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Abstract. Consider a monotone Boolean function f : {0,1}n → {0,1} and the canonical monotone coupling {ηp : p ∈ [0,1]} of
an element in {0,1}n chosen according to product measure with intensity p ∈ [0,1]. The random point p ∈ [0,1] where f (ηp) flips
from 0 to 1 is often concentrated near a particular point, thus exhibiting a threshold phenomenon. For a sequence of such Boolean
functions, we peer closely into this threshold window and consider, for large n, the limiting distribution (properly normalized to be
nondegenerate) of this random point where the Boolean function switches from being 0 to 1. We determine this distribution for a
number of the Boolean functions which are typically studied and pay particular attention to the functions corresponding to iterated
majority and percolation crossings. It turns out that these limiting distributions have quite varying behavior. In fact, we show that
any nondegenerate probability measure on R arises in this way for some sequence of Boolean functions.

Résumé. Soit f : {0,1}n → {0,1} une fonction booléenne monotone, et {ηp : p ∈ [0,1]} le couplage monotone canonique
d’éléments de {0,1}n choisis selon la mesure produit d’intensité p ∈ [0,1]. Le point aléatoire p ∈ [0,1] en lequel f (ηp) bascule
de 0 à 1 est souvent concentré près d’une valeur particulière, présentant ainsi un effet de seuil. Pour une suite de telles fonctions
booléennes, nous étudions de plus près la fenêtre de seuil correspondante en considérant la loi limite lorsque n tend vers l’infini
(proprement normalisée pour être non-dégénérée) de ce point aléatoire critique où la fonction booléenne bascule. Nous détermi-
nons cette loi pour de nombreuses fonctions booléennes classiques, en portant une attention particulière aux cas de la majorité
itérée et des croisements de percolation. Il se trouve que ces lois limites ont des comportements d’une grande variété : en fait, nous
montrons que toute mesure de probabilité non-dégénérée sur R peut être obtenue de cette façon à partir d’une suite bien choisie de
fonctions booléennes.
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1. Introduction

It has been known for quite some time that typical events involving many independent random variables exhibit
“thresholds” in the sense that the probability of the given event changes sharply as the parameter of the independent
random variables varies. Observations of this kind were first made in the context of random graphs by Erdős and Rényi
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[11]. A more general understanding of the existence of threshold phenomena has since then been obtained through a
series of papers. For instance, Russo [47] showed that a monotone event defined in terms of a family of independent
Bernoulli variables exhibits a threshold if its dependence on each variable is small. Russo’s result was later refined
by Talagrand [52]. The first estimates on the “sharpness” of the threshold were obtained by Friedgut and Kalai [14],
critically building on work originating from Kahn, Kalai and Linial [31]. Related results also appeared in [4,13] and
elsewhere; see also [32] for a more extensive overview of the field.

Less is known when it comes to closer inspections of the “threshold window”. Although the windows corresponding
to certain graph properties are well understood, there is to our knowledge no general study of this transition. We aim
with the present paper to offer a unified perspective on threshold transitions, and show that these transitions present
quite varying behavior.

Let f : {0,1}n → {0,1} be a monotone (increasing) Boolean function and assign [0,1]-uniform random variables
ξ1, ξ2, . . . , ξn to the elements of [n] := {1,2, . . . , n}. For p ∈ [0,1], let ηp = {i ∈ [n] : ξi ≤ p}, and note that

(a) each i ∈ [n] is present in ηp with probability p independently for different i; and
(b) i ∈ ηp implies i ∈ ηp′ for p′ > p.

Thus, ηp corresponds to an element ω ∈ {0,1}n chosen according to product measure with intensity p, in the sequel
denoted by Pp , and (ηp)p∈[0,1] constitutes the standard monotone coupling of elements in {0,1}n chosen according
to Pp , as p varies between 0 and 1. We study the random point p at which f (ηp) changes from 0 to 1. For a given
sequence of monotone Boolean functions (fn)n≥1, our goal will be to find the (nondegenerate) limiting distribution
of this random point after proper normalization, should it exist. In the most interesting examples, one has a threshold
phenomenon where, for large n, Pp(fn) goes from 0 to 1 within a very small interval, which results in this transition
point having a degenerate limit; one then needs to renormalize in order to obtain a nondegenerate limiting distribution.
(If there is no threshold phenomenon, then this point should already have a nondegenerate limit and no further analysis
is made.) One of our goals is to describe the distribution of this random point for some commonly studied Boolean
functions.

To be more precise, given a monotone Boolean function f : {0,1}n → {0,1}, we define the random variable

T (f ) := min
{
p ∈ [0,1] : f (ηp) = 1

};
this is the point where f switches from 0 to 1 in the canonical coupling. Given a sequence (fn)n≥1 of monotone
Boolean functions fn : {0,1}n → {0,1}, we want to find, if possible, normalizing constants (an)n≥1 and (bn)n≥1 with
the an’s nonnegative such that an(T (fn) − bn) converges, as n → ∞, to a nondegenerate limiting distribution, and to
determine what that limit may be. Observe that for x ∈ R

P
(
an

(
T (fn) − bn

) ≤ x
) = P

(
T (fn) ≤ bn + x/an

) = Ppn

(
fn(ω) = 1

)
, (1)

where pn = bn +x/an. Recall the theorem of types (see [9, Theorem 3.7.5]) which tells us that there is essentially only
one way to normalize a sequence of random variables and that there is essentially at most one possible nondegenerate
limiting distribution. (The word “essentially” in the latter part of the statement means “up to a change of variables of
the form x �→ ax + b”).

Notation. When understood from the context, we will write Tn for T (fn).

The dictatorship function, which for every n outputs the value of the first coordinate of the input, clearly has that
Tn is uniformly distributed on the interval [0,1] for each n and so no scaling is needed. A simple example where
scaling is needed is the OR function which is 1 if and only if at least one bit is 1. In this case, it is immediate to check
that nTn converges in distribution to a unit exponential random variable. The cases when nontrivial normalization is
needed are exactly those covered in the next definition.

Definition. We say that (fn)n≥1 has a threshold if there exists a sequence (pn)n≥1 such that for all ε > 0,

lim
n→∞Ppn+ε(fn = 1) = 1 and lim

n→∞Ppn−ε(fn = 1) = 0.

This is equivalent to Tn − pn approaching 0 in distribution. (Often pn will not depend on n.)
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We give an alternative description of T (f ) which will be useful to have in mind, in particular when we study the
Boolean function known as “tribes”. Recall that a 1-witness for f is a minimal set W ⊆ [n] such that {ωi = 1 for all i ∈
W } implies f (ω) = 1. Similarly, a 0-witness for f is a minimal set W ⊆ [n] such that {ωi = 0 for all i ∈ W } implies
f (ω) = 0. Witnesses may be used to characterize T (f ). Writing W1 for the set of 1-witnesses and W0 for the set of
0-witnesses for f , it is immediate to check that for any monotone Boolean function one has

T (f ) = min
W∈W1

max
i∈W

ξi = max
W∈W0

min
i∈W

ξi. (2)

We next briefly discuss what one should expect the normalizing constants (an)n≥1 and (bn)n≥1 to be in typical
situations. Certainly it is reasonable that bn should be close to E[Tn]. In cases where we have a threshold, heuristically,
the size of the “threshold interval” around pn where Pp(fn = 1) moves from being near 0 to being near 1 should be
governed by d

dp
Pp(fn = 1) evaluated at p = pn. The Margulis-Russo formula (see e.g. [17, Theorem III.1]) tells us

that this is equal to the total influence at pn (defined below). Therefore the total influence dictates what the scaling
factor an should be. We mention that while this heuristic for the scaling works in most natural examples, it is certainly
not true in general. For example, if fn is the Boolean function which is the AND of majority (to be defined later)
on n bits and dictator, then the total influence will be of order

√
n but no scaling (an ≡ 1) is needed to obtain a

nondegenerate limit for Tn.

Definition. Given a Boolean function f of n variables and a variable i ∈ [n], we say that i is pivotal for f for ω if
f (ω) �= f (ωi) where ωi is ω but flipped in the ith coordinate. The influence of the ith bit with respect to p, denoted
by Infpi (f ), is defined by

Infpi (f ) := Pp(i is pivotal for f )

and the total influence with respect to p is defined to be
∑

i∈[n] Infpi (f ).

1.1. Limiting behavior for some specific Boolean functions

We now summarize some of the results that we will obtain. The paper will begin by analyzing the limiting distribution
of Tn for the majority function (which will be normal), the tribes function (which will be a reverse Gumbel distribution)
and certain properties associated to graphs, such as connectivity and clique containment. A connection between the
tribes function and the coupon collector problem is discussed. These results, which are not difficult, are presented in
Section 2.

A class of functions that offers a quite interesting analysis is the so-called iterated majority functions. For this class
the analysis of the limiting distribution of Tn (both its existence and its properties) requires somewhat more work and
involves dynamical systems. Given an odd integer m ≥ 3, the iterated m-majority function is defined recursively on
mn bits as follows. One constructs an m-ary tree of height n and places 0’s and 1’s at the leaves. One takes the majority
of the bits in each family of m leaves and thus obtains 0 and 1 values for the nodes at height n− 1. One then continues
iteratively until the root is assigned a value. This is defined to be the output of the function.

The iterated majority function has been studied in various papers and is of interest in, among other areas, theoretical
computer science. Here we simply mention one paper, by Mossel and O’Donnell [41], where these functions are
explicitly studied. These authors showed that this family, as m varies, provides examples of sequences of monotone
Boolean functions where the “noise sensitivity exponent” (which we do not define here) is arbitrarily close to 1/2.

In Section 3 we identify the precise rate of decay for the tails of the limiting distributions for this class of Boolean
functions. To state the result of the analysis for iterated majority, we let, for odd integers m ≥ 3,

γ (m) := m

(
m − 1
m−1

2

)
2−(m−1) and β(m) := log m+1

2

logγ (m)
.

Theorem 1. Consider, for each odd integer m ≥ 3, iterated m-ary majority on mn bits.

(a) Then γ (m)n(Tn − 1
2 ) converges in distribution, as n tends to infinity, to a random variable whose distribution Fm

is symmetric, absolutely continuous and fully supported on R. Moreover, for m �= m′, Fm and Fm′ are not related
by a linear change of variables.
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(b) There exist constants c1 = c1(m) and c2 = c2(m) in (0,∞) so that for all x ≥ 1,

exp
(−c1x

β(m)
) ≤ P(Wm ≥ x) ≤ exp

(−c2x
β(m)

)
,

where Wm has distribution Fm.
(c) β(m) is strictly increasing, taking values in the interval (1,2) and approaches 2 as m → ∞.
(d) The sequence (Fm)m≥1 approaches, as m → ∞, a centered Gaussian with variance (2π)−1.

Remark. Note that parts (b) and (c) together state that the tails of Fm are between those of an exponential and a
Gaussian. The fact that β(m) approaches 2 is consistent with part (d).

One of the most interesting and studied sequence of Boolean functions corresponds to percolation crossings of
a square. The rich structure of this particular example has inspired an extensive analysis; some parts of this recent
development are presented in the book [18]. We will state below a result for this example whose proof, unlike the
proofs of all other results in this paper which are proved from first principles, will be based on some recent highly
nontrivial developments in percolation and in so called near-critical percolation, due to Garban, Pete and Schramm
[15,16], building on work by Kesten [34], see also [43].

To even begin this, we need to introduce a number of different concepts. However, we will be very brief and refer to
[53] and [17] for background and explanation of terms which are not clear. We consider percolation on the hexagonal
tiling embedded into R2. Given n, we will consider the set of hexagons contained inside of [0, n] × [0, n], denoted
by Bn, and we will think of these hexagons as indexing our underlying i.i.d. random variables of which we will then
have approximately n2. We let fn be the indicator function of the event that there is a path of hexagons from the
left side of this box to the right side all of whose values are 1. It is well known that there is a threshold at p = 1/2
which is the critical value for percolation on the (full) hexagonal tiling. For critical percolation on the hexagonal
tiling, we let α4(R) be the probability that there are four paths of alternating value from a neighbor of the origin 0 to
distance R away; this event is usually called the four-arm event. See Figure 1 (in the appendix) for a realization of this
event (where 1 is replaced by black and 0 is replaced by white). Using Schramm-Loewner evolution and conformal
invariance, it was proved by Smirnov and Werner [51] that

α4(R) = R− 5
4 +o(1) as R → ∞.

A little bit of thought shows that if we have a hexagon H in Bn, not too close to the boundary, which is pivotal
for this crossing event, then the four-arm event to distance approximately n centered at H occurs. From here, it is
possible to argue (see [17]) that the expected number of pivotal hexagons for fn is, up to constants, n2α4(n). This
suggests what the proper scaling of Tn should be and this turns out to be correct. The following result will be proved
in an appendix to this paper authored by Gábor Pete.

Theorem 2. Consider percolation crossings of an n × n-square of the hexagonal tiling.

(a) Then n2α4(n)(Tn − 1
2 ) converges in distribution, as n tends to infinity, to a random variable whose distribution F

is symmetric, absolutely continuous and fully supported on R.
(b) There exist constants c1 and c2 in (0,∞) so that for all x ≥ 1

exp
(−c1x

4/3) ≤ P(W ≥ x) ≤ exp
(−c2x

4/3),
where W has distribution F .

Remark. The fact that the limit in part (a) of this theorem exists follows from recent results due to Garban, Pete and
Schramm [16, Theorem 1.5 and Proposition 9.6], as stated already in a previous version of this paper. However, the
precise rate of decay, stated in part (b), of the tails of the limiting distribution was not known to us at the time, and
only later found by the appendix author.
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1.2. Limiting behavior for general Boolean functions

When one considers the question about the limiting distribution of Tn for a given sequence of Boolean functions, it
is natural to ask which distributions on R can arise as normalized limits of such a sequence of Tn. The next result,
proved in Section 4, says that they all do. We remind the reader that a function f : {0,1}n → {0,1} is called transitive
if it is invariant with respect to a transitive group of permutations of [n].

Part (b) of the following theorem has been obtained jointly with Anders Martinsson.

Theorem 3. Let μ denote any probability measure on R.

(a) For any sequence (an)n≥1 satisfying 1 
 an 
 √
n, there exists a sequence (fn)n≥1 of monotone functions fn :

{0,1}n → {0,1} for which an(Tn − 1
2 ) approaches μ in distribution.

(b) For any sequence (an)n≥1 satisfying logn 
 an 
 √
n, there exists a sequence (fn)n≥1 of monotone and transitive

functions fn : {0,1}n → {0,1} for which an(Tn − 1
2 ) approaches μ in distribution.

Remark. By modifying the construction leading to part (b) one may obtain, for any sequence (an)n≥1 satisfying
(logn)2 
 an 
 n, a sequence (fn)n≥1 of monotone graph properties, defined on n vertices and

(
n
2

)
edges, for which

an(Tn − 1
2 ) approaches μ in distribution. Moreover, the centralizing coefficient of Theorem 3 could in greater gen-

erality be replaced by any sequence (bn)n≥1 bounded away from 0 and 1, although this may be of less interest. We
further mention that Rossignol [46] has previously showed that for any sufficiently smooth sequence (an)n≥1 satisfy-
ing logn ≤ an ≤ √

n there exists an increasing sequence (N(n))n≥1 and monotone and transitive Boolean functions
(fN(n))n≥1 with a threshold at 1/2 of width 1/an.

There are some conditions that the scaling coefficients (an)n≥1 have to meet in order to obtain a non-degenerate
limit. Further restrictions apply in order not to impose properties on the limiting distribution. These facts are described
in the following proposition. While some of these facts are well known to many we present them here for convenience
to the reader, and provide a proof in Section 4. Together they show that Theorem 3 is in fact sharp.

Proposition 4. Assume that an(Tn − bn) converges, as n tends to infinity, to some non-degenerate probability mea-
sure μ, and that (bn)n≥1 is bounded away from 0 and 1. Then:

(a) The sequence (an/
√

n)n≥1 is bounded from above.
(b) If the functions (fn)n≥1 are transitive, then (an/ logn)n≥1 is bounded away from 0.
(c) If (an)n≥1 is bounded from above, then μ is necessarily fully supported on a (finite) interval.
(d) If the functions (fn)n≥1 are transitive and (an/ logn)n≥1 is bounded from above, then μ is necessarily fully

supported on a (possibly infinite) interval.
(e) If (an/

√
n)n≥1 is bounded away from 0, then μ is necessarily absolutely continuous.

Remark. Part (e) of the above proposition was pointed out to us by Anders Martinsson. We also mention that the
statement in the previous remark regarding graph properties is also essentially best possible, due to the work of
Bourgain and Kalai [7].

Interestingly, there are sequences of nondegenerate random variables (Xn)n≥1 which are not renormalizable in the
sense that for no subsequence (Xnk

)k≥1 are there normalizing constants (ak)k≥1 and (bk)k≥1 with the ak’s nonnegative
so that ak(Xnk

− bk) converges, as k → ∞, to a nondegenerate limiting distribution. A typical example of such a
sequence is given by Xn = enZ where Z is a standard normal random variable. The vague idea is that when we try to
scale down to keep mass from going to infinity, then the result will be that all the mass is accumulating at 0. Another
example, which we will exploit, is when Xn is uniformly distributed on {±2k : k = 1,2, . . . , n}.

The following proposition shows that one cannot necessarily extract a subsequence of (Tn)n≥1 which after normal-
ization converges to a nondegenerate limit.

Proposition 5. There exists a (nondegenerate) sequence (fn)n≥1 of monotone (and transitive) Boolean functions fn :
{0,1}n → {0,1} so that no subsequence of (Tn)n≥1 can be renormalized to have a nondegenerate limiting distribution.
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Remark. The proof of this result, provided in Section 4, will be based on Theorem 3. We may therefore assume that
the functions in the obtained sequence are transitive if we so wish.

We end this introductory section with an open question. As the reader may notice, all examples we have worked
out yield a limiting distribution with exponentially or super-exponentially decaying tails. Although our Theorem 3
certainly shows that there are (sequences of) monotone Boolean functions giving rise to limiting distributions with
heavier tails, the examples we construct are not very natural. Are there any “natural” examples whose limiting distri-
butions present sub-exponential tails?

2. Some elementary examples

2.1. Majority and the standard normal

Majority is an example providing nontrivial, although classical, scaling behavior. The majority function on n bits
is defined to output the value 1 if there are at least n/2 bits with the value 1. More generality, we consider biased
majority, which is the function with output 1 if and only if there are at least pn bits valued 1, where p ∈ (0,1) is a
fixed parameter. The correct scaling factor will be of order

√
n and the limit will be Gaussian, as stated in the following

proposition.

Proposition 6. For every p ∈ (0,1) we have for the p-biased majority function on n bits that
√

n
p(1−p)

(Tn − p)

converges in distribution to a standard normal.

Note that the multiplicative scaling is of order
√

n and coincides with the order of the total influence at the relevant
parameter p; hence it is consistent with the heuristic described above.

Proof. Let x ∈R, an = √
n/[p(1 − p)] and pn = p + x/an. For large n we have pn ∈ [0,1], and

P
(
an(Tn − p) ≤ x

) = P(Tn ≤ pn) = Ppn

(
n∑

i=1

ωi ≥ np

)
.

We of course have a sum of n Bernoulli variables with success probabilities pn.
A consequence of the Lindeberg-Feller central limit theorem (see e.g. [9, Theorem 3.4.5]) is that if {Xi,n : 1 ≤ i ≤

n,n ≥ 1} is a family of bounded random variables, such that for each n, {Xi,n : 1 ≤ i ≤ n} are i.i.d. with zero mean
and variance that tends to 1 as n increases, then

∑n
i=1 Xi,n/

√
n converges in distribution to a standard normal.

Since Varpn(ωi) = pn(1 − pn), which tends to p(1 − p), and (np − npn)/
√

np(1 − p) = −x, the above conse-
quence of the Lindeberg-Feller theorem implies that, as n → ∞,

Ppn

(
n∑

i=1

ωi ≥ np

)
= Ppn

(
n∑

i=1

ωi − pn√
np(1 − p)

≥ np − npn√
np(1 − p)

)
→ 
(x),

the distribution function of a standard normal distribution. �

2.2. Tribes, Gumbel and coupon collectors

The tribes function on n bits is defined as follows. Given �n, partition [n] into �n/�n� sets (‘tribes’) of length �n (plus
some residual bits). Then fn(ω) = 1 if and only if ω is all 1’s for at least one tribe. The correct choice for �n, in order
for the distribution of to be nondegenerate for the uniform measure, is of order log2 n − log2 log2 n.

Proposition 7. Consider tribes with �n = �log2 n− log2 log2 n�, set αn = (log2 n− log2 log2 n)/�n. Then for all x ∈R

we have

lim
n→∞P

(
2(log2 n)

(
Tn −

(
1

2

)αn
)

≤ x

)
→ 1 − exp

(−ex
)
.
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Note that the multiplicative scaling is of order log2 n, which can be checked to be the order of the total influence at
the relevant parameter 1/2; again, this is consistent with the heuristic described in the introduction. Note also that the
upper tail of this limiting distribution decays super-exponentially, whereas the lower tail just decays exponentially.

Proof. Note that the �n/�n� tribes of length �n corresponds to the 1-witnesses for the tribes function. Let Xn denote
the number of tribes (1-witnesses) for which ω is all 1. For ω ∼ Pp , we see that Xn is binomially distributed with
parameters �n/�n� and p�n . Clearly, �n/�n� → ∞ as n → ∞. Also, for all x ∈R we have

�n/�n�
((

1

2

)αn

+ x

2 log2 n

)�n

= �n/�n�
(

1

2

)αn�n
(

1 + x

21−αn log2 n

)�n

→ ex

as n → ∞. Given x ∈ R and letting pn = ( 1
2 )αn + x

2 log2 n, we therefore have, by the Poisson convergence theorem
(see e.g. [9, Theorem 3.6.1]), that for ω ∼ Ppn , Xn(ω) converges in law to a Poisson distribution with parameter ex .
Since for each n,

P

(
Tn ≤

(
1

2

)αn

+ x

2 log2 n

)
= Ppn(Xn ≥ 1),

we thus conclude that

lim
n→∞P

(
Tn ≤

(
1

2

)αn

+ x

2 log2 n

)
= 1 − exp

(−ex
)
,

as we needed to show. �

Remark. The unfortunate term αn arises due to the fact that log2 n − log2 log2 n is not an integer. A related fact is
that if p = 1/2, then the number of tribes which are identically 1 has all Poisson distributions with parameter in [1,2]
as subsequential limits. If we were to restrict outselves to n’s of the form 22k

, then log2 n − log2 log2 n would be an
integer and we would have the simpler form that

lim
n→∞P

(
2(log2 n)

(
Tn − 1

2

)
≤ x

)
→ 1 − exp

(−ex
)

along this thin subsequence of n.

The reader might recognize the limiting distribution obtained in Proposition 7. In general if X has distribution
F(x), then −X has distribution 1 − F(−x). If Y is distributed according to the above limiting distribution, then
−Y has distribution exp(−e−x) which is known as the standard Gumbel distribution. This distribution often arises in
extreme value theory and in particular is the limiting distribution after proper normalization of

(a) the maximum of n independent unit exponential random variables (where one subtracts logn but uses no scaling
factor to normalize); and

(b) the number of picks needed to collect n coupons when each pick is uniform (where one subtracts n logn and
divides by n to normalize).

Heuristically, the reason that one gets the same limiting distribution in these two models is that in the latter case, we
have the maximum of n weakly dependent geometric random variables with parameters 1/n. When dividing by n

(which explains the difference of a factor of n in the two normalizations), the geometric random variables become
unit exponentials in the limit.

While we will not give an alternative proof of Proposition 7 based on these ideas, we want to explain why we
obtained the limiting distribution there that we did.

Given a Boolean function f , define its reversal f̂ by f̂ (ω) = 1 − f (1 − ω) and observe that f̂ is also a monotone
Boolean function. One immediately checks that T (f̂ ) and 1 − T (f ) have the same distribution. If fn is our tribes
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function, then this distributional relationship and Proposition 7 easily yields that

2(log2 n)

(
T (f̂n) − 1 +

(
1

2

)αn
)

(3)

converges to the standard Gumbel distribution. We now give a heuristic for this. Clearly, f̂n is the function which is 0
if and only if there is a tribe which is all 0’s. (The tribes are 0-witnesses for f̂n.) One easily checks that T (f̂n) is the
smallest p such that each tribe has a 1 in it with respect to ηp; compare with (2). The distribution of the time at which
a given tribe gets its first 1 is equal to the distribution of the minimum of �n uniform random variables. The minimum
of k uniform random variables after multiplying by k converges to a unit exponential. Therefore, since different tribes
are disjoint (and hence their corresponding uniform random variables are independent) and have size �n, it follows
that �nT (f̂n) is approximately the maximum of �n/�n� unit exponential random variables. Therefore one should have
that

�nT (f̂n) − log
(�n/�n�

) = �n

(
T (f̂n) − log(�n/�n�)

�n

)
converges to the Gumbel distribution. This is certainly close to (3) and heuristically explains the reverse Gumbel
distributional limit.

Remark. The so-called circular tribes function is a more symmetric version of tribes and perhaps more natural. It
is defined as follows. We place the n bits in a circle and define fn(ω) to be 1 if ω contains an interval of 1’s of
length �log2 n�. One can prove in a similar manner that the corresponding sequence Tn also has the reverse Gumbel
distribution as a limit. The situation is however slightly different than for tribes since the number of such intervals
containing all 1’s is no longer Poisson but rather compound Poisson, where the summands are mean 2 geometric
random variables.

2.3. Random graph properties

In this subsection we cover a few monotone functions related to random graphs. We remind the reader that a random
graph on n vertices is obtained by declaring each of the possible

(
n
2

)
edges open with probability p ∈ (0,1). Equiv-

alently, this amounts to determining an element ω ∈ {0,1}(n
2) according to Pp . We first discuss two functions whose

critical values occur near 0. The proof of the following proposition is very straightforward (when using well known
results) and hence we only sketch the proof.

Proposition 8.

(a) Let fn be the function corresponding to containing a triangle in a graph with n vertices. Then, for all x ≥ 0, we
have that

lim
n→∞P(nTn ≤ x) = 1 − exp

(−x3/6
)
.

(b) Let fn be the function corresponding to a graph with n vertices being connected. Then, for all x ∈ R, we have
that

lim
n→∞P(nTn − logn ≤ x) = exp

(−e−x
)
.

The multiplicative scaling n can in both cases be checked to be the order of the total influence at the relevant
parameter.

Proof. (a) It is well known (see e.g. [3, Theorem 4.1]) that if p = x/n, then the number of triangles contained in the
random graph converges to a Poisson distribution with parameter x3/6. The result follows immediately using (1).

(b) It is well known (see e.g. [3, Theorem 7.3]) that for any x ∈ R, if p = (logn + x)/n, the probability that the
random graph is connected approaches exp(−e−x). The result follows. �
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Remark. We see that in part (a) of the above proposition the threshold is coarse and the support of the limiting
distribution bounded to the left, while in part (b) the threshold is sharp and the support unbounded to the left. This
in an instance of the general phenomenon that only sharp thresholds may give rise to limiting distributions supported
on the whole line. More precisely, assume that (bn)n≥1 is bounded away from 1 and that an(Tn − bn) converges, as n

tends to infinity, to some probability measure μ. Then a coarse threshold is characterized by the sequence (anbn)n≥1

being bounded above, and if c is an upper bound on this sequence, then the support of μ is contained in [−c,∞).

A clique is a maximal complete subgraph of a graph. At a given parameter p ∈ (0,1), the expected number of
complete subgraphs of size � of a random graph on n vertices falls abruptly from being very large to being very
small, as � increases. As a consequence, the maximal clique size of a random graph is highly concentrated, with high
probability equal to either of two consecutive values �n − 1 or �n, where �n = �n(p). Using Stirling’s approximation
one sees that this sequence must satisfy �n ∼ 2 log1/p n. This is well known; see e.g. [3, Chapter 4].

We will be interested in the function encoding the existence of a clique of size �n. For most values of n the maximal
sized clique consists of �n vertices with probability close to 1. However, along certain subsequences this probability
remains bounded away from 1. Instead of restricting to subsequences we may allow p to vary, similar to the case of
tribes. We simply state this result without proof since the argument follows more or less the argument for tribes. One
obtains the result by proving Poisson approximation for the number of complete graphs of a given size. While this is
more involved than for tribes, it is proved in [3, Theorems 11.7 and 11.9].

Proposition 9. Let p ∈ (0,1) and �n = �n(p) be the above mentioned sequence. Let p1,p2, . . . be any sequence
bounded away from 0 and 1 such that the limit

λ := lim
n→∞

(
n

�n

)
p
(�n

2 )
n exists in (0,∞).

Then, for the Boolean function encoding the existence of a complete graph of size �n, we have

lim
n→∞P

(
�2
n

2pn

(Tn − pn) ≤ x

)
= 1 − exp

(−λex
)

for x ∈ R.

3. Iterated majority

In this section, we will analyze iterated majority and prove Theorem 1. In order to understand the asymptotic behavior
of iterated majority, one is led to study its recursive structure. The limiting distribution will be described through the
iterates of some function g : [0,1] → [0,1], and the appropriate scaling will be determined by the derivative of g at 1

2 .
We begin by describing what the limiting distribution Fm will be. Define g : [0,1] → [0,1] as the probability at

parameter x ∈ [0,1] that the majority on m bits equals 1. Formally, g is given by

g(x) =
m∑

k=(m+1)/2

(
m

k

)
xk(1 − x)m−k.

Observe that γ (m), which will be our scaling coefficient satisfies

γ (m) := m

m − 1
γ (m − 2). (4)

It is clear that γ (m) is increasing in m, and Stirling’s approximation says that γ (m) ∼ √
2m/π as m tends to infinity.

It turns out that the total influence for fn, i.e. iterated majority on mn bits (where m is implicit), is γ n and we will
below see that γ coincides with the derivative of g at 1

2 . The recursive structure of γ (m) stated in (4) easily yields
that γ (m) < m

2 , implying in turn that β(m) > 1 for all m ≥ 3. Also, using γ (m) ∼ √
2m/π , we find that β(m) → 2 as

m → ∞.
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It turns out to be convenient to consider the translate

h(x) = g

(
1

2
+ x

)
− 1

2

of g. The scaling limit of iterated m-majority will be described in terms of the limit as n → ∞ of h(n)(αγ −n), where
α ∈R and h(n) denotes the composition of h with itself n times.

We will break up the proof of the four parts of Theorem 1 into subsections.

3.1. Proof of part (a)

We begin with the following proposition which will be central for our analysis.

Proposition 10. For every odd integer m ≥ 3 and α ∈R, the limit L(α) := limn→∞ h(n)(αγ −n) exists and the result-
ing function L :R→ (− 1

2 , 1
2 ) is odd, onto, 1-Lipschitz continuous, strictly increasing and continuously differentiable.

We first need the following lemma.

Lemma 11. The function h : [− 1
2 , 1

2 ] → [− 1
2 , 1

2 ] is odd, onto, strictly increasing, strictly convex on [− 1
2 ,0] and

strictly concave on [0, 1
2 ]. In particular h′(x) ≤ h′(0) = γ (m) for x ∈ [− 1

2 , 1
2 ].

Proof. It suffices to demonstrate the corresponding characteristics for g. From the interpretation of g as a probability,
it is clear that g is strictly increasing, maps 0, 1

2 and 1 to themselves, and that

g(x) = P
(
Bin(m,x) ≥ m/2

) = 1 − P
(
Bin(m,x) < m/2

) = 1 − g(1 − x).

Thus h is odd, strictly increasing, has fixed points at − 1
2 , 0 and 1

2 , and is therefore also onto.
We know that g is differentiable and we aim to determine its derivative. Note that

g′(1) = g′(0) = lim
x→0

∑
k≥m/2

(
m

k

)
xk−1(1 − x)m−k = 0.

Next, pick δ > 0 and let ξ1, ξ2, . . . , ξm be independent and [0,1]-uniformly distributed. Using the monotone coupling
we find that

g
(
x + δ(1 − x)

) − g(x) = P
(
#{ξi ≤ x} < m/2,#

{
ξi ≤ x + δ(1 − x)

} ≥ m/2
)
.

Conditioning on the number of ξi ’s whose value is at most x we arrive at∑
k≤m/2

(
m

k

)
xk(1 − x)m−k

P
(
#
{
ξi ≤ x + δ(1 − x)

} ≥ m/2|#{ξi ≤ x} = k
)
.

The above conditional probability coincides with the probability that a binomial random variable with parameters
m − k and δ is at least m/2 − k, and is thus independent of x. In addition,

δ−1
P
(
Bin(m − k, δ) ≥ m/2 − k

) =
∑

�≥m/2−k

(
m − k

�

)
δ�−1(1 − δ)m−k−�,

and sending δ to 0 leaves us with m − k = (m + 1)/2 in case k = (m − 1)/2, and 0 for all smaller values of k. In
conclusion, for x ∈ (0,1),

g′(x) = lim
δ→0

g(x + δ(1 − x)) − g(x)

δ(1 − x)
= m + 1

2

(
m

m−1
2

)[
x(1 − x)

]m−1
2 . (5)
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Differentiating once more gives

g′′(x) = m + 1

2

m − 1

2

(
m

m−1
2

)[
x(1 − x)

]m−3
2 (1 − 2x).

In conclusion, the derivative of g is strictly positive on (0,1), and the second derivative is strictly positive on (0, 1
2 )

and strictly negative on ( 1
2 ,1). So h possesses the claimed properties and h′ reaches its maximum at the origin, which

is easily seen to equal γ (m). �

The proof of Proposition 10 will make repeated use of the properties of h displayed in Lemma 11. For instance,
we note that h cannot have any fixed points other than − 1

2 , 0 and 1
2 .

Proof of Proposition 10. Since h(0) = 0 we also have L(0) = 0, and since h is odd the limit L(α), if it exists, has to
be odd as well. In particular, it will be sufficient to consider α ≥ 0 for the rest of this proof.

Existence. Given α ≥ 0, choose n0 such that αγ −n ≤ 1
2 for all n ≥ n0. Note that we may obtain h(n)(αγ −n)

from αγ −(n+1) by first multiplying by γ , and then applying h n times. h(n+1)(αγ −(n+1)) is similarly obtained from
αγ −(n+1) by first applying h once, and then another n times. Lemma 11 shows that the derivative of h is bounded
by γ . Hence γ x ≥ h(x) for all x ∈ [0,1/2], and it follows that h(n)(αγ −n) is decreasing in n for n ≥ n0. Since the
sequence is bounded below by 0, the limit L(α) necessarily exists for all α ≥ 0.

1-Lipschitz Continuity. Using again that |h′| ≤ γ , together with iterated use of the mean value theorem, we find for
α,α′ ∈ R that∣∣L(α) − L

(
α′)∣∣ = lim

n→∞
∣∣h(n)

(
αγ −n

) − h(n)
(
α′γ −n

)∣∣ ≤ lim inf
n→∞ γ n

∣∣αγ −n − α′γ −n
∣∣ = ∣∣α − α′∣∣,

where we also have used that αγ −n and α′γ −n are contained in [− 1
2 , 1

2 ] for large n.
An observation that will be important for the rest of this proof is that, by continuity of h, for all α ∈ R

h
(
L(α)

) = lim
n→∞h(n+1)

(
αγ −n

) = L(αγ ). (6)

Iterating this yields that

L(α) = h
(
L

(
αγ −1)) = h(n)

(
L

(
αγ −n

))
. (7)

Strict Monotonicity. Note that weak monotonicity of course follows from h being increasing. We will next aim to
show that for α ≥ α′ ≥ 0 sufficiently small, we have

L(α) − L
(
α′) ≥ (

α − α′) ∞∏
k=1

(
1 − α

(
3

4

)k)
. (8)

Apart from showing that L is strictly increasing in a neighborhood around the origin, (8) will be an important step in
the proof of differentiability of L. Note that strict monotonicity of L would follow for all α ∈ R by (7) and (8), since
h is strictly increasing.

We now deduce (8). Using concavity of h on [0, 1
2 ], we observe that 4

3 ≤ γ − 1
6 ≤ h′(x) ≤ γ on some interval [0, c],

where c = c(m) > 0. So, by the mean value theorem we conclude that

4

3
x ≤ h(x) ≤ γ x on [0, c].

Consequently, for all α ∈ [0, c] and 1 ≤ k ≤ n, we have h(k)(αγ −n) ≤ α, and therefore

h(k)
(
αγ −n

) ≤ 3

4
h(k+1)

(
αγ −n

) ≤
(

3

4

)n−k

h(n)
(
αγ −n

) ≤ α

(
3

4

)n−k

.
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Now, for any α′ ≤ α in [0, c] and given n, we obtain, from iterated use of the mean value theorem, the existence of
constants {sn

k }1≤k≤n with sn
k ∈ [h(k−1)(α′γ −n), h(k−1)(αγ −n)] and such that

h(n)
(
αγ −n

) − h(n)
(
α′γ −n

) = (
αγ −n − α′γ −n

) n∏
k=1

h′(sn
k

)
. (9)

Since h′ is decreasing on [0, 1
2 ] and h′′(0) = 0, we have that h′(x) is bounded below by γ (1 − x) on some, possibly

smaller, interval [0, c′]. As a consequence we obtain the lower bound on (9),

(
αγ −n − α′γ −n

) n∏
k=1

γ
(
1 − h(k−1)

(
αγ −n

))
≥ (

α − α′) n∏
k=1

(
1 − α

(
3

4

)n−k+1)

= (
α − α′) n∏

k=1

(
1 − α

(
3

4

)k)
≥ (

α − α′) ∞∏
k=1

(
1 − α

(
3

4

)k)
. (10)

Combining (9) and (10) and letting n → ∞ yields (8) for every α′ ≤ α in [0, c′].
Continuous Differentiability. Using (7) we have for any α ≥ 0 and δ ∈ R that

L(α + δ) − L(α) = h(n)
(
L

(
(α + δ)γ −n

)) − h(n)
(
L

(
αγ −n

))
= [

L
(
(α + δ)γ −n

) − L
(
αγ −n

)] n∏
k=1

h′(h(k−1)
(
L

(
αkγ

−n
)))

and where we in the last step have used the mean value theorem iteratively; the αk’s are bounded between α and α + δ.
By continuity and monotonicity of h and L, these αk’s exist. Using h(k−1)(L(α)) = L(αγ k−1), and reindexing the
terms of the product, we arrive at

L(α + δ) − L(α)

δ
= L((α + δ)γ −n) − L(αγ −n)

δγ −n

n∏
k=1

γ −1h′(L(
αn−k+1γ

−k
))

. (11)

We now want to take limits. First, since L is 1-Lipschitz continuous,

lim sup
δ→0

L(α + δ) − L(α)

δ
≤

n∏
k=1

γ −1h′(L(
αγ −k

))
,

which is decreasing in n. Second, we note that the infinite product in (8) tends to 1 as α → 0. Applying this to the first
term in (11), we conclude that for every ε > 0, if n is sufficiently large, then

lim inf
δ→0

L(α + δ) − L(α)

δ
≥ (1 − ε)

n∏
k=1

γ −1h′(L(
αγ −k

))
.

Sending n to infinity, and then ε to zero, we conclude that the inferior and superior limits coincide and that

L′(α) = lim
δ→0

L(α + δ) − L(α)

δ
=

∞∏
k=1

γ −1h′(L(
αγ −k

))
. (12)

Since h′ ≤ γ the limit is finite, and since L(αγ −k) ≤ αγ −k and h′(x) ≥ γ (1 − x) for small x ≥ 0, the limit is strictly
positive for all α ∈R. This, again, shows that L is strictly monotone on R.
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We need to show that L′ is continuous, and note, based on (12), that L′ is decreasing on [0,∞) since L is increasing.
Since also L′ > 0 on R it follows that

∞∏
k=�

γ −1h′(L(
αγ −k

)) → 1 as � → ∞

uniformly on compact sets. Thus, for every ε > 0∣∣∣∣∣ lim
x→α

L′(x) −
�∏

k=1

γ −1h′(L(
αγ −k

))∣∣∣∣∣ < ε

for large enough �, showing that limx→α L′(x) = L′(α).
Surjectivity. Since L(0) = 0 and L is continuous, it remains to show that L(α) → 1

2 as α → ∞. For any k ∈ N we
have from (7) that L(αγ k) = h(k)(L(α)). Since L(α) > 0 for α > 0, the properties of h imply that h(k)(L(α)) → 1

2
as k → ∞. Together with the proven continuity of L and its weak monotonicity, this shows that L maps [0,∞) onto
[0, 1

2 ). �

We now use the above to analyze the asymptotics of Tn for iterated m-majority on mn bits to prove part (a) of
Theorem 1. With x ∈ R fixed, the goal will be to relate, for large n, the probability P(Tn ≤ pn), where pn = 1

2 +xγ −n,
with the function L : R→ [− 1

2 , 1
2 ] defined in Proposition 10.

Given p ∈ (0,1) and n ∈N, let

qn(p) := Pp

(
fn(ω) = 1

)
.

Using the iterated majority structure, it is easy to express qn(p) in terms of qn−1(p). Specifically, qn(p) is the proba-
bility that a binomial random variable with parameters m and qn−1(p) is at least m/2. That is,

qn(p) = P
(
Bin

(
m,qn−1(p)

) ≥ m/2
) = g

(
qn−1(p)

)
,

where g is defined as above. Of course, the base case q0(p) equals the probability of the majority function on one
bit being 1, which equals p. Iterating the above procedure we get qn(p) = g(n)(p). Replacing p by pn = 1

2 + xγ −n

leaves

P(Tn ≤ pn) = Ppn

(
fn(ω) = 1

) = qn(pn) = g(n)

(
1

2
+ xγ −n

)
= 1

2
+ h(n)

(
xγ −n

)
,

which, according to Proposition 10, converges as n → ∞ to 1
2 + L(x).

That the limiting distribution is absolutely continuous and fully supported on R is a consequence of the properties
of L established in Proposition 10. The final sentence of part (a) follows from parts (b) and (c).

Remark. Observe that the first equality in (7) has a very nice interpretation. It says that the two homeomorphisms
x �→ γ x from R to itself and x �→ h(x) from [−1/2,1/2] to itself are conjugate and that L provides a conjugation
between these homeomorphisms (showing that they are conjugate). We know that L is also a homeomorphism. Since
the two conjugate mappings are analytic, one might guess that one can show that L has good properties (such as
analyticity or being continuously differentiable) by virtue of the fact it is a conjugacy between these systems. This is
unfortunately not true. One can construct self-conjugacies f of x �→ γ x which, while being homeomorphisms, are
not continuously differentiable. Being a self-conjugacy amounts to saying that f (γ x) = γf (x) and so in particular
we are saying that f (γ x) = γf (x) does not imply that f is linear even for homeomorphisms. Since L ◦ f would also
be a conjugacy between the two systems, one cannot conclude good properties of L using only the fact that it is a
conjugacy.
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3.2. Proof of part (b)

We first need the following lemma.

Lemma 12. For every odd integer m ≥ 3 there exists ε0 = ε0(m) > 0 such that for all � ≥ 1 and ε ∈ (0, ε0),

ε( m+1
2 )� ≤

∣∣∣∣h(�)

(
1

2
− ε

)
− 1

2

∣∣∣∣ ≤ (9ε)(
m+1

2 )� .

Proof. First note that

1

2
− h

(
1

2
− ε

)
= 1 − g(1 − ε) = g(ε),

which after iteration leaves us with 1
2 − h(�)( 1

2 − ε) = g(�)(ε). In addition, each term in g with non-zero coefficient
has degree at least (m + 1)/2. Thus,

g(x) =
(

m
m+1

2

)
x

m+1
2

(
1 + r(x)

)
for some polynomial r(x) → 0 as x → 0. Since(

m
m+1

2

)
=

(
m

m−1
2

)
≤

(
2em

m − 1

)m−1
2 ≤ 9

m−1
2 ,

we see that g(ε) lies in [ε m+1
2 , (9ε)

m+1
2 /9] for all sufficiently small ε. Using the fact that g is increasing and g(x) ≤ x

on (0, 1
2 ), it then follows by two inductions that ε( m+1

2 )� and (9ε)(
m+1

2 )�/9 are lower respectively upper bounds for
g(�)(ε). �

Now, fix m ≥ 3, and let ε0 = ε0(m) > 0 be given as in Lemma 12. We first show the second inequality. Since L

approaches 1
2 continuously, we can choose a0 > 0 so that L(a0) = 1

2 − ε0
9 . Given x ≥ 1, let nx := �logγ

x
a0

�. We first
restrict to x’s which are sufficiently large so that nx ≥ 1. This immediately yields

a0 ≤ xγ −nx .

Using (7) and monotonicity of L and h, we have

L(x) = h(nx)
(
L

(
xγ −nx

)) ≥ h(nx)
(
L(a0)

)
.

By Lemma 12 and the definition of a0, we have that

P(Wm ≥ x) = 1

2
− L(x) ≤ 1

2
− h(nx)

(
L(a0)

) = 1

2
− h(nx)

(
1

2
− ε0

9

)
≤ ε

( m+1
2 )nx

0 .

An easy computation shows that, for all x for which nx ≥ 1(
m + 1

2

)nx

≥ 2

m + 1

(
x

a0

)β(m)

.

From this, the upper bound follows with c2 = − 2
m+1a

−β(m)

0 log ε0 for all large x. By decreasing c2 if necessary, one
can of course get the desired inequality for all x ≥ 1.

We now move to the lower bound. This time, choose a0 > 0 so that L(a0) = 1
2 − ε0

2 , and given x ≥ 1, let nx :=
�logγ

x
a0

�. We again restrict to large x for which nx ≥ 1. This immediately yields

a0 ≥ xγ −nx .
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Using (7) and monotonicity of L and h, we have

L(x) = h(nx)
(
L

(
xγ −nx

)) ≤ h(nx)
(
L(a0)

)
.

By Lemma 12, we have that

P(Wm ≥ x) = 1

2
− L(x) ≥ 1

2
− h(nx)

(
L(a0)

) = 1

2
− h(nx)

(
1

2
− ε0

2

)
≥

(
ε0

2

)( m+1
2 )nx

.

An easy computation shows that one has, for all x for which nx ≥ 1, that(
m + 1

2

)nx

≤ m + 1

2

(
x

a0

)β(m)

.

From this, the lower bound follows for some c1 for all large x, and by increasing c1 if necessary, one can of course
get the desired inequality for all x ≥ 1. This proves part (b).

3.3. Proof of part (c)

We set out to show that β(m) is strictly increasing. Since

β(m + 2) − β(m) = log m+3
2 logγ (m) − log m+1

2 logγ (m + 2)

logγ (m) logγ (m + 2)
, (13)

it will suffice to show that the numerator in the right-hand side of (13) is strictly positive. Using the recursive structure
of γ (m), i.e., that γ (m + 2) = m+2

m+1γ (m), we aim to show that

logγ (m) log
m + 3

m + 1
− log

m + 1

2
log

m + 2

m + 1
> 0.

For x ≥ 0 a Taylor estimate for log(1 + x) gives the lower and upper bounds x − x2

2 and x, respectively. A lower
bound on the numerator in the right-hand side of (13) is thus given by

logγ (m)

[
2

m + 1
− 2

(m + 1)2

]
− 1

m + 1
log

m + 1

2
. (14)

A lower bound on γ (m) can be obtained from known bounds on the central binomial coefficient. For instance, Wallis’
product formula states that an := ∏n

k=1
2k

2k−1
2k

2k+1 converges to π
2 as n → ∞. Since an is increasing we have an ≤ π

2
for all n ≥ 1, leading to the bound(

2n

n

)
≥ 4n

√
2

π(2n + 1)
.

Consequently γ (m) ≥ √
2m/π for all m ≥ 3. After multiplication by m + 1, a lower bound on the expression in (14)

is given by

log
2m

π

[
1 − 1

m + 1

]
− log

m + 1

2
= log

4

π
− log

m + 1

m
− 1

m + 1
log

2m

π
.

One may check that the latter expression is increasing in m and positive for m = 13. Using the slightly sharper
lower bound 4n√

πn
(1 − 1

8n
) on the central binomial coefficient, obtained from the Stirling series, one may arrive at an

alternative lower bound on the difference in (13), which is positive for all m ≥ 5. In either case, one further checks
that β(m) < β(m + 2) for the remaining values of m by hand, so that β(m) is strictly increasing for all m ≥ 3.
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3.4. Proof of part (d)

Since m will now be changing, it is natural to now write Lm instead of L. The distribution given by Fm(x) = 1
2 +Lm(x)

has density L′
m(x). We will show that limm→∞ L′

m(x) = e−πx2
, which we recognize as the density of a centered

normal distribution with variance 1/(2π). By virtue of Scheffé’s theorem (see e.g. [9]), pointwise convergence of
densities implies the desired weak convergence of Fm to a normal distribution. By symmetry, it suffices to prove this
for x ≥ 0 which we now assume to be the case.

We first show that L′
m(xγ −1) → 1 as m → ∞, for every x ≥ 0. First recall that by Proposition 10, we have that

L′
m(x) ≤ 1 for all x ≥ 0. Using (12) and (5) and then that L′

m ≤ 1, we find that

L′
m

(
xγ −1) =

∞∏
k=1

[
1 − 4

[
Lm

(
xγ −k−1)]2]m−1

2 ≥
∞∏

k=1

[
1 − 4x2γ −2(k+1)

]m−1
2 .

Since e−2y ≤ 1 − y for small positive y, replacing the terms of the product by an exponential, we obtain that for all
large m

L′
m

(
xγ −1) ≥

∞∏
k=1

exp
(−4x2(m − 1)γ −2(k+1)

) = exp

(
−4x2(m − 1)

∞∑
k=1

γ −2(k+1)

)

≥ exp
(−8x2mγ −4),

where we in the last step have used that γ 2 ≥ 2. Since γ = γ (m) increases at the rate of
√

m, we may conclude that
L′

m(xγ −1) → 1 as m → ∞. Moreover, the convergence is uniform in x over compact sets. Consequently, for every
ε > 0 and x ≥ 0 there is m0 such that Lm(xγ −1) ≥ (1 − ε)xγ −1 for all m ≥ m0.

Second, again using (12) and (5), or differentiating (7), we arrive at

L′
m(x) = L′

m

(
xγ −1)[1 − 4

[
Lm

(
xγ −1)]2]m−1

2 .

Together with our previous conclusions we find that

L′
m

(
xγ −1)[1 − 4x2γ −2]m−1

2 ≤ L′
m(x) ≤ L′

m

(
xγ −1)[1 − (1 − ε)24x2γ −2]m−1

2 .

Taking limits, first as m → ∞ and then as ε → 0, leaves us with

lim
m→∞L′

m(x) = e−πx2
,

as required.

4. All measures are distributional limits

In this section, we prove Theorem 3 and Propositions 4 and 5.

Proof of Theorem 3. The main part of the proof will be to, in both settings (a) and (b), prove the result for a restricted
class of probability measures, namely those μ of the form

∑k
i=1 qiδxi

, i.e., having finite support. To see why this will
suffice in order to obtain the general result, we first state a simple lemma, whose proof is left to the reader, concerning
metric spaces. Assume, in a metric space, we are given xm converging to x∞ and for each m, we have xm,n converging
to xm as n → ∞. Then there is a sequence mn (not necessarily strictly increasing) so that we have that xmn,n converges
to x∞ as n → ∞.

We note that it is well known that convergence in distribution is metrizable. Assume now that we are given an
arbitrary probability measure μ and a sequence (an)n≥1 satisfying the stated properties. It is clear we can find a
sequence (μm)m≥1, each with finite support as above, converging to μ. Assume that, for each m, we can find a
sequence of Boolean functions (fm,n)n≥1 such that fm,n is defined on n bits and an(T (fm,n) − 1

2 ) approaches, as
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n → ∞, μm in distribution. By the above general metric space result, there exists a sequence (mn)n≥1 (not necessarily
strictly increasing) so that an(T (fmn,n) − 1

2 ) approaches μ in distribution, as n → ∞. This shows that it will suffice
to prove parts (a) and (b) for measures μ having finite support.

Proof of part (a). Assume that a probability measure μ of the form
∑k

i=1 qiδxi
is given and let (an)n≥1 satisfy

1 
 an 
 √
n. We may assume that x1 < x2 < · · · < xk and that the qi ’s are all positive. For each i = 1,2, . . . , k fix

yi ∈R such that

1 − 
(yi) = q1 + q2 + · · · + qi,

where 
(·) denotes the distribution function of the standard Gaussian. (Of course, this defines yk to be −∞, but we
allow this slight abuse of notation.)

Now let Ei denote the event that the proportion of 1’s among the n bits is at least 1
2 + xi/an, and let Fi denote

the event that the proportion of 1’s among the first �an� bits is at least 1
2 + yi/(2

√
an). Although not explicit in

the notation, these events depend on n. Notice further that the events are defined so that E1 ⊇ E2 ⊇ · · · ⊇ Ek and
F1 ⊆ F2 ⊆ · · · ⊆ Fk hold. Finally, we define fn as the indicator function of the event

⋃k
i=1(Ei ∩ Fi).

Let pn = 1
2 + x/an. To complete the proof of part (a) we need to verify that

P

(
an

(
Tn − 1

2

)
≤ x

)
= Ppn(Ei ∩ Fi for some i)

tends to 0,
∑j

i=1 qi or 1, depending on whether x < x1, x ∈ (xj , xj+1) and j = 1,2, . . . , k − 1, or x > xk . We first
examine the events Ei and Fi . Appealing to the Lindeberg-Feller central limit theorem, or Chebyshev’s inequality, we
find that

Ppn(Ei) = Ppn

(
1

n

∑
j∈[n]

ωj ≥ 1

2
+ xi

an

)
→

{
0, x < xi,

1, x > xi,
(15)

as by assumption an 
 √
n. Moreover, as an � 1, using Lindeberg-Feller, for any x ∈R

Ppn(Fi) = Ppn

(
1

�an�
�an�∑
j=1

ωj ≥ 1

2
+ yi

2
√

an

)
→ 1 − 
(yi). (16)

(The above abuse of notation is here manifested in that Fk equals the whole sample space.)
Since Ppn(Ei ∩Fi for some i) is at most Ppn(Ei for some i), the case x < x1 is immediate from (15). Similarly, as

Fk equals the whole sample space, Ppn(Ek) gives a lower bound on Ppn(Ei ∩Fi for some i), so also the case x > xk is
immediate from (15). For j = 1,2, . . . , k−1 and x ∈ (xj , xj+1), using (15), (16) and the fact that F1 ⊆ F2 ⊆ · · · ⊆ Fk ,
gives

lim
n→∞Ppn(Ei ∩ Fi for some i) = lim

n→∞Ppn(Fj ) = q1 + q2 + · · · + qj , (17)

due to the definition of the yi ’s, as required.
Proof of part (b). Assume again that a probability measure μ of the form

∑k
i=1 qiδxi

is given and let (an)n≥1 satisfy
logn 
 an 
 √

n. We may assume that x1 < x2 < · · · < xk and that the qi ’s are all positive. As before, let Ei denote
the event that the proportion of 1’s among the n bits is at least 1

2 + xi/an.
Let �n = �2 log2 n�. In order to define events Fi we extend the partial ordering on binary strings of length �n,

in which y ≥ y′ if y dominates y′ coordinate-wise, to a total ordering. (One such ordering is inherited from the set
of integers through their binary representation.) Consider the n bits of ω positioned in a circle and, for each string
y ∈ {0,1}�n , let F(y) denote the event that ω contains an interval of length �n on which ω is at least as large as
y with respect to the total ordering. We claim that it is possible to choose yn

1 ≥ yn
2 ≥ · · · ≥ yn

k in {0,1}�n such that
Fi := F(yn

i ), for every i = 1,2, . . . , k, x ∈ R and with pn = 1
2 + x/an, satisfies

lim
n→∞Ppn(Fi) = q1 + q2 + · · · + qi . (18)

These definitions guarantee that E1 ⊇ E2 ⊇ · · · ⊇ Ek and F1 ⊆ F2 ⊆ · · · ⊆ Fk hold also here.
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Assuming that such a selection of yn
i ’s can be made, we define fn as the indicator function of the event

⋃k
i=1(Ei ∩

Fi). The resulting function is monotone (with respect to the partial ordering on {0,1}n) and invariant with respect to
rotations of the bits and therefore transitive.

Before proving the claim we argue for why this would complete the proof of part (b). As in part (a), to complete
the proof we need to verify that

P

(
an

(
Tn − 1

2

)
≤ x

)
= Ppn(Ei ∩ Fi for some i)

tends to 0,
∑j

i=1 qi or 1, depending on whether x < x1, x ∈ (xj , xj+1) and j = 1,2, . . . , k − 1, or x > xk . As the
events Ei are defined just as above, and the monotone structure F1 ⊆ F2 ⊆ · · · ⊆ Fk holds also here, these conclusions
would follow from the claim as in part (a).

It remains to prove the claim. We first show that for every n ≥ 1 and q ∈ [0,1] there exists y ∈ {0,1}�n such that
|P1/2(F (y)) − q| ≤ 2/n. Let y1 = max{y : P1/2(F (y)) ≥ q} and denote its successor in the total ordering by y2,
should it exist (otherwise set F(y2) =∅). Then P1/2(F (y2)) < q and we have

0 ≤ P1/2
(
F(y1)

) − P1/2
(
F(y2)

) ≤ P1/2(some interval of ω equals y1) ≤ n2−�n ≤ 2/n,

where the second-to-last inequality comes from a first moment estimate. In particular, for y = y1 we obtain
|P1/2(F (y)) − q| ≤ 2/n.

We next show that if some (sequence of) y ∈ {0,1}�n satisfies P1/2(F (y)) → q as n → ∞, then also Ppn(F (y)) →
q . Recall the monotone coupling (ηp)p∈[0,1] of elements in {0,1}n. Assume that x ≥ 0 so that pn ≥ 1/2, and let A

denote the event that η1/2 contains no interval on which it is at least as large as y (in the total ordering) but that ηpn

does. Then,

Ppn

(
F(y)

) − P1/2
(
F(y)

) = P(A) = E
[
P(A|ηpn)

] ≤ �n

(
pn − 1

2

)
/pn ≤ 2x�n/an, (19)

since P(A|ηpn) either equals zero, in the case ηpn does not contain an interval on which it is at least as large as y, or
is bounded by �n(pn − 1

2 )/pn, since if such an interval exists then at least one bit in this interval (or the first in some
ordering, if there are several intervals with this property) must have changed its value as p ranges from 1

2 to pn. Since
an � logn, the upper bound in (19) tends to zero as n → ∞, as claimed. The case x < 0 is analogous.

This proves the claim that we may choose yn
i ’s such that (18) holds for all x ∈ R, and thus completes the proof of

part (b). �

Remark. In order to obtain a sequence (fn)n≥1 of monotone graph properties on n vertices and
(
n
2

)
edges (which are

the variables here), with the property described in the remark following Theorem 3, only minor modifications to the
above construction are necessary: Define the Ei ’s as before, but now on

(
n
2

)
bits. Let �n = �4 log2 n�, say, and extend

the usual partial ordering on the set of unlabled graphs on �n vertices to a total ordering. Given an unlabled graph y

on �n vertices, define F(y) as the event that ω contains an induced subgraph at least as large as y with respect to the
total ordering. The calculations needed to verify that one may choose graphs yn

i so that (18) holds also in this setting
are straightforward.

We continue investigating the possible behavior of the scaling coefficients.

Proof of Proposition 4. Let μ be a non-degenerate probability measure and (fn)n≥1 some sequence of monotone
Boolean functions for which an(Tn − bn) approaches μ in distribution. Denote by F the distribution function associ-
ated to μ.

To prove part (a), we first recall the well known fact that for monotone Boolean functions the total influence, for p

bounded away from 0 and 1, is of order at most
√

n. The Margulis-Russo formula then implies that there is an upper
bound of order

√
n on the derivative of Pp(fn = 1), for p bounded away from 0 and 1. Now, pick x1 < x2 at which F

is continuous and satisfies F(x1) ≤ 1/3 and F(x2) ≥ 2/3. With pi = bn + xi/an, we thus obtain, for all large n,

an

4(x2 − x1)
≤ Pp2(fn = 1) − Pp1(fn = 1)

p2 − p1
≤ an

x2 − x1
. (20)
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Via the mean value theorem, the first inequality in (20) gives a lower bound on the derivative of Pp(fn = 1) for some
p ∈ [p1,p2], which, consequently, yields an upper bound on an of order

√
n.

The proof of part (b) is similar to that of part (a). Recall the well known fact from KKL [31] and its extensions that
the total influence of transitive Boolean functions grows at least of order logn when their variance is bounded away
from 0 and 1. With the mean value theorem, the Margulis-Russo formula and the second inequality in (20) we thus
obtain a corresponding lower bound on an, of order logn.

The proofs for parts (c), (d) and (e) are also similar to each other. Let, again, x1 < x2 be continuity points of F and
set pi = bn + xi/an. Using the mean value theorem we find qn ∈ [p1,p2] so that

F(x2) − F(x1)

x2 − x1
= lim

n→∞
Pp2(fn = 1) − Pp1(fn = 1)

x2 − x1
= lim

n→∞
1

an

d

dp
Pp(fn = 1)

∣∣∣∣
qn

. (21)

For (c) we assume that (an)n≥1 is bounded above and that 0 < F(x1) ≤ F(x2) < 1. Recall the discrete Poincaré
inequality which states that for any Boolean function f : {0,1}n → {0,1}

n∑
i=1

Infpi (f ) ≥ Varp(f ). (22)

Hence, a lower bound on (21) of lim infn→∞ Varqn(fn)/(supn≥1 an), which is strictly positive, is obtained via the
Margulis-Russo formula. Consequently F(x1) < F(x2), from which (c) follows.

For transitive functions KKL [31] and its extensions improve on the lower bound in (22) with a factor of or-
der logn. In this setting, assuming that (an/ logn)n≥1 is bounded above, we thus obtain a lower bound on (21) of
lim infn→∞ Varqn(fn)(infn≥1 logn/an), which is strictly positive by assumption. Again we find that F(x1) < F(x2),
which settles part (d).

For (e) we assume that an/
√

n is bounded away from 0 and use the upper bound of order
√

n on the derivative of
Pp(fn = 1), for p bounded away from 0 and 1, to obtain a uniform upper bound in (21), showing that F is Lipschitz
continuous. �

Remark. While the above proof of part (c) shows that no monotone Boolean function f may have Pp(f = 1) making
a finite number of “jumps” but otherwise remaining more or less constant, it is still possible to have sudden jumps
between which Pp(f = 1) grows linearly. An example would be the event A consisting of all configurations for which
either ω1 = 1 and the proportion of 1’s is at least 1/3 or the proportion of 1’s is at least 2/3.

As mentioned in the introduction, one easily shows that no subsequence of the probability measures giving equal
weight to the points in �m = {±2k : k = 1,2, . . . ,m} can be normalized in order to give a nondegenerate limit. We
base the proof of Proposition 5 on this example.

Proof of Proposition 5. We prefer to work with continuous distributions. Let μm be the measure whose density
function equals 1

2m
for x ∈ [k − 1

2 , k + 1
2 ] and k ∈ �m, and 0 otherwise; let Fm denote the corresponding distribution

function. Then Fm is continuous and μm effectively has the same properties as the uniform measure on �m. According
to Theorem 3 we may choose an = n1/4, say, and monotone Boolean functions fm,n : {0,1}n → {0,1} such that
an(T (fm,n)− 1

2 ) tends to μm in distribution, as n → ∞. Writing Fm,n for the distribution function of an(T (fm,n)− 1
2 )

and using that Fm is continuous, we find for each m an integer nm such that

sup
x∈R

∣∣Fm,n(x) − Fm(x)
∣∣ ≤ 1

m
for all n ≥ nm. (23)

Define fn := fm,n for n ∈ [nm,nm+1), and note that fn is a monotone function on n variables.
Let mn := max{m ∈ N : nm ≤ n}. Now, assume there are nonnegative sequences (bn)n≥1 and (cn)n≥1, and a non-

degenerate probability measure with distribution function F such that, along some subsequence, Fmn,n(cnx + bn) →
F(x) for all continuity points of F . Then,∣∣Fmn(cnx + bn) − F(x)

∣∣ ≤ ∣∣Fmn(cnx + bn) − Fmn,n(cnx + bn)
∣∣ + ∣∣Fmn,n(cnx + bn) − F(x)

∣∣,
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Fig. 1. A realization of the four-arm event.

which, for continuity points of F , would tend to zero along this subsequence, in virtue of (23). This would contradict
the fact that no subsequence of μm can be normalized to obtain a nondegenerate limit, and therefore shows that no
subsequence of (T (fn))n≥1 can be normalized to obtain a nondegenerate limit. �

Appendix: The tail of the crossing probability in near-critical percolation (Authored by Gábor Pete)

The goals of this appendix are to prove Theorem 2 of the main text, to draw attention to an interesting difference
between the flip times of crossing events in near-critical and dynamical percolation in the plane, and to examine, on
an intuitive level, how near-critical high-dimensional percolation may behave.

A.1. Planar percolation

We will work with site percolation on the triangular lattice T (which is the same as coloring the faces of the hexagonal
tiling) with mesh size 1, at density close to the critical value pc = 1/2. See [19,53] for background. Let LRQ denote the
left-to-right crossing event in a nice quad Q, by which we mean the image of the square [0,1]2 under a smooth injective
map into C. If we magnify Q by a factor of ρ, the new quad will be denoted by ρQ, the center of magnification being
irrelevant. Furthermore, let α4(n) denote the critical alternating four-arm probability from a given site to Euclidean
distance n, and let r(n) := 1/(n2α4(n)). The asymptotics r(n) = n−3/4+o(1) was proved in [51].

Consider now the canonical coupling of percolation configurations at different densities: take Ux ∼ Unif[0,1] i.i.d.
for all vertices x ∈ T, and for any λ ∈ (−∞,∞) and n large enough so that λr(n) ∈ [−1/2,1/2], define ωn(λ) to be
the configuration where x is open iff Ux ≤ 1/2 + λr(n). This process {ωn(λ)}λ∈R is called the near-critical ensemble.
Note that the flip time Tn for LR[0,n]2 considered in the main text, with rescaling Wn := n2α4(n)(Tn − 1/2), exactly
satisfies {Wn ≤ λ} = {ωn(λ) ∈ LR[0,n]2}.

It is proved in [15,16] that the process {ωn(λ)}λ∈R has a scaling limit in a certain topology: for any fixed λ, the
static topology encodes quad-crossings, while as a process, the Skorokhod topology of càdlàg processes is used; see
[16, Theorem 1.5] for the precise statement. (The time-parametrization of ωn(λ) in [16] is slightly different from the
above definition, but this makes no real difference.) It is also proved in [16, Proposition 9.6] that this limiting càdlàg
process has no jumps at deterministic values of λ, which implies that for any λ ∈R, the limit

f (λ,Q) := lim
n→∞ Ppc+λr(n)[LRnQ] (24)

exists for any nice quad Q (which does not automatically follow from the existence of the limit as a process, because of
the Skorokhod topology of càdlàg processes). Moreover, this limit is absolutely continuous in λ, and most importantly,
it is non-trivial: it satisfies f (λ,Q) ∈ (0,1), and

lim
λ→−∞f (λ,Q) = 0 and lim

λ→∞f (λ,Q) = 1. (25)
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In fact, these properties were already known from Kesten’s work [34,43], for any subsequential limit, at that time.
Briefly, in the entire critical window where Pp[LRnQ] ∈ (ε,1 − ε) holds, the expected number of pivotals is compara-
ble to the scaling factor n2α4(n) (with constant factors depending on Q and ε), which implies absolute continuity and
(25) using Russo’s formula.

The above results imply Part (a) of Theorem 2.
For the proof of Part (b), we will also need that the limit f (λ,Q) in (24) is conformally covariant, proved in [16,

Theorem 10.3]. Instead of defining exactly what this means, let us just give a special case that we will use:

f (ρλ,Q) = f
(
λ,ρ4/3Q

)
, (26)

for any scaling factor ρ > 0. For simplicity, we will just take Q = [0,1]2. Then, the limiting tail behaviour of the
rescaled flip time Wn is determined by the following result, proved below, together with the well-known duality
f (−λ, [0,1]2) = 1 − f (λ, [0,1]2):

Theorem 13. As λ → ∞, we have the superexponential decay

f
(−λ, [0,1]2) = exp

(−�
(
λ4/3)),

where, as usually, g(λ) = �(h(λ)) means the existence of universal constants 0 < c < C < ∞ such that c <

g(λ)/h(λ) < C holds for all λ in question.

Besides the question raised in the main text, another motivation for Theorem 13 is [20], where the analogous tail
behaviour was studied for the scaling limit of dynamical percolation. Namely, if we start with critical percolation,
then resample each site at rate r(n), keeping the configuration stationary, then we may look at

g(t,Q) := lim
n→∞ P

[
LRnQ does not hold at any moment in [0, t]]. (27)

Again, this limit exists and is conformally covariant by [15,16]. Then, regarding the tail behaviour, it was proved
in [20] using general Markov chain arguments such as spectral computations and a dynamical (space-time) FKG-
inequality, that there exists an absolute constant c > 0, and for every K > 0 some cK > 0, such that

exp(−ct) ≤ g
(
t, [0,1]2) ≤ cKt−K, (28)

for all t ≥ 1. Furthermore, the present author was speculating in [45], using non-rigorous renormalization ideas (mo-
tivated by [38,39,48]) and a very strong universality hypothesis, that the true behaviour could be exp(−t2/3+o(1)).
Several people in the community agreed that this speculation looked quite solid (even if non-rigorous) as a lower
bound, while more questionable as an upper bound. And, as typical for these planar percolation scaling limits, that
argument seemed to be working equally well for the symmetric (dynamical) and asymmetric (near-critical) versions.
However, our present Theorem 13 violates not only this bold prediction for the near-critical case, but it also shows that
f (t,Q) does not satisfy the rigorous exponential lower bound of (28) for g(t,Q), hence this tail probability question
turns out to be an instance where the asymmetric versus symmetric dynamical versions of critical percolation show
drastically different behaviour. Regarding the true decay in the symmetric dynamical version, our simulations sug-
gest a subexponential decay, but are far from being conclusive, and are even further from giving a prediction for the
exponent. See Figure 2.

The proof of Theorem 13 is very simple, given the results of [15,16] cited above, and standard percolation tech-
niques proving exponential decay for certain connection probabilities, as can be found in [43, Section 7]. This is
somewhat similar to [8], where Duminil-Copin showed, again building on [15,16], that the super-critical percolation
Wulff shape is asymptotically circular, as the density p approaches pc.

Proof of Theorem 13. By the scaling covariance (26), we need to show that

f
(−1,

[
0, λ4/3]2) = exp

(−�
(
λ4/3)), (29)

as λ → ∞.
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Fig. 2. On the left, simulation results are shown for − logf (λ, [0,1]2), with the near-critical percolation parameter varying from λ = 0 to 1.5,
board sizes n = 10,100,500. On the right, simulation results are shown for − logg(t, [0,1]2) in dynamical percolation for scaled time going from
t = 0 to 10, on board sizes n = 10,100,200. In both cases, the values are lower and have more fluctuations as n increases, since fewer simulation
runs were feasible. The superexponential decay for f (λ, [0,1]2) is apparent, the subexponential decay for g(t, [0,1]2) is less so.

By [43, Lemma 39 and (7.28)], there exist 0 < C1 ≤ C2 < ∞ such that for all N and p < pc ,

C1 exp
(−C2N/L(p)

) ≤ Pp[LR[0,N]2 ] ≤ C2 exp
(−C1N/L(p)

)
, (30)

where L(p) is a correlation length; say,

L(p) := inf
{
n : Pp[LR[0,n]2 ] < 1/100

}
. (31)

Let us remark that (30) is nothing mysterious: the main reason for it is that 1/100 is small enough so that a variation
of the Peierls contour argument works on a renormalized lattice with mesh L(p).

On the other hand, it is well-known (see, e.g., Proposition 34 in [43]) that we have L(pc − r(n)) = �(n), with the
constant factors in � depending, of course, on 1/100 in definition (31). Now take p = pc − r(n) and N = λ4/3n in
(30), then send n → ∞ to see that (29) holds. �

A.2. What about high dimensions?

It is proved in Theorem 3 of the main text that for any probability distribution function F(·) there exists a sequence of
monotone Boolean functions {fn} and some parameters pn, bn such that Ppn+λbn [fn = 1] → F(λ) as n → ∞, for all
λ ∈ R. However, all “natural” examples of limit distributions F(·) found so far have exponential or superexponential
tails. The exponent 4/3 in the superexponential decay exp(−|λ|4/3) of the previous section appears to be a rather
direct consequence of the planar correlation length exponent being ν = 4/3 (i.e., the correlation length (31) satisfies
L(p) = |p − pc|−4/3+o(1) as p ↗ pc) and of the critical window being r(n) = n−3/4+o(1). Therefore, one might hope
(as the present author did in the first version of this appendix) that crossing events in near-critical percolation on Z

d ,
where d is high enough so that already mean-field behaviour takes place, with ν = 1/2 < 1, could have subexponential
tails. However, as we will briefly explain, this turns out to be very naive, and we expect now that the lower tail in high
dimension is exponential in |λ|, while the upper tail is doubly exponential, similarly to some of the examples in
Section 2 of the main text.

By high-dimensional percolation we will mean d high enough so that the critical two-point connectivity function
already scales like Green’s function for simple random walk:

Ppc [x ←→ y] = �
(‖x − y‖2−d

)
. (32)

This is conjectured to be the case for d > 6, proved for d ≥ 19 in [22], and recently for d ≥ 11 in [12]. From now
on, we will always assume that this mean-field behavior holds. Two-point connectivity can also be used to define a
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near-critical correlation length ξ(p):

Pp[x ←→ y �←→ ∞] = exp
(−�

(‖x − y‖/ξ(p)
))

,

which makes sense both for p < pc and p > pc. In the planar case, it is known that ξ(p) � L(p), with L(p) defined
in (31); see [43, Theorem 33]. The mean-field value of the exponent in ξ(p) = |p − pc|−ν+o(1) is ν = 1/2, proved
for p < pc in [21]. In analogy with the 2-dimensional case, this may suggest that the critical window for left-to-
right crossing in a box of side-length n is of size n−2+o(1). This will in fact align with our conjectures, but in a
highly non-trivial way. For the same reasons, the near-critical upper and lower tails will behave very differently in
high-dimensional percolation than in the planar case.

The first key difference from the planar case, observed in [1], is that at the critical density pc(Z
d), with high

probability there are already many disjoint left-to-right crossings in a large box [n]d . Indeed, as a back-of-the-envelope
calculation, using the critical two-point function (32), we get that the expected number of vertices y on the right side
of [n]d connected to a given vertex x on the left is on the order of n2−dnd−1 = n. This strongly suggests that the finite
size critical density pc(n), where the probability of having a left-to-right crossing is exactly 1/2, is below pc(Z

d),
and pc(Z

d) is already outside of the critical window for left-to-right crossing.
For the precise behavior, we conjecture the following:

Conjecture 14. For left-to-right crossing in percolation on [n]d , d > 6, the critical density is

pc(n) = pc

(
Z

d
) − (

cd + o(1)
) logn

n2
,

with cd > 0. The critical window is

p = pc(n) + λ

n2
, λ ∈ (−∞,∞).

In this window, the number of disjoint crossings should be approximately Poisson, with mean exp(�(λ)). Hence, for
a very negative λ, the probability of a left-to-right crossing should be exp(−�(|λ|)), while, for a large positive λ, the
probability of having no left-to-right crossing should be exp(− exp(�(λ))).

This location of the window is also conjectured, independently, by Gady Kozma [35], while a Gumbel limit distri-
bution is confirmed by computer simulations of Eren Metin Elçi [10].

We will now explain how one may arrive at this conjecture. Then we will prove rigorously the upper bound
O(n−2/3) on the size of the critical window, partly due to Gady Kozma.

The heuristic picture of high-dimensional percolation, closely related to (32), is that the critical cluster is like a
critical Galton-Watson tree, embedded into Z

d as a branching random walk. A precise formulation of this is that
the scaling limit of the Incipient Infinite Cluster is Integrated Infinite Canonical Super-Brownian Motion. This has
been proved only very partially [23,28,29]; see [50] for a nice introduction into the limit object, and [26] for a sur-
vey. Therefore, in order to understand near-critical high-dimensional percolation, one could first look at near-critical
Galton-Watson trees. One can show that, for any offspring distribution with mean 1 − λε and finite variance,

PGW(1−λε)[o ←→ 1/ε] = �(ε) exp
(−�(λ)

)
, 0 ≤ λ < 1/ε, (33)

where {o ←→ 1/ε} denotes the event that the tree reaches generation 1/ε. There are several ways to prove this
estimate; one is to consider a depth-first type exploration process of the tree, and use martingale calculations for the
resulting integer-valued random walk, as in [42]. Now, accepting the heuristic picture above, and using that a random
walk path in Z

d with 1/ε steps goes to a Euclidean distance about
√

1/ε with large probability, the estimate (33)
suggests that, for near-critical percolation on Z

d ,

Ppc−λε

[
o ←→ ∂B√

1/ε(o)
] = �(ε) exp

(−�(λ)
)
, 0 ≤ λ < pc/ε, (34)

where Br(o) denotes the ball of Euclidean radius r . Note here that, in principle, the cluster could reach to a large
distance not only by the embedded critical tree having a large radius, but also by the embedding reaching unusually
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far. However, changing the speed exponent 1/2 has a probability cost that is exponential in the number of steps, 1/ε,
hence this strategy cannot improve on (34).

This was just heuristics, and in fact, only the critical case λ = 0 of (34) has been proved [37]: that is, the 1-arm
exponent is 2. One approach to build an actual proof could be that the backbone of high-dimensional IIC is known
to have a linear “chain of sausages” structure, with a linear number of pivotal edges, without too long sausages
between them [28,29,36], hence the IIC must have a tree-like structure; also, its embedding into Z

d is known to
have 4-dimensional features [27,29]; these support the view that it is a large critical tree embedded as a branching
random walk. Then, lowering the percolation density by λε, the probability of keeping the connection, which exists
at criticality with probability �(ε), is at most the probability of not closing any of the pivotals, and should in fact be
comparable to that: about (1 − λε)�(1/ε) � exp(−�(λ)). This yields (34).

Now we would like to use (34) to understand the critical window of left-to-right crossing in a large box [n]d . To
start with, our previous calculation for the expected number of crossings at pc(Z

d) can also be reproduced from the
λ = 0 case of (34): the probability of x being connected to the right side is about n−2, and conditioned on this event,
the cluster should look like a conditioned critical branching random walk, having about n4 vertices within Euclidean
distance n, hence about n3 vertices on the right side, altogether giving an expectation about n−2n3 = n. Furthermore,
the expected number of disjoint clusters connecting the left and right sides is about nd−1n/n2·3 = nd−6, since there
are nd−1n pairs of vertices x and y that are connected to each other, with each cluster having n3 possible x’s and
n3 possible y’s. Indeed, it was proved in [1] that with probability tending to 1, there are at least order nd−6 disjoint
connections, with the possibility of having some more spanning clusters that are thinner than 4-dimensional.

When, in order to find the critical window, we start decreasing p from pc(Z
d), by (34), the expected number of

disjoint crossings should be about

Epc− λ

n2

[
#
{
disjoint crossings from left to right in [n]d}] = �

(
nd−6) exp

(−�(λ)
); (35)

the effect of the slight subcriticality on the size of the conditioned tree, and hence on the factor nd−6 should be only
polynomial in λ, which is negligible compared to exp(−λ). We note that, to actually prove (35) or something a little
weaker, instead of using (34), it might be easier to start directly from Aizenman’s proof [1].

Now, the finite size critical density pc(n) should be around a value pc − λ/n2 where the above expectation (35)
is about 1, and the critical window should be where the expectation is independent of n. Within this window, by the
approximate independence of the possible crossing clusters, we expect Poissonian behavior. These considerations give
Conjecture 14.

We now turn to rigorous upper bounds on the window size.

Proposition 15. For percolation on Z
d wth d high enough so that mean field behavior takes place, the critical window

for left-to-right crossing in [n]d has width O(n−2/3).

Proof. As we mentioned above, the argument is partly due to Gady Kozma, and it will use a result of [44] on ran-
domized algorithms computing Boolean functions.

Let fn : {−1,1}[n]d −→ {−1,1} be the ±1-valued indicator function of the left-to-right crossing event in [n]d , at a
density p in the near-critical ε-window: Pp[fn = 1] ∈ (ε,1 − ε), for some fixed ε > 0. Note that, for n large enough,
we have 1/(2d) < p < pc(Z

d).
Consider now the following randomized version of the algorithm used in [2, Section 4] to determine the value of fn.

Choose uniformly at random a coordinate hyperplane separating the left and right faces. Now explore the clusters of
all the sites in this hyperplane to determine whether there is a crossing. This way, each bit (site or edge) of the box
is explored with probability at most O(n−2/3): either the bit is within distance n1/3 of the chosen hyperplane, which
has probability n−2/3, or it will be queried only if in a cluster of radius at least n1/3, which has probability O(n−2/3),
since the critical one-arm exponent is 2, and we are at density p < pc(Z

d).
In the wording of [49], the above algorithm has revealment O(n−2/3): the probability δi of revealing any bit i is

O(n−2/3). By the main inequality of [44], see also [18, Theorem XII.36], for the total influence we get

Varp(fn) ≤ 4p(1 − p)
∑

i∈[n]d
δiI

p
i (fn) ≤ O

(
n−2/3)Ip(fn). (36)



Scaling limits for the threshold window of monotone Boolean functions 2159

Being in the ε-window, we have 4ε(1 − ε) ≤ Varp(fn), hence (36) gives c(ε)n2/3 ≤ Ip(fn), for some c(ε) > 0. By
Russo’s formula, this implies that the near-critical ε-window for fn has width at most C(ε)n−2/3, as we claimed. �

Let us mention that another way to do this argument, yielding a worse exponent, would have been via noise sensi-
tivity and Fourier analysis; for background, see [18]. By [49, Theorem 1.8] (or more precisely, by its straightforward
extension from density p = 1/2 to general p values bounded away from 0 and 1), the revealment O(n−2/3) implies
that fn is sensitive to any noise � n−1/3. In terms of the Fourier spectral sample Specp(fn), defined by

P
[
Specp(fn) = S

] := f̂n(S)2

‖fn‖2
2

= f̂n(S)2, S ⊂ [n]d ,

where f̂ (S) := Ep[f χ
p
S ] is the Fourier coefficient corresponding to the orthonormal basis

χ
p
S (ω) :=

∏
i∈S

ωi

(
1 − p

p

)ωi/2

, ω ∈ {−1,1}[n]d

for L2({−1,1}[n]d ,Ep), this noise sensitivity can be written as follows: for any ε-window and any δ > 0, if κ > 0 is
small enough, then

P
[
0 <

∣∣Specp(fn)
∣∣ < κn1/3] < δ. (37)

On the other hand, P[Specp(fn) =∅] = Ep[fn]2 ≤ (1 − 2ε)2, since we are in the ε-window. Combined with (37),
for δ sufficiently small, we get that the total influence, for p in the ε-window, satisfies

Ip(fn) = E
[∣∣Specp(fn)

∣∣] ≥ c(ε)n1/3, c(ε) > 0,

giving that the width of the ε-window is at most C(ε)n−1/3.
Finally, one might prefer to deal with transitive Boolean functions only, hence would want to consider high-

dimensional percolation on tori. Another observation of [1] was that finite size boundary effects become important
here, and the cluster structure in a torus is different from the cluster structure in a box. In particular, for percolation
on the torus, already Erdős-Rényi random graph asymptotics take place: the largest critical cluster has size of order
n2d/3, and the critical window should be n−d/3. (Nevertheless, large clusters are still “four-dimensional”, similarly to
the box case; in particular, their Euclidean diameter, when pulled back to the universal cover of the torus, is nd/6.)
A large part of this conjectured basic near-critical picture has already been proved; see [5,6,24,25,30].

The above-mentioned critical window n−d/3 should hold for most natural monotone events on the torus: e.g., for
the existence of a non-contractible cluster, or a cluster of pulled-back Euclidean diameter nd/6, or a cluster of size
n2d/3. However, the near-critical tails should be different. At the lower end of the window, with very negative λ, to get
a cluster with large Euclidean diameter nd/6 (independent of λ), the near-critical GW tree diameter asymptotics (33)
should be relevant, yielding a tail exp(−�(|λ|)). To get a cluster with volume n2d/3, the near-critical GW tree volume
asymptotics should be relevant, which can be shown to be exp(−�(|λ|2)). A similar difference for the Erdős-Rényi
random graphs was pointed out in [40]. Regarding the tail for the existence of a non-contractible cluster, we will not
make a guess. But in any case, it seems unlikely that natural monotone events will have subexponential tails.

For a recent survey of high-dimensional percolation and random graphs, see [26]. For a renormalization group
physics approach, addressing finite size scaling both for free and periodic boundary conditions, see [33] and the
references therein.
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