
f ′′(x) ≥ m

) ≤ d3m exp
(
−c

∑m
i=1 Li,m

d log2 d

)
for some c > 0, where for 1 ≤ i ≤ m,

Li,m := min
(∣∣LSi

(
g, x,B ′)∣∣|g ∈ Hom

(
G,B ′,μ′′), g(x) ≥ m

)
,

with Li,m defined to be infinity if the set minimized over is empty. Fix m − k ≤
i ≤ m and note that i ≥ 1. Fix g ∈ Hom(G,B ′,μ′′) satisfying g(x) ≥ m. Since g

changes by one between adjacent vertices, we deduce that

LSi

(
g, x,B ′) ∈ OMCut

(
Bm−i (x),Bi−g(y)−1(y)

)
∪ OMCut

(
Bi−g(y)−1(y),Bm−i(x)

)
.

Moreover, since by our assumption m−i ≤ k and i−g(y)−1 = i−μ′′(y)−1 ≥ k,
we conclude that

LSi

(
g, x,B ′) ∈ OMCut

(
Bm−i (x),Bm−i(y)

) ∪ OMCut
(
Bm−i (y),Bm−i(x)

)
.

Thus, by definition, |LSi (g, x,B ′)| ≥ Im−i . Plugging this into (83) and using that
k + 1 ≤ m ≤ 2k + 1 we obtain

P
(
f ′′(x) ≥ m

) ≤ d3m exp
(
−c

∑m
i=1 Im−i

d log2 d

)
≤ d6k+3 exp

(
−c

∑k
i=0 Ii

d log2 d

)
.

Substituting this last inequality into (82) and (81) proves (79), from which the
proposition follows. �

PROOF OF THEOREM 2.3. Fix λ > 0 to be chosen below. We assume that d is
sufficiently large for the following arguments and, in particular, d ≥ d0(λ) for the
d0(λ) of Proposition 5.14. Fix a nonlinear torus G and legal boundary conditions
(B,μ) with zero μ. Set k := min{m ∈ N|Vol(m) ≥ λ log2 d log |V [G]|} and let
f ∈R Hom(G,B,μ). By Proposition 5.17, we have

(84) P
(
Range(f ) > 2k + 1

) ≤ 9d6k+3∣∣V [G]∣∣4 exp
(
−c0

∑k
i=0 Ii

d log2 d

)
for some c0 > 0. Next, we note that by Proposition 5.14 [using that d ≥ d0(λ)],
either k = 2 or si ≤ (d − 1)nd for all 0 ≤ i ≤ k. In both cases, we obtain by Theo-
rem 5.1 that Ii ≥ c1sm−i for some c1 > 0 and all 0 ≤ i ≤ k. Plugging this inequality
into (84) and using Proposition 5.11, we obtain

(85) P
(
Range(f ) > 2k + 1

) ≤ 9d6k+3∣∣V [G]∣∣4 exp
(
−c2 Vol(k)

log2 d

)
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for some c2 > 0. Noting now that if k > diam(G) then P(Range(f ) > 2k + 1) = 0
and that if k ≤ diam(G), then by Proposition 5.12 we have Vol(k) ≥ c3kd2 for
some c3 > 0, we deduce (using that k ≥ 1 by assumption) that

(86) P
(
Range(f ) > 2k + 1

) ≤ ∣∣V [G]∣∣4 exp
(
−c4 Vol(k)

log2 d

)
for some c4 > 0. Finally, taking λ := 8

c4
, we obtain by the definition of k that

P
(
Range(f ) > 2k + 1

) ≤ exp
(
−

1
2c4 Vol(k)

log2 d

)
≤ ∣∣V [G]∣∣−4

,

as required. �

PROOF OF COROLLARY 2.5. Assume d is sufficiently large for the fol-
lowing arguments and fix a nonlinear torus G and a one-point BC (B,μ).
Let f ∈R Hom(G,B,μ) and r := min{m ∈ N|Vol(m) ≥ log |V [G]|}. Let also
k1 := min{m ∈ N ∪ {0}|Vol(m) ≤ 1

2 log |V [G]|} and k2 := min{m ∈ N|Vol(m) ≥
log3 d · log |V [G]|}. By Theorems 2.4 and 2.3, we have

P
(
k1 ≤ Range(f ) ≤ k2

) ≥ 1 − 1

|V [G]|3 .

Thus, it remains only to note that since Vol(dnd) = |V [G]| ≥ log3 d · log |V [G]|,
Proposition 5.13 implies that Cdr ≥ k2 for some Cd > 0 and either cdr ≤ k1 for
some cd > 0, or k1 = 0 and cdr ≤ 1 for some cd > 0. Since Range(f ) ≥ 1 with
probability 1, the corollary follows. �

PROOF OF THEOREM 1.1 FOR THE HOMOMORPHISM CASE. The theorem
follows by specializing Theorems 2.1, 2.3 and Corollary 2.5 to the case G = Z

d
n ×

Z
m
2 (with m possibly equal to 0 and d + m large enough so that these theorems

apply) and observing that for these graphs there exist Cd,m, cd,m > 0 such that
|V [G]| = 2mnd , diam(G) ≥ 1

2n and cd,msd ≤ |Vol(s)| ≤ Cd,msd for integer 1 ≤
s ≤ diam(G) [we are also using the fact that under the assumptions of the theorem,
P(f (x) > diam(G)) = 0 for all x since f changes by one between adjacent sites].

�

PROOF OF THEOREM 2.6. Fix an integer k ≥ 2. We assume d is sufficiently
large as a function of k for the following arguments and fix a nonlinear torus G

and legal boundary conditions (B,μ) with zero μ. Let f ∈R Hom(G,B,μ). By
Proposition 5.17, we have

(87) P
(
Range(f ) > 2k + 1

) ≤ 9d6k+3∣∣V [G]∣∣4 exp
(
−c

∑k
i=0 Ii

d log2 d

)
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for some c > 0. By Theorem 5.1, we have Ii ≥ cksi for some ck > 0 and all 0 ≤
i ≤ k. Plugging this into (87) and using Proposition 5.11, we obtain

(88) P
(
Range(f ) > 2k + 1

) ≤ 9d6k+3∣∣V [G]∣∣4 exp
(
−c′

k Vol(k)

log2 d

)
for some c′

k > 0. As in the passage from (85) to (86), this implies

P
(
Range(f ) > 2k + 1

) ≤ ∣∣V [G]∣∣4 exp
(
−c′′

k Vol(k)

log2 d

)
for some c′′

k > 0. Now if d ≥ k, then Vol(k) ≥ (d
k

) ≥ c′′′
k dk for some c′′′

k > 0, which,
when plugged into the previous inequality, gives

P
(
Range(f ) > 2k + 1

) ≤ ∣∣V [G]∣∣4 exp
(
− c̃kd

k

log2 d

)
for some c̃ > 0. Thus, the result follows from the assumption that |V [G]|4 ≤
exp( c̃kd

k

2 log2 d
). �

PROOF OF THEOREM 1.4 FOR THE HOMOMORPHISM CASE. The theorem
follows by specializing Theorem 2.6 to the case G = Z

d
n . �

5.4. Lipschitz. In this section, we prove our theorems for Lipschitz height
functions: Theorems 2.11, 2.14, 2.16, 2.18, 2.19, the Lipschitz case of Theo-
rems 1.1 and 1.4 and Corollaries 2.12, 2.13, 2.15 and 2.17.

PROOF OF THEOREM 2.11. As in the theorem, fix graphs G, G2 and boundary
conditions (B,μ), (B2,μ2) and define T : Hom(G2,B2,μ2) → Lip(G,B,μ) by

T (f )(v) := max
(
f

(
(v,0)

)
, f

(
(v,1)

))
and also S : Lip(G,B,μ) → Hom(G2,B2,μ2) by

(89) S(g)
(
(v, i)

) :=
{
g(v), i = g(v) mod 2,

g(v) − 1, i �= g(v) mod 2.

It is straightforward to verify that if (B,μ) is a Lipschitz legal boundary conditions
then for each g ∈ Lip(G,B,μ), S(g) ∈ Hom(G2,B2,μ2) and T (S(g)) = g. Fur-
thermore, if (B2,μ2) is a homomorphism legal boundary conditions then for each
f ∈ Hom(G2,B2,μ2), T (f ) ∈ Lip(G,B,μ) and S(T (f )) = f . Thus, (B,μ) is
a Lipschitz legal boundary condition if and only if (B2,μ2) is a homomorphism
legal boundary condition and in this case, T is a bijection and S = T −1.

Finally, we observe that if (B2,μ2) is a homomorphism legal boundary condi-
tion and f ∈ Hom(G2,B2,μ2) then by definition

max
{
f

(
(v, i)

)|(v, i) ∈ G2
} = max

{
T (f )(v)|v ∈ G

}
and

min
{
f

(
(v, i)

)|(v, i) ∈ G2
} = min

{
T (f )(v)|v ∈ G

} − 1.
(90)
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We conclude that Range(T (f )) = Range(f ) − 1, as required. �

PROOF OF COROLLARY 2.12. Let (B,
) be Lipschitz legal BC with zero–
one 
 and set B ′

2 := {(v,0)|v ∈ B} and μ′
2 : B ′

2 → Z to be identically zero. Let
T be the Yadin bijection and S be the transformation defined in (89) above. It
is straightforward to verify that for any f ∈ Hom(G2,B

′
2,μ

′
2) we have T (f ) ∈

Lip(G,B,
) and S(T (f )) = f , and that for any g ∈ Lip(G,B,
) we have
S(g) ∈ Hom(G2,B

′
2,μ

′
2) and T (S(g)) = g. Furthermore, as in (90), for any

f ∈ Hom(G2,B
′
2,μ

′
2) we have Range(T (f )) = Range(f ) − 1. The corollary fol-

lows. �

PROOF OF COROLLARY 2.13. Fix graphs G and G2 as in the corollary and
let (B,μ) and (B ′

2,μ
′
2) be one-point BCs on G and G2, respectively. Assume

first that B ′
2 = {(v, i)} for some i ∈ {0,1} and the same v ∈ V [G] for which

B = {v}. Let g ∈R Lip(G,B,μ) and f ∈R Hom(G2,B
′
2,μ

′
2). Define also B̃2 =

{(v, i), (v,1 − i)} and μ̃2 : B̃ → Z by μ̃2((v, i)) = 0 and μ̃2((v,1 − i)) = −1.
Let f̃ ∈ Hom(G2, B̃2, μ̃2) [noting that (B̃2, μ̃2) are legal BC]. By Theorem 2.11,

Range(g)
d= Range(f̃ ) − 1. Next, we observe that by symmetry of the distribution

of f under negating all values, f may be sampled by sampling f̃ with probabil-

ity 1
2 and −f̃ with probability 1

2 . Thus, Range(f )
d= Range(f̃ ) which shows that

Range(g)
d= Range(f ) − 1 as required.

Finally, suppose B ′
2 = {(w, i)} for some i ∈ {0,1} and w ∈ V [G] which is possi-

bly different from v. Letting (Bv,2,μv,2) be the one-point BC with Bv,2 = {(v, j)}
for some j and h ∈ Hom(G2,Bv,2,μv,2), the corollary follows by noting that

Range(f )
d= Range(h) since there exists a translation of the torus carrying (v, j)

into (w, i). �

We proceed to deduce analogues of the theorems of Section 2.2 for Lipschitz
height functions. We start by making a few observations. Fix a torus G and let
G2 := G×Z2. First, note that if G is a nonlinear torus, then G2 is also a nonlinear
torus. Second, note that if g ∈ Lip(G,B,μ) for some Lipschitz legal BC (B,μ)

and if t ∈ N, v ∈ V [G] and S is the inverse Yadin bijection defined in (89) then

(91) g(v) ≥ t if and only if max
(
S−1(g)

(
(v,0)

)
, S−1(g)

(
(v,1)

)) ≥ t.

Finally, note that for any r ∈ N,

(92) VG(r) ≤ VG2(r) ≤ 2VG(r),

where VG(r) is the volume of a (graph) ball of radius r in G and VG2(r) is the
same in G2.

PROOF OF THEOREM 2.14. The theorem follows from the Yadin bijection
Theorem 2.11, from Theorem 2.1 and observation (91). For the second part of the
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theorem, we add to these observation (92) [which implies that if VG(
t/2� − 1) ≤
1
6nd then VG2(
t/2� − 1) ≤ 1

3nd , where nd is the largest dimension of both G and
G2] and for the last part of the theorem we use that if B has full projection in G

then B2 = {(v, i)|v ∈ B, i ∈ {0,1}} has full projection in G2. �

PROOF OF COROLLARY 2.15. Letting (B ′
2,μ

′
2) be the BC corresponding to

(B�,
) as in Corollary 2.12, we note that B ′
2 has full projection in G2 and μ′

2 is
zero. Thus, Corollary 2.2 implies that f ∈R Hom(G2,B

′
2,μ

′
2) will satisfy

E|{(v,0) ∈ V even
2 |f ((v,0)) �= 0}|
|V even

2 | ≤ exp
(
− cd

log2 d

)
.

It remains to notice that f ((v,0)) = 0 implies that max(f ((v,0)), f ((v,1))) ∈
{0,1} and to apply Corollary 2.12. �

PROOF OF THEOREM 2.16. Let (B ′
2,μ

′
2) be either the BC corresponding to

(B,
) by Corollary 2.12, in the case that g ∈R Lip(G,B,
), or a one-point BC
on G2, in the case that g ∈R Lip(G,B,μ) for a one-point BC (B,μ). Applying
Theorem 2.3 to our setup, we have that there exists d0 ∈ N, C > 0 such that (so
long as d ≥ d0) if we set

k2 := min
{
m ∈ N|VG2(m) ≥ C log2 d log

∣∣V [G2]
∣∣}

and let f ∈R Hom(G2,B2,μ2), then

P
(
Range(f ) > 2k2 + 1

) ≤ 1

|V [G2]|4 .

Hence, Corollaries 2.12 and 2.13 imply that (for the g of the theorem)

(93) P
(
Range(g) > 2k2

) ≤ 1

|V [G2]|4 .

Letting now

k := min
{
m ∈ N|VG(m) ≥ 2C log2 d log

∣∣V [G]∣∣}
we observe that k ≥ k2 since VG(m) ≤ VG2(m) by (92) and 2 log |V [G]| ≥
log |V [G2]| since |V [G]| = 1

2 |V [G2]| and |V [G]| ≥ 2d . Thus, (93) implies

P
(
Range(g) > 2k

) ≤ 1

|V [G2]|4 ≤ 1

|V [G]|4 ,

as required. �

PROOF OF COROLLARY 2.17. Let (B2,μ2) be a one-point BC on G2. By
Corollary 2.5, there exists d0 ∈ N, Cd, cd > 0 such that (so long as d ≥ d0) if
f ∈R Hom(G2,B2,μ2) then

P
(
cdr2 ≤ Range(f ) ≤ Cdr2

) ≥ 1 − 1

|V [G2]|3 ,
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where r2 := min{m ∈ N|VG2(m) ≥ log |V [G2]|}. By Corollary 2.13, we deduce
that

P
(
cdr2 ≤ Range(g) + 1 ≤ Cdr2

) ≥ 1 − 1

|V [G2]|3 .

Since Range(g) ≥ 1 with probability 1 and |V [G]| = 1
2 |V [G2]|, we obtain

P

(
cd

2
r2 ≤ Range(g) ≤ Cdr2

)
≥ 1 − 1

|V [G2]|3 ≥ 1 − 1

|V [G]|3 .

Hence, defining r := min{m ∈ N|VG(m) ≥ log |V [G]|}, the corollary will follow
if we show that c′

d ≤ r2
r

≤ C′
d for some C′

d, c′
d > 0. This, in turn, follows from (92)

and Proposition 5.13 (as in the proof of Corollary 2.5). �

PROOF OF THEOREM 2.18. The theorem follows directly from Theorem 2.6
using Corollaries 2.12 and 2.13. �

PROOF OF THEOREM 2.19. Noting that if G is λ-linear with λ < 1
4 log 2 then

G2 = G × Z2 is λ2-linear with λ2 < 1
2 log 2 , the theorem follows directly from

Theorem 2.7 using Corollary 2.13 (with a possibly smaller α than in Theorem 2.7).
�

PROOF OF THEOREMS 1.1 AND 1.4 FOR LIPSCHITZ CASE. Theorem 1.1 for
the Lipschitz case follows by specializing Theorem 2.14 and Corollary 2.17 to the
case G = Z

d
n × Z

m
2 , in a similar way as it was done when proving the theorem for

the homomorphism case. Theorem 1.4 for the Lipschitz case follows by specializ-
ing Theorem 2.19 to the case G = Z

d
n . �

6. Linear tori. In this section, we prove Theorem 2.7.
The idea of the proof is to reduce the problem to a problem on a one-dimensional

torus and use the known fact that a random walk bridge has large fluctuations. We
first introduce the definitions and lemmas we use and show how they suffice to
prove the theorem. Then we give the proof of these lemmas.

Given 0 < λ < 1
2 log 2 , we fix parameters β,γ > 0 to some arbitrary values sat-

isfying

γ > 9β,(94)

β + γ + λ log 2 < 1/2.(95)

We fix also a λ-linear torus G and set

n := nd and m :=
d−1∏
i=1

ni
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so that

(96) m ≤ λ logn

by definition of λ-linear torus. We let G− be the (d − 1)-dimensional torus with
dimensions n1, . . . , nd−1 and fix a distinguished vertex of G− denoted by �0. We
fix a coordinate system on V [G] such that

V [G] = {
(x, y)|0 ≤ x ≤ n − 1, y ∈ V

[
G−]}

and two vertices (x1, y1), (x2, y2) are adjacent if |x1 −x2| ∈ {1, n− 1} and y1 = y2
or x1 = x2 and y1 is adjacent to y2 in G−. WLOG, we assume the coordinate
system is chosen so that the boundary conditions are B = {(0, �0)} and μ((0, �0)) =
0. Correspondingly, the bi-partition classes of G, V even and V odd, are chosen so
that (0, �0) ∈ V even.

For η > 0 and even t , let

�low,η := {
f ∈ Hom(G,B,μ)|Range(f ) ≤ ηnβ}

,

�t :=
{
f ∈ Hom(G,B,μ)|∣∣{v ∈ V [G]|f (v) = t

}∣∣ ≥ 1

2
n1−βm

}
.

Our first lemma is the following.

LEMMA 6.1. |�low,1| ≤ nβ |�0 ∩ �low,2|.

We continue with the following definitions. For even 0 ≤ x ≤ n − 1, let

W 0
x = {

(z,w) ∈ V [G]|z ∈ {x, x + 1} and (z,w) ∈ V even}
,

W 1
x = {

(z,w) ∈ V [G]|z ∈ {x + 1, x + 2 mod n} and (z,w) ∈ V odd}
.

We then say that f ∈ Hom(G,B,μ) has a wall at x if f is constant on W 0
x and

on W 1
x (different constants on each set). We say that the wall is of height h if f

equals h on W 0
x . We call the wall an up-wall if f (W 1

x ) = f (W 0
x )+1 and otherwise

a down-wall. Let

W(f ) := {even 0 ≤ x ≤ n − 1|f has a wall at x},
�w := {

f ∈ Hom(G,B,μ)|∣∣W(f )
∣∣ ≤ nγ }

.

Our second (and main) lemma is the following.

LEMMA 6.2. |�0 ∩ �w| ≤ 4(nγ +4m)m22m−1

n1−β−γ |Hom(G,B,μ)|.

Next, we introduce a certain balancedness condition controlling the difference
in the number of up-walls and down-walls of a function. For f ∈ Hom(G,B,μ),
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let s(f ) ∈ {−1,1}W(f ) be defined by s(f )x = 1 if the wall at x is an up-wall and
s(f )x = −1 if it is a down-wall. Let

�b :=
{
f ∈ Hom(G,B,μ)

∣∣∣∣∣∣∣ ∑
x∈W(f )

s(f )x

∣∣∣∣ >
∣∣W(f )

∣∣ − nγ−β

8

}
.

LEMMA 6.3. There exists n0 = n0(β, γ ) such that if n ≥ n0 then |�b ∩
�low,2 ∩ �c

w| ≤ 10n2β |�c
b ∩ �low,4 ∩ �c

w|.

We continue with one final lemma.

LEMMA 6.4. There exists n0 = n0(β, γ ) and C > 0 such that if n ≥ n0 we
have |�c

b ∩ �low,4| ≤ C
n(γ−3β)/2 |Hom(G,B,μ)|.

PROOF OF THEOREM 2.7. Putting the previous four lemmas together, we
finally obtain, for n ≥ n0(β, γ ) for a sufficiently large n0(β, γ ) and some
C,C′,C′′ > 0,

|�low,1| Lemma 6.1≤ nβ |�low,2 ∩ �0| ≤ nβ(|�0 ∩ �w| + ∣∣�low,2 ∩ �c
w
∣∣)

≤ nβ |�0 ∩ �w| + nβ(∣∣�b ∩ �low,2 ∩ �c
w
∣∣ + ∣∣�c

b ∩ �low,2 ∩ �c
w
∣∣)

Lemma 6.3≤ nβ |�0 ∩ �w| + nβ(
10n2β + 1

)∣∣�c
b ∩ �low,4

∣∣
Lemmas 6.2 and 6.4≤

(
4(nγ + 4m)m22m−1

n1−2β−γ
+ C(10n2β + 1)

n(γ−5β)/2

)∣∣ Hom(G,B,μ)
∣∣

(96)≤
(

4λ logn(nγ + 4λ logn)

n1−2β−γ−2λ log 2 + C′

n(γ−9β)/2

)∣∣ Hom(G,B,μ)
∣∣

(94) and (95)≤ C′′n−α′ ∣∣ Hom(G,B,μ)
∣∣

for some α′ = α′(β, γ,λ) > 0. Hence, if f ∈R Hom(G,B,μ) then P(f ∈
�low,1) ≤ C′′n−α′

proving the theorem with α = min(α′, β). Note that the re-
striction that n ≥ n0(β, γ ) is implicitly imposed in the statement of the theorem
since the bound (7) is meaningless if its right-hand side is larger than 1. �

PROOF OF LEMMA 6.1. If f ∈ �low,1 then f takes at most nβ distinct val-
ues, all in [−nβ + 1, nβ − 1]. Since |V even| = 1

2nm, it follows by the pigeonhole
principle that f takes some even value at least 1

2n1−βm times. Thus,

�low,1 ⊆ ⋃
t∈[−nβ+1,nβ−1]∩2Z

�t.
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Hence, since |[−nβ + 1, nβ − 1] ∩ 2Z| ≤ nβ , the lemma will follow once we show
that for all even t �= 0, |�t ∩ �low,1| ≤ |�0 ∩ �low,2| (it is obvious for t = 0). Fix
an even t �= 0. For f ∈ Hom(G,B,μ), let

At(f ) = connected component of (0, �0) in V [G] \
{
v ∈ V [G]|f (v) = t

2

}
.

We define Rt : Hom(G,B,μ) → Hom(G,B,μ) by

Rt(f )(v) =
{
f (v), v ∈ At(f ),

t − f (v), v /∈ At(f ).

One can verify simply that for all f ∈ Hom(G,B,μ), Rt(f ) ∈ Hom(G,B,μ)

since (0, �0) ∈ At(f ) and if u,w ∈ V [G] satisfy u ∼G w, u ∈ At(f ) and w /∈ At(f )

then necessarily f (u) = t
2 − 1 and f (w) = t

2 . In addition, Rt(f )(v) = 0 for
all v ∈ V [G] for which f (v) = t [since such v are never in At(f )], and hence
Rt(�t) ⊆ �0. Furthermore, it is simple to verify that Range(Rt (f )) ≤ 2 Range(f )

for all f ∈ Hom(G,B,μ), and hence Rt(�t ∩ �low,1) ⊆ �0 ∩ �low,2. Finally, it
is straightforward to check that At(f ) = At(Rt (f )) so that Rt(Rt (f )) = f for
all f ∈ Hom(G,B,μ), implying that Rt is one-to-one. Hence, |�t ∩ �low,1| ≤
|�0 ∩ �low,2| as required. �

PROOF OF LEMMA 6.2. For an integer 0 ≤ k ≤ nγ and f ∈ Hom(G,B,μ),
let

W 0(f ) := {even 0 ≤ x ≤ n − 1|f has an up-wall at x of height 0},
�0,k

w := {
f ∈ Hom(G,B,μ)|∣∣W 0(f )

∣∣ = k
}
.

We clearly have �w ⊆ ⋃�nγ �
k=0 �0,k

w , and hence it will be sufficient to show for each
0 ≤ k ≤ nγ that

(97)
∣∣�0 ∩ �0,k

w
∣∣ ≤ 2(k + 4m)m22m−1

n1−β

∣∣ Hom(G,B,μ)
∣∣.

Next, for f ∈ Hom(G,B,μ) we let

W̃ 0(f ) := {
even 0 ≤ x ≤ n − 1|there exists v ∈ W 0

x such that f (v) = 0
}
.

We then have W̃ 0(f ) ⊇ W 0(f ). We note that by the pigeon-hole principle, if f ∈
�0 then

(98)
∣∣W̃ 0(f )

∣∣ ≥ 1

2
n1−β,

where we used that f can only take the value 0 on vertices of V even. Points
of W̃ 0(f ) are potential “building sites” for walls using the transformation we
will now define. First, for each even 0 ≤ x ≤ n − 1 and each v ∈ W 0

x , let sv
x =

(sv
x,1, . . . , s

v
x,2m) be some fixed permutation of W 0

x ∪ W 1
x with the properties that
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sv
x,1 = v and for each 2 ≤ i ≤ 2m, sv

x,i is adjacent in G to sv
x,j for some 1 ≤ j < i.

Next, for a function f ∈ Hom(G,B,μ),w ∈ V [G] and t ∈ Z, define Pw,t (f ), the
peak (or lake) of f around w from height t , by

Pw,t (f ) := connected component of w in V [G] \ {
u ∈ V [G]|f (u) = t

}
.

Then define the reflection (of the peak of w around t) transformation Rw,t (dif-
ferent from the one used in the proof of Lemma 6.1) on the set of functions
f ∈ Hom(G,B,μ) for which (0, �0) /∈ Pw,t (f ) by

Rw,t (f )(u) =
{
f (u), u /∈ Pw,t (f ),

2t − f (u), u ∈ Pw,t (f ).

It is straightforward to verify that Rw,t (f ) ∈ Hom(G,B,μ) and Rw,t (Rw,t (f )) =
f on this set of functions. Finally, let �x,0 := {f ∈ Hom(G,B,μ)|x ∈ W̃ 0(f )},
fix some (arbitrary) total order on V [G−] and define the “building transformation”
Bx : �x,0 → Hom(G,B,μ) using the following algorithm:

1. Set f1 := f and define v to be the vertex with minimal second coordinate
among all w ∈ W 0

x with f (w) = 0. For 1 ≤ i ≤ 2m, set wi := sv
x,i .

2. Iteratively for 2 ≤ i ≤ 2m set

fi :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
fi−1,

(
wi ∈ W 0

x and fi−1(wi) = 0
)

or(
wi ∈ W 1

x and fi−1(wi) = 1
)
,

Rwi,1(fi−1), wi ∈ W 0
x and fi−1(wi) = 2,

Rwi,0(fi−1), wi ∈ W 1
x and fi−1(wi) = −1.

3. Set Bx(f ) := f2m.

Claim:

1. Bx(f ) is well defined for f ∈ �x,0.
2. Bx(f ) has an up-wall at x of height 0.
3. Bx(f )(w) = f (w) for all w ∈ V [G] such that f (w) ∈ {0,1}.
The claim follows by showing that for all 1 ≤ i ≤ 2m we have:

(a) fi is well defined for f ∈ �x,0.
(b) fi(wi) = 0 if wi ∈ W 0

x and fi(wi) = 1 if wi ∈ W 1
x .

(c) For i ≥ 2, fi(w) = fi−1(w) for all w ∈ V [G] such that fi−1(w) ∈ {0,1}.
For i = 1, this follows from the fact that f ∈ �x,0 along with the fact that w1 =
sv
x,1 = v. For 2 ≤ i ≤ 2m, it follows by induction on i as follows. Fix 2 ≤ i ≤ 2m

and let a ∈ {0,1} be such that wi ∈ Wa
x . By definition of sv

x , wi is adjacent in G to
wj for some 1 ≤ j < i. We necessarily have wj ∈ W 1−a

x . By property (b) above for
j and property (c) above for all j < k < i we see that fi−1(wj ) = 1 − a. Hence,
fi−1(wi) ∈ {−a,2 − a}. If fi−1(wi) = a (noting that a ∈ {−a,2 − a}) we have
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fi = fi−1 and (a), (b) and (c) follow for i. Otherwise, if a = 0 and fi−1(wi) = 2
then Pwi,1 ∩ {w|fi−1(w) ≤ 1} = ∅ and if a = 1 and fi−1(wi) = −1 then Pwi,0 ∩
{w|fi−1(w) ≥ 0} = ∅. In both cases, we deduce that (a), (b) and (c) above are
satisfied for i.

Continuing, we will also use the fact that Bx(f ) is formed from f by performing
at most 2m − 1 reflections, each being either around 0 or around 1 (where by such
reflections we mean applications of Rw,0 or Rw,1). This implies that

(99)
∣∣B−1

x

(
Bx(f )

)∣∣ ≤ m22m−1

since in order to invert Bx , we need only know which v ∈ W 0
x was chosen in step 1

of the definition of Bx(f ) and also for each of the following 2m−1 steps, whether
or not a reflection was performed.

By parts 2 and 3 of the above claim, we have that for any f ∈ �x,0,

(100) W 0(
Bx(f )

) ⊇ (
W 0(f ) ∪ {x}).

In addition, we claim that

(101)
∣∣W 0(

Bx(f )
)∣∣ ≤ ∣∣W 0(f )

∣∣ + 4m.

To see this, note that as mentioned above, we can reconstruct f from Bx(f ) by
performing at most 2m − 1 reflections around 0 and 1 (since Rw,t is the inverse
of itself). However, note that for any g ∈ Hom(G,B,μ) and w ∈ V [G], Pw,0(g)

can intersect at most two up-walls of height 0 [meaning that Pw,0(g)∩ (W 0
x ∪W 1

x )

can be nonempty for at most two values of x ∈ W 0(g)] since walls of height 0 act
as a “barrier”. Similarly, Pw,1(g) can intersect at most two up-walls of height 0.
Hence, when reconstructing f from Bx(f ) the number of up-walls can change by
at most 2(2m − 1) ≤ 4m.

We finally arrive at the proof of (97). Fix an integer 0 ≤ k ≤ nγ and let A′ :=
{(f, x)|f ∈ �0 ∩ �0,k

w , x ∈ W̃ 0(f )}. Note that by (98),

(102)
∣∣A′∣∣ ≥ 1

2
n1−β

∣∣�0 ∩ �0,k
w

∣∣.
Define T : A′ → Hom(G,B,μ) by T ((f, x)) := Bx(f ). We claim that for any
g ∈ T (A′) we have

(103)
∣∣T −1(g)

∣∣ ≤ (k + 4m)m22m−1.

To see this, first note that by (100), for any (f, x) ∈A′ such that T ((f, x)) = g we
have x ∈ W 0(g). Then note that |W 0(g)| ≤ k + 4m by (101) and the definition of
�0,k

w . Finally, note that by (99), given x ∈ W 0(g) there are at most m2m−1 pairs
(f, x) ∈ A′ such that Bx(f ) = g. These arguments imply (103). We deduce from
(103) that ∣∣T (

A′)∣∣ ≥ |A′|
(k + 4m)m22m−1 .
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Putting this bound together with (102), we obtain

|�0 ∩ �0,k
w |

|Hom(G,B,μ)| ≤ |�0 ∩ �0,k
w |

|T (A′)| ≤ 2(k + 4m)m22m−1

n1−β

proving (97). �

PROOF OF LEMMA 6.3. Define �1 := �b ∩ �low,2 ∩ �c
w and �2 := �c

b ∩
�low,4 ∩�c

w. Let � := 
nγ−β

8 � and I := {1 + i�|i ∈ [0, 
2nβ�]∩Z}. Using (94) and

the assumption that n ≥ n0(β, γ ), we have max I ≤ nγ

2 if n0(β, γ ) is large enough.
We also have 2nβ + 1 ≤ |I | ≤ 2nβ + 2. For f ∈ �1, let k := |W(f )|, x1, . . . , xk

be the elements of W(f ) sorted in increasing order and for 1 ≤ i ≤ k, let hi be the
height of the wall at xi . Fixing an f ∈ �1 we see that k > nγ by definition of �w
implying that k > 2 max I . Hence, since f ∈ �low,2 and |I | ≥ 2nβ + 1 there must
exist distinct i, j ∈ I such that hi = hj . Letting �i,j := {f ∈ �1|hi = hj } we have
shown that �1 ⊆ ⋃

i,j∈I
i<j

�i,j . Hence, the lemma will follow by establishing

(104) |�i,j | ≤ |�2|
for all i, j ∈ I satisfying i < j . Fix such i, j and f ∈ �i,j . We define a new func-
tion T i,j (f ) by reflecting the region between the walls at xi and xj around height
hi , that is,

T i,j (f )
(
(x, y)

) :=
{
f

(
(x, y)

)
, x ≤ xi or x > xj ,

2hi − f
(
(x, y)

)
, xi < x ≤ xj .

It is straightforward to verify that T i,j (f ) ∈ Hom(G,B,μ) since hi = hj , that
W(T i,j (f )) = W(f ) and that s(T i,j (f ))(xp) equals −s(f )(xp) if i ≤ p < j and
equals s(f )(xp) otherwise. Informally, T i,j “flips” j − i of the walls of f . Since
j − i satisfies

nγ−β

8
≤ � ≤ j − i ≤ max I ≤ 1

2
k

and f ∈ �b, it follows that T i,j (f ) ∈ �c
b. Checking also that Range(T i,j (f )) ≤

2 Range(f ) we deduce that T i,j (f ) ∈ �2. Finally, noting that T i,j is one-to-one
on �i,j , we arrive at (104). �

For the proof of Lemma 6.4, we need the following standard claim about simple
random walk.

Claim: There exists C > 0 such that for all integer k, s and t satisfying that
k − s is even and k ≥ |s| + 2 we have that if X1, . . . ,Xk ∈ {−1,1} are i.i.d. with
P(X1 = 1) = 1

2 then

P

(�k/2�∑
i=1

Xi = t
∣∣∣ k∑
i=1

Xi = s

)
≤ C√

k − |s| .
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PROOF OF LEMMA 6.4. We start by enlarging the class of functions we con-
sider beyond Hom(G,B,μ). We let H̃om(G,B,μ) be all functions f : V [G] →
Z which satisfy f (0, �0) = 0 [recalling that in this section B = {(0, �0)} and
μ((0, �0)) = 0] and satisfy |f (v) − f (w)| = 1 for all v,w ∈ V [G] except possi-
bly when v ∈ W 0

0 and w ∈ W 1
n−2 or when v ∈ W 1

n−2 and w ∈ W 0
0 . In other words,

H̃om(G,B,μ) = Hom(G̃,B,μ) where G̃ is the same graph as G but with the
edges between vertices of W 0

0 and W 1
n−2 removed. We define W(f ) and s(f )

for functions f ∈ H̃om(G,B,μ) in exactly the same way as for functions in
Hom(G,B,μ).

Given f ∈ H̃om(G,B,μ) and x ∈ W(f ) we define a new function Sx(f ) by
shifting the wall of f at x from an up-wall to a down-wall and vice versa and
correspondingly shifting the whole function f to the “right” of x, as follows:

Sx(f )(v) :=

⎧⎪⎪⎨⎪⎪⎩
f (v), v ∈ W 0

y for some even y ≤ x or

v ∈ W 1
y for some even y < x,

f
(
(z,w)

) − 2s(f )x, otherwise.

We readily verify that Sx(f ) ∈ H̃om(G,B,μ), W(Sx(f )) = W(f ), Sx(Sx(f )) =
f and if y ∈ W(f ) then s(Sx(f ))y equals s(f )y if y < x and equals −s(f )y if
y ≥ x. In addition, we check that if x, y ∈ W(f ) then Sx(Sy(f )) = Sy(Sx(f )). We
finally check that if f ∈ Hom(G,B,μ) and we have distinct x1, . . . , x� ∈ W(f ) for
some � then (Sx1 ◦ · · · ◦ Sx�

)(f ) ∈ Hom(G,B,μ) iff
∑�

i=1 s(f )xi
= 0.

We define an equivalence relation ∼ on Hom(G,B,μ) by f ∼ g iff g = (Sx1 ◦
· · · ◦Sx�

)(f ) for some � and distinct x1, . . . , x� ∈ W(f ). Denoting the equivalence
class of f by [f ], we have by the previous paragraph that [f ] is in bijection with
{s1, . . . , s|W(f )| ∈ {−1,1}|∑|W(f )|

i=1 si = ∑
x∈W(f ) s(f )x} via the correspondence

si = s(f )yi
, where (yi)

|W(f )|
i=1 is W(f ) sorted in increasing order. We wish to show

that for some C > 0, |�c
b ∩ �low,4| ≤ Cn(3β−γ )/2|Hom(G,B,μ)|. To this end, it

is sufficient to show that for any f ∈ �c
b we have

(105)
∣∣[f ] ∩ �low,4

∣∣ ≤ Cn(3β−γ )/2∣∣[f ]∣∣.
Fix f ∈ �c

b and let k := |W(f )| and y1, . . . , yk be the elements of W(f ) in in-

creasing order. Fix v := (y�k/2� + 1,0). Define h := f (v)− ∑�k/2�
i=1 s(f )yi

. Then it
is straightforward to see that for each g ∈ [f ] we have

g(v) = h +
�k/2�∑
i=1

s(g)yi
.

Let X1, . . . ,Xk be i.i.d. random variables with P(Xi = 1) = 1
2 and set s :=∑k

i=1 s(f )yi
. Let g be sampled uniformly at random from [f ]. Using the bijec-

tion above we see that g(v) = h + Z where the random variable Z is distributed
as

∑�k/2�
i=1 Xi conditioned that

∑k
i=1 Xi = s. Using now that f ∈ �c

b, we have that
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|s| ≤ k − nγ−β

8 . Hence, recalling (94) and our assumption that n ≥ n0(β, γ ) we see
that k − |s| ≥ 2 if n0(β, γ ) is large enough. Thus, it follows from the claim above
that for any t ,

P
(
g(v) = t

) ≤ C′

n(γ−β)/2

for some C′ > 0. Hence, P(g ∈ �low,4) ≤ C
n(γ−3β)/2 for some C > 0, proving (105)

and the lemma. �

7. Open questions. In the following questions, by the standard observables
for a random function f : V [G] → Z (for some graph G), we mean Var(f (v)) for
generic vertices v and ERange(f ).

1. Two dimensions: When G is the n × n torus [with, say, the one-point BC
(B,μ)] and f ∈R Hom(G,B,μ), what is the order of magnitude of our stan-
dard observables? Does f converge weakly to the Gaussian-free field?

2. Low dimensions: What is the smallest dimension d for which the random
height function is still typically flat (as in Theorem 1.1, say)? Is it for all d ≥ 3
(as Figure 2 hints)?

3. M-Lipschitz functions: For a graph G and M ∈ N, consider the model of func-
tions f : V [G] → Z satisfying |f (v) − f (w)| ≤ M subject to some boundary
conditions. The case M = 1 is the case of Lipschitz functions considered in
this paper. If G = Z

d
n and f is sampled uniformly from such functions (say,

with a one-point BC), what is the order of magnitude of our standard observ-
ables? If one takes M = M(d) large enough and considers high dimensions
d , do these quantities behave differently (in terms of n) than for the Lipschitz
functions considered in this paper? How do these quantities behave in dimen-
sion 2? Figure 5 shows samples of the “limiting” height function model: when
the function f is sampled uniformly from all f : V [G] → R (that is, Z is
replaced by R) satisfying given boundary conditions and |f (v) − f (w)| ≤ 1
whenever v is adjacent to w in G.

4. Entropy repulsed surface: Let G = Z
d
n and f ∈R Hom(G,B,μ) for, say, a

one-point BC. Condition that f is everywhere nonnegative. What is the order
of magnitude of our standard observables?

5. Sloped surfaces: Let G be a cube in Z
d with side length n (the same as Zd

n , but
with nonperiodic boundary) and f ∈R Hom(G,B,μ) for boundary conditions
(B,μ) which impose a slope to f . For example, B can be the boundary de-
fined in (6) and μ(b) can be defined by the closest even integer to αb1, where
α ∈ (0,1) and b1 is the first coordinate of b. What is the order of magnitude
of the fluctuations of f from the expected sloped surface?

6. Uniform 3-coloring and anti-ferromagnetic 3-state Potts models: As explained
in Section 2.2.4, when G = Z

d
n , (B,μ) is the zero BC (say) and f ∈R
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FIG. 5. Samples of a uniformly random Lipschitz function taking real values which differ by at
most one between adjacent vertices. The left picture shows a sample on the 100 × 100 torus and
the right picture shows the middle slice (at height 50) of a sample on the 100 × 100 × 100 torus,
both conditioned to have boundary values in the [− 1

2 , 1
2 ] interval. Sampled using coupling from the

past [23].

Hom(G,B,μ), the model is equivalent to the uniform 3-coloring model (anti-
ferromagnetic 3-state Potts model at zero temperature) with zero BC, and thus
we could deduce that a such a random 3-coloring will typically be nearly con-
stant on the even sublattice. For which boundary conditions does this phe-
nomenon hold (in particular, what happens for a one-point BC)? does it persist
for the Potts model with small positive values of the temperature?

7. Infrared bound: Can the technique of the infrared bound be applied to the
homomorphism model to obtain a simpler derivation of concentration results?
For example, can one use this technique to show that the variance of the height
at a generic vertex of a random homomorphism on Z

d
n (with the one-point BC,

say) is bounded uniformly in n, when d ≥ 3? Related questions are mentioned
as an open problem in the survey on the subject by Marek Biskup [7], Prob-
lem 8.3.

8. Nonperiodic boundary conditions: All of our results have been proved for tori
G. Do these results extend to boxes in Z

d (with nonperiodic boundary)? As
explained in Section 2.2.4, it is of interest to make this extension since the
model on such boxes (with certain boundary conditions) is equivalent to the
uniform 3-coloring model. However, our methods of proof rely on the period-
icity, for example, in our definition of the shift transformation and the fact that
it is invertible given the location of the level set [see Figure 4, Section 4.2.1
and (60)].
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9. General tori: We have shown that in high-dimensions, random homomorphism
and Lipschitz height functions are typically flat on nonlinear tori and typically
rough on linear tori. However, not all tori fall under our definitions of nonlinear
and linear tori [(4) and (5)]. What is the typical behavior of random homomor-
phism and Lipschitz height functions on tori which are neither nonlinear, nor
linear?

10. Odd cutsets: How different are the odd cutsets introduced in this paper from
ordinary cutsets? For example, define MCutL to be all minimal edge cutsets
in Z

d separating the origin from infinity and having exactly L edges and de-
fine OMCutL to be the subset of these which are odd (see Section 3 for more
precise definitions). For large d and L, it is shown in [1] (and in [20]) that
exp(

c logd
d

L) ≤ |MCutL | ≤ exp(
C logd

d
L) for some C,c > 0. Is |OMCutL | of

the same order of magnitude or is it only of order exp(C
d
L)? What is the scal-

ing limit of odd cutsets? Following [26], it seems reasonable that the scaling
limit of a uniformly sampled cutset from MCutL is super Brownian motion.
However, if the cutset is uniformly sampled from OMCutL, it may well be the
case that the limit is different, with the random cutset typically containing a
macroscopic cube in its interior.
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