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We propose a unified framework for conducting inference on complex
aggregated data in high-dimensional settings. We assume the data are a
collection of multiple non-Gaussian realizations with underlying undirected
graphical structures. Using the concept of median graphs in summarizing the
commonality across these graphical structures, we provide a novel semipara-
metric approach to modeling such complex aggregated data, along with ro-
bust estimation of the median graph, which is assumed to be sparse. We prove
the estimator is consistent in graph recovery and give an upper bound on the
rate of convergence. We further provide thorough numerical analysis on both
synthetic and real datasets to illustrate the empirical usefulness of the pro-
posed models and methods.

1. Introduction. Undirected graphs provide a powerful tool for understand-
ing the interrelationships among random variables. Given a random vector,
X = (X1,...,X)T € R?, the associated conditional independence graph, G €
{0, 1}4*4 s the undirected binary graph so that the entry G ik (for j # k) is equal
to 0 if and only if X ; is conditionally independent of X given the remaining vari-
ables, {X\(; )} For estimation, it is typically assumed there are n independent and
identically distributed realizations of X to infer independence relationships and,
thus, the associated graph G.

When X ~ N;y(u, X) is Gaussian distributed with mean g and covariance X,
the nonzero entries of the concentration matrix € := £ ™! encode the conditional
independence structure of X, and hence define the graph G [Dempster (1972)]. In
other words, Gjx = I(x # 0), where I(-) is an indicator function. Estimation
of £ becomes problematic in high dimensions where d > n, thus leading to an
active collection of research using sparsity constraints to obtain identifiability [see
for example Cai, Liu and Luo (2011), Friedman, Hastie and Tibshirani (2007), Liu
and Luo (2012), Ravikumar et al. (2009), Scheinberg, Ma and Glodfarb (2010),
Yuan (2010), Banerjee, El Ghaoui and d’ Aspremont (2008), Li and Toh (2010),
Hsieh et al. (2011), Rothman et al. (2008), Lam and Fan (2009), Peng et al. (2009),
Meinshausen and Biihlmann (2006)].

However, these papers all assume the object of inference is a single graph es-
timated from a single set of realizations of X. In contrast, little work exists on
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estimation and inference from a population of graphs. Such a setting arises fre-
quently in the sometimes controversial and rapidly evolving arenas of image- and
electrophysiologically-based estimates of functional and structural brain connec-
tivity [Bullmore and Sporns (2009), Fingelkurts and Kidhkonen (2005), Friston
(2011), Horwitz et al. (2003), Rubinov and Sporns (2010)]. Here, each subject-
specific graph is an estimate of subject-specific brain connectivity.

In addition, frequently the assumption that the data are independently and iden-
tically drawn from a Gaussian distribution is too strong. Recently, Gaussian as-
sumptions are relaxed via the nonparanormal distribution family [Liu, Lafferty
and Wasserman (2009)]. A random vector, X, is said to be nonparanormally dis-
tributed if, after an unspecified monotone transformation, it is Gaussian distributed.
Moreover, an optimal graph recovery procedure is obtained by exploiting the rank-
based estimator Kendall’s tau [Liu et al. (2012)]. On the other hand, however, little
has been done in high-dimensional graph estimation when the data are actually not
identically drawn from a certain distribution.

This paper investigates a specific non-i.i.d. setting where the data arise from
multiple datasets, each of which is assumed to be distributed according to a differ-
ent distribution. This idea is central in fields, such as epidemiology, where popu-
lation summaries are desired over collections of independently but not identically
distributed datasets. A canonical example is the common odds ratio estimate from
a collection of individual odds ratios [see for example Liu and Agresti (1996)]. In
the motivating application, each dataset is a seed-based or region of interest sum-
mary of functional magnetic resonance imaging (fMRI) scans where a graphical
representation of brain connectivity is of interest. The proposed approach does not
assume a common underlying graph for each subject. Instead, the population graph
defined is a summary, looking at commonalities in graphical structure across a pop-
ulation of heterogeneous graphs. Thus, it is proposed that, under the presumption
of variation in brain graphical network structure, the investigation of a population
graph is of conceptual and practical interest, especially when comparing popula-
tion graphs across clinical diagnoses.

To best summarize the information from aggregated network datasets, the idea
of “median graphs” from the pattern recognition field [Bunke and Shearer (1998),
Jiang, Munger and Bunke (2001)] is employed. However, it is herein extended
to sparse median graphs. A sparse median graph is defined as the sparse graph
that has the smallest sum of Hamming distances to all graphs in a given sample.
Combined with the strength of the nonparanormal modeling, a new method for
estimating sparse median graphs is proposed. It is then proven that the obtained
estimator is consistent. The upper bound on the convergence rate with respect to
the Hamming distance is established, thus giving more understanding on the esti-
mator’s behavior.

In the neuroimaging literature, one relevant paper on summarizing multiple
graphical models is Ramsay et al. (2009). There are three main differences be-
tween our proposed procedure and the one in Ramsay et al. (2009): (i) On the
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graph of interest, we focus on the undirected graphical models, while their focus
is on the directed graphical models. (ii) On defining the summary graph combin-
ing the information from multiple datasets, Ramsay et al. (2009) propose a BIC-
based data aggregation criterion, while we propose a median graph-based criterion.
Our proposed method is shown to motivate a more robust estimation procedure.
(iii) On conducting the algorithm, Ramsay et al. (2009) exploit a greedy search-
based algorithm (GES), while we exploit a convex optimization-based algorithm
(CLIME).

The rest of the paper is organized as follows. In Section 2, we introduce the
notation and review the nonparanormal distribution and rank-based estimators. In
Section 3, we introduce the model and give the definition of sparse median graphs.
In Section 4, we propose the rank-based estimation procedures. Section 5 gives
the theoretical properties of the proposed procedure for graph recovery. Section 6
demonstrates experimental results on both synthetic and real-world datasets. Dis-
cussions are in the last section.

2. Background. LetM=[M] e R and v = (vy,...,vg)" € R Let v;
denote the subvector of v with entries indexed by set /. Similarly, let the submatrix
of M with rows indexed by set / and columns indexed by set J be denoted by My ;.
Let M;, and M, ; be the submatrix of M with rows in I and the submatrix of M
with columns in J. For 0 < g < o0, define the £, and £, vector norms as

d 1/q
— .19 — .
v, = E v and |jv = max |v;],
|| ”q (i_1| l| ) || ”oo 1§i§d| 1|

and we define

d
lollo := 31 (vi £0),

i=1
where I (-) denotes the indicator function. Likewise, for matrix norms, we define

IM]ly := max [Mvl|g, [Mlmax := max{|M;;|} and

lvllg=1
M|z =) T(Mjx #0).
j>k

We define diag(M) to be a diagonal matrix with diagonal values the same as that
of M and with off-diagonal values zero.

2.1. The nonparanormal. Liu, Lafferty and Wasserman (2009) and Liu et al.
(2012) show the Gaussian graphical model can be relaxed to the nonparanormal
graphical model without significant loss of inference power when the data are ac-
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tually Gaussian distributed and with significant gain of inference power when they
are not. This observation plays a role in our proposed model for relaxing the Gaus-
sian assumption. In this section, the nonparanormal distribution family is intro-
duced with the corresponding graphical model, following definitions in Liu et al.
(2012).

DEFINITION 2.1 (The nonparanormal). Let f ={f j}?: | be a set of univariate

strictly increasing functions. A d-dimensional random vector X = (X1, ..., X4)7
is said to follow a nonparanormal distribution, denoted NPN4(X, f), if and only
if

FX = {fiXD ., faXD)}" ~Na(0, ) where diag(E) =14,
where I; € R9*? is the identity matrix. X is called the latent correlation matrix,

and  := X! is called the latent concentration matrix.

Although the nonparanormal is strictly larger than the Gaussian, Liu, Lafferty
and Wasserman (2009) show the conditional independence property of the non-
paranormal is still encoded in the latent concentration matrix €2.

2.2. Rank-based estimator. Liu et al. (2012) and Xue and Zou (2012) exploit
the rank-based estimator, Kendall’s tau, in inferring the latent concentration matrix

2 in the nonparanormal family. Let x1, ..., x, € RY, with x; = (xj1, ..., xiq)! for
i=1,...,n, be n observed data points of a random vector X. The Kendall’s tau
statistic is defined as

~ 2 . .
2.1) Tik(X1,...,Xp) 1= m Z sign(x;; — xj;) - sign(xix — xirg).

1<i<i’<n

The Kendall’s tau statistic is a monotone, transformation-invariant correlation
lletwe/e\n the empirical realizations of X; and X for any j,k € {1,...,d}. Let
R =[Rj] € R4 with

= . [T
(2.2) Rjk=s1n<5tjk(x1,...,xn)),

be the Kendall’s tau matrix. Liu et al. (2012) show that, if X is nonparanormally
distributed, R is a consistent estimator of the latent correlation matrix X (with
respect to element-wise sup norm | - ||max), €ven when the order of d is nearly
exponentially larger than .

Since the latent concentration matrix, 2 = ¥ !, fully encodes the nonparanor-
mal graphical model, and R is a consistent estimator of %, Kendall’s tau is a good
estimate of the nonparanormal graphical model, as it directly estimates the latent
concentration matrix. Based on Kendall’s tau matrix, Liu et al. (2012) propose the
nonparanormal SKEPTIC by directly plugging R into any statistical methods in cal-
culating the inverse covariance/correlation matrix. In this paper, we focus on one
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particular statistical method, CLIME [Cai, Liu and Luo (2011)]. Further details of
the nonparanormal SKEPTIC are given in Section 4.

REMARK 2.2. If the underlying distribution is Gaussian, there is very little
cost in using the rank-based procedure. In detail, empirically, Liu et al. (2012)
show that the graphical model estimates based on Pearson’s sample correlation and
Kendall’s tau have comparable performance with insignificant differences in this
setting. Theoretically, in a low dimension, Xu et al. (2010) show the asymptotic
variance of Kendall’s tau estimates is very close to the Gaussian-based counterpart;
in high dimensions, Liu et al. (2012) and Han and Liu (2014) further show in high
dimensions the theoretical performances are also comparable.

3. Models and concepts.

3.1. Models. This section gives the proposed approach for modeling com-
plex aggregated data. Assume the data are aggregated from multiple datasets,
each of which is distributed according to a different nonparanormal distribu-
tion.

More specifically, let X1,..., X7 be T different random vectors with X; :=
(X1, ..., X;q)T satisfying

X, ~NPNy(Z', ")y  fort=1,...,T.

Let ® :=[X/]~! denote the concentration matrix of X,. Based on @', we define
G = [Q;k] € {0, 1}9*4 where

Le=0 ifandonlyif @ =0.

Here G’ represents the Markov graph associated with X;. In detail, the pair (j, k)
such that g;. « 7 0 indicates the conditional independence of X;; and X given all
the rest in X;.

3.2. Sparse median graphs. This section introduces the concept of a sparse
median graph, combining the ideas of median graphs from Jiang, Munger and
Bunke (2001) and the sparsity concept commonly adopted in high-dimensional
statistics [Biithlmann and van de Geer (2011)]. In the following, we write

B(d) :={G € {0, l}dXd, G is symmetric with diagonal entries all equal to 0}.

Let d(-) : B(d) x B(d) — [0, o0) be a distance function on the graph space.
Jiang, Munger and Bunke (2001) define the median graph (reproduced in Defini-
tion 3.1 below) as the graph that has the smallest sum of distances to all graphs in
a given set.
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DEFINITION 3.1 (Median graph). Let G',...,GT be T different binary
graphs in B(d), and the median graph G* is defined by

T

(3.1) G*:=argmin ) d(G,G").
geB(d) 12

When T is large, G* will not be sparse and, therefore, the resulting median
graph may not be interpretable. To attack this problem, consider the concept of a
“sparse median graph.” The sparse median graph is the graph that has the smallest
sum of distances to all graphs in a given set. In addition, we require the number of
nonzero entries in the graph to be less than or equal to a small value s < d?.

We use the Hamming distance || - ||z in calculating the distance of any two
graphs.

DEFINITION 3.2 (Sparse median graph). Let {G!,...,G”} be T different bi-
nary graphs. The sparse median graph G is defined as

T
(3.2) Gii= argmin Y |G —G| .
GeB(d), Gl <s ;—1
where | - || g represents the number of nonzero entries in the upper triangle of the
matrix of interest.

The next proposition presents an equivalent representation of G; and further
discusses identifiability conditions of the model. To this end, we first introduce
some additional notation. For a series of numbers {a, ..., a,}, let al > aq® >
... >a"™ be an arbitrary sorted arrangement of ay, ..., a,. Then the rank of g; is
defined as the set

{jrai= a for some sorted arrangement of {ay, ..., an}}.

Forasetr ={ay,...,a,} and any number m, we write r <m if a; <m forall i.
We write r > m if there exists at least one a; such that a; > m.

PROPOSITION 3.3. Let G',t =1, ..., T and G} be the sparse median graph.
Letjx=)_, Q;k and r ji be the rank of ¢ ji in all values {{ i} j <k Then, if there
are no ties around the rank s for the sequence {{ i} j </, we have

I, ifrjg <,
0, ifrik >s.

(3.3) [gs*]jk = [g;k]kj =

Equivalently, given T graphs, {G' };‘rzl, their s-sparse median graph, G¥, is given by
the indicator function of the s largest upper off-diagonal entries of their average.
Moreover, the model is identifiable with respect to G} if and only if there are no
ties around the rank s for the sequence {¢ '} jr <.
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PROOF. We first prove that (3.3) holds. Note that, for any G, G Lo...GT, we
have

T T
argmin IG—G'||,; = argmin Le#Gik)
gezs(d),ugan; " GeBIGln<s 1<J§<<d§ e
T

= agmax o Y I(G =G

GeBW@).IGIn <5 1<} —k<d =1

= argmax Z Cik-
GeB(d),|IGlln<s {(j,k):G x50, j <k}

Hence, to minimize Z,Tzl |G — G|l over {G € B(d), ||Gllg < s}, it is equivalent
to maximize ) _; i ¢ for all different s pairs of {(j, k), j < k}. In particular, when
there are no ties around the rank s for the sequence {¢;/x'} ' <x’, the minimum of
Z,T:1 |G —G'|lg over {G € B(d), ||G||lg < s} 1is attained as in (3.3). This completes
the proof of the first assertion.

We then turn to study the second assertion. For this, on one hand, assume there
are ties around the rank s. In other words, there exist at least two sets of en-
tries (ji, k1) and (j, ko), such that s € rj, x, =71}, k,. Then G, picking either
(G511 =1 or [G), k, = 1, attains the same minimum to equation (3.2). This is
in contradiction to the model identifiability assumption. On the other hand, if there
does not exist a tie around the rank s, then we can determine the unique top s pairs
for the solution to (3.2), and hence the model is identifiable. [

REMARK 3.4. The population sparse median graph is defined as the optimum
of a specified loss function with regard to the Hamming distance. This is a common
approach for representing a summary of multiple, possibly heterogeneous, data
points. In principle, there are potential issues by aggregation, such as averaging out
effects when both positive and negative ones exist. However, since we focus only
on undirected graphs taking values {0, 1}, such issues can be minimized. Actually,
the robustness to aggregation issues is one strong advantage motivating the sparse
median graph. In Section 6.2, we will further illustrate the empirical power of
using the notion of the sparse median graph combined with robust estimation.

REMARK 3.5. The sparse median graph (SMG) is a summarization graph
across different subjects. Therefore, instead of depicting the conditional indepen-
dence structure among the covariates of each specific subject, the SMG depicts the
edges that are present across most subjects’ conditional independence graphs. In
other words, there exists an edge between the jth and kth nodes in the SMG if
and only if, for most subjects, these two nodes are dependent conditional on all the
other nodes.
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4. Methods. Fort=1,...,T, let x! = (xi’l,...,x;d)T,i =1,...,n; be n;
independent realizations of X; (defined in Section 3.1). The observed data are {x?}
fort=1,...,Tandi =1,...,n,;, and the target is to estimate the sparse median
graph G, deﬁned in (3.2). The proposed method is a two step procedure. In the
first step, the nonparanormal SKEPTIC is used to obtain the estimators {g’ }t |
of {G' }121. In the second step, G; is estimated based on the estimators {gl }t:l
obtained in the first step.

More specifically, in the first step, foreach t € {1,2, ..., T}, let

T
— =, t t
R]k _sm<2r]k(xl,...,xnt)>,

where ‘Ejk( -) is defined in (2.1). By using R = [Rt ] € R4%4 (o estimate X!, one
can plug R’ into CLIME to get estimates of ' and g

max S )\'[’

4.1) Q =arg minz |M | such that |[R'M — 1
M

where A; > 0 is a tuning parameter. Cai, Liu and Luo (2011) show this optimiza-
tion can be decomposed into d vector minimization problems, each of which can
be reformulated as a linear program. Thus, it has the potential to scale to very large
problems. Once Q' is obtained, one can apply an additional thresholding step to
estimate G’. For this, the graph estimator G' € B(d) is defined, in which a pair
(J, k) satisfies Q\; « 7 0if and only if fltj « > V:- Here, y; is another tuning parame-
ter. However, in practice, the CLIME algorithm works well without a second step
truncation.

In the second step, provided the estimates {G\t ,t =1,..., T} have been ob-
tained, the following equation is optimized to obtain CZ‘:

4.2) Gf=  argmin > lG - G|y
GeB(A),IGIlu=<s

where the term ||G|| g < s controls the sparsity degree of G. For presentation clear-
ness, we assume s is known in the following. In Section 6, we will further discuss
how to choose .

Of note, let g“jk be defined as g“jk = Z, o Let (i, k1), (j2, k2), ... be s pairs
with the highest values in {{ jk}j<k-Using a s1m11ar argument as in Proposmon 33
yields g,k =1 if and only if (J, k) € {(j1, k1), (j2, k2), ...}.

REMARK 4.1. For simplicity, it is assumed there are no ties around the rank
s for the sequence {@k}. If the model discussed in Section 3 is identifiable and
several mild conditions as shown in Section 5 hold, then there are indeed no ties
with high probability.
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5. Theoretical properties. In this section, the estimators from Section 4 are
proven to be consistent for the true median graph. Notably, a nonasymptotic bound
on the rate of convergence in estimating the sparse median graph with respect to
the Hamming distance is provided.

Additional notation is required. Let M, be a quantity which may scale with the
dimension d. Define

d
Ja(q, s, Myg) == {SZ :19]l1 < My and lgljafdz |Rk|? <s¢.
— k=l

For ¢ = 0, the class .%;(q, s, My) contains all the s-sparse matrices with the £;
norm bounded above by M. The next theorem provides the parameter estimation
and graph estimation consistency results for the nonparanormal SKEPTIC estimator
defined in (4.1).

THEOREM 5.1 [Liu et al. (2012)]. Let X' ~ NPN4 (X!, f') with Q' :=
DA = Falq, s¢, Mg) with 0 < g < 1. Let Q' be defined in (4.1). There exist
constants, Co and Cy, only depending on q, such that whenever one chooses the

logd ' ith probability no less than 1 —d =2,

ny

tuning parameter Ay = CoMy

~ B 1 (I-9)/2
|9 -], < Comg s (ﬂ) '

n;
Let G' be the graph estimator defined in Section 4 with the second tun-
ing parameter y; = 4Mgh,. If it is further assumed R € %7(0,s, My) and
minj k@ ;0 |2 k| = 2y:, then

PG #G') <4d ™",

where €1 > 0 is a constant that does not depend on (n;, d, s;).

PROOF. We combine Theorems 1 and 7 in Cai, Liu and Luo (2011) and The-
orem 4.2 in Liu et al. (2012). [

THEOREM 5.2 (Consistency). With the above notation, if the assumptions
from Theorem 5.1 hold, the parameter q = 0, the parameters A; and y; are fixed,
and the model in Section 3 is identifiable, then

(5.1) P(Gy #GY) <4Td ™",
where @j is defined as in (4.2).

PROOF. If the model is identifiable, then one only needs to show, with high
probability, all G’ can be recovered. Note the union bound in Theorem 5.1 yields

T T
IP’(U (G # gf}> <Y PG #§') <4d™* <4Td ™.
t=1 t=1

This completes the proof. [
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The next theorem provides an upper bound of the rate of convergence with
respect to the Hamming distance. Such a result is based on the recent explorations
in graph recovery with respect to the Hamming distance [Jin, Zhang and Zhang
(2014), Ke, Jin and Fan (2014)].

THEOREM 5.3 (Rate of convergence). Assume the above assumptions in The-
orems 5.1 and 5.2 hold. Let A; be the event

={IG' = G'ly =4},

and let 5; be defined as a random number, depending on n;,d,s;, Mg, such
that P(A;) = 1 — o(d—#2). Moreover, reorder {jx}j<k to be ¢V > ¢? > ... >
c@=D72 and let u* = (¢ — ¢$+TDY /2. Then

M*

T
52) P(ug: Gy = PR <1 o(ra ),

PROOF. Let k* (g“(s) + 6Dy /2. We reorder {g“]k}J<k tobe M >7@ >
> 74@d=1/2 and let * 1= (C® +76*+D) /2. Then [GF]jx # [G¥] 1« if and only
if
sign(Zjx — <) - sign(¢jx — k) < 0.
Recall §; € R is defined such that
(5.3) P(A) =P(|G' — G|, > &) = o(d ™).

Note such a bound has been established in some constrained situations, for exam-
ple, in Jin, Zhang and Zhang (2014) (Theorem 1.2).
Let G* be the graph defined as

o e _ 1, ﬁ%kzﬁ,
A A ] R 4

First, we consider quantifying the difference between G; and G*.Letu jk =18k —
k*|. We reorder {u j;} from the smallest to the largest such that u <@ <. <
u@@d=1/2) T et N* be defined as

N*+1

N*
Zu(’) < Z(S, and Z u® > Z(S,.
t=1 t t

t=1

Then, conditioning on the event (), A,, we have the difference between G’ and G’
with regard to the Hamming distance is at most ), é;, and therefore

1G5 =" = N™.
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In particular, reminding that ™ := (@) — §(S+1))/2 = ming; i) u ji, we have

T
(5:4) 195 =9I < %

Consider now quantifying the difference between G* and §;< Using (5.4) and the
fact ||G¥|m = s, one obtains

2.5

M*

)
min(O,s — by L
u*

)16 =5+
Combining with the fact ||§;‘ |z = s, then

T
1G; -1, = Z21

Accordingly, by the triangle inequality, with high probability,
2308

M*

G = Gy <G =Gy +16" = G¥lly <
IS

This completes the proof. [

REMARK 5.4. The bound constructed in (5.2) is to balance the difference of
{G! }thl to G¥ and the estimation error of G’ to G'. In other words, the better it is to
differentiate {G'} with G in the population level and the more accurately G' can
approach G', the better the final estimator can recover the sparse median graph.

6. Empirical results. In this section, we investigate the performance of the
proposed method compared to the performances of alternative methods on syn-
thetic and real-world datasets. Since we aim to estimate a summary graph through-
out multiple, possibly non-i.i.d., datasets, our estimation procedure involves two
steps: In the first step, for each specific dataset, we employ a graphical model es-
timation procedure; in the second step, based on the calculated graph estimates,
we obtain a single estimate of the summary graph. We call the former step the
“estimation of graphs” part and the latter step the “combination! of datasets” part.
In the following simulations and experiments, we will compare our methods with
multiple candidates using different graph estimation and dataset combination ap-
proaches, and reveal the advantage of our proposed one.

6.1. Estimation methods. In our simulations and experiments, we consider
the methods Kendall, Pearson and LW (detailed definitions provided later) to esti-
mate graphs (or correlation matrices) on individual datasets. To combine multiple
datasets, we employ SMG, Naive and Average (detailed definitions provided later).

99 ¢

I'We use the terms “combination, aggregation,” and “summarization” synonymously in this work.



1408 HAN, HAN, LIU AND CAFFO

Therefore, we will compare a total of nine methods, each of which is denoted by
first stating the aggregation method and then the graph estimation method. For ex-
ample, our proposed method corresponds to SMG Kendall. We elaborate the details
of the competing methods as follows.

6.1.1. Estimation of graphs. For any individual dataset, we consider the fol-
lowing approaches for graph estimation:

Kendall: This method calculates the Kendall’s tau correlation matrix and plugs
the matrix into CLIME. Details are in Section 4.

Pearson: This method follows the same steps as Kendall except we plug the
Pearson sample correlation matrix into CLIME instead.

Ledoit—Wolf (LW): Using the tawny package [Rowe (2014)], this method calcu-
lates the Ledoit—Wolf shrinkage estimation [Ledoit and Wolf (2003)] of the covari-

ance matrix of the dataset, ¥, and a corresponding precision matrix, 6=3%"we
employ a threshold on © such that the sparsity of the induced graph is as close as
possible to the sparsities of the corresponding Kendall- and Pearson-based graphs.

We select the tuning parameters {%;} in CLIME? using the StARS stability-
based approach [Liu, Roeder and Wasserman (2010)]. StARS selects a tuning pa-
rameter that simultaneously makes a graph sparse and replicable under random
sampling. The detailed procedure can be found in Section 3.2 in Liu, Roeder and
Wasserman (2010).

6.1.2. Combination of datasets. Our experiments involve inference on T
datasets, where each dataset corresponds to a different subject. We consider the
following approaches to estimate one sparse graph across the multiple datasets:

Sparse Median Graph (SMG): We estimate a graph for each of the 7" datasets.
Then, given some sparsity” s, we combine these graphs with the method proposed
in Section 3.2 to obtain a sparse median graph.

Naive: We concatenate the 7' datasets into one centered dataset on which we
estimate a graph using the techniques from Section 6.1.1.

Average: For each of the 7" datasets, we calculate an associated correlation or
precision matrix. We average these matrices and threshold such that only the s
entries in the averaged matrix with the largest magnitudes correspond to edges in
the estimated graph.

ZRecall the formal definition of CLIME also requires a set of thresholding parameters {y;}. We
choose to set y; = 0 for all r. While thresholding by some small y; > 0 is indeed an option, we have
found this has very little impact on the output of the method compared to y; = 0.

3In our experiments, where s is unknown, we set s to be the median of the sparsities of the graphs
estimated on each of the T datasets.
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6.2. Synthetic data simulations. In this simulation, we examine the estimation
performance of the proposed method on synthetically generated data. In particular,
we generate T = 15 different datasets with n, = 100 samples in each dataset. Each
dataset follows a different nonparanormal distribution, corresponding to a different
undirected graph G’. For each method, we use a sequence of uniformly spaced
sparsity parameters s from 0 to (dgl) to estimate a sequence of graphs, over which
we plot a ROC curve. In addition, we repeat this simulation for d = 50, 100 and
250. Our results show the SMG Kendall exhibits better estimation performance
than the competing methods.

More specifically, we conduct the simulation with the following procedure:

1. Using the huge package [Zhao et al. (2012)], we generate a sparse graph G
with sparsity s, along with a corresponding covariance matrix . We will use this
as the oracle graph of the population. We adopt the following five models for G
banded, clustered, hub, random and scale-free [definitions provided in Zhao et al.
(2012)]. We examine G at d = 50, 100 and 250.

2. For each subjectt =1,2,..., T, we construct a perturbed graph G’ to reflect
the difference among different subjects. In particular, we add |0.001 x ((dgl) —s)]|
edges and remove |0.75 x s] edges from G;. We illustrate a typical run of the
generated graphs G’ for a specific ¢ in Figures 1, 2 and 3. In each figure, the black
edges represent the ones present in both G* and G’, the blue edges represent the
ones only present in G¥, and the red edges represent the ones only present in G’.

3. Using each G’, we generate a corresponding covariance matrix X’ with an
algorithm identical to the one implemented in the huge package.

4. Fort=1,..., T, we generate a (n; x d) dataset* D' from NPNy(X', ),
where® fi(x) =--- = fy(x) = x°. Thus, the population dataset is

D={D":t=1,...,T}.

5. Applying the nine methods described in Section 6.1 to D, we estimate a
sparse graph, é? and calculate the true positive and true negative rates.

6. We repeat the simulation 100 times and plot an averaged ROC curve over the
range of 5. We show the results in Figures 4, 5 and 6.

From the curves in Figures 4, 5 and 6, we clearly see our proposed method ex-
hibits a higher estimation performance than the competing methods. This is as ex-
pected because the proposed method is the only consistent estimator of G;, while
all the competing methods deviate from the truth. In addition, observe that the
Kendall-based methods tend to outperform the Pearson-based methods—a pattern

4Bach D! corresponds to a realization {xlt.} fori=1,..., n; from Section 4.

5In the case where the transformation is the identity, we found that all the Kendall- and Pearson-
based methods perform almost identically (similar to the results cited in Remark 2.2). For concise-
ness, we omit this case from our presentation.
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FIG. 1. An illustration of the five graph patterns with perturbations for d = 50. The black edges
represent the ones present in both G¥ and G', the blue edges represent the ones only present in G,
and the red edges represent the ones only present in G'.
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FIG. 2. An illustration of the five graph patterns with perturbations for d = 100. The black edges
represent the ones present in both G and G, the blue edges represent the ones only present in G¥,
and the red edges represent the ones only present in G'.
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(a) banded (b) hub

(c) hub (d) scale-free

(e) random

FIG. 3. An illustration of the five graph patterns with perturbations for d = 250. The black edges
represent the ones present in both G¥ and G', the blue edges represent the ones only present in G,
and the red edges represent the ones only present in G'.
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FIG. 4. ROC curves in estimating the graphical models for different methods in five different graph

patterns. Here, d = 50 and n; =100 forallt =1,2,...,15.
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FI1G. 5. ROC curves in estimating the graphical models for different methods in five different graph
patterns. Here, d = 100 and n; = 100 forallt =1,2,...,15.
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FIG. 6. ROC curves in estimating the graphical models for different methods in five different graph
patterns. Here, d =250 and n; = 100 forallt =1,2,...,15.
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that becomes more distinct in larger dimensions. This result confirms the claim
that using Kendall’s tau leads to optimal graph recovery rates [Liu et al. (2012)].
Furthermore, the poor performance of the LW-based methods (worse than both
Kendall and Pearson) suggests that, while covariance shrinkage demonstrates po-
tential in financial applications, its benefits do not carry over to graph estimation,
at least under our simulation settings.

REMARK 6.1. An alternative simulation setting involves varying n,. In our
experiments, we found that this setting produces results almost identical to the
case of constant n; as long as they are in the same magnitude. (This phenomenon
is a consequence of Theorem 5.3.) In addition, maintaining a constant n; provides
a better indication of the effects of increasing d. Therefore, for clarity, we omit the
varying n, case from the simulation section.

6.3. ADHD data experiments. In practice, there exists no gold standard for
the structure of the oracle graph of brain imaging data. Therefore, in addition to
the above simulation on synthetic data, we investigate the estimation performance,
predictive power and stability of the proposed method on the ADHD-200 brain
imaging dataset [Eloyan et al. (2012), Milham et al. (2012)].

The ADHD-200 dataset is a landmark study compiling over 1000 functional and
structural scans including subjects with and without attention deficit hyperactive
disorder (ADHD). The data used in the analysis are from 739 unique subjects:
478 controls and 261 children diagnosed with ADHD of various subtypes. Each
has at least one blood oxygen level dependent (BOLD) resting state functional
MRI scans. The scans were measured with different time resolutions (TR), dif-
ferent scan lengths and possibly during multiple sessions—causing the number of
scans associated with one particular subject to range from 78 to 456. The varying
TR and length of scanning stress the importance of addressing subject-level het-
eroscedasticity in graph estimates. The data also include demographic variables
as predictors. These include age, 1Q, gender and handedness. These demographic
variables are combined into a matrix with dimensions 4 x 739. We follow the pro-
cedure in Eloyan et al. (2012) for data preprocessing with one additional step: The
data collected from the same patient are concatenated together.

We construct our predictors by extracting 264 voxels from each image that
broadly cover major functional regions of the cerebral cortex and cerebellum fol-
lowing Power et al. (2011). The locations of these 264 voxels are illustrated in
Figure 7, and the value of each voxel is calculated as the mean of all data points
inside each small seed region. Therefore, each subject ¢ corresponds to a matrix of
size (n; x d), where n; is the number of images and d = 264.

6.3.1. ADHD data simulation. Here, we examine the estimation performance
of the proposed method on real brain imaging data. This involves three steps: first,
we generate a “true graph”’; second, we simulate datasets associated with different
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FI1G. 7. The illustration of the locations of the 264 nodes.

“subjects”; third, we examine the estimation performance based on the simulated
multiple datasets.

In detail, we first estimate a sparse graph on a homogeneous dataset and use this
graph as the true graph. Then we simulate not identically distributed “subjects” by
partitioning the homogeneous dataset and adding perturbations to each partition.
Using these simulated datasets, we assess the estimation performance of the nine
methods from Section 6.1 with a simulation similar to that in Section 6.2. Our
results confirm SMG Kendall continues to exhibit better estimation performance
than the competing methods when the data originate from the ADHD-200 dataset.

More specifically, we use the brain imaging data of the subject with the patient
ID 15002 as our homogeneous dataset. This patient possesses the largest number
of scans in the dataset with 456 images. We denote this dataset by D. Then we
implement the following simulation procedure:

1. Using the Kendall method described in Section 6.1.1, we estimate an oracle
sparse median graph G} on D with the s parameter chosen using StARS.

2. To simulate different datasets, we randomly partition D into T = 10 smaller
datasets {D; :t =1, ..., T}. This creates six sets of 46 scans and four sets of 45
scans, each with d = 264.

3. For each “patient,” r = 1,2, ..., T, we generate a graph G’ for the patient
by removing edges from G;. More specifically, we select a p, := 50% of the d
vertices in G randomly, and delete all edges incident to these vertices.

4. Let u and o denote the mean and standard deviation of the vectorized D.
Note each of the | p, x d| randomly selected vertices corresponds to a column in
the datasets. We perturb each D, to match G’ by replacing each entry of the ran-
domly selected columns with a number randomly generated from the distribution
N(u, o). Let us denote this perturbed dataset as ﬁt.
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F1G. 8. ROC curves in estimating the summary graphical models using data based on the dataset
of the subject of ID 15002 in the ADHD-200 dataset. Here, d =264 and T = 10.

5. To simulate the effects of outliers, we choose 30% of the rows in each 21 and
apply the following transformation to each entry in a chosen row, i, in the dataset:

Zz:1 [Drlik

d ﬁ 5
Zk:][ l]ik
In rows that were not chosen, the entries of 5, and 5; are identical. Therefore,

D, is the final perturbed dataset for one particular “subject,” and the dataset of all
simulated “subjects” is

[Dij =[Di1}; x (forj=1,2,...,d).

D={D,:t=1,...,T}.

6. Applying the nine methods described in Section 6.1 to D, we estimate a
sparse graph, G}*, and calculate the true and false positive rates.

7. We repeat the simulation 100 times and plot an averaged ROC curve over the
range of 5. The results are in Figure 8.

Comparing the results from Figure 8 to those in Section 6.2, we see the pro-
posed method continues to demonstrate the best estimation performance, and the
LW-based methods continue to perform the worst among the competing methods.
However, in this simulation, SMG Kendall and SMG Pearson outperform Naive
Kendall and Naive Pearson, where each Kendall-based method still outperforms
the corresponding Pearson-based method. This suggests that the benefits of sparse



SPARSE MEDIAN GRAPHS 1419

median graphs tend to dominate when estimating graphs on real brain imaging
data—unlike the synthetic setting where the benefits of utilizing Kendall’s tau
tend to dominate. Nonetheless, the results from this simulation and Section 6.2
both demonstrate the potential of the proposed method to improve the estimation
accuracy of population-level networks.

6.3.2. Predictive power experiment. In this section, we compare the predictive
power of our proposed method to that of the competing methods.® To this end, we
examine the difference between summary graphs of different subpopulations.” In
the sequel, we focus on SMG Kendall, SMG Pearson and Naive Kendall, which have
performed the best in the previous simulations. (Avg Kendall and Avg Pearson also
performed well, but we omit them because they are not robust to outliers.)

Several population sparse graph contrasts of interest are investigated and include
the following: ADHD case status (denoted by Case and Control), gender (denoted
by Female and Male) and age. Given the pediatric population in the ADHD study,
we investigate young adults versus children using a cutoff of 12 years. Subjects
having ages larger than 12 years are denoted by Senior and those less than or equal
to 12 years denoted by Junior. Figure 9 provides a visual comparison of the brain
connectivity graphs obtained using the three methods on Case and Control data.
We observe that the Case and Control graphs show the most edge disagreements
when estimated with SMG Kendall. This is consistent with the simulation results
and strongly indicates the sparse median graph concept coupled with the Kendall’s
tau estimation procedure improves actual estimation in this context.

For the remaining subject classes (including ADHD case status), we provide
more detailed analyses. We apply the three methods on subpopulations to compare
graphs at different covariate levels. For example, graphs of cases and controls are
investigated within gender. Summary statistics for these subpopulation differences
are presented in Table 1. In addition, we include a case (“null” in Table 1) where
we randomly divide the patients into two subpopulations, estimate a graph for each
subpopulation, and calculate the difference between the two graphs.

For all the approaches, we observe that the differences in the real subpopulation
splits are consistently larger than the difference in the “null” split. This provides

6We consider the predictive power of the methods in classification. Because classification power
increases with greater separation between different classes, our experiment measures the predictive
power by calculating the scaled Hamming distance between the sparse graphs estimated over two
classes of data.

7All the remaining experiments use all patients in the ADHD dataset. For selecting tuning
parameters—since we must estimate a graph for each patient, and parameter selection is compu-
tationally expensive—we randomly sample 100 subjects from the 739 subjects and apply StARS to
estimate the CLIME parameter for each subject. Then, we find the median valued parameter among
the 100 selected parameters and use it as the universal parameter for all applications of CLIME in
the following experiments. We find the median parameter from using both Kendall and Pearson is
A=0.171.
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(A) Top (B) Left
SMG Kendall

SMG Pearson

Naive Kendall

FIG. 9. The difference between the estimated sparse graphs of the cases and controls subjects
using SMG Kendall, SMG Pearson and Naive Kendall. Here, the black color represents the edges
only present in the graph for cases but not in controls persons, while the red represents the opposite.

evidence for the population-level network’s ability to capture differences in differ-
ent subpopulations. Furthermore, we observe that this disparity between the real
subpopulation cases and the “null” case is most pronounced with SMG Kendall and
least pronounced with Naive Kendall—demonstrating the sparse median graph’s
potential advantage in predictive tasks.
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TABLE 1
Predictive power. Predictive power of SMG Kendall and competing methods. We measure predictive
power by the Hamming distance between patients of two classes divided by (dgl). We use > =0.171
for the CLIME parameter. This table represents values at 1073 scale

Data SMG Ken. SMG Pea. Naive Ken.
Randomized data difference

Null 3.74 4.46 3.95

ADHD case and control difference

Whole 5.18 5.10 4.35

Male 10.57 10.05 4.90

Female 6.60 5.67 4.90

Junior 6.22 6.31 4.35

Senior 9.02 7.89 5.10
Male and female difference

ADHD case 9.07 8.64 5.67

ADHD control 7.81 6.63 4.35
Junior and senior difference

ADHD case 9.45 8.93 5.67

ADHD control 9.36 9.25 6.19

In addition, within the contrasting classes, we observe SMG Kendall estimates
the greatest difference between any two classes. Furthermore, while SMG Pearson
performs very closely to SMG Kendall in most cases, there is a larger difference
between the two methods in the tests that separate or compare the subjects by
gender. This suggests SMG Kendall is more sensitive to the differences between
male and female brains than SMG Pearson. Moreover, both SMG-based methods
show higher predictive powers than Naive Kendall. This provides further evidence
of the predictive advantage of non-i.i.d. population models.

6.3.3. Stability: CLIME parameter perturbations. In this experiment, we
compare the stability of the proposed method to those of the competing meth-
ods under parameter perturbations. In particular, we examine the stability by mea-
suring the scaled Hamming distance between a sparse graph estimated with the
CLIME parameter A = 0.171 and the sparse graph estimated using a perturbed
CLIME parameter.

To this end, we conduct the experiment as follows for each of the three meth-
ods:

1. Using the CLIME parameter A = 0.171, we estimate a population-level
sparse graph é;; ,- Here, we select s, by setting s, to be the median number of
edges of the graphs estimated for each individual subject. More specifically, recall
the algorithm first applies Kendall or Pearson (see Section 6.1.1) to each individual
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TABLE 2
Stability with respect to the clime parameter. Stability of SMG Kendall and competing methods with
respect to perturbations to the CLIME parameter. Stability is measured as Hamming distance,
divided by s, , between the graph estimated with the perturbed parameter and the graph estimated
with the unperturbed parameter, ). Here, s), is the number edges in the graph estimated with the
unperturbed parameter. We use A = 0.171 for the CLIME parameter. This table represents values at

10! scale
Variation
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

0.91 0.951 0.991
SMG Kendall 3.46 0.137 2.14 0.109 1.68 0.148
SMG Pearson 3.23 0.240 2.05 0.142 1.51 0.209
Naive Kendall 3.83 0.381 2.46 0.279 1.57 0.145

1.01x 1.05x 1.1x
SMG Kendall 1.51 0.128 1.77 0.266 2.34 0.066
SMG Pearson 1.48 0.143 1.80 0.096 2.41 0.097
Naive Kendall 1.49 0.231 2.42 0.182 3.17 0.174

graph. Each one of these individual graphs possesses some number of edges. We
choose s, to be the median among that set of numbers.

2. We repeat the procedure but estimate the graph of each individual subject
with a perturbed CLIME parameter. In particular, we use p x A for the values of
p=0.9,0.95,0.99,1.01, 1.05 and 1.1. R

3. We examine the Hamming distance between each g;‘(

o~

w .
pxx)s(PX)‘-) and gs)u)‘- di

vided by s,. The results are in Table 2.

Table 2 shows our proposed method is comparable in stability to SMG Pearson.
In addition, Naive Kendall tends to display significantly higher instability than the
SMG-based methods for 1.05A and 1.1A. Since CLIME outputs more sparse graphs
for larger A parameters, this supports the claim that the sparse median graph pro-
vides a more stable estimator of graphs in sparse settings than models assuming
the population data arise from i.i.d. settings.

6.3.4. Stability: Data perturbations. In this experiment, we consider the sta-
bility of the proposed method when the dataset is perturbed. In particular, we take
K subsamples of the T = 739 subjects in the ADHD-200 data, D = {Dt}thp to
created {DF} ,le. We estimate a sparse population graph on each D and measure
the instability by examining the differences in the resulting graphs.

More specifically, we apply the following procedure using each of the three
methods:

8Here, D is the entire ADHD-200 dataset, D; is the data corresponding to the #th subject in D, and
Dk is the kth dataset found by taking a subsample of the subjects from D.
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TABLE 3
Stability with respect to data. Stability of SMG Kendall and competing methods with respect to
perturbations to the data via subsampling. Here, we measure the total instability as the mean of the
disagreements on the presence of each edge [Liu, Roeder and Wasserman (2010)]. Here, n = 100
samples were taken. We use A = 0.171 for the %‘LIME parameter. This table represents values at
1077 scale

Sampling ratio

Instability  Std. Err.  Instability  Std. Err.  Instability  Std. Err.

0.65 0.8 0.9
SMG Kendall 2.39 0.152 1.55 0.122 0.941 0.096
SMG Pearson 2.30 0.152 1.54 0.126 1.02 0.102
Naive Kendall 3.00 0.171 2.70 0.162 2.46 0.157

1. We randomly draw K = 100 subsamples of 7% = | p x T| patients at sub-
sampling ratios of p =0.65, 0.8 and 0.9:

k
=i c2.... T

In other words, each subsampled dataset, Dk = {D:}se1,, contains the data corre-
sponding to T* subjects from the entire ADHD dataset.

2. Using the CLIME parameter A = 0.171, we estimate a sparse population
graph QA;”‘ from DX, where s is the stability parameter chosen using the same
method as in Section 6.3.3.

3. We measure the instability by averaging the disagreements on the presence
of edges in {G\S’,‘"k}le. We refer to Section 3.2 of Liu, Roeder and Wasserman
(2010) for a detailed description of this measure. The results are in Table 3, where
larger values correspond to more instability.

Table 3 shows our proposed method is comparable in stability to SMG Pearson
under data perturbations. In addition, observe Naive Kendall displays significantly
more instability than either of the methods that employ the sparse median graph
approach. This demonstrates the resistance of the sparse median graph approach to
the characteristics of individual subjects when estimating a population-level graph.

7. Discussion. In this paper, we discuss the concept of the sparse median
graph that estimates a population-level graph under nonparanormal assump-
tions. This new approach combines two new developments in graph estimation
literature—namely, (i) employing sparsity constraints in high-dimensional set-
tings for identifiability [for example Banerjee, El Ghaoui and d’ Aspremont (2008),
Friedman, Hastie and Tibshirani (2007)] and (ii) increasing graph recovery rates
by using nonparanormal assumptions [Liu, Lafferty and Wasserman (2009), Liu
et al. (2012)]—with the idea of median graphs from pattern recognition litera-
ture [Bunke and Shearer (1998), Jiang, Munger and Bunke (2001)]. The resulting
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method, which we analyze both theoretically and empirically, allows us to estimate
a graph that emphasizes the commonalities and downplays the individual outliers
within a population.

In particular, we theoretically prove the consistency of this method and bound its
rate of convergence. Then in two simulations—one with the synthetic and one with
the ADHD-200 brain imaging data—we demonstrate our proposed method displays
higher estimation performance than potential competing methods. We observe the
benefits of the nonparanormal model with Kendall’s tau tend to dominate in the
synthetic data simulations, while the benefits of the sparse median graph aggrega-
tion method tend to dominate in the simulations with the real data. One possible
explanation is that the “biggest challenge” in estimating the graphs from the syn-
thetic data is the data’s non-Gaussianity (which is addressed by utilizing Kendall’s
tau), while the biggest challenge in estimating the graphs from the real brain imag-
ing data stems from the individual outlier and heterogeneous characteristics of
patients and scans (which are downplayed by the sparse median graph). However,
the consistent optimal performance of the proposed method in both simulations
demonstrates its value as an estimator of choice for both highly non-Gaussian data
as well as complex aggregated datasets with large variation in individual charac-
teristics.

In addition, we perform experiments using the ADHD-200 brain imaging dataset.
The experiments demonstrate the proposed method possesses the highest predic-
tive power for classification tasks among its competitors. Furthermore, stability
experiments on the same dataset show the sparse median graph summarization
provides much more stable estimators than the Naive Kendall method that assumes
the homogeneity of the entire dataset.

These results offer compelling evidence that the proposed method possesses
the potential to become a unified framework for conducting inference on complex
datasets of aggregated data. While the current analysis is primarily illustrative, we
have demonstrated its value for applications in brain imaging fields where interest
lies primarily in population characteristics. Therefore, we believe this investigation
would justify a more thorough inferential investigation of median graph properties
and network modification with disease in future works.
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