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AN APPLICATION OF THE KMT CONSTRUCTION
TO THE PATHWISE WEAK ERROR IN THE EULER
APPROXIMATION OF ONE-DIMENSIONAL DIFFUSION
PROCESS WITH LINEAR DIFFUSION COEFFICIENT

BY EMMANUELLE CLEMENT AND ARNAUD GLOTER1
Université Paris-Est and Université d’Evry Val d’Essonne

It is well known that the strong error approximation in the space of con-
tinuous paths equipped with the supremum norm between a diffusion pro-
cess, with smooth coefficients, and its Euler approximation with step 1/n is
O(n_l/ 2) and that the weak error estimation between the marginal laws at
the terminal time T is O(n~1). An analysis of the weak trajectorial error has
been developed by Alfonsi, Jourdain and Kohatsu-Higa [Ann. Appl. Probab.
24 (2014) 1049-1080], through the study of the p-Wasserstein distance be-
tween the two processes. For a one-dimensional diffusion, they obtained an
intermediate rate for the pathwise Wasserstein distance of order n=2/3+te,
Using the Komlés, Major and Tusnddy construction, we improve this bound
assuming that the diffusion coefficient is linear and we obtain a rate of order
logn/n.

1. Introduction. A classical problem in numerical probabilities is the com-
putation of Ef(X), where X = (X;):¢[0,1] 1s a stochastic process defined on the
time interval [0, 1] and f a functional which may depend on the whole path of the
process X. This problem appears for instance in finance where X represents the
dynamic of a stock price and f the payoff of an option. The usual way to solve
this problem is to approximate X by a numerical scheme and then to compute the
expectation by using a Monte Carlo method.

Due to its implementation easiness, the most popular discretization scheme,
when X is a diffusion process, is the Euler scheme. Denoting by X" the Euler ap-
proximation of X with step 1/n, it is well known that the pathwise strong order
of convergence between X and X is n~1/2, under regularity assumptions on the
coefficients of the diffusion X (see, e.g., [9]). Moreover, the weak order of con-
vergence at a fixed time ¢, evaluated by the difference |Ef (X;) — Ef (Y?)L isn~!
(see [17]). However, for the pathwise weak approximation of X (when f depends
on the whole trajectory of X) the order of convergence is still unknown, excepted
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for specific functionals f such as f(X) = fol Xsds or f(X)=max; X;. Recently,
Alfonsi, Jourdain and Kohatsu-Higa [1, 2] have proposed a general approach to
control the pathwise weak approximation of a diffusion by its Euler scheme by
considering the Wasserstein distance between the law of X and the law of X"

For X and X, two random variables with values in a normed vector space
(X, [I-]l) and with finite p-moment for 1 < p < oo, the Wasserstein distance W),
between the law £(X) of X and the law £(X) of X is defined by

(1) Wy(L(X), LX) = _inf _ EVP|y —Y]".
Y,Y)ell(X,X)

I1(X, X) is the set of random variables (Y, Y) with values in X x X with marginal
laws, respectively, £(X) and £(X).

In our context, X = C([0, 1]) equipped with the supremum norm |x| =
sup;epo,17 1x¢| or X = R" equipped with the norm of the maximum of the coor-
dinates ||x || = max;e(1,... n} [ Xi |-

From the representation of 1V, in the Kantorovitch duality (see, e.g., [15]),

Wi(L(X), L(X)) = sup |Ef(X)—Ef(X)
feL

9

where L£(1) is the set of Lipschitz functions f : C([0, 1]) — R with Lipschitz con-
stant less than 1, and using the strong and weak orders of convergence of the Euler
scheme one can easily deduce the following upper and lower bounds:

c —n C
—<WI(L(X),L(X)) <—
n= 1( ( ) ( )) — x/ﬁ
for some positive constants ¢ and C.
For a one-dimensional uniformly elligtic diffusion, the main result of [1] is
to construct a coupling between X and X which improves the preceding upper
bound and leads to

Wi LX), LX) < ——
n3

for all € > 0. This result gives an intermediate rate, for the pathwise weak approx-
imation, between the strong order rate and the weak marginal rate and raises a
natural question: Is it possible to construct a coupling between a diffusion and its
Euler scheme in such a way that the Wasserstein distance is of order 1/n?
The aim of this paper is to give an answer to this question assuming that the
diffusion coefficient is linear. In that case, we prove (see Theorem 2)
logn

W,(L(X), L(X") <C —

This result is obtained by the construction of a sharp discrete time coupling be-
tween (Xi/n)1<k<n and (XZ /n)lfkfn, following the dyadic construction due to
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Komlés, Major and Tusnady ([11, 12]). We mention that recently the KMT con-
struction has been used in a series of papers (Davie [4, 5], Flint and Lyons [8]),
to propose an approximation scheme close to the Milstein scheme and with weak
pathwise order of convergence 1/n.

The KMT construction permits essentially to obtain an optimal coupling be-
tween a sequence of i.i.d. standard Gaussian variables (¥;)1<;<, and some other
i.i.d. variables (X;)1<;<, with finite Laplace transform in a neighbourhood of zero
and such that EX| =0, E(X %) =1, in such a way that almost surely

k k

2 Y= Xi

i=l i=l

max
1<k<n

<Clogn.

In Section 2, we improve the KMT result when the variables X; are equal in law to
Y, — ﬁ (Yl.2 — 1). In this particular case, we obtain as a consequence of Theorem 1

below that almost surely
k k

2 Yi=) X

i= i=1

max <Clogn//n.

1<k<n

This is done through refined quantile coupling inequalities which are established
at the end of the paper in Section 4. These results are applied in Section 3 to
construct a coupling between a diffusion process with linear diffusion coefficient
and its Euler approximation which achieves the pathwise weak order logn/n.

Throughout the paper, C denotes a constant which value does not depend on n
and may change from one line to the other.

2. A KMT type result. Let (¥;);>1 be a sequence of i.i.d. standard Gaussian
variables and let us consider the triangular array:
) Y =Y, !
N
Weset Sy =YX Yiand S} =Y, 7).
In this framework, we can improve the classical KMT result.

(Y?-1), l<i<n.

i

THEOREM 1. One can construct on the same probability space a sequence
of i.i.d. standard Gaussian variables (Y;)1<i<n and a sequence of i.i.d. variables
(X{)1<i<n» with X' equal in law to 7?, such that for positive constants C, K and
A, we have, for n large enough and for all x > 0,

3) P(ﬁ max |Sk—TZ|zKlogn+x)gce—“,
1<k<n

where TZ = Zf;l X! and S = Zﬁ;l Y;.
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A straightforward consequence of this result is that almost surely

max |Sy — T| < Clogn//n.

1<k<n
The coupling given in Theorem 1 improves the classical KMT result with a factor
1/4/n and permits to control the Wasserstein distance between the law of (Si)k
and the law of (SZ)k with the rate logn/\/n (see Corollary 1 below).

REMARK 1. (1) If we consider directly the coupling between the random
walks S and S (based on the same Gaussian variables), we have

! i(yz—n‘
N

an
max | Sy — S| = max
I<k<n 1<k=n

and consequently from Donsker’s theorem we deduce that maxj<x<y, |Sk — §Z|
converges in law to sup;¢o 1 %lB,L where B is a standard Brownian motion.
Observing moreover that (3) can be rewritten as

P( max | Sk —TZ| > x) < Ce M/nx+Klogn
I1<k<n

we see that the result of Theorem 1 cannot be obtained from the basic coupling
between S and S" and that the KMT coupling leads to a better result, and in turn
to a sharper bound for the Wasserstein distance.

(2) It is known that the classical KMT coupling result is optimal for random
walks based on i.i.d. sequences (see Theorem 2 in [11]). In Theorem 1, we improve
the rate of the KMT result in the situation where (Y?) is a triangular array of
random variables, whose law depends on n. It seems crucial here that the law of
Y" becomes close to a Gaussian law as n growths.

The proof of Theorem 1 is postponed in Section 4. It is obtained by using the
KMT method developed in [11, 12]. The main tool for this construction is a Gaus-
sian coupling to the partial sums EZ, which is based essentially on a large devi-
ation expansion of pj (x)/¢(x) where pj is the density function of ﬁgz and ¢
the density function of the standard Gaussian law. We state and prove this large
deviation expansion and the associated coupling inequalities at the end of Sec-
tion 4.

As a consequence of this theorem, we deduce an upper bound for the Wasser-
stein distance W, (L((Sk)1<k<n)s L((S})1<k<n))-

COROLLARY 1. Forall p > 1, there exists a positive constant C such that

< 1
W (£((S1zkzn) £(51) 1420 = €
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PROOF. Let (Sk)1<k<n and (TZ)lsksn be constructed as in Theorem 1. From
the definition of the Wasserstein distance, one has

W (L((S1<k<n) L£((S) 1 <<p) < EVP max |Sp — T

1<k<n

p

’

and so we just have to prove that

(4) E(y/n max |sk—TZ\)p < C(logn)?.

1<k<n

Recalling that for any positive random variable Z, and any p > 1,
o
) EZP :/ pP1P(Z > 2)dz.
0
we deduce that

E(ﬁ max |Sk —T"Dp < joopzp_lP(ﬁ max [Sy — Ty | > z) dz
1<k<n k —Jo 1<k<n k

Klogn
(6) < / pzP~ldz
0

Oo —_—

+ pzp_lP(ﬁ max |Sk—T’,Z|>z)dz,
Klogn 1<k<n

where K is the constant given in Theorem 1. The first integral in the right-hand

side of (6) is clearly bounded by C(logn)?. For the second one, we have using

successively the change of variables z = x + K logn and Theorem 1:

o0 ==/
/ pzp_lP(ﬁ max |Sk—Tk|>z>dZ
Klogn

1<k<n
o0
= C/ p(x + Klogn)P~1e™ dx < C(logn)”.
0
This gives (4) and Corollary 1 is proved. [

3. Application to the Euler approximation of a diffusion process. In this
section, we apply the preceding results to bound the pathwise Wasserstein distance
between a diffusion with linear diffusion coefficient and its Euler approximation.
Let X = (X;)¢[0,17 be the solution of the stochastic differential equation:

@) Xo = xo, dX; =b(X;)dt + X,dB;,

where (By) is a standard Brownian motion and xo € R. We assume that » admits a
derivative denoted by b1, and that b and bV are Lipschitz functions.
We consider the continuous time Euler approximation of X, with step 1/#n, de-

fined by
(8) Xo=x0. dX,;=b(X, ,)dt+X, ,dB

where @, () = %, te]0,1].
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Using X; — X,y =b(Xy, ()t — u (1)) + X, (1, (Bi — By, (1)), we can write
heuristically the dynamic of X" as

o r_ r__ 1
X;’:xo+/0 b(x?)ds+/0 X! (1 —(B‘V—Bw,l(s)))st+0(;).

We can observe that this dynamic is mainly driven by the process (L}) defined by
t
) L} =B —/0 (Bs — By, (s)) d By, t €[0,1].

From this observation to study the Wasserstein distance between £(X) and £,
a natural way is to introduce the process Y; = xo + fé b(Yy)ds + fot YydL?.

Following this heuristic idea, we consider the auxiliary process X" which ap-
proximates X " with pathwise strong order 1/n (see Lemma 1):
X8 = xo,
(10) on on 1 on 2 on n
dX! =b(X})dr — EX’ (1—(1—(B;— By,1))")dt + X7 dL}.

The addition of the drift term %f{ 11— (- (B — By, (t)))z) dt in the dynamic of
the process is not essential but permits to obtain the representation formula (12)
below.

Applying Theorem 3 in Doss [6] and using Itd’s formula, we first remark that
the processes X and X" admit the representations:

11 X, =eb (xo + /t e B (b(Xs) — %Xs> ds), t €[0,1],

(12)  Xr=eb <x0+/ ( b(X" —%X”)ds), te0,1].

Based on these representations, a first step to control the Wasserstein distance be-
tween £(X) and £(X") is to control Wp(L(B), L(L")). This can be done by using
the results of Section 2.

More precisely, observing that from It6’s formula ftz (Bs — B )dBs =

%[(B, — Btk)2 — (t — t)], for t > t;, we deduce that the discrete process (L)

satisfies

k 1 1
:Z(BL—B,; ((B, — Bi1)’ ——)), l<k<n,
n n n

and consequently, (L )1<k<n 1s equal in law to f(S k)1<k<n’ where using the

notation at the beglnnlng of Section 2, S; = YX_, Y} with Y} defined by (2).



PATHWISE COUPLING FOR THE EULER APPROXIMATION 2425

Similarly, we observe that (Bk )1<k<p 1S equal in law to ﬁ (Sk)1<k<n- This permits
to derive immediately from Corollary 1 the following result.

COROLLARY 2. For p > 1, there exists a positive constant C such that for n
large enough
logn
Wp(ﬁ((Bg)lsksn)’ L((L)1<x<n)) =€ -

n n

Next, we can extend this result to the continuous processes B = (B;):¢(0,1] and
L™ = (L})¢¢[0,17 using the strong approximation error on each interval with length
1/n.

PROPOSITION 1.

(a) For p > 1, there exists a positive constant C such that for n large enough

W, (L(B), £(L)) < ¢ 28"

sl
(b) Let F :C([0, 1]) = C([0, 1]) be locally Lipschitz
v f,g€C([0, 1]), |F(f)=F(@)| =Crglf —zl.
where Cy, ¢ is a constant depending on | f || and ||g]||.

Assuming that for p > 1, 3r > p, such that sup, E(Cp,1»)" < 00, then there
exists a positive constant C such that for n large enough:

Wy(L(F(B), £(F (1) = C 2",

PROOF. (a) We consider the process (L}) defined by (9), driven by the Brow-
nian motion (B;);, and we introduce the process B;}':

- - k—1 k
(13) B'=L%_, + B — Bi-1 for <t<-—.
e n n n

The process (B;}') is discontinuous and coincide with (L) at the discretization
times (k/”)OSksn—l-
First, we prove the following strong approximation result:
logn)?

(14) Emax s |B—17|” < 108"
I<k<n _ k-1 k p

tG[T E]
To prove (14), we will use (5) with Z = n maxi<k<p supte[kn;l’%] |B/' — L}| and so
we have to control P(Z > z), for z > 0. We have

P(Z>2z) < nmlsle(n sup |B' = L}| > Z),

k—1 k
re[5=0 51



2426 E. CLEMENT AND A. GLOTER

with n(B" — L") =n f,f | (By — By, s)) dBy, for =1 <t < £ Observing that the

processes (fk (B — B(pn(b))dB )ie (k=L kg and (fo B, d By )ie

law, we deduce
/ B dB

ref0, 11 have the same

)

P(Z>z)<nP<n sup
te[O 21

But since fé BydBg = %(Etz — 1), we have
~ 1
P(Z > 2) §nP(n sup |B?|> Z(Z — —))
t€[0.1] 2
and by time rescaling
~ 1
P(Z>2)< nP( sup |B?|> 2<z - —))
1€[0,1] 2

Using the exponential inequality for the Brownian motion (see Proposition 1.8,
Chapter 2, in [16]), we have P(sup;¢(o.1 |1§,| >a) < 2e_“2/2, and this finally leads
to

(15) P(Z > 7)< Cne=@ D),
Turning back to (5), we have
logn
(16) EZP 5/ pzPldz + pzP 'P(Z > 7)dz.
0 z>logn

Reporting (15) in the second integral of (16) and using the change of variables
x =z — logn, we deduce

EZP < C(logn)?.

This proves the strong approximation result (14).

We end the proof as in [1] (proof of Theorem 3.2). The Wasserstein distance
in the left-hand side of Corollary 2 is attained for a probability measure = on
R" x R" with marginal laws respectively the law of a Brownian motion at times
(k/n)o<k<n and the law of (Lx)x. We fix (L7 )i to be the discretization of the

n

solution of (9) for a Brownian motion (E’t) ; and let (B )y be distributed according
to the first marginal of = given the second one equal to zL” )k- The random variable
((B k> L' k) in R" x R" is distributed according to 7 and realizes the optimal
couphng of the Wasserstein distance between [,((B x)x) and E((L” k).

By the triangle inequality, we have

(A7) Wy(L(B), L(L")) < Wp(L(B), L(B")) + Wy (L(B"), L(L")),
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where B" = (B}"):¢[0,1] is defined by (13). Let us note that the process B" is not
continuous and so the associated Wasserstein distance is defined in D([0, 1]), the
space of cadlag functions equipped with the supremum norm.

From the strong error approximation (14), the second right-hand side term in
(17) is bounded by Clogn/n and to end the proof it remains to estimate

W, (L(B), L(B")).

For this, we consider a Brownian motion (W;);¢[0,1] independent of ((B « )k, (B,)t)
. . ) Bi_1.By
and we construct the two Brownian Bridges driven by (W;): (W, " "), e[kl &y
B’;(;l ,BZ _ n’n

n

(starting from B and ending at By ), and (W, " ),eqket & [starting from

B}_, and ending at B’ _, where B’ _ is the left-hand limit at time % of (B/")]. We

n
setforte[kn;l,%) and 1 <k <nm:

By_1,Bi
WtIZWt n n
_ k — k—1
et ) aa(- )
n n n n
k—1
+W[—Wk—l —n\t — >(WE_W1<1)9
n n n n
5 B’,i;l B’;_
Wt =Wt " "
k k—1
=B'g_1n(——t>+32_n<t— )
wo\n " n
k—1
+W;—Wu—n<t— >(Wk—Wu).
n n n n

One can check that L((W,'),) = L((B;);) and L((W?);) = L((B");). Conse-
quently,

W, (L(B), L(B")) < EYP sup |W! — W?|P
t€l0,1]

< El/pm]?x(|§k;1 — B, |” VB —BZ,|p)
§E1/”m]f1x|§& —L’Up+El/pm]?x|L’z - By |".

‘We have

EVPmax |1 — BL-|7 < VP max sup |B — L

k=1 k

p
k ’
" tel5 0l
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and by construction of the process (B )k,

EVPmax|By — L |7 = Wp(L((Bx)), L((L%),)-

n

Consequently, using Corollary 2 and (14), we finally obtain
W,(L(B), L(B")) < Clogn/n,

and (a) is proved.

(b) Let p > 1 and r > p such that sup, E(Cp )" <oo. Wesetr' =r/(r — p).
Let ((By)ref0.1]s (Z?),e[o,l]) be a random variable in C([0, 1]) x C([0, 1]) which
realizes the optimal coupling of the Wasserstein distance WV, in Proposition 1:

1 ’
W (C(B), L(T") = E sup [B, —T'|"" <282
1el0,1] n

Then we have
Wy(L(F(B)), L((F(L")))) < EV?(Cp,r|B = L"|)",

and (b) follows from Holder’s inequality.
This achieves the proof of Proposition 1. [

From this proposition, we deduce a bound for the Wasserstein distance between
L(X) and L(X").

PROPOSITION 2. For p > 1, there exists a positive constant C such that for n
large enough:

W (L0, (X)) < ¢ 22

n

PROOF. The proof is based on the representation formulas (11) and (12), and
Proposition 1(b).
We introduce the notation:

t 1
(18) D, :x0+/ e B (b(Xs)— 5XS) ds,
0
and
1
(19) D! —x0+/ ( b(X") —EX”)ds,

so that X; = e5' D, and X r= et Dj'. From the triangle inequality,

X, — X7'| < |eB — eX1||Dy| + €| D, — D).
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Since b is Lipschitz,
t N t n
|Dt—D;’|§C</ e’BS}Xs—X?{ds-l—_/ |eBs—eLs}(|Xg|+1)ds)

0 0
t t n

SC(/ |DS—D;’|ds+/ eiBS|eB-‘—eLSHD?}ds

0
+ e b —e B+ ) as),

and from Gronwall’s lemma,

|p-D"|<C(B,L", D", X")|B—L"|,

with
C(B,L", D", X")=C[1+[e [ D"[(e* | + ")
+ (X" ]+ D (e | + e )],
where we have used | e? — e || < [|leB || + ||~ ||1I|B — L"|. This yields
|X = X" < [(|® [ + |~ DDl + | [c(B. L", D", X")]| B — L"|-
But, for all p > 1, we have E|le!®!||” < 0o, E||X||? < oo (see [10], page 306),

and consequently E| D||? < oco. So from Proposition 1(b), to complete the proof
of Proposition 2, we just have to verify

(20) Vp>1, supE||}~(”||p<oo,
n

1) Vp=1,  supE|e™)” < o0.
n

To prove (21), we just prove that Vp > 1, sup, E|le’||” < oo, since we obtain with
similar arguments that sup,, £ ||e_L{1 ||p < 0.

From (9), the martingale (L} );<[0,1] can be written as
t
L{ =/0 (1= (Bs = By, (5))) d Bs

We first give a bound for Ee®(L"- L") = E (e fol(lf(Bs*Bwnm)))zd“), for a > 0. We
have

k+1
20 =L [ (By— By )d
E(eafol(l—(BS—B(pn(s)))zds) <X Ee aXimo " (Bs=Bi) ds

k+1
Since the random variables ( f " (By — Bk)2 ds)o<k<n—1 are independent and

identically distributed, we deduce

1
E(eafol(lf(Bsz(ﬂn(s)))zds) geZ“(EeZ“fO" B}ds)n Seza(Ee%“supssl/n Bf)n'
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By time rescaling, supy,<y,, B? is equal in law to %SUPO§s51 B2, and conse-
quently

E(eafo](1—(BS—B¢n(X)))2dS) < eza(Eefl—é supsngf)n.
From Holder’s inequality and Doob’s maximal inequality applied to the positive
submartingale (ej_gB’2 )¢, we have for g > 1,

2a 2 2aq p2\ 1 2aq p2
Een? supy<1 B < (E sup e n2 BS) /1 < —q (Ee n2 Bl)l/q.

s€l0,1] Tq-—1

Remarking that for o < 1/2, EevBi = 1/4/1 — 2w, this gives for n large enough
and choosing g = n,

_1
“n-—1

This permits to obtain

_1
(22) Ee™L"L") = F(@ o= (Bs=Byyo)Pdsy < e2“< - l)n(l —~ 4—“) <,
n — n

where C, is a constant depending on a but not on n. From Novikov’s criterion, we

n az n n
deduce that for any a > 0, (£(aLl))ieci0,1] = (el =T (L >’)te[0,1] is a martin-
gale. Observing that

ePH = £(2pLt) /e (L L")

is a positive submartingale and applying Doob’s maximal inequality, we have
E( sup epo) < C(EeZPL’l’)l/Z < C(Ee8p2(Ln,Ln>l)1/4’
t€l0,1]
and so from (22) this gives
E( sup epL7> <Cp.
tel0,1]

This achieves the proof of (21). _
It remains to prove (20). We recall that X} = elt D}, with D} given by (19).
Since b is Lipschitz, we have

n t
7| <lxol+Cle |+ [ [D2]ds.

so from Gronwall’s lemma || D"|| < C|leL"|| and then (20) is a straightforward
consequence of (21). [

From these intermediate results, we deduce a bound for the Wasserstein distance
between the law of the diffusion and the law of its Euler approximation. Our main
result is the following.
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THEOREM 2. For p > 1, there exists a positive constant C such that for n
large enough:

W, (LX), L(X")) < C 28"

PROOF.  The result of Theorem 2 follows from Proposition 2 and Lemma 1
below, applying the triangle inequality and observing that Wp(ﬁ((X?)te[o,l]),
LAXDret0.1)) < EVP supyeo X7 — X717, O

For the statement of Lemma 1, we recall that (Y’;) and (}~( 1) are defined on the
same probability space by (8) and (10).

LEMMA 1. For p > 1, there exists a positive constant C such that Vn > 1:

(E sup | X — )~(ﬂp>l/p <C/n.
t€l0,1]

PROOF. To simplify the notation, we write AB; = B; — By, ;) and A; =1 —
¢n(t) and we denote by (U/");c[0,1] = (f(,” — Y?)ze[o,l] the error process.

We first remark that for all p > 1, E'sup, g 1 |Y?|p < C (see [10], page 306)
and E sup, (o 1 |X"|P < C [see (20)], s0 E sup;co.171U;'1P < C, for some positive
constant C. Moreover, from these bounds, it is easy to see that for p > 1, there
exists C > 0 such that

(23) viel0,1],  E|X, — ? < C/nP?,

w )

(24) viel0, 1],  E|X'-— ” < C/nP’?.

</) Q)
From (8) and using the preceding notation, we have X — Ywn 0= b(an(t))A, +
an (nAB; and we can write the dynamic of the Euler scheme as

n

dX; =b(X})dt + X, dL" — (b(X) — b(X, o)) dt

~N
+(X; — X, (t))ABtdB, b(X, on(t)) At d By

Now, it is easy to verify from the expressions of X” and L" [equations (10) and
(9)] and the preceding equation that (U;") satisfies the equation:

r — t

(25) U,":/ (b(X?)—b(XS))ds—ir/ U'(1— ABy)dB; + R,
0 0

with

n 1 v X X
e ARI=—3RICAB - (AB)?)di + (b(X7) = b(X,, ) dt
— (X} =X, 1)) AB,dB; +b(X,, ) A dB;.
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From Burkholder—Davis—Gundy inequality and using the Lipschitz assumption
on b, we have

E sup
t€l0,1]

and since fé X(’;n(s)ABs ds = fot X;}l(s)[(t A (@n(s) + %)) — s]d By, we obtain

t p
| 6%y, 0)AdB,| < c/nr
0

t p
E sup / X; (5yABsds <C/n?,
tefo,111/0 "

and similarly

r__ p
E sup /X’; ©ABsds| <C/n”.
refo. /o "
n

Moreover, we have the expansion, for 1, € [Y(pn ) X1

n

b(Yl) - b(YZn(l)) = b(l)(nl‘)(Y:l - Y:;n(l))

= (b (X, ) + (0 (1) = bV (X, ) DX, = Xy 0))-

This permits to conclude, after a few computation involving the estimations (23)—
(24) and the Lipschitz assumption on b and 5! that

(27) E sup |R}'|? <Cp/n?.
tel0,1]

Turning back to (25), we deduce, using once again the Lipschitz assumption on b
together with convexity and Burkholder—Davis—Gundy inequalities and the bound
(27), for p > 2:

! 1

28)  Esup|U'P < c(f E((1+1AB,))" sup|Ul|”) ds + —).
v<t 0 v<s npP

Moreover, introducing the truncation 1A g,|<c,, we have for any g > 1:

P(IABy| > C1) < C/nf,
and so from the Cauchy—Schwarz inequality,
E((1+1ABy))" sup [U} "1 ja,j=c, ) = C/n”,
v<s
this gives
1
E((1+|AB))" sup|Ug]”) < C(E sup |U]” + —).
v<s v<s n?
Reporting this in (28), we deduce
! 1
Esup|UJ|P < C(/ Esup|UJ|P ds + —),
v<t 0 wv<s n?

and the result of Lemma 1 follows from Gronwall’s lemma. O
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4. Quantile coupling inequalities and proof of Theorem 1. This section is
devoted to the proof of Theorem 1 and is organized as follows. In Section 4.1,
we construct a coupling between a sequence of i.i.d. standard Gaussian variables
(Yk)1<k<n and a sequence of i.i.d. variables (X}/)1<k<, such that X}’ has the same
distribution as 72 given in (2). Then, in Section 4.2 we prove that (3) of Theorem 1
holds true for this specific coupling. In Sections 4.3—4.4, we provide the proof of
technical lemmas which are used in Sections 4.1-4.2.

For technical reasons, essentially the nonintegrability of the characteristic func-
tion of the random variables 7:, we regularize them by adding independent nor-
mally distributed random variables. For that, we consider a sequence of indepen-
dent identically distributed standard Gaussian variables (&;)x>1, independent of
the sequence (Y )x>1, and we set

— — 1
(29) V" =Y+ -
k
=%, %N
(30) St=3"7"
i=1

We need to introduce some notation for the law of the variables we will consider in
the construction of the coupling. We denote by ¢ the density of a standard Gaussian
law, and by & its cumulative distribution function.

We let p;" be the density function of ka;:n and denote by Fj its cumulative

distribution function. To simplify the notation, we have omitted the dependence
upon n for Fy.

For k =2p, an even integer in {2, ..., n}, we define
k/2 k
S*, —x, 1 —x, 1 —*, N —*, N
Skn=2Sk/2—Sk ZZYI - Z Yi .
i=1 i=k/2+1
We denote by p;™" (- | y) the conditional density of ﬁg,:" given ﬁf;n =1y. The

associated conditional cumulative distribution function is denoted by Fk(- | y) =
. ~%, N . .
J=oo Py (x | y) dx, where again we have suppressed the dependence upon 7 in the
notation.
In the sequel, we denote by F; k_l the generalized inverse of the function Fy, and

E7'(-| y) the generalized inverse of the function x - Fy(x | y).

4.1. The dyadic KMT construction. The construction of the coupling follows
the dyadic construction scheme introduced by [11], pages 116-118 (see also [7],
pages 51-53) and we give it for the sake of completeness. We adopt the notation
of [11]. In the sequel, it will be convenient to assume that n is a dyadic num-
ber, n =2". Remark that if » is not a dyadic number, the construction below
gives a coupling between the random variables (Yx) and (X}) for k € {1, ..., 2Ny
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where 2V~ < »n <2V and the deviation bound (3) in Theorem 1 holds true for
Vnsupy o on [Sk — TZl. Consequently, we can assume that n = 2V without loss
of generality.

Assume we are given a sequence of independent standard Gaussian variables
(Yk)k>1 on some probability space.

For k equal 1 to 2V, we set

k
Sk=) Y,  S=0,
i=1

and
Vink := Stk+1y2m — Skam, 0<k<2N"™ 0<m<N,

Vi = Vim-12 = V1241, 0=k <2V 1<m<N.

Remark that we have V,,, o = Som. Moreover, for 1 <m <N, 0 <k < 2N=m the
Gaussian variables V,, ; and Vm’k are independent and (Vm’k)0<k<2me is an i.i.d.
sequence for all m. N

We now construct a sequence of independent identically distributed vari-

ables (X}) 1<k<pn With distribution defined by (2). We first construct some in-
dependent variables (X;");;<ov equal in law to (¥;")|_;-on, defined by
(29). The procedure consists in constructing by induction the sums of size 2,
(Z,Qz;;nzﬂ X" ket0....2v-m_1)» starting the construction with the level m = N

and eventually obtaining the variable X" at level m = 0.
First, form = N, we set

V.
o AN/2 -1 N,0
Un,o=2""2Fp (d)(—zN/z)),

. . 1% 1
._AN/2 -1 N,0
O :=2""Fs, (¢<—2N/2> ‘ w7 UN,()).

We define then Uy _1,0 and Un_1.1, by the relations:

€19

1 ~ 1 ~
Un-10:= E(UN,O +Un o), Un-1,1:= E(UN,O —Un ).

By construction, Uy o is distributed as E;\? and using that VN,O is indepen-
dent of Uy o, it is easy to verify that (Uy o, Uy o) is distributed as (?;}7, S;;v")
(see, e.g., Theorem 6 in [7]). Hence, (Un—1,0, Un—1,1) has the distribution

— N — .
of (S;}Gl_u 1-2:2,\,,1 41 Y :’n). We deduce that the random variables Uy_1 ¢ and

Un—1,1 are independent and both distributed according to ?5;3_1.
We next continue the construction by induction on m. Assuming that Uy, ; is
constructed, for 0 < k < 2N we set

- . Vin 1
o /2 1 m, -
32) O s = 2" Es (cb(zm/2> | e Um,k>,
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and we define
1 ~ 1 -
(33) Un—1,c = E(Um,k +Uni), Un—1,2%41:= E(Um,k —Un k).

We can observe that the joint distribution of the pair (U, k, ﬁm,k) is the one of
(Som S‘;;n” ). In turn, Uy,—1.2x and Uy,—1 2541 are independent and distributed ac-
cording to F;},:l_l .

Moreover, it can be verified that, for any fixed 0 < m < N, the constructed
random variables Uy, i, for 0 <k < 2N=m are independent.

At the final step, m = 0, this permits to construct a sequence of independent
random variables (X;”")| ¢ <,v, equal in law to (Y;")| <;<,n by setting

(34) X;"i=Upg-1, 1<k=<2V.

We end the construction with the variables (X}); -, <,n, distributed according to
the law of (?Z)]SkszN. Let F*(- | y) be the cumulative density function of YZ
given 7;’" = y. Itis clear by (2) and (29) that F* does not depend on k. We set

Xp=(F) e | X5"),  1<k<2V,

where (nr)k>1 is a sequence of independent random variables, uniformly dis-
tributed on [0, 1], and independent of (Yj)x>1. The pair (X}, X;") has the distri-
bution of (Y}, Y;") and the difference X © — X" has the distribution of a centered
Gaussian variable with variance 1/n2.

In that follows, we set

k k
Tkk’n :=ZX;’", TZ :=ZX;’, 1<k<2V,
i=1 i=1

T{)’n =0, Tg =0,

where X" and X are constructed above.
From (33) and (34), we easily deduce that

(k+1)2"—1 (k+1)2™
Uni = Z Up,i = Z X:’n
i=k2m i=k2m+1
(35) e . e
=T qiyon — Tioms 0=k <277",0<m <N,

(36)  Unik=Un—t2k— Un—1 2441,  0<k <2V 1<m=<N.
Moreover, from the dyadic construction, we have the following representation
(see Lemma 5 in [7]), for | <k <2V:

—en N k Noo
Gn T'= 2—NUN,O + > cmUnim.ios Sk = 2—NVN,0 + D emVimim.o»

m=1 m=1
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where ¢, € [0, 1] and [(m, k) is defined by
I(m, k)2™ <k < (I(m, k) +1)2".

Remark that (37) can be obtained as a consequence of the following decomposition
on the Haar basis of €2({1,...,2V)):

k N
Loy @) = oo 1y oy @ + D emVmaema @)  Yue{l... 2V},

m=1

where Y1 = Lyom . jomyom=1y = Lyom yom=141 _ q1y2m)-

In the next section, we will assess the probability of deviation between the ran-
dom walks (Sg)x and (TZ)k. This crucially relies on the two following lemmas,
which assess the difference between the random variables Uy o, Vi o and l}m, k>
Vi related by (31)~(32).

LEMMA 2. There exist ¢ > 0 and C > 0 such that for N large enough we have

C (|Unol? .
|UN,0—VN,0|§W(T+1), if [Uno| < e2N2N/2,

LEMMA 3. There exist € > 0 and C > 0 such that, for all m € {1,..., N},
ke{0,....,2N"™ —_ 1} and N large enough

- - C (1Unil*+1Unil?

if max(|Un.kl, |Um.xl) < e2m2N/2.

The proof of these two lemmas are postponed to Sections 4.3—4.4.

4.2. Proof of Theorem 1. In this section, we prove that the control (3) holds
true for the variables constructed in Section 4.1.

We first prove that for any positive constant K and A, we have for n large enough
and x > 0,

= _—n = < —AX
(38) P(ﬁlrg£§”|Tk T}| > K logn +x)_Ce .
By construction, /7 maxj<x<y |T,:’n — TZl is equal in law to 4 x

NG
SUP| <<y | Z;‘:l &|, where (§&); are 1i.i.d. standard Gaussian variables,
and also equal in law to maxj<x<p |Bi/n|, Where (B;) is a standard Brownian
motion. So we deduce, using the exponential inequality for the Brownian motion
(see Proposition 1.8, Chapter 2, in [16]),

—%,n =N
P(ﬁlrgl?;(n|Tk —Ty| = Klogn —i—x) < P<teSEE1)I,)1]|Bt| > Klogn+x>

1

< 26_7(K logn—i—x)2
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and (38) is proved. Consequently, to prove Theorem 1, it is sufficient to prove that
for some positive constant C, K and A (independent of n and x), we have for n
large enough and for all x > 0:

P(ﬁ max |[T};" — S¢| > K logn +x> <Ce™,
1<k=n

or equivalently (recalling that n = 2V), there exist positive constants C,  and A,
such that for all x and N:
(39) P( max [T;" — 8| > x) < CenN 2",
1<k<2N

To prove (39), we distinguish between the cases x < 862"V/% and x > 8¢2V/2 where
¢ is deduced from Lemmas 2-3.

In that follows, we note
(40) A= max |T;" — 8.

1<k<2N
First case: x < 8¢2N/2.
We define the event

2N 1 2N
@1) A= () {100kl =2V} = N{IX¢" < 2V},
k=0 k=1

which will be useful for the application of Lemmas 2 and 3.
To prove (39), we use the decomposition:

P(A>x)<P({A=>x}NA)+ P(A°).
We first control P(A€). By (41), we have for 79 > 0:
P(AS) <2V P(|X]"| > e2V/?) <2V (P(XT" > 2N/2) + P(—XT" > £21V/2))
< 2N((Et0XT‘" + E—IOXI’")e—t()sZN/Z).

Since X7" is equal in law to Y}, we have E[e'X "1 = e¥® with ¥ given by (54),
and we deduce for r > —2V/2/2:

1

J112802

*,n 3.2
Evl‘X1 Sezt +

221(]/2
so by choosing 79 = £2V/2/2, we obtain
P(A) < 2V e 2"/8,

where C is a positive constant depending on ¢. Since x < 8¢2"/2, we deduce the
bound

42) P(A€) < C2N gmex2"2/64,
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Turning to the control of P({A > x} N A), we first have

P({A>x}nA) <2V sup P({|T;" — Sk| > x} N A).

1<k<2N
Now from (37), we deduce
N
—n - -
(43) T = Sk < 1Un0 = Vol + D Unioni) = Vil
m=1

where [(m, k) satisfies [(m, k)2" <k < (I(m, k) + 1)2™.
But on A, we have for all m and for all £ [this is immediate from the definition
of A and (35)—(36)]

\Up.i| < €2m2N/2, U k] < €27m2N/2,

Consequently, using the results of Lemmas 2 and 3, we obtain on A:

C (|Unol?
|UN,O—VN,0|SW< N +1),

3 y C (1Unioni* +10miomp?
|Um,l(m,k)_vm,l(m,k)|§2N/2( m,l(m,k) o m,l(m,k) +1>‘

Plugging these bounds in (43), this gives on A:

C (|Unol?
- 2N/2 N

(44) T2 — 8| < +N+1+ak),

where

v -
Z U 110> + 1Umiom.ioy |

8 = o

m=1

From Lemma 4 below, we observe that on A we have the equality in law:

Sk=rd1=

k)

N N\ Unol? 4 10m.0l?
> o

m=1

and we can write

c (lUN,oI2

P({A>x}NA) <2NP({2N/2 N

+N+1+81)ZX}0A>.

Since U0 =Up—1,0 + Up—1,1 and l}m,o =Upn-1,0 — Un—1,1, we remark that

U Un—1.117 "2 1Unol? + U1 12
81_22|m10|2+|m11|_Z|m0|+|m1|

m=1
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and we obtain
P({A>x}NA)

c [|U Upol2+ |Un1|?
2NP<12N/2<| ;”' +N+1+Z| m.0| ;ﬂ' .1 )zx}mA>.
m=0

|U,,1’;1o|2 b ZN—I U1

m=0 —am—- First, we have, using (35),

Now, we get to control ZN m—0

m—12/t1-1 m—1 2
|Um,0l* = |Uo,0 + > > U, (Uo,o-l- > Uj,l) ,
J=0 i=2J Jj=0

so by Cauchy—Schwarz inequality with ¢ = 1/+/2, we obtain

Unol = (X! )( U00+Z )

j=z0
<c< UOO+Z prrs ——U; 1)
It yields after some calculus:

N |Um,0| — 1121
> am =C|Uso+ 22—

m=0

and finally

2
(45) P({Azx}mA)szNP<{2§/2<UOO+N+1+ Z Ui )Zx}ﬂA).

=0

To end the proof, we introduce the notation, for 0 <m < N — 1,

U2,
(46) T = 5 LUy 1202728 2)
and
47) To= Ug,OI{IUoi,OIESZN/Z}'
The random variables (7, 79, 71, ..., Tv—1) are independent and this permits to
deduce

C N—1
P({AZX}QA)SZNP<W<?O+N+1+ me) Zx)
m=0

N—1
= _9N/2
< 2Nect(N+l)EeCt‘[o 1—[ Eecn’”e 12/ “x

’

m=0
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where the last inequality holds for any ¢ > 0. Consequently, to obtain the bound
P({A > x}NA) < CeoN 2"

for some positive constants C, o and A independent of N and x, it is sufficient to
prove that

(48) Jty > 0,3C > 0, suchthatVO<m <N — 1 Eelo™m < C.

Integrating by parts, we first remark that

g2omaN
Ee'0™m =1 +/0 10e" P (1, > y)dy,
s0 to prove (48) we just have to prove that for 0 < y < g222N:
(49) P(ty >y) <Ce™™
for positive constant C and 7, (independent of m, y, N). We have
P(ty>y) < P(Up, >2"y)

< P(Un1 > 2"2/3) + P(=Upn1 >2"2 /)
< Ee'Un1o=2"2VY 4 pomiUnio=12"2J5,
where the last inequality holds for any ¢ > 0. We recall that U, ; is equal in law

to Y2, Y ", this gives Ee!Unt = ¢2"¥® wwhere W is defined by (54). Moreover,
using the notation,

(50) A (u) = iItlf(‘-If(t) — tu),
one has [since ¥V (0) = 0]: for u > 0, A*(u) = inf,>o(W(¢) — tu) and A*(—u) =
inf; <o(W(¢) 4 tu). This gives
P(‘L’m - y) S ezmA*(27m/2ﬁ) + eZ’"A*(*Zﬂn/zﬁ).
From the estimation (61) [where ¢ is defined by (59) with k = 2™ and x = ,/y],

we deduce, since ,/y < g2™/22N/2 that (choosing & small enough and N large
enough),

DA Y)Y < —ny and 2"A*(Q27M2/y) < —ny
for some 1 > 0 and (49) is proved. This achieves the proof of (39) in the first case.
Second case: x > 82N/2,
Following [11] and [7], we first choose an integer M such that

X gMpN2 o
8¢ " 4¢
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Such an integer exists since x > 8¢2"/2. Without loss of generality, we may as-
sume that M < N (if it is not the case the proof reduces to consider A and A;
below with M = N). We set

2N-M_

(51) B= [ {IUnxl <22V},
k=0

We remark that on B, we have for all m > M + 1 and for all k

U] <82m2N2 Uil < 82m2N/2,

Moreover, we define

—x, N =%,

A= max max }TkQMH —T5m|,
0<k<2N-M 1<]<2M

Ar = max max |Spomy; — Spoml,
O<kooN M | oo k2M 41 k2

=1

A3 = max |Tk2M — Sk2M|.

0<k<2N-M

We immediately see that
A< Ap+ Ay + Aj,

where A is defined by (40). Moreover, observing that B¢ C {A] > g2MoN/ 2}, we
have

(A=x}c{A;=e2M2N2 U, = e2M2N2) U ({A3 = x/2) N B),
and so
(52) P(A=>x)<P(A;=e2M2N2) 4 P(Ay > e2M2N/2) 4 P({A3 > x/2) N B).

We first bound P({Asz > x/2} N B). Starting with the decomposition [similar to
(371,
N

—n k ~
Tiom = 2—NUN,O + Z CmUn,1Gm k2M)»
m=M+1

and proceeding as in the proof of the first case, one can show that
C N—1
P({A3=x/2} N B) §2NP<2—N<N+ 1+ ) rm) Zx),
m=M

where the variables t,, are defined by (46). This permits to conclude, using the
same arguments as previously, that

P({A3>x/2}NB) < CotN—12Vx
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Turning to P(A| > 82M2N/2), we have

P(A1 = £2Y2N2) <oV p( max |T}"| = e2M2N/2),
1<k=<2M
Applymg Doob’s maximal inequality to the positive submartingales (e’ " ) and
(e”! " ), where ¢ > 0, and optimizing on ¢, we deduce using the notation (50),

P(A; > 2M2N/2) < 2N(62MA*(62N/2) n ezMA*(—szN/z))_

With help of (61) below writing, for example, 2M A*(£2V/?) < 2Mw (1) —
t/2M (£2N/22M/2) with the choice of ¢ corresponding to (59), WD (r)v/2M =
g2NI2oM/2 e get
P(A1 > 82M2N/2) < 2N+le—n522N2M < 2N+1e—nsx2N/2/8’
for some n > 0. Similarly, for the standard Gaussian variables, we have
P( max |S| > e2M2N/?) < 2e=e"2"2"/2
1<k<2M
and so

P(Ay > 82M2N/2) < 2N+le—ex2N/2/16.

This achieves the proof of (3), and hence of Theorem 1. [

LEMMA 4. We have the equality in law, for all k € {1, ..., ZN},

- (Las (1Umiomo1) o, ..

= (14, (1Um.0l) e

=u,...,

where A is given by (41).

PROOF. The proof is based on the fact that the law of the vector (Up ;); is
invariant by permutation, and that one can find permutations that transform the
left-hand side of (53) into the right-hand side. Let us sketch how to construct these
permutations.

If k =1, then [(m, k) = O for all m, and the result (53) is immediate. Otherwise,
we write k — 1 = ZZ _é dn2™, where d,,, € {O, 1}. Let us remark that we have
I(m, k) = ZN d;27=m for all m € {0, . — 1}. Let us denote mq = sup{m |
dy,=1,0<m < N — 1} which is well- deﬁned since k — 1 £ 0. We define (U(’,,i),-
a permutation of the random vector (Up ;); as follows:

Ugizomo  ifO<i<2m0,
Up;i=1{Upi—omo  if270 <i <2moth
Uo.i if 2ot < <2V 1,
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m

0<! <2V _ 1. We set k' = k — 2™0. Then one can check that [(m, k') =
I(m,k) =0 for m > mg and [(m, k") = 1(m, k) — 2"~ for 0 < m < mo. More-
over, we easily get Ur/n,l = U, and U,/n’l =Uy,  forallm >mp+1,0=<1 <

;22— gy Tl 17/ /

N—m . / 77/ _ _
2 — 1. By construction, we have mo+1.10mo+1.6) = Umo+1,0 = Ung+1,0 =
- o T nor
Unmg-+1,1(mo+1,k) and Um0+1,l(m+1,k/) — Ymo+1,0 — —Uno+1,0 = =Unmo+1,1mo+1,6)-
For 1 <m < mg, we can write
I(m,k'y2m42m —1 I(m,k)2m —2m042m —1
/ _ r /
Unimin= 2. Upi= > Uo,i
i=1(m,k')2m i=I(m,k)2m—2m0
I(m,k)2m+2m —1 I(m,k)2m+2m —1
/
= Z Up,i—pmo = Z Vo,
i=l(m,k)2m i=l(m,k)2m
=Unimp,  sincel(m, k)2™e{2m, ... 2motl 1},

Using that the set A is invariant by permutation of the Uy ; [see (41)], we deduce
from the discussion above that

.....

where k' < k. Hence, for k # 1, this shows that we can replace k by k' < k in the
left-hand side of (53) without changing its law. By a finite number of iterations of
the procedure, we deduce (53). [

4.3. Quantile coupling inequalities. In this section, we prove Lemma 2. We
first establish a sharp expansion for the law of ﬁS;n

LEMMA S. Let ﬁ;’" be the density function of ﬁ?,:n ¢ and © be respectively
the density and the cumulative distribution function of the standard Gaussian law.
There exist some constants € > 0 and C > 0 such that for all k > 1 and n large
enough, we have:

(1) for |x| <e~kn:

1 1
Do) = (x)evi £

(i) for 0 <x <ekn:
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where
(1+]x]?)

1T/ (x)| < C T

forl1<j<3.

REMARK 2. For k = n, the approximation of p}" (x) by ¢ (x) is of order 1/n,
for |x| < en. In the classical KMT result, the order of approximation is 1/4/n for
|x| < e4/n. It is important to have a better approximation result which holds for
larger values of x to improve the final bound in the KMT construction (compare,
e.g., to the refined quantile inequalities given in [14]).

An inspection of the proof below shows that without the regularization tech-
nique [i.e., without adding the small Gaussian variables & in (29)], the result of
Lemma 5 still holds but with & > 3 only.

PROOF OF OF LEMMA 5. We can prove (i) and (ii) by the technique of con-
jugated random variables (see [7, 12, 13]). We only give the proof of (i) and the
proof of (ii) being very similar (see, e.g., [13]). We first compute the Laplace trans-
form of the variables 7,:’”. For r > —./n, let R(t) = Ee'Yi" and W (t) =log R(1).
A simple computation gives

t 1 1?

2ﬁ+ AT 1T —Elog(1+t/«/ﬁ)+m.
In particular, we have ¥ (0) =0, vDO)y=0, v@0) =1+ % + nLZ and it is
easy to verify from the computations of U@ and ¥® that for 0 < lt] < ca/n,
0<1/C < U@ () < C and (¥ ()] < C/+/n, for some positive constants ¢
and C. Fixing ¢ such that |f| < c/n, we consider the sequence of independent

2

(54) V() =

random variables (Z}})x>1 such that, Z; admits the density function % fYZ'" (x),
where fy;,n denotes the density function of 7,:’”. One can easily verify that
E(Z}) = W () and V(Z}) = W (r). We denote by gy the density function of
the normalized sum NTED) Yi=1(Z7 —W'(2)). The following relation holds

between p," and ¢;':

kY () —1xvk n<xﬁ_kqj(1)(t)>

JY (1) o VYO (1)

The next step to obtain the result of Lemma 5 is to prove that that for |7| < c/n:
1
Vkn

(35) ) =

(56) sup g () —p(x)| = C
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Let g} (u) be the Fourier transform of g}/, we have

iu n_ (D)
G0 ) = (Ee Vom0 Ok

and consequently

R(t + —% iww(D
R(1)

Now, by the Fourier inversion formula (see Theorem 4.1, page 41, in [3]),

(57) G ) = (

Lo e
suplaf () — ¢ (0] = o [ a0 — e [du < 10+ 1 4 12
X

where

’=c |é,’<’(u)—e_%|du,
lu|<akn

ml=c g7 (u)| du,

k \u\>a\/ﬁ|qk( )|

=c -

e = e du,
\u\>a«/ﬁ

and « is a positive constant which will be precised below.

2 2
. _u- _ X .
Since for x > 0, (e~ 7 du < Le™T, one can easily see that

n,2

a°
=-

Turning back to 1} ! a tedious computation using (54) and (57) gives

R ki (1+t//m)
6_42,125(2) 5 . A+ /I )
n _
|qk (M)|— u2 k/4 X k2 g(M),
+ knw @ (z)(1+z/ﬁ)2) e 2(1+1//m)
where
2
—u=(1 —t//n)
logg(u) = ) 5 2 .
29 () (1 + l/\/ﬁ) + m)
We deduce then the bound:
u2
o e 229D
(58) ¢ )] < . i

knW® 1)1+t //n)?
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We remark that the contribution of the regularization variables (£;) in the numer-

ator of equation (58) (the term e 22¥®®)) ensures the integrability of |G/ (u)| for
the small values of k (k=1 and k = 2).

Recalling that if |f| < ¢y/n, we have 0 < 1/C < WP (1) < C, we deduce that
for |u| > av/kn, 0 < g(u) < e~C¥". This finally yields

_ci* C
I,r:l’1 SCeiCk”/‘e o7 du < Cne % <

_ﬁ.

remains to bound the main term [, . Wi € previous notation, we rewrite
It to bound th term 7;°. With the p tat te (57
as

; )
kW (4 — =) —k W (1) — 120k
i) =e + T O Tam V|

iv
2

2220 0)

3

u
~n T T e @ovieon
qx m)=e 6w (2 (1)A/kw (2 (1) ,

A Taylor expansion up to order three of v — W(¢ + ) on [0, u] gives

where [1,] < supjy<y NASHTEE )|. We deduce then that

iy
VU@ (1)
u2

3
5 2 PR
|c},€’(u) —e 2 } —e 2 |1 —e WA k\p(2>(z)n”|.

Using the inequality |1 — ¢?| < |z|el?l for any complex number z, we obtain by

choosing « such that |Wmnu| <1, for |u| < av/kn,
" a2 S ] L
|G (u) — e 2|§Cﬁe Te6 =Cme 3
This gives
< .
Vkn

This achieves the proof of (56).

We turn back to (55). We first recall that for |f| < ¢y/n, 0 < 1/C <
U@y <C.Asa consequence, v g increasing, for |¢| < c4/n, with values in
[—C./n, C4/n], for some constant C. It follows that for |x| < e~/kn, the equation
x = W)k admits a unique solution. In the sequel, we fix 7 to be the unique
solution of

(59) x =¥ D)k
We have |t| < c4/n and so combining (55) with (56), we obtain
e ek\IJ(t)—tx\/l? 1 0(1)
P = (14 52
\11(2) (t) 27 kn

(60)
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where O (1) is a bounded function. Next, considering (59), by a Taylor expansion
of [¢WD]=1 on [0, x/«/%] up to order two, we obtain

X 2

= +

VEV@(0)  kyn

where we have used [VD]1710) = 0, (vPI"HD©) = 170 (0),
3) (Hy-1 .

(w1~ HP @) = [\3@)(([[\;1}(1)]]—1((5))))]2 and recalling that for |u| < ci/n, we have
0<1/C<¥PDw)<Cand|¥D®w)| <C/n.

Now, since ¥ (f) = %\y@)(O) + %ﬂt, with [1:] < supy, <y W3 ()|, we deduce

the expansion

o),

2 x3

X
2000) " Jin

where O (1) is a function which is bounded uniformly in k and n, for |x| < es/kn.
Using W (0) = 1 + 5 + -, this finally leads to

kW () =

oQ),

x2 X2 x3
61) k\IJ(t)—tx/Exz—E—i-;O(l)-l—ﬁO(l).

Reporting (61) in (60), it yields

=2 0(1)+ 0(1)

i) = $(0)°

0(1))'

1+
/\p(Z)(Z) ( \/E

i @) =w® X
We conclude, observing that W'/ (¢) = &'“(0) + T o(l),
+x3)
P = p@eV i
and (i) is proved. [J

Based on the refined quantile inequalities for the law of \/LEE*’H stated in
Lemma 5(ii), we deduce the result of Lemma 2.

PROOF OF OF LEMMA 2. Recalling that Uy ¢ = 2V/?F, (@(VNO)) the re-

sult of Lemma 2 is a consequence of the more general followmg result applied to
the particular case m = N.

There exist ¢ > 0 and C > 0 such that, for allm € {0, ..., N} and n =2V large
enough, we have

_ Vin,0 C _ Vo \\|?
st (o(gms)) - Vool = g (7 (o (o)) +1)

if 122yl (@ (328))] < e2m2N /2,
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To get this result, we have to prove that for 0 < |x| < e+/kn,

(62) D(x —u(x)) < Fr(x) < d(x +ux)),
where u(x) = %(% + ﬁ). Indeed, observing that (62) is equivalent to

x — u(x) < ®1(Fu(x)) < x 4+ u(x), we obtain the above result for x =
F N (@(z Vin0)) and k= 2",

From Lemma 5, part (ii), we have for 0 < x < ev/kn,

_c s cu+xd)
(63) (1-=®(x))e Vi <1—F(x)<(1—®(x))e Vi,
_CM Cm
(64) P(—x)e = Vi < Fi(—x) < ®(—x)e” Vi .

Now from Mason and Zhou [14], Lemma 3, we have forall A > 0, k > 64 A2 and
0 <x <Vk/(8A),

O(—x+u)\ . (11— —u) 14 x°
@ o (=) ) =t =W )= 4( Jk )

(66) 10g(%) = 10g<lzj)%q):(j)u)> < —A(l—i_—\/;),

where u =2A 1%‘2. Combining (65) and (66) with A = C/+/n and n large enough,

with (63) and (64), we deduce that Vk > 1 and 0 < |x| < e+/kn, (62) holds. [l

4.4. Conditional quantile inequalities. In this section, we prove Lemma 3.
Recall that, for k even, p;"(- | y) is the conditional density of ﬁS,:’” given
#E,:’n =y, where the joint law of (S}, 5;") = Q28 — S, Sy is defined
via (29)—(30). In the following three lemmas, we establish some expansions for the
conditional density 13,:’"(- | y) and the associated conditional quantile inequalities.
Then we will deduce Lemma 3.

LEMMA 6. There exist some constants € > 0 and C > 0 such that for all k > 1
and n large enough, we have, for |x| < e~kn, |y| < e+kn,

- L Flx,y)
Pyt x| y) =g (x)evn kY

. R
where |T} (x, y)| < CW.

PROOF. First, we show the following expansion for the density of ﬁ?g’n:

de > 0,V|x| < evnk,

(67) ’
7)) = ¢ (x) exp( al + cnx? + MBn,k(x)),

J () Tt
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where r, is a sequence of smooth functions defined on some neighbourhood
[—&, ] of 0 and whose derivatives up to order two are bounded independently
of n; ¢, is a sequence such that ¢, = O(1/n); and B, (-) is some measurable
function bounded independently of k and »n.

Recalling the representation (60), where ¢ is the unique solution of (59),
A1) =wv@©0) + \‘/% O(1) and VP 0) =1+ ﬁ + n% yields to the represen-
tation:

—n 1 1+ |x]
Py (x)—mexp<k\1—‘(t)—txx/%+ N 0(1)).

Let us denote ®,(s) = %llf(\/ﬁs) and by h, the inverse of the function s
ﬁ\b(l)(\/ﬁs). Due to the expression (54), it is simple to check that both func-

tions are well-defined on some neighborhoods of 0 independent of n, and we
can assume that h, is well-defined on the interval [—¢, €], up to reducing the
value of ¢. Using these notation, we get t = /nh (%) and in turn, ﬁZ’" x)=

ﬁexp(nkcbn(hn(\/%)) — «/ﬁhn(ﬁ)x + I\j'—XIO(l)) Now, since ®,(0) =

o7(0) =0, &P (0) = 1+ 2 + L, we can write @, (s) = 7 (0)% +5>yu(s) =
12+ O(I/n))s2 + s3yn (s), where y, is some function. Using that ®,,, and all its
derivatives, are bounded independently of n on [—e¢, €], we deduce that the same
property holds true for y,. Analogously, we can show that

(68) h(s) = h\D(0)s + 52, (s) = (1 + O(1/n))s + 5> Ba(s),

where the function ,,, and its derivatives of any order, are bounded independently
of n on [—e¢, €]. With simple computation, we deduce that

nk®y, (h(\/%)) - Mhn(\/%)x

=nk®, ((1 + 0(1/n))

Gt ﬂn(ji—k))

_mx(( +0(1/n))J— (j?k))

_ Ll voam+ irn<i>
2 Vnk " \/nk
where r;, is some bounded function, with bounded derivatives. This gives (67).
Now, using the independence of the random variables ?,:n + S’,:’" and
Sy — 8", we easily deduce
PGP (=5 3

(69) ve,y,  pl(xly)= e
k 7" ()
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From (67), we readily get

¢(x+y)¢(_x+y) 1+ |x|+ |y|

prtt 8 (x, o) + ¢y, 2)
70 Py (x]y)= 50) eXP( (x,y) + NS (1) +cpx
=¢(x>exp(8n(x,y)+%oawcﬂ%),

where 8,(x,y) = FUCE ra(TE) + (22 m (72 — 2 f)%l( 01
From a second-order Taylor expansion of 7> z3rn (z) around ﬁ’ it can be
shown that [8,(x, y)| = x20(2?:1(|ﬁ|f + |ﬁ|i)). Using |x| < ev/nk and
|y| < es/nk, this yields to |5, (x, y)| = ﬁ0(|x|3 + x2|y]). Using the expansion
(70), we deduce the lemma. [J

LEMMA 7. Let e > 0, then there exist 0 < &’ <&’ < ¢, and C > 0, such that
for n large enough, and all k,

V|y| < &’"~nk,V|x| > &'vnk, we have,

Vnk S’MD_

o “C (__[ _
Py (x]y) <Cexp C | x| >

(71)

PROOF. We just consider the case x > 0, since the proof for x < 0 is similar.
We first need to prove the following upper bound on the density of f,:n

3¢’ >0,Y0 <y <&'vnk,¥z>0,
(72) 1 ¥z 1+l
o+ < 5= :
k

Jnk
From (55) with x = y+z and for 7 given by 1 = \/r_zhn(\/ik—n) where h,, is defined
in the proof of Lemma 6, we have

)

ek\l/(z)—ty\/l?q;(l((y + )k — k\p(l)([))e_t N

VYO () VEP (1)

Remark that ¢ is well-defined for ﬁ in a neighbourhood [—¢’, &] of 0 and is

Pty +2)=

solution to WV () = y/+/k. Then, proceeding exactly as in the proof of Lemma 5,
we can deduce that

2 ol |
o T O j—izvk

73 —*, 7 -
(73) Py (v+2) T



PATHWISE COUPLING FOR THE EULER APPROXIMATION 2451

Now, from (68), we deduce —rzv/k = —yz[1 + 0( )] + 0(|Z|y ). Using that
% < ¢’ < 1/4, as soon as we choose the value of &' small enough, we get
—tz4/k < —yz/2, for n large. Finally, (72) follows from (73).

We now prove (71). Up to a modification of the value of &', we can assume that
the result of Lemma 5(i) holds true for x < &¢’</nk. Thus, from (69), we get for

x €R, |y| <¢&'v/nk:

b, (X +y —x+y
e = Vame T g (U (Y,
y Pr)2 /2 14'30) /2
where C > 0 is some constant. From (55)—(56), it is easily seen that ﬁz/nz is a
bounded function. Hence, we deduce

2 3
- Y ic 1+]yl —an(x + y
(74) Ji(xly)<Ce? " vk pr (—)
Px y pk/2 «/E

where C > 0 is some constant.
We assume for the sequel that x > ¢’+/nk and |y| < &”+/nk with ¢” = ¢’/8.

We write pk/z( y) as ﬁz/’é((s/ﬁ + y)% +(x— 5/@)%) and use (72). Since
% +yel % 'Vnk, gs/vn 1C [%S/Vnk, %e/x/nk], we deduce
8/\/71]{( ,\/nk>)
x—¢
16

1 C
_Z/”2<x+y> <Cexp<—4—8'2nk+ + CePnk — 5

V2 v nk
for some constant C > 0. From (74) and |y| < ¢’</nk/8, we deduce

1 C e's/nk /nk
~%x, 1 <C (__ 22 k(1 C o~ ( _ /_))’
P (x| y) <Cexp 243811( )—i—m T X —¢ 3
where C is some positive constant. Up to a modification of &', we can assume that

¢’C < 1 and the latter equation gives (71). 0

We recall that Fy(x | y) = [* o pr" (u | y)du is the conditional cumulative

. . . . L ”*,
distribution function of \/%S . given ﬁS L =

LEMMA 8. There exist € > 0 and C > 0, such that for all 0 < x < e+/nk and

ly| < ev/nk:
~ L'lzx
T3 (x, y)

(76) Fi(—x | y) =& (- X)ef

~ 7 3 2
where ITk" x, < ¢ Lyl | J:%x Hyl,forj =2,3.
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PROOF. We only prove (75), since the proof of (76) is similar.
Using Lemma 6, let us consider &1 > 0, such that for all |x| < g;+/nk,
|y| < e1+/nk, we have

2 ¢ L34y 2 4y
e 2Ze nk

P (xy) <

for some constant C; > 0. Hence, for 0 < x < A < e+/nk and |y| < g1+/nk, we
can write

~ L+]y] W2 1 _ae utlyly

(1-2C4 y du

(77) Fu(Aly)—Fu(x|y)<e lﬁ/ -7 N/
g g N2

Assume now on that g1 < Sé , up to a modification of the value of ;. Then the
change of variable v = u(1 — 2C %‘yl)l/ 2 is one to one as the variable u ranges

in [x, A] and it is easy to see that | ”| <14+C, vj/—l_il with some constant C» > 0.

As a result, after a change of variable, we get

A o vty du
/ e 7 (1 2Cl M)
X

V21
o0 2 v+|y|) dv
78 7{1+C
(78) Sf)e(y,n,k)e ( & vnk /2w
. CzIyI) C .
= I—CD N ,k 1 - — ) sk ’
[ (x(y,n ))]( + N +M (X(y,n, k)

where we have noted x(y, n, k) =x(1 —2C; %rllykl)l/z.
From the mean value theorem,
1 — D (y,n, k) (&) ¢()
10g< )— X(y,n, k) < C3(x" + x|yl
1 —®(x) = ) — (&) o ) —®(E)’
where & € [x(y, n, k), x] and C3 > 0 is some constant. From Lemma 2 in [14], we
know that z — 111)((15()1) is increasing and Lemma 1 in [14] easily implies

9
79 < Cy(1
(79) e SC1+
for any z > 0 and C4 > 0 some constant. We deduce

1= ®E(y,n k
1o< 1£xc(1>y(xn) ))>§C5(x2+x|y|)(l+x),

where Cs is some constant. Putting together (77), (78) and (80) we deduce

(80)

- N C LBy 41y 1+ |y
Fe(Aly) — Bl | y) < [1 — d)]e” v (HCZW_;)

C o
— k)).
+ m¢(x(y7na ))
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Using (79) and (80), we have

SRy, 1, k) < Ca(1+ [x]) (1 — D(x)) S5 XD+,
As a consequence, we easily deduce
1134yl 41y

Fe(Aly) = Fex |y) <[1— )] v

(1)
VO <x < A <evnk,|y| <eivnk,

and where Cg > 0 is some constant. B
In order to prove (75), it remains to control 1= Fe(Aly)= [ pr" (| y)du.
From Lemma 7, there exists 0 < &] < &} < &1 and C7 > 0 such that for all |y| <

ﬁ u = ek, py" | ) < Crexp(—[fx| — S ). We choose A =

~%*, N

nk < e1a/nk, and with easy computations deduce that [3° A Py (w]y)du =<

cz Lk | € .
L7371 we let &) = 487‘7 A 8’1, and if x < gya/nk, we have 1 — ®(x) >
slnk
¢ (x) e 87

. This impli
CitCax = 27 (Cat Carpny” S HIPHES
nk

0
(82) V0 < x < eyv/nk, / ﬁ,:’”(u | y)du < Cg[1 — ®(x)]exp &
A
for some constant Cg > 0. Joining (81) with (82) yields to the result (75). U

PROOF OF OF LEMMA 3. Recalling (32) and repeating the same reasoning
as in the proof of Lemma 2, it is sufficient to prove that for 0 < |x| < e+/kn, and

0 <yl <evkn:
(83) 1= ®(x+ulx,y) <1-Fx]y) <1—o(x —ulx,y).
where u(x, y) = C(l%’j:yz) We focus on the case x > 0, as the proof is similar

for x < 0. Using Lemma 8, there exist & and C; such that for 0 < x < g1+/nk,
ly| < e1v/nk:
1t P+l + ] 1+ P+l + ]

(1—o@)e 7 Vi <1-Fkxly<(1-o@)e"  vn

3 2
Weset A = 51_ W Thenitis simple to check that if 1 is small enough

and n sufficiently large, we have A? < + 4C1y

64, for all k > 1. In the

same way, we easily check that if 1 is small enough, we have 8Ax < vk. As a
consequence, we can apply (65)—(66) to get
1423 1423

B4) 1—0x+u)<[1—d@]e “ vk <[l —d@]e" ¥ <1—dx—u),

— A l+x? (+x24y?) - 1423 _
where u =2A K <C N i u(x,y), for some constant C. Since A N

Cq w the equation (84) gives (83). [J




2454 E. CLEMENT AND A. GLOTER

Acknowledgement. We are grateful to the referee for detailed comments and
suggestions that improved a first version of this paper.

REFERENCES

[1] ALFONSI, A., JOURDAIN, B. and KOHATSU-HIGA, A. (2014). Pathwise optimal transport
bounds between a one-dimensional diffusion and its Euler scheme. Ann. Appl. Probab. 24
1049-1080. MR3199980

[2] ALFONSI, A., JOURDAIN, B. and KOHATSU-HIGA, A. (2015). Optimal transport bounds be-
tween the time-marginals of a multidimensional diffusion and its Euler scheme. Electron.
J. Probab. 20 Art. ID 70. MR3361258

[3] BHATTACHARYA, R. N. and RAO, R. R. (2010). Normal Approximation and Asymptotic Ex-
pansions. Classics in Applied Mathematics 64. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA. Updated reprint of the 1986 edition [MR0855460],
corrected edition of the 1976 original [MR0436272]. MR3396213

[4] DAVIE, A. (2014). KMT theory applied to approximations of SDE. In Stochastic Analy-
sis and Applications 2014. Springer Proc. Math. Stat. 100 185-201. Springer, Cham.
MR3332713

[5] DAVIE, A. (2014). Pathwise approximation of stochastic differential equations using coupling.
Preprint.

[6] Doss, H. (1977). Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst.
Henri Poincaré B, Calc. Probab. Stat. 13 99-125. MR0451404

[7] EINMAHL, U. (1989). Extensions of results of Komlés, Major, and Tusnédy to the multivariate
case. J. Multivariate Anal. 28 20-68. MR0996984

[8] FLINT, G. and LYONs, T. (2015). Pathwise approximation of sdes by coupling piecewise
abelian rough paths. arXiv:1505.01298v1.

[9] KANAGAWA, S. (1988). On the rate of convergence for Maruyama’s approximate solutions of
stochastic differential equations. Yokohama Math. J. 36 79-86.

[10] KARATZAS, I. and SHREVE, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed.
Graduate Texts in Mathematics 113. Springer, New York. MR1121940

[11] KOMLOS, J., MAJOR, P. and TUSNADY, G. (1975). An approximation of partial sums of inde-
pendent RV’s and the sample DF. 1. Z. Wahrsch. Verw. Gebiete 32 111-131.

[12] KOMLOS, J., MAJOR, P. and TUSNADY, G. (1976). An approximation of partial sums of inde-
pendent RV’s, and the sample DF. II. Z. Wahrsch. Verw. Gebiete 34 33-58. MR0402883

[13] MAJOR, P. (1976). The approximation of partial sums of independent RV’s. Z. Wahrsch. Verw.
Gebiete 35 213-220. MR0415743

[14] MASON, D. and ZHou, H. (2012). Quantile coupling inequalities and their applications.
Probab. Surv. 9 439—479.

[15] RACHEYV, S. T. and RUSCHENDOREF, L. (1998). Mass Transportation Problems, Vol. II: Appli-
cations. Springer, New York. MR1619171

[16] REvVUZ, D. and YOR, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed.
Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathemat-
ical Sciences] 293. Springer, Berlin. MR1725357

[17] TALAY, D. and TUBARO, L. (1991). Expansion of the global error for numerical schemes
solving stochastic differential equations. Stoch. Anal. Appl. 8 483-5009.

LAMA, UMR 8050, LABORATOIRE DE MATHEMATIQUES
UPEMLYV, UPEC, CNRS ET MODELISATION D’EVRY, UMR 8071

UNIVERSITE PARIS-EST UNIVERSITE D’EVRY VAL D’ESSONNE

F-77454, MARNE-LA-VALLEE 91025 EVRY CEDEX

FRANCE FRANCE

E-MAIL: emmanuelle.clement@u-pem.fr E-MAIL: arnaud.gloter @univ-evry.fr


http://www.ams.org/mathscinet-getitem?mr=3199980
http://www.ams.org/mathscinet-getitem?mr=3361258
http://www.ams.org/mathscinet-getitem?mr=3396213
http://www.ams.org/mathscinet-getitem?mr=3332713
http://www.ams.org/mathscinet-getitem?mr=0451404
http://www.ams.org/mathscinet-getitem?mr=0996984
http://arxiv.org/abs/arXiv:1505.01298v1
http://www.ams.org/mathscinet-getitem?mr=1121940
http://www.ams.org/mathscinet-getitem?mr=0402883
http://www.ams.org/mathscinet-getitem?mr=0415743
http://www.ams.org/mathscinet-getitem?mr=1619171
http://www.ams.org/mathscinet-getitem?mr=1725357
mailto:emmanuelle.clement@u-pem.fr
mailto:arnaud.gloter@univ-evry.fr

	Introduction
	A KMT type result
	Application to the Euler approximation of a diffusion process
	Quantile coupling inequalities and proof of Theorem 1
	The dyadic KMT construction
	Proof of Theorem 1
	Quantile coupling inequalities
	Conditional quantile inequalities

	Acknowledgement
	References
	Author's Addresses

