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Fine particulate matter (PM2.5) measured at a given location is a mix of
pollution generated locally and pollution traveling long distances in the atmo-
sphere. Therefore, the identification of spatial scales associated with health
effects can inform on pollution sources responsible for these effects, result-
ing in more targeted regulatory policy. Recently, prediction methods that
yield high-resolution spatial estimates of PM2.5 exposures allow one to eval-
uate such scale-specific associations. We propose a two-dimensional wavelet
decomposition that alleviates restrictive assumptions required for standard
wavelet decompositions. Using this method, we decompose daily surfaces
of PM2.5 to identify which scales of pollution are most associated with ad-
verse health outcomes. A key feature of the approach is that it can remove
the purely temporal component of variability in PM2.5 levels and calculate
effect estimates derived solely from spatial contrasts. This eliminates the po-
tential for unmeasured confounding of the exposure—outcome associations
by temporal factors, such as season. We apply our method to a study of birth
weights in Massachusetts, U.S.A., from 2003–2008 and find that both local
and urban sources of pollution are strongly negatively associated with birth
weight. Results also suggest that failure to eliminate temporal confounding
in previous analyses attenuated the overall effect estimate toward zero, with
the effect estimate growing in magnitude once this source of variability is
removed.

1. Introduction. The epidemiologic literature investigating the health effects
of air pollution is large, as countless studies have found associations between ambi-
ent levels of air pollution and a variety of adverse health outcomes [Dockery et al.
(1993), Dominici et al. (2006), Samet et al. (2000), with reviews of the literature
provided by Breysse et al. (2013), Dominici, Sheppard and Clyde (2003), Pope III
(2007)]. Despite the large number of studies investigating the relationship between
air pollution exposures and human health, there still exist critical unanswered ques-
tions that need to be addressed for the establishment of new regulations. Currently
the U.S. Environmental Protection Agency (U.S. EPA) regulates total PM2.5 levels.
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However, PM2.5 is generated by many different pollution sources. An important
question is the extent to which various sources of pollution adversely affect health,
knowledge of which could lead to targeted regulations more protective of human
health. Establishing the extent to which locally generated pollution (such as that
generated by traffic), urban background pollution, or long range transported pol-
lution (such as that generated by coal fired power plants) is associated with health
effects would be very useful in refining air pollution standards in the future. In this
article, we use the fact that locally generated traffic varies at fine spatial scales,
urban background pollution induces city-to-city variability in pollution levels, and
regional pollution that has traveled long distances varies very slowly over a region.

There have been very few attempts to jointly model the health effects of re-
gional, urban background, and local pollution sources, though it remains a crucial
question in air pollution epidemiology. Black carbon is known to be highly asso-
ciated with local traffic pollution. Sulfates are known to be spatially homogenous
and represent pollution generated by coal-fired power plants. Maynard et al. (2007)
used a spatiotemporal prediction model to predict black carbon levels for individ-
uals in the greater Boston U.S.A. area, and estimated the independent effects of
black carbon and sulfates on mortality in a joint model. Other articles have decom-
posed air pollution levels into that generated by local and regional sources without
subsequently examining their respective effects on health. Moreno et al. (2009)
examined the differences in hourly fluctuations of traffic and urban background
components of PM10 in Santander, Spain. Brochu et al. (2011) used quantile re-
gression to estimate the regional and local source contributions to black carbon
levels in Boston and investigated how the sources of this pollutant changed both
across the year and within a given day.

Due to recent advancements in PM2.5 exposure estimation, more complete data
on PM2.5 levels beyond that provided by individual monitors are available, as re-
mote sensing satellite data can now yield reliable PM2.5 estimates on a 1 × 1 km
grid [Kloog et al. (2014)]. These new estimates of PM2.5 are on a scale fine enough
to allow novel approaches to spatial decomposition based on image analysis tech-
niques. We show how such decompositions of the variability in PM2.5 levels across
a region can yield insights into the sources of pollution most associated with health
effect estimates. A variety of methods have been proposed to decompose images
into different spatial scales, two of the most common techniques being wavelet
decompositions and Fourier decompositions. For the remainder of the manuscript,
we focus on wavelets. Due to the existence of point and line sources of pollution,
such as interstates and other roadways, the surface of PM2.5 will contain many
spikes. Wavelets are well known to be a useful basis function for preserving sharp
features in signals [Petrosian and Meyer (2013)], and many spike detection al-
gorithms are based on wavelet transforms [Hulata, Segev and Ben-Jacob (2002),
Nenadic and Burdick (2005)]. One of the main goals of the study is to characterize
the impact of traffic pollution on health and, therefore, it is important to adequately



794 ANTONELLI, SCHWARTZ, KLOOG AND COULL

capture, and not oversmooth these spikes in pollution. Moreover, wavelets decom-
pose a spatial surface into multiple spatial scales that are orthogonal, which allows
us to avoid multicollinearity among multiple scales and the resulting instability of
effect estimates from a health effects model.

In this paper, we focus on estimating associations between different spatial
scales of PM2.5 and birth weight in Massachusetts, U.S.A. A challenge in quanti-
fying the health effects of air pollution on birth outcomes is the potential for tem-
poral confounding due to the fact that births are not distributed uniformly over the
course of the year, and there can be seasonal variability in both pollution levels and
birth outcomes [Darrow et al. (2009)]. One approach to accounting for factors that
vary temporally and affect both exposure and outcome is to control for seasonality
in the model. However, for this approach to remove bias arising from temporal
confounding completely, one needs the model to be correctly specified and this
can be difficult to achieve in some settings [Peng, Dominici and Louis (2006)].
Another approach is to condition out, or remove the temporal component of expo-
sure variability. Another feature of our proposed approach is that by applying the
proposed spatial decompositions on a day-by-day basis, each of which contains
a separate term representing the overall mean PM2.5 on a given day, we parti-
tion the variability in PM2.5 into purely temporal and multiple spatial components.
This partitioning eliminates the possibility that the health effect estimates associ-
ated with the spatial contrasts at different spatial scales are affected by temporal
confounding, which can be very difficult to completely eliminate through model-
ing. Our analyses of the association between PM2.5 exposures and birth weights
in Massachusetts from 2003–2008 show that failure to fully eliminate the effects
of temporal confounders in previous analyses may have attenuated the overall ef-
fect estimate toward zero, with the effect estimate growing in magnitude once this
source of variability is removed.

Standard two-dimensional wavelet decompositions typically require that the
surface being decomposed is rectangular and the points are uniformly spaced. An
additional requirement of standard wavelet analysis is that the points are dyadic,
meaning that the number of points on the surface grid is 2l , where l is some pos-
itive integer, although “padding,” the practice of adding points to the surface, can
be used to satisfy this requirement. Our interest focuses on decomposing a spatial
surface of PM2.5 across New England, U.S.A., a setting in which none of these
conditions are met. There is no reason to think our data would be dyadic, and
the satellite data yielding the PM2.5 estimates are not laid out on a perfectly uni-
form grid. Previous work has avoided both the dyadic and uniform grid assump-
tions through a variety of techniques, such as the lifting scheme and interpolation
[Sweldens (1998), Xiong, Xu and Wu (2006), Pollock and Cascio (2007), Gupta
et al. (2010)]. Others have generalized wavelet theory using radial basis functions,
which are not constrained to lie on a uniform grid [Buhmann (1995), Chui et al.
(1996)]. To the best of our knowledge, however, none of these have provided a
practical way of decomposing a surface that is not rectangular. In this paper, we
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develop a two-dimensional extension to work on a penalized regression representa-
tion of wavelets, originally proposed in Wand and Ormerod (2011), which relaxes
these assumptions of a standard wavelet analysis. The advantages of this method
include its simple application, its ability to scale to large spatial surfaces, and its
ability to avoid restrictive assumptions about the shape or features of the surface.

In this paper, we use the proposed wavelet based method to decompose daily
surfaces of PM2.5 across New England and use the components of the resulting
decomposed surface as covariates in a health effects model relating birth weights
in Massachusetts to scale-specific PM2.5. Section 2 introduces the pollution data
and motivating scientific problem. Section 3 introduces the proposed method for
performing 2d wavelet decompositions on irregular grids. Section 4 illustrates the
decomposition in the PM2.5 data. Section 5 applies the method to analyze the as-
sociation between scale-specific PM2.5 and birth weights in Massachusetts, and
Section 6 concludes with further discussion.

2. PM2.5 and birth weights in Massachusetts.

2.1. Exposure data. Typically PM2.5 is measured at monitoring stations,
which are located sporadically across the United States. In early health effect
studies, conditional on the monitoring data, PM2.5 exposure for an individual in
a given location was assigned the value from the nearest monitor or a weighted av-
erage of monitors within a predefined range. In recent years, monitoring data has
been augmented with geographical and remote sensing information to yield indi-
vidual, residence specific estimates of PM2.5 levels. Specifically, in previous work
we have combined ideas from land use regression and mixed models, and incor-
porated satellite aerosol optical depth (AOD) measurements to obtain widespread
estimates of PM2.5 at a 1 × 1 km resolution [Kloog et al. (2014)]. Satellite AOD is
a measure of light attenuation in the atmospheric column that is affected by ambi-
ent conditions and can be used to help estimate PM2.5. Satellite estimates of PM2.5
on a 1 × 1 km grid are available daily from 2003 to 2011 for the northeastern
United States and they give an accurate estimate of the surface of PM2.5 in this
area, as judged by cross-validation. Specifically, Kloog et al. (2014) showed the
R2 values between predictions and true values observed at monitors is around 0.9,
indicating high predictive accuracy in locations in which monitoring data exist.
The right panel of Figure 1 presents air pollution exposure estimates for the study
region of interest. The 1 × 1 km scale of the estimated exposures allows us to
apply our proposed decomposition method and examine the effects of air pollution
across a range of spatial scales.

2.2. Birth weights. Many epidemiological studies have established relation-
ships between PM2.5 and adverse birth outcomes. Glinianaia et al. (2004) and
Dadvand et al. (2013) provided a review of the literature. In Massachusetts, Kloog
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FIG. 1. Illustration of average wavelet decomposition of the satellite-derived PM2.5 estimates, av-
eraged over all days in 2007. The left panel shows the low frequency component from a wavelet
decomposition, the middle panel is the high frequency component from a wavelet decomposition, and
the right panel is the total surface.

et al. (2012) reported an association between PM2.5 and birth weights using Satel-
lite AOD based PM2.5 estimates on a 10 × 10 km grid. We extend this work by
using the finer scale, 1 × 1 km satellite based PM2.5 estimates as well as estimat-
ing associations between birth weight and specific spatial scales of variation of
PM2.5 exposure. Kloog et al. (2012) provided specific details on the birth weight
data. Briefly, the study population includes all singleton live births from the Mas-
sachusetts Birth Registry from January 1st, 2000, to December 31, 2008. We re-
strict attention to births after October 1, 2003, as the satellite based PM2.5 data is
only available from 2003 onward. The data set contains 332,717 singleton births
with the geocoded2 address of each mother at the time of birth and potential con-
founders.

3. Wavelet decomposition for irregular grids.

3.1. 1d wavelet analysis on irregular grids. To motivate our approach and
establish notation, we start by reviewing the penalized regression representation
of a wavelet decomposition proposed by Wand and Ormerod (2011) for a one-
dimensional functional response. This formulation has the advantage over a stan-
dard wavelet decomposition that it removes the requirement that the data lie on a
uniform grid. We will then extend this penalized regression approach to the two-
dimensional setting. In the one-dimensional case, suppose we have data, yi for
i = 1, . . . , n observed at locations xi , with no restrictions on the spacing or the

2For the data that was not successfully geocoded, we manually checked addresses for typos and
obvious corrections to be made and were able to successfully geocode many of them. After this
process, the median percentage of failed geocodes over each year in the study was 2.74%, therefore,
geocoding failures are unlikely to have a large impact on the results.



SPATIAL MULTIRESOLUTION ANALYSIS OF PM2.5 GRIDS 797

dimension of x. We represent the data y as

yi = f (xi, θ) = θ0 +
K∑

k=1

θkzk(xi),(3.1)

where zk(·) are wavelet basis functions and θk are wavelet coefficients. The wavelet
coefficients have a nice interpretation in terms of scale and location of the signal.
At level l of a wavelet decomposition, there are 2l − 1 basis functions. The lower
level basis functions capture low frequency signals, while the higher level basis
functions capture the higher frequency signals in the data. In terms of the moti-
vating PM2.5 application, the lower level functions will capture smooth, regionally
varying trends in pollution, while the higher level functions will capture fine scale
PM2.5 spatial variation that captures differences in locally generated pollution such
as that generated by traffic. In this representation, z1(·) is the basis function for the
first wavelet level, z2(·) and z3(·) are the basis functions at the second wavelet
level, and so on for levels 3 to L.

Classical wavelet transforms are defined on equally-spaced grids on the unit in-
terval, [0,1). When the data are dyadic and regularly spaced on the unit interval,
the wavelet basis functions, which we denote zu

k (·), are tractable and the discrete
wavelet transform, a fast O(n) algorithm can be used to estimate θ̂ . We are, how-
ever, in the setting of unequally spaced data, in which wavelet basis functions are
not tractable. To solve this issue, we first define wavelet functions as

zk(xi) = zu
k

(
xi − a

b − a

)
, k = 1, . . . ,K,(3.2)

where a and b are the minimum and maximum of x, respectively. We then estimate
zu
k (·) at arbitrary locations on the unit interval, since our data does not fall on an

equally spaced grid. To do this, Wand and Ormerod (2011) defined a very fine grid
of points on the unit interval, with the number of points in our grid being a multiple
of 2, and evaluated the basis functions at each point on this grid. This grid needs
to include a large number of points so that any of the observed data points will lie
very closely between two grid points. One can then calculate the value of zu

k (·) at
any point in the interval as a linear interpolation of the two nearest grid points.

A variety of standard wavelet basis functions can be used to form zu
k (·)

[Torrence and Compo (1998)], and for this paper we use the Debauchies 5 wavelet
[Daubechies (1988)]. Upon defining wavelet basis functions at any given x value,
one can estimate the wavelet coefficients θ . In this work, we will use the LASSO,
which estimates the coefficients using an L1 penalty on θ , to select only nonzero
coefficients. The solution satisfies

θ̂ = arg min
θ

{
n∑

i=1

(
yi − f (xi, θ)

)2

}
subject to

∑
j

|θj | < c,(3.3)

where c is a tuning parameter that controls the amount of penalization [Tibshirani
(1996)]. Variation in y at a given level then corresponds to the product of the
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wavelet coefficients and the basis functions from that particular level. Because our
interest focuses on multiresolution analysis of a two-dimensional image of PM2.5,
we consider a two-dimensional extension of this approach, which we outline in the
next section.

3.2. Two-dimensional wavelets on an irregular grid. Suppose now that we
have n data points, y∗

i , i = 1, . . . , n that lie on a two-dimensional space indexed
by location (x1i , x2i ). In the air pollution application, y∗ is the PM2.5 level at (lon-
gitude, latitude) location (x1,x2) on any given day. We first apply the wavelet
approach for one dimension, as outlined in the previous section, to each dimension
separately, that is, we define basis functions:

z
x1
k (x1i ) = zu

k

(
x1i − a1

b1 − a1

)
, k = 1, . . . ,K,(3.4)

z
x2
k (x2i ) = zu

k

(
x2i − a2

b2 − a2

)
, k = 1, . . . ,K,(3.5)

where a1 and b1 define the range of x1, and a2 and b2 the range of x2. We construct
two-dimensional wavelet basis functions as tensor products of the one-dimensional
functions in each direction. The two-dimensional basis functions can be written as

zl,m(x1i , x2i ) = z
x1
l (x1i )z

x2
m (x2i ).(3.6)

The model now takes the form:

y∗
i = f (x1i , x2i , θ) = θ0 +

K∑
l=1

K∑
m=1

θlmzl,m(x1i , x2i ),(3.7)

where we again estimate θ using the LASSO. The 2d wavelet basis functions are
products of 1d basis functions from each direction, which can be of a different
spatial scale. Therefore, 2d basis functions formed as the product of 1d basis func-
tions from the same scale have square support, whereas 2d basis functions formed
as the product of two basis functions from different spatial scales have rectangular
support. Therefore, this construction creates some basis functions with elongated
support, which differs from the commonly used square wavelet transform. We do
not view this as a crucial distinction in the context of decomposing PM2.5 in Mas-
sachusetts, particularly because we will be looking at exposures such as the high
frequency component that is the sum over multiple wavelet levels. If our interest
were in individual wavelet levels, then this difference would be of more impor-
tance.

4. Wavelet-based decomposition of new England PM2.5 data. We now ap-
ply the proposed method for two-dimensional wavelet decomposition on irregular
grids to PM2.5 data in New England, U.S.A., separately for each day. Previous
work in air pollution exposure assessment has established that spatial variation in
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PM2.5 levels can be decomposed into three primary spatial scales: large scale re-
gional variation, city-to-city variation (urban background), and localized variation
(such as that generated by traffic). Within the study region of interest, PM2.5 levels
attributable to regional sources vary little within a given day, but may vary greatly
from day to day. This suggests that changes in pollution generated by regional
sources will be captured by temporal variation in PM2.5, while changes in pollution
generated by urban and local traffic sources will be captured by spatial variability,
that is, variability generated by urban pollution sources will be captured by lower
level wavelet coefficients as they vary over longer distances, whereas variability
generated by local pollution sources will be captured by the higher level wavelet
coefficients.

The proposed method scales quite well to large surfaces. We applied the method
to PM2.5 surfaces that contained approximately 70,000 grid points. We use seven
wavelet levels in each direction, which yield 214 = 16,348 basis functions and a
regression model with a design matrix of dimension 70,000 × 16,384. We apply
the LASSO to fit the model using the glmnet package in R [Friedman, Hastie and
Tibshirani (2010)] applying cross validation to select the LASSO tuning parameter
for each day separately.

One issue with defining low and high frequency scales of spatial variation from
the fit of the model with seven wavelet levels is the selection of a cutoff that clas-
sifies a wavelet level as low frequency or high frequency. In Figure 1, we defined
low frequency variation to include basis functions from wavelet levels 1 through
3 in both longitude or latitude. We selected this threshold by visual inspection of
the decomposed surfaces, which suggested that the resulting decomposition best
represented smooth variation that best corresponded with existing knowledge of
spatial patterns and pollution sources in the New England region. This choice de-
fines the high frequency component of variation, representing pollution generated
by local sources, as containing wavelet levels 4 through 7 in either the longitude
or latitude direction.

Figure 1 illustrates the average of the low frequency and high frequency com-
ponents of PM2.5 across each day in 2007 for New England. The figure shows how
the pollution surface can be decomposed into two separate components, represent-
ing different spatial frequencies at which pollution varies. To calculate the low
frequency component, we create a new vector of coefficients θ̃ which is equal to
θ̂ upon setting the coefficients corresponding to higher frequency basis functions
equal to zero, and calculate f (x1,x2, θ̃). To calculate the high frequency com-
ponent, we take the difference between the true surface and the lower frequency
component as the higher frequency component.

5. Analysis of scale-specific associations between PM2.5 and birth weight.
We apply the proposed decomposition to examine the association between variabil-
ity in PM2.5 levels at different spatial scales and birth weights in Massachusetts,
U.S.A., for the period 2003–2008. We perform the wavelet decomposition for each
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day during the study period to obtain pollution surfaces representing different spa-
tial scales. All confidence intervals have been adjusted for multiple comparisons
using a Bonferroni correction within each model.

5.1. Low versus high frequency components. We first examine the indepen-
dent associations between each of low and high frequency variation in PM2.5 and
birth weight, using the definitions of low and high frequency variation provided
in the previous section. When birth weight is the outcome, there are several po-
tentially relevant exposure windows: the full gestation period, a given trimester,
or the last 30 days of the gestation period. In this work, we report results on
associations between birth weights and the trimester-specific exposures. Because
births are not distributed uniformly within a year and because birth outcomes can
also vary within a year, there also exists a purely temporal component of PM2.5

variability that could potentially be associated with birth weight. Due to this fact,
we decompose our exposure surface for each day into three separate components:
A component that is simply the mean PM2.5 across the region on any given day,
a low frequency spatial component, and a high frequency spatial component. For
each infant in the study, we compute each of these three exposure components for
each day based on the residential location of the mother as denoted on the birth cer-
tificate, and then average these contributions across the time period corresponding
to a particular trimester of interest. Summation of the daily means across the ex-
posure window of interest captures purely temporal variation in PM2.5 levels, due
to the fact that women have babies on different days, whereas the low and high
frequency spatial scales capture variability in exposure due to the fact that mothers
live in different spatial locations.

We examine the effects of PM2.5 at different scales using two models. The first
model is

BWij = (β0 + β0j ) + β1PM2.5ij + βcCij + εij ,(5.1)

where BWij represents the observed birth weight, PM2.5ij is the estimated total
PM2.5 value for a given trimester, and Cij contains a set of potential confounders,
for subject i in census tract j . These confounders included gestational age, moth-
ers age, cigarette use, income, education, chronic conditions of the mother, preg-
nancy conditions, previous occurrence of a preterm birth, and percent open space
of a census tract. We include a random intercept for census tract to control for
correlation among infants in the same census tract. The residual errors, εij , are
independent, mean zero normal random variables. Kloog et al. (2012) provided
justification for this model and the confounders included in it. This previous work
does not use the spatial decompositions of the PM2.5 exposures. Therefore, β1 rep-
resents the effect of total PM2.5 exposure, which blends associations between the
temporal and multiple spatial scales of exposure.
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FIG. 2. Parameter estimates and corresponding 95% confidence intervals from PM2.5 models for
each time period. The square points represent the point estimates for β1 from model (5.1) and the
remaining shapes represent those for β∗

1 , β∗
2 , β∗

3 from model (5.2).

To examine how different spatial scales and temporal variation in PM2.5 expo-
sure are associated with birth weight, we fit the model

BWij = (
β∗

0 + β∗
0j

) + β∗
1 Meanij +β∗

2 Lowij +β∗
3 Highij +β∗

cCij + εij ,(5.2)

where Meanij , Lowij , and Highij represent the temporal, low spatial frequency,
and high spatial frequency components of PM2.5 variability, respectively. The con-
founders, random intercepts, and residuals are defined as above. Figure 2 shows the
results from both model (5.1) and (5.2) for each of the trimesters.

The results indicate that the magnitude and direction of the effect estimates
and, therefore, the patterns in effect estimates across components of PM2.5 vari-
ation, are similar across trimesters. Both the low and high frequency components
of PM2.5 are strongly negatively associated with birth weight. Interestingly, the
mean component exhibits very small, and in the case of trimesters 1 and 2 even
slightly positive, associations with birth weight. One potential explanation for this
result is that the mean component represents variation in PM2.5 that is subject to
temporal confounding. Both PM2.5 and birth weights decrease over time during
the study period, which could explain the observed positive association. To test
this hypothesis, we fit the model (5.2) using first trimester exposure, but included
a smooth term for date into the vector of potential confounders, Cij . After apply-
ing this model, the effect of the mean component decreases to −2.7 g (−6.4 g,
1.1 g), indicating that the original estimate is confounded by temporal factors. By
removing this variability in PM2.5 from the low and high frequency spatial scales,
we eliminate the possibility of purely temporal factors confounding the effect es-
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timates for the spatial contrasts in exposure. The resulting effect estimates for the
low and high frequency spatial component PM2.5 are both larger than the overall
PM2.5 effect estimate, β̂1, and this is likely because we have removed the temporal
sources of variation that bias the overall estimate toward the null. This analysis also
provides strong evidence that the effect estimate for the low frequency component
is larger than that for the high frequency component (p-value < 0.0001).

5.2. Removal of fine scale variation. As a secondary analysis, we now investi-
gate which wavelet levels of PM2.5 are driving the association between total PM2.5
and birth weight. To this end, we repeatedly fit the model with a single pollution
exposure in the model, after successively removing high frequency wavelet lev-
els from the daily pollution surfaces. We also keep the mean component of PM2.5
variability separate from the spatial component, as the results from the previous
section indicate that it could attenuate the overall association between PM2.5 and
birth weight. For a given trimester, the model of interest is now

BWij = (β̃0 + ˜β0j ) + β̃1 Meanij +β̃2PMR
2.5ij + β̃cCij + εij ,(5.3)

where PMR
2.5ij

is the spatial component of PM2.5 variability after removing a cer-
tain number of higher wavelet levels from that component.

This model differs from (5.1) in two ways. First, we include the mean com-
ponent into the model to partition the potential sources of temporal confounding
from the spatial contrast. We assess how the estimate of β̃2 changes as the high
frequency wavelet levels are removed one at at time. Figure 3 shows the estimates
and 95% confidence intervals from model (5.3) as we successively remove high
frequency information.

Results from the different trimester-specific analyses show a similar pattern.
Upon removal of the highest 1st and 2nd wavelet levels from the PM2.5 surface, the

FIG. 3. Parameter estimates and corresponding 95% confidence intervals from model (5.3) when
we remove high frequency spatial levels for each trimester. Within each panel from left to right we
successively remove more and more of the higher frequency levels.
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magnitude of the PM2.5 effect estimate increases, with the effect estimate chang-
ing from −6.5 g (−8.2 g, −4.9 g) to −12.7 g (−15.3 g, −10.2 g) for the 3rd
trimester. This result suggests that the effects at these very high frequency levels
are smaller in magnitude than their lower frequency counterparts. These levels,
which are largely spatially uncorrelated variation in exposure, likely contain ex-
posure measurement error. Therefore, one would expect that filtering them out
would yield stronger estimated associations between exposure and outcome. As
additional levels are removed from the total PM2.5 exposure, there is a decline in
effect size, with a visible change occurring at wavelet level 4. For the 3rd trimester
analysis, the effect estimate drops in magnitude from −12.1 g (−15.0 g, −9.2 g)
to −9.5 g (−12.7 g, −6.4 g) when we exclude the fourth level from total PM2.5.
The effect estimates also change noticeably when one includes the 1st level into
the model. The PM2.5 effect estimate when PM2.5 contains only the first wavelet
level is −9.1 g (−15.0 g, −3.2 g) for trimester 3, and −13.6 g (−20.0 g, −7.3 g)
for trimester 1, suggesting a strong association between outcome and PM2.5 at this
level. Therefore, the first level appears to drive the health effects observed in the
analyses presented in Section 5.1, whereas the fourth level appears to drive the
health effect associated with the high frequency component in that analyses. Fur-
ther, spatially uncorrelated measurement error contained in the sixth and seventh
wavelet levels of variability appear to attenuate the high frequency effect estimate
reported in Section 5.1.

6. Discussion. In this article, we decomposed daily 1 × 1 km estimated con-
centrations of PM2.5 and then examined how different spatial scales are associated
with birth weights in Massachusetts, U.S.A. A key feature of the approach is that,
because we applied the spatial decomposition on a day-by-day basis, we removed
the purely temporal component of variability in PM2.5 levels and calculated effect
estimates derived from spatial contrasts. This approach eliminates the potential
for unmeasured confounding of the exposure—outcome associations by temporal
factors, such as seasonality. The resulting estimate of the association between the
outcome and the temporal component of PM2.5 was positive or close to zero for
each trimester window of exposure, suggesting that the overall estimate of a PM2.5
effect is attenuated by temporal confounding. Further, we estimated that variation
in pollution at both low and high spatial scales was significantly negatively as-
sociated with birth weight in Massachusetts, with the low frequency association
larger than the high frequency association. We also examined the effect of remov-
ing variation in PM2.5 captured by individual wavelet levels one at a time and
estimated that removal of very high frequency variation, which was represented
by the sixth and seventh levels, actually increased the association between PM2.5
exposure and birth weight. This could suggest that this very fine scale, spatially un-
correlated variability in exposure is measurement error associated with the AOD
measurements used as inputs in the exposure prediction algorithm. Wavelets have
been used to de-noise signals and removal of the sixth and seventh scales can be
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thought of as a form of de-noising, thereby potentially removing the exposure error
and increasing the magnitude of the effect estimates associated with the remaining
variation in exposure.

We have proposed a two-dimensional wavelet decomposition that is flexible,
easy to implement, and scalable to large spatial surfaces. By extending ideas from
Wand and Ormerod (2011) to spatial settings, we have employed an image de-
composition that does not rely on assumptions of standard wavelet theory that
are overly restrictive. This approach places a wavelet decomposition within a pe-
nalized regression framework that simplifies implementation and estimation of
wavelet coefficients. The proposed method will allow researchers to perform mul-
tiresolution analyses of spatial data regardless of the structure and scale of their
data.

One limitation of the results from the study of birth weights is that we are ig-
noring the fact that the PM2.5 measurements are estimated, leading to some uncer-
tainty that is not incorporated into our analyses. The confidence intervals placed on
our model estimates are under the assumption that the estimated PM2.5 concentra-
tions are known, which could lead to interval estimates that are anti-conservative.
Alexeeff et al. (2015) characterized scenarios in which this uncertainty is likely to
have a meaningful impact on inference and when it is not. These authors showed
that, while inferences on health effect estimates of short-term (e.g., daily) expo-
sures estimated by relatively simple spatial prediction models (e.g., kriging) can
be severely anti-conservative, inference on effects of chronic health effects asso-
ciated with long-term average exposures generated by more complex, well-fitting
land-use spatial regression models are less affected. Specifically, in this latter case
95% confidence interval coverages were only slightly lowered (in the range of 91
to 94% depending on the number of monitors used). Since interest in the present
study focuses on long-term exposures during pregnancy, or a trimester of preg-
nancy, estimated by a relatively complex hybrid spatiotemporal model based on a
combination of land-use and remote-sensing satellite data, we interpret these pre-
vious findings to imply that these inferences will be only slightly anti-conservative
and, therefore, not such a significant factor in the current study.

A related limitation is that because we are using estimates of PM2.5 there might
be measurement error that biases the effect estimates of interest. While we likely
remove some of the measurement error when removing the highest two frequency
wavelet scales, it is possible that measurement error induces bias in our effect
estimates. Future work could focus on applying well developed measurement er-
ror correction techniques within the multiresolution spatial analyses to examine
the impact of this error. A final limitation is that our approach does not retain
the computational speed of the discrete wavelet transform. The approach fits a
penalized regression model of dimension n by K2, which can be quite large in
practical applications. This is a price we pay to generalize the model to handle
irregular grids. However, we have not found this limitation to be a serious prob-
lem in the regionally-sized application such as this one, as we were able to apply
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our approach to spatial surfaces of n = 70,000 data points and K2 = 16,384 basis
coefficients.

There are many possibilities for future research directions. One could use the
wavelet decompositions of PM2.5 to learn more about variation in specific com-
ponents of PM2.5. Data is available at monitoring sites about these components,
which means that we can explore correlations between the decompositions and
PM2.5 component data at monitoring locations, which could provide additional in-
sights into the specific pollution sources that are captured at a given spatial scale. It
would also be of interest to examine whether other health endpoints representative
of different biologic mechanisms are associated with specific scales of variation in
PM2.5 levels.

Acknowledgments. We would like to thank the Associate Editor and referees
for their thoughtful comments that have improved the original manuscript.

REFERENCES

ALEXEEFF, S. E., SCHWARTZ, J., KLOOG, I., CHUDNOVSKY, A., KOUTRAKIS, P. and
COULL, B. A. (2015). Consequences of kriging and land use regression for PM2. 5 predictions
in epidemiologic analyses: Insights into spatial variability using high-resolution satellite data.
Journal of Exposure Science and Environmental Epidemiology 25 138–144.

BREYSSE, P. N., DELFINO, R. J., DOMINICI, F., ELDER, A. C., FRAMPTON, M. W.,
FROINES, J. R., GEYH, A. S., GODLESKI, J. J., GOLD, D. R., HOPKE, P. K. et al. (2013).
US EPA particulate matter research centers: Summary of research results for 2005–2011. Air
Quality, Atmosphere & Health 6 333–355.

BROCHU, P. J., KIOUMOURTZOGLOU, M.-A., COULL, B. A., HOPKE, P. K. and SUH, H. H.
(2011). Development of a new method to estimate the regional and local contributions to black
carbon. Atmos. Environ. 45 7681–7687.

BUHMANN, M. D. (1995). Multiquadric prewavelets on nonequally spaced knots in one dimension.
Math. Comp. 64 1611–1625. MR1308448

CHUI, C. K., WARD, J. D., JETTER, K. and STÖCKLER, J. (1996). Wavelets for analyzing scattered
data: An unbounded operator approach. Appl. Comput. Harmon. Anal. 3 254–267. MR1400083

DADVAND, P., PARKER, J., BELL, M. L., BONZINI, M., BRAUER, M., DARROW, L. A.,
GEHRING, U., GLINIANAIA, S. V., GOUVEIA, N., HA, E.-H. et al. (2013). Maternal expo-
sure to particulate air pollution and term birth weight: A multi-country evaluation of effect and
heterogeneity.

DARROW, L. A., STRICKLAND, M. J., KLEIN, M., WALLER, L. A., FLANDERS, W. D., COR-
REA, A., MARCUS, M. and TOLBERT, P. E. (2009). Seasonality of birth and implications for
temporal studies of preterm birth. Epidemiology 20 699.

DAUBECHIES, I. (1988). Orthonormal bases of compactly supported wavelets. Comm. Pure Appl.
Math. 41 909–996. MR0951745

DOCKERY, D. W., POPE, C. A., XU, X., SPENGLER, J. D., WARE, J. H., FAY, M. E., FER-
RIS JR, B. G. and SPEIZER, F. E. (1993). An association between air pollution and mortality in
six US cities. N. Engl. J. Med. 329 1753–1759.

DOMINICI, F., SHEPPARD, L. and CLYDE, M. (2003). Health effects of air pollution: A statistical
review. Int. Stat. Rev. 71 243–276.

http://www.ams.org/mathscinet-getitem?mr=1308448
http://www.ams.org/mathscinet-getitem?mr=1400083
http://www.ams.org/mathscinet-getitem?mr=0951745


806 ANTONELLI, SCHWARTZ, KLOOG AND COULL

DOMINICI, F., PENG, R. D., BELL, M. L., PHAM, L., MCDERMOTT, A., ZEGER, S. L. and
SAMET, J. M. (2006). Fine particulate air pollution and hospital admission for cardiovascular
and respiratory diseases. J. Amer. Med. Assoc. 295 1127–1134.

FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2010). Regularization paths for generalized linear
models via coordinate descent. J. Stat. Softw. 33 1–22.

GLINIANAIA, S. V., RANKIN, J., BELL, R., PLESS-MULLOLI, T. and HOWEL, D. (2004). Partic-
ulate air pollution and fetal health: A systematic review of the epidemiologic evidence. Epidemi-
ology 15 36–45.

GUPTA, C., LAKSHMINARAYAN, C., WANG, S. and MEHTA, A. (2010). Non-dyadic Haar wavelets
for streaming and sensor data. In Data Engineering (ICDE), 2010 IEEE 26th International Con-
ference on 569–580. IEEE, New York.

HULATA, E., SEGEV, R. and BEN-JACOB, E. (2002). A method for spike sorting and detection
based on wavelet packets and Shannon’s mutual information. J. Neurosci. Methods 117 1–12.

KLOOG, I., MELLY, S. J., RIDGWAY, W. L., COULL, B. A., SCHWARTZ, J. et al. (2012). Using
new satellite based exposure methods to study the association between pregnancy pm2.5 exposure,
premature birth and birth weight in Massachusetts. Environ. Health 11 1–8.

KLOOG, I., CHUDNOVSKY, A. A., JUST, A. C., NORDIO, F., KOUTRAKIS, P., COULL, B. A.,
LYAPUSTIN, A., WANG, Y. and SCHWARTZ, J. (2014). A new hybrid spatio-temporal model for
estimating daily multi-year PM 2.5 concentrations across northeastern USA using high resolution
aerosol optical depth data. Atmos. Environ. 95 581–590.

MAYNARD, D., COULL, B. A., GRYPARIS, A. and SCHWARTZ, J. (2007). Mortality risk associated
with short-term exposure to traffic particles and sulfates. Environ. Health Perspect. 751–755.

MORENO, T., QUEROL, X., ALASTUEY, A., VIANA, M. and GIBBONS, W. (2009). Profiling tran-
sient daytime peaks in urban air pollutants: City centre traffic hotspot versus urban background
concentrations. J. Environ. Monit. 11 1535–1542.

NENADIC, Z. and BURDICK, J. W. (2005). Spike detection using the continuous wavelet transform.
IEEE Trans. Biomed. Eng. 52 74–87.

PENG, R. D., DOMINICI, F. and LOUIS, T. A. (2006). Model choice in time series studies of air
pollution and mortality. J. Roy. Statist. Soc. Ser. A 169 179–203. MR2225539

PETROSIAN, A. A. and MEYER, F. G. (2013). Wavelets in Signal and Image Analysis: From Theory
to Practice 19. Springer Science & Business Media, Dordrecht.

POLLOCK, S. and CASCIO, I. L. (2007). Non-dyadic wavelet analysis. In Optimisation, Econometric
and Financial Analysis 167–203. Springer, Berlin.

POPE III, C. A. (2007). Mortality effects of longer term exposures to fine particulate air pollution:
Review of recent epidemiological evidence. Inhal. Toxicol. 19 33–38.

SAMET, J. M., DOMINICI, F., CURRIERO, F. C., COURSAC, I. and ZEGER, S. L. (2000). Fine
particulate air pollution and mortality in 20 US cities, 1987–1994. N. Engl. J. Med. 343 1742–
1749.

SWELDENS, W. (1998). The lifting scheme: A construction of second generation wavelets. SIAM J.
Math. Anal. 29 511–546. MR1616507

TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B
58 267–288. MR1379242

TORRENCE, C. and COMPO, G. P. (1998). A practical guide to wavelet analysis. Bull. Am. Meteorol.
Soc. 79 61–78.

WAND, M. P. and ORMEROD, J. T. (2011). Penalized wavelets: Embedding wavelets into semipara-
metric regression. Electron. J. Stat. 5 1654–1717. MR2870147

XIONG, R., XU, J. and WU, F. (2006). A lifting-based wavelet transform supporting non-dyadic
spatial scalability. In Image Processing, 2006 IEEE International Conference on 1861–1864.
IEEE, New York.

http://www.ams.org/mathscinet-getitem?mr=2225539
http://www.ams.org/mathscinet-getitem?mr=1616507
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=2870147


SPATIAL MULTIRESOLUTION ANALYSIS OF PM2.5 GRIDS 807

J. ANTONELLI

J. SCHWARTZ

B. A. COULL

HARVARD T. H. CHAN SCHOOL

OF PUBLIC HEALTH

655 HUNTINGTON AVENUE

BOSTON, MASSACHUSETTS 02115
USA
E-MAIL: jantonelli@fas.harvard.edu

joel@hsph.harvard.edu
bcoull@hsph.harvard.edu

I. KLOOG

DEPARTMENT OF GEOGRAPHY

AND ENVIRONMENTAL DEVELOPMENT

BEN-GURION UNIVERSITY OF THE NEGEV

BEER SHEVA 84105
ISRAEL

E-MAIL: ikloog@bgu.ac.il

mailto:jantonelli@fas.harvard.edu
mailto:joel@hsph.harvard.edu
mailto:bcoull@hsph.harvard.edu
mailto:ikloog@bgu.ac.il

	Introduction
	PM2.5 and birth weights in Massachusetts
	Exposure data
	Birth weights

	Wavelet decomposition for irregular grids
	1d wavelet analysis on irregular grids
	Two-dimensional wavelets on an irregular grid

	Wavelet-based decomposition of new England PM2.5 data
	Analysis of scale-speciﬁc associations between PM2.5 and birth weight
	Low versus high frequency components
	Removal of ﬁne scale variation

	Discussion
	Acknowledgments
	References
	Author's Addresses

