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AN APPLICATION OF THE KMT CONSTRUCTION
TO THE PATHWISE WEAK ERROR IN THE EULER

APPROXIMATION OF ONE-DIMENSIONAL DIFFUSION
PROCESS WITH LINEAR DIFFUSION COEFFICIENT

BY EMMANUELLE CLÉMENT AND ARNAUD GLOTER1

Université Paris-Est and Université d’Évry Val d’Essonne

It is well known that the strong error approximation in the space of con-
tinuous paths equipped with the supremum norm between a diffusion pro-
cess, with smooth coefficients, and its Euler approximation with step 1/n is
O(n−1/2) and that the weak error estimation between the marginal laws at
the terminal time T is O(n−1). An analysis of the weak trajectorial error has
been developed by Alfonsi, Jourdain and Kohatsu-Higa [Ann. Appl. Probab.
24 (2014) 1049–1080], through the study of the p-Wasserstein distance be-
tween the two processes. For a one-dimensional diffusion, they obtained an
intermediate rate for the pathwise Wasserstein distance of order n−2/3+ε .
Using the Komlós, Major and Tusnády construction, we improve this bound
assuming that the diffusion coefficient is linear and we obtain a rate of order
logn/n.

1. Introduction. A classical problem in numerical probabilities is the com-
putation of Ef (X), where X = (Xt)t∈[0,1] is a stochastic process defined on the
time interval [0,1] and f a functional which may depend on the whole path of the
process X. This problem appears for instance in finance where X represents the
dynamic of a stock price and f the payoff of an option. The usual way to solve
this problem is to approximate X by a numerical scheme and then to compute the
expectation by using a Monte Carlo method.

Due to its implementation easiness, the most popular discretization scheme,
when X is a diffusion process, is the Euler scheme. Denoting by X

n
the Euler ap-

proximation of X with step 1/n, it is well known that the pathwise strong order
of convergence between X and X

n
is n−1/2, under regularity assumptions on the

coefficients of the diffusion X (see, e.g., [9]). Moreover, the weak order of con-
vergence at a fixed time t , evaluated by the difference |Ef (Xt) −Ef (X

n

t )|, is n−1

(see [17]). However, for the pathwise weak approximation of X (when f depends
on the whole trajectory of X) the order of convergence is still unknown, excepted
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for specific functionals f such as f (X) = ∫ 1
0 Xs ds or f (X) = maxs Xs . Recently,

Alfonsi, Jourdain and Kohatsu-Higa [1, 2] have proposed a general approach to
control the pathwise weak approximation of a diffusion by its Euler scheme by
considering the Wasserstein distance between the law of X and the law of X

n
.

For X and X, two random variables with values in a normed vector space
(X ,‖·‖) and with finite p-moment for 1 ≤ p < ∞, the Wasserstein distance Wp

between the law L(X) of X and the law L(X) of X is defined by

(1) Wp

(
L(X),L(X)

) = inf
(Y,Y )∈�(X,X)

E1/p‖Y − Y‖p
.

�(X,X) is the set of random variables (Y,Y ) with values in X ×X with marginal
laws, respectively, L(X) and L(X).

In our context, X = C([0,1]) equipped with the supremum norm ‖x‖ =
supt∈[0,1] |xt | or X = R

n equipped with the norm of the maximum of the coor-
dinates ‖x‖ = maxi∈{1,...,n} |xi |.

From the representation of W1 in the Kantorovitch duality (see, e.g., [15]),

W1
(
L(X),L(X)

) = sup
f ∈L(1)

∣∣Ef (X) − Ef (X)
∣∣,

where L(1) is the set of Lipschitz functions f : C([0,1]) �→R with Lipschitz con-
stant less than 1, and using the strong and weak orders of convergence of the Euler
scheme one can easily deduce the following upper and lower bounds:

c

n
≤ W1

(
L(X),L

(
X

n)) ≤ C√
n

for some positive constants c and C.
For a one-dimensional uniformly elliptic diffusion, the main result of [1] is

to construct a coupling between X and X
n

which improves the preceding upper
bound and leads to

Wp

(
L(X),L

(
X

n)) ≤ C

n
2
3 −ε

for all ε > 0. This result gives an intermediate rate, for the pathwise weak approx-
imation, between the strong order rate and the weak marginal rate and raises a
natural question: Is it possible to construct a coupling between a diffusion and its
Euler scheme in such a way that the Wasserstein distance is of order 1/n?

The aim of this paper is to give an answer to this question assuming that the
diffusion coefficient is linear. In that case, we prove (see Theorem 2)

Wp

(
L(X),L

(
X

n)) ≤ C
logn

n
.

This result is obtained by the construction of a sharp discrete time coupling be-
tween (Xk/n)1≤k≤n and (X

n

k/n)1≤k≤n, following the dyadic construction due to
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Komlós, Major and Tusnády ([11, 12]). We mention that recently the KMT con-
struction has been used in a series of papers (Davie [4, 5], Flint and Lyons [8]),
to propose an approximation scheme close to the Milstein scheme and with weak
pathwise order of convergence 1/n.

The KMT construction permits essentially to obtain an optimal coupling be-
tween a sequence of i.i.d. standard Gaussian variables (Yi)1≤i≤n and some other
i.i.d. variables (Xi)1≤i≤n with finite Laplace transform in a neighbourhood of zero
and such that EX1 = 0, E(X2

1) = 1, in such a way that almost surely

max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Yi −
k∑

i=1

Xi

∣∣∣∣∣ ≤ C logn.

In Section 2, we improve the KMT result when the variables Xi are equal in law to
Yi − 1

2
√

n
(Y 2

i −1). In this particular case, we obtain as a consequence of Theorem 1
below that almost surely

max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Yi −
k∑

i=1

Xi

∣∣∣∣∣ ≤ C logn/
√

n.

This is done through refined quantile coupling inequalities which are established
at the end of the paper in Section 4. These results are applied in Section 3 to
construct a coupling between a diffusion process with linear diffusion coefficient
and its Euler approximation which achieves the pathwise weak order logn/n.

Throughout the paper, C denotes a constant which value does not depend on n

and may change from one line to the other.

2. A KMT type result. Let (Yi)i≥1 be a sequence of i.i.d. standard Gaussian
variables and let us consider the triangular array:

(2) Y
n

i = Yi − 1

2
√

n

(
Y 2

i − 1
)
, 1 ≤ i ≤ n.

We set Sk = ∑k
i=1 Yi and S

n

k = ∑k
i=1 Y

n

i .
In this framework, we can improve the classical KMT result.

THEOREM 1. One can construct on the same probability space a sequence
of i.i.d. standard Gaussian variables (Yi)1≤i≤n and a sequence of i.i.d. variables
(Xn

i )1≤i≤n, with Xn
i equal in law to Y

n

i , such that for positive constants C, K and
λ, we have, for n large enough and for all x > 0,

(3) P
(√

n max
1≤k≤n

∣∣Sk − T
n

k

∣∣ ≥ K logn + x
)

≤ Ce−λx,

where T
n

k = ∑k
i=1 Xn

i and Sk = ∑k
i=1 Yi .
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A straightforward consequence of this result is that almost surely

max
1≤k≤n

∣∣Sk − T
n

k

∣∣ ≤ C logn/
√

n.

The coupling given in Theorem 1 improves the classical KMT result with a factor
1/

√
n and permits to control the Wasserstein distance between the law of (Sk)k

and the law of (S
n

k)k with the rate logn/
√

n (see Corollary 1 below).

REMARK 1. (1) If we consider directly the coupling between the random
walks S and S

n
(based on the same Gaussian variables), we have

max
1≤k≤n

∣∣Sk − S
n

k

∣∣ = max
1≤k≤n

∣∣∣∣∣ 1

2
√

n

k∑
i=1

(
Y 2

i − 1
)∣∣∣∣∣

and consequently from Donsker’s theorem we deduce that max1≤k≤n |Sk − S
n

k |
converges in law to supt∈[0,1] 1√

2
|Bt |, where B is a standard Brownian motion.

Observing moreover that (3) can be rewritten as

P
(

max
1≤k≤n

∣∣Sk − T
n

k

∣∣ ≥ x
)

≤ Ce−λ
√

nx+K logn

we see that the result of Theorem 1 cannot be obtained from the basic coupling
between S and S

n
and that the KMT coupling leads to a better result, and in turn

to a sharper bound for the Wasserstein distance.
(2) It is known that the classical KMT coupling result is optimal for random

walks based on i.i.d. sequences (see Theorem 2 in [11]). In Theorem 1, we improve
the rate of the KMT result in the situation where (Y

n

i ) is a triangular array of
random variables, whose law depends on n. It seems crucial here that the law of
Y

n

i becomes close to a Gaussian law as n growths.

The proof of Theorem 1 is postponed in Section 4. It is obtained by using the
KMT method developed in [11, 12]. The main tool for this construction is a Gaus-
sian coupling to the partial sums S

n

k , which is based essentially on a large devi-
ation expansion of pn

k(x)/φ(x) where pn
k is the density function of 1√

k
S

n

k and φ

the density function of the standard Gaussian law. We state and prove this large
deviation expansion and the associated coupling inequalities at the end of Sec-
tion 4.

As a consequence of this theorem, we deduce an upper bound for the Wasser-
stein distance Wp(L((Sk)1≤k≤n),L((S

n

k)1≤k≤n)).

COROLLARY 1. For all p ≥ 1, there exists a positive constant C such that

Wp

(
L
(
(Sk)1≤k≤n

)
,L

((
S

n

k

)
1≤k≤n

)) ≤ C
logn√

n
.
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PROOF. Let (Sk)1≤k≤n and (T
n

k)1≤k≤n be constructed as in Theorem 1. From
the definition of the Wasserstein distance, one has

Wp

(
L
(
(Sk)1≤k≤n

)
,L

((
S

n

k

)
1≤k≤n

)) ≤ E1/p max
1≤k≤n

∣∣Sk − T
n

k

∣∣p,

and so we just have to prove that

(4) E
(√

n max
1≤k≤n

∣∣Sk − T
n

k

∣∣)p ≤ C(logn)p.

Recalling that for any positive random variable Z, and any p ≥ 1,

(5) EZp =
∫ ∞

0
pzp−1P(Z > z)dz,

we deduce that

E
(√

n max
1≤k≤n

∣∣Sk − T
n

k

∣∣)p ≤
∫ ∞

0
pzp−1P

(√
n max

1≤k≤n

∣∣Sk − T
n

k

∣∣ > z
)
dz

≤
∫ K logn

0
pzp−1 dz(6)

+
∫ ∞
K logn

pzp−1P
(√

n max
1≤k≤n

∣∣Sk − T
n

k

∣∣ > z
)
dz,

where K is the constant given in Theorem 1. The first integral in the right-hand
side of (6) is clearly bounded by C(logn)p . For the second one, we have using
successively the change of variables z = x + K logn and Theorem 1:∫ ∞

K logn
pzp−1P

(√
n max

1≤k≤n

∣∣Sk − T
n

k

∣∣ > z
)
dz

≤ C

∫ ∞
0

p(x + K logn)p−1e−λx dx ≤ C(logn)p.

This gives (4) and Corollary 1 is proved. �

3. Application to the Euler approximation of a diffusion process. In this
section, we apply the preceding results to bound the pathwise Wasserstein distance
between a diffusion with linear diffusion coefficient and its Euler approximation.
Let X = (Xt)t∈[0,1] be the solution of the stochastic differential equation:

(7) X0 = x0, dXt = b(Xt) dt + Xt dBt ,

where (Bt ) is a standard Brownian motion and x0 ∈R. We assume that b admits a
derivative denoted by b(1), and that b and b(1) are Lipschitz functions.

We consider the continuous time Euler approximation of X, with step 1/n, de-
fined by

(8) X
n

0 = x0, dX
n

t = b
(
X

n

ϕn(t)

)
dt + X

n

ϕn(t) dBt ,

where ϕn(t) = [nt]
n

, t ∈ [0,1].
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Using X
n

t − X
n

ϕn(t) = b(X
n

ϕn(t))(t − ϕn(t)) + X
n

ϕn(t)(Bt − Bϕn(t)), we can write

heuristically the dynamic of X
n

as

X
n

t = x0 +
∫ t

0
b
(
X

n

s

)
ds +

∫ t

0
X

n

s

(
1 − (Bs − Bϕn(s))

)
dBs + O

(
1

n

)
.

We can observe that this dynamic is mainly driven by the process (Ln
t ) defined by

(9) Ln
t = Bt −

∫ t

0
(Bs − Bϕn(s)) dBs, t ∈ [0,1].

From this observation to study the Wasserstein distance between L(X) and L(X
n
),

a natural way is to introduce the process Yt = x0 + ∫ t
0 b(Ys) ds + ∫ t

0 Ys dLn
s .

Following this heuristic idea, we consider the auxiliary process X̃n which ap-
proximates X

n
with pathwise strong order 1/n (see Lemma 1):

X̃n
0 = x0,

dX̃n
t = b

(
X̃n

t

)
dt − 1

2
X̃n

t

(
1 − (

1 − (Bt − Bϕn(t))
)2)

dt + X̃n
t dLn

t .
(10)

The addition of the drift term 1
2X̃n

t (1 − (1 − (Bt − Bϕn(t)))
2) dt in the dynamic of

the process is not essential but permits to obtain the representation formula (12)
below.

Applying Theorem 3 in Doss [6] and using Itô’s formula, we first remark that
the processes X and X̃n admit the representations:

Xt = eBt

(
x0 +

∫ t

0
e−Bs

(
b(Xs) − 1

2
Xs

)
ds

)
, t ∈ [0,1],(11)

X̃n
t = eLn

t

(
x0 +

∫ t

0
e−Ln

s

(
b
(
X̃n

s

)− 1

2
X̃n

s

)
ds

)
, t ∈ [0,1].(12)

Based on these representations, a first step to control the Wasserstein distance be-
tween L(X) and L(X̃n) is to control Wp(L(B),L(Ln)). This can be done by using
the results of Section 2.

More precisely, observing that from Itô’s formula
∫ t
tk
(Bs − Btk ) dBs =

1
2 [(Bt − Btk )

2 − (t − tk)], for t ≥ tk , we deduce that the discrete process (Ln
k
n

)

satisfies

Ln
k
n

= Bk
n

− 1

2

k∑
i=1

(
(B i

n
− Bi−1

n
)2 − 1

n

)

=
k∑

i=1

(
B i

n
− Bi−1

n
− 1

2

(
(B i

n
− Bi−1

n
)2 − 1

n

))
, 1 ≤ k ≤ n,

and consequently, (Ln
k
n

)1≤k≤n is equal in law to 1√
n
(S

n

k)1≤k≤n, where using the

notation at the beginning of Section 2, S
n

k = ∑k
i=1 Y

n

i with Y
n

i defined by (2).
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Similarly, we observe that (B k
n
)1≤k≤n is equal in law to 1√

n
(Sk)1≤k≤n. This permits

to derive immediately from Corollary 1 the following result.

COROLLARY 2. For p ≥ 1, there exists a positive constant C such that for n

large enough

Wp

(
L
(
(B k

n
)1≤k≤n

)
,L

((
Ln

k
n

)
1≤k≤n

)) ≤ C
logn

n
.

Next, we can extend this result to the continuous processes B = (Bt )t∈[0,1] and
Ln = (Ln

t )t∈[0,1] using the strong approximation error on each interval with length
1/n.

PROPOSITION 1.

(a) For p ≥ 1, there exists a positive constant C such that for n large enough

Wp

(
L(B),L

(
Ln)) ≤ C

logn

n
.

(b) Let F : C([0,1]) �→ C([0,1]) be locally Lipschitz

∀f,g ∈ C
([0,1]), ∥∥F(f ) − F(g)

∥∥ ≤ Cf,g‖f − g‖,
where Cf,g is a constant depending on ‖f ‖ and ‖g‖.

Assuming that for p ≥ 1, ∃r > p, such that supn E(CB,Ln)r < ∞, then there
exists a positive constant C such that for n large enough:

Wp

(
L
(
F(B)

)
,L

(
F
(
Ln))) ≤ C

logn

n
.

PROOF. (a) We consider the process (Ln
t ) defined by (9), driven by the Brow-

nian motion (B̃t )t , and we introduce the process Bn
t :

(13) Bn
t = Ln

k−1
n

+ B̃t − B̃ k−1
n

for
k − 1

n
≤ t <

k

n
.

The process (Bn
t ) is discontinuous and coincide with (Ln

t ) at the discretization
times (k/n)0≤k≤n−1.

First, we prove the following strong approximation result:

(14) E max
1≤k≤n

sup
t∈[ k−1

n
, k
n
]

∣∣Bn
t − Ln

t

∣∣p ≤ C
(logn)p

np
.

To prove (14), we will use (5) with Z = nmax1≤k≤n sup
t∈[ k−1

n
, k
n
] |Bn

t − Ln
t | and so

we have to control P(Z > z), for z > 0. We have

P(Z > z) ≤ nmax
k

P
(
n sup

t∈[ k−1
n

, k
n
]

∣∣Bn
t − Ln

t

∣∣ > z
)
,
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with n(Bn
t − Ln

t ) = n
∫ t

k−1
n

(B̃s − B̃ϕn(s)) dB̃s , for k−1
n

≤ t < k
n

. Observing that the

processes (
∫ t

k−1
n

(B̃s − B̃ϕn(s)) dB̃s)t∈[ k−1
n

, k
n
] and (

∫ t
0 B̃s dB̃s)t∈[0, 1

n
] have the same

law, we deduce

P(Z > z) ≤ nP

(
n sup

t∈[0, 1
n
]

∣∣∣∣ ∫ t

0
B̃s dB̃s

∣∣∣∣ > z

)
.

But since
∫ t

0 B̃s dB̃s = 1
2(B̃2

t − t), we have

P(Z > z) ≤ nP

(
n sup

t∈[0, 1
n
]

∣∣B̃2
t

∣∣ > 2
(
z − 1

2

))
,

and by time rescaling

P(Z > z) ≤ nP

(
sup

t∈[0,1]
∣∣B̃2

t

∣∣ > 2
(
z − 1

2

))
.

Using the exponential inequality for the Brownian motion (see Proposition 1.8,
Chapter 2, in [16]), we have P(supt∈[0,1] |B̃t | > a) ≤ 2e−a2/2, and this finally leads
to

(15) P(Z > z) ≤ Cne−(z− 1
2 ).

Turning back to (5), we have

(16) EZp ≤
∫ logn

0
pzp−1 dz +

∫
z>logn

pzp−1P(Z > z)dz.

Reporting (15) in the second integral of (16) and using the change of variables
x = z − logn, we deduce

EZp ≤ C(logn)p.

This proves the strong approximation result (14).
We end the proof as in [1] (proof of Theorem 3.2). The Wasserstein distance

in the left-hand side of Corollary 2 is attained for a probability measure π on
R

n × R
n with marginal laws respectively the law of a Brownian motion at times

(k/n)0≤k≤n and the law of (Lk
n
)k . We fix (Ln

k
n

)k to be the discretization of the

solution of (9) for a Brownian motion (B̃t )t and let (B k
n
)k be distributed according

to the first marginal of π given the second one equal to (Ln
k
n

)k . The random variable

((B k
n
)k,L

n
k
n

)k) in R
n × R

n is distributed according to π and realizes the optimal

coupling of the Wasserstein distance between L((B k
n
)k) and L((Ln

k
n

)k).

By the triangle inequality, we have

(17) Wp

(
L(B),L

(
Ln)) ≤ Wp

(
L(B),L

(
Bn))+Wp

(
L
(
Bn),L(Ln)),
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where Bn = (Bn
t )t∈[0,1] is defined by (13). Let us note that the process Bn is not

continuous and so the associated Wasserstein distance is defined in D([0,1]), the
space of càdlàg functions equipped with the supremum norm.

From the strong error approximation (14), the second right-hand side term in
(17) is bounded by C logn/n and to end the proof it remains to estimate

Wp

(
L(B),L

(
Bn)).

For this, we consider a Brownian motion (Wt)t∈[0,1] independent of ((B k
n
)k, (B̃t )t )

and we construct the two Brownian Bridges driven by (Wt): (W
B k−1

n
,B k

n
t )

t∈[ k−1
n

, k
n
]

(starting from B k−1
n

and ending at B k
n
), and (W

Bn
k−1
n

,Bn
k
n

−
t )

t∈[ k−1
n

, k
n
] [starting from

Bn
k−1
n

and ending at Bn
k
n

− , where Bn
k
n

− is the left-hand limit at time k
n

of (Bn
t )]. We

set for t ∈ [ k−1
n

, k
n
) and 1 ≤ k ≤ n:

W 1
t = W

B k−1
n

,B k
n

t

= B k−1
n

n

(
k

n
− t

)
+ B k

n
n

(
t − k − 1

n

)
+ Wt − Wk−1

n
− n

(
t − k − 1

n

)
(Wk

n
− Wk−1

n
),

W 2
t = W

Bn
k−1
n

,Bn
k
n

−
t

= Bn
k−1
n

n

(
k

n
− t

)
+ Bn

k
n

−n

(
t − k − 1

n

)

+ Wt − Wk−1
n

− n

(
t − k − 1

n

)
(Wk

n
− Wk−1

n
).

One can check that L((W 1
t )t ) = L((Bt )t ) and L((W 2

t )t ) = L((Bn
t )t ). Conse-

quently,

Wp

(
L(B),L

(
Bn)) ≤ E1/p sup

t∈[0,1]
∣∣W 1

t − W 2
t

∣∣p
≤ E1/p max

k

(∣∣B k−1
n

− Bn
k−1
n

∣∣p ∨ ∣∣B k
n

− Bn
k
n

−
∣∣p)

≤ E1/p max
k

∣∣B k
n

− Ln
k
n

∣∣p + E1/p max
k

∣∣Ln
k
n

− Bn
k
n

−
∣∣p.

We have

E1/p max
k

∣∣Ln
k
n

− Bn
k
n

−
∣∣p ≤ E1/p max

k
sup

t∈[ k−1
n

, k
n
]

∣∣Bn
t − Ln

t

∣∣p,
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and by construction of the process (B k
n
)k ,

E1/p max
k

∣∣B k
n

− Ln
k
n

∣∣p =Wp

(
L
(
(B k

n
)k
)
,L

((
Ln

k
n

)
k

))
.

Consequently, using Corollary 2 and (14), we finally obtain

Wp

(
L(B),L

(
Bn)) ≤ C logn/n,

and (a) is proved.
(b) Let p ≥ 1 and r > p such that supn E(CB,Ln)r < ∞. We set r ′ = r/(r − p).

Let ((Bt )t∈[0,1], (L
n

t )t∈[0,1]) be a random variable in C([0,1]) × C([0,1]) which
realizes the optimal coupling of the Wasserstein distance Wpr ′ in Proposition 1:

Wpr ′
(
L(B),L

(
L

n)) = E
1

pr′ sup
t∈[0,1]

∣∣Bt − L
n

t

∣∣pr ′ ≤ C
logn

n
.

Then we have

Wp

(
L
(
F(B)

)
,L

((
F
(
Ln)))) ≤ E1/p(CB,Ln

∥∥B − L
n∥∥)p,

and (b) follows from Hölder’s inequality.
This achieves the proof of Proposition 1. �

From this proposition, we deduce a bound for the Wasserstein distance between
L(X) and L(X̃n).

PROPOSITION 2. For p ≥ 1, there exists a positive constant C such that for n

large enough:

Wp

(
L(X),L

((
X̃n))) ≤ C

logn

n
.

PROOF. The proof is based on the representation formulas (11) and (12), and
Proposition 1(b).

We introduce the notation:

(18) Dt = x0 +
∫ t

0
e−Bs

(
b(Xs) − 1

2
Xs

)
ds,

and

(19) Dn
t = x0 +

∫ t

0
e−Ln

s

(
b
(
X̃n

s

)− 1

2
X̃n

s

)
ds,

so that Xt = eBt Dt and X̃n
t = eLn

t Dn
t . From the triangle inequality,∣∣Xt − X̃n

t

∣∣ ≤ ∣∣eBt − eLn
t
∣∣|Dt | + eLn

t
∣∣Dt − Dn

t

∣∣.
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Since b is Lipschitz,∣∣Dt − Dn
t

∣∣ ≤ C

(∫ t

0
e−Bs

∣∣Xs − X̃n
s

∣∣ds +
∫ t

0

∣∣e−Bs − e−Ln
s
∣∣(∣∣X̃n

s

∣∣+ 1
)
ds

)
≤ C

(∫ t

0

∣∣Ds − Dn
s

∣∣ds +
∫ t

0
e−Bs

∣∣eBs − eLn
s
∣∣∣∣Dn

s

∣∣ds

+
∫ t

0

∣∣e−Bs − e−Ln
s
∣∣(∣∣X̃n

s

∣∣+ 1
)
ds

)
,

and from Gronwall’s lemma,∥∥D − Dn
∥∥ ≤ C

(
B,Ln,Dn, X̃n)∥∥B − Ln

∥∥,
with

C
(
B,Ln,Dn, X̃n) = C

[
1 + ∥∥e−B·∥∥∥∥Dn

∥∥(∥∥eB·∥∥+ ∥∥eLn·
∥∥)

+ (∥∥X̃n
∥∥+ 1

)(∥∥e−B·∥∥+ ∥∥e−Ln·
∥∥)],

where we have used ‖eB· − eLn· ‖ ≤ [‖eB·‖ + ‖eLn· ‖]‖B − Ln‖. This yields∥∥X − X̃n
∥∥ ≤ [(∥∥eB·∥∥+ ∥∥eLn·

∥∥)‖D‖ + ∥∥eLn·
∥∥C(

B,Ln,Dn, X̃n)]∥∥B − Ln
∥∥·

But, for all p ≥ 1, we have E‖e|B.|‖p
< ∞, E‖X‖p < ∞ (see [10], page 306),

and consequently E‖D‖p < ∞. So from Proposition 1(b), to complete the proof
of Proposition 2, we just have to verify

∀p ≥ 1, sup
n

E
∥∥X̃n

∥∥p
< ∞,(20)

∀p ≥ 1, sup
n

E
∥∥e|Ln· |∥∥p

< ∞.(21)

To prove (21), we just prove that ∀p ≥ 1, supn E‖e·‖p < ∞, since we obtain with
similar arguments that supn E‖e−Ln· ‖p

< ∞.
From (9), the martingale (Ln

t )t∈[0,1] can be written as

Ln
t =

∫ t

0

(
1 − (Bs − Bϕn(s))

)
dBs.

We first give a bound for Eea〈Ln,Ln〉1 = E(ea
∫ 1

0 (1−(Bs−Bϕn(s)))
2 ds), for a > 0. We

have

E
(
ea

∫ 1
0 (1−(Bs−Bϕn(s)))

2 ds) ≤ e2aEe
2a

∑n−1
k=0

∫ k+1
n

k
n

(Bs−B k
n
)2 ds

.

Since the random variables (
∫ k+1

n
k
n

(Bs − Bk
n
)2 ds)0≤k≤n−1 are independent and

identically distributed, we deduce

E
(
ea

∫ 1
0 (1−(Bs−Bϕn(s)))

2 ds) ≤ e2a(Ee2a
∫ 1

n
0 B2

s ds)n ≤ e2a(Ee
2a
n

sups≤1/n B2
s
)n

.
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By time rescaling, sup0≤s≤1/n B2
s is equal in law to 1

n
sup0≤s≤1 B2

s , and conse-
quently

E
(
ea

∫ 1
0 (1−(Bs−Bϕn(s)))

2 ds) ≤ e2a(Ee
2a

n2 sups≤1 B2
s
)n

.

From Hölder’s inequality and Doob’s maximal inequality applied to the positive

submartingale (e
2a

n2 B2
t )t , we have for q > 1,

Ee
2a

n2 sups≤1 B2
s ≤

(
E sup

s∈[0,1]
e

2aq

n2 B2
s
)1/q ≤ q

q − 1

(
Ee

2aq

n2 B2
1
)1/q

.

Remarking that for α < 1/2, EeαB2
1 = 1/

√
1 − 2α, this gives for n large enough

and choosing q = n,

Ee
2a

n2 sups≤1 B2
s ≤ n

n − 1

(
1 − 4a

n

)− 1
2n

.

This permits to obtain

(22) Eea〈Ln,Ln〉1 = E
(
ea

∫ 1
0 (1−(Bs−Bϕn(s)))

2 ds) ≤ e2a

(
n

n − 1

)n(
1 − 4a

n

)− 1
2 ≤ Ca,

where Ca is a constant depending on a but not on n. From Novikov’s criterion, we

deduce that for any a > 0, (E(aLn
t ))t∈[0,1] = (eaLn

t − a2
2 〈Ln,Ln〉t )t∈[0,1] is a martin-

gale. Observing that

epLn
t = E

(
2pLn

t

)1/2
ep2〈Ln,Ln〉t ,

is a positive submartingale and applying Doob’s maximal inequality, we have

E
(

sup
t∈[0,1]

epLn
t

)
≤ C

(
Ee2pLn

1
)1/2 ≤ C

(
Ee8p2〈Ln,Ln〉1

)1/4
,

and so from (22) this gives

E
(

sup
t∈[0,1]

epLn
t

)
≤ Cp.

This achieves the proof of (21).
It remains to prove (20). We recall that X̃n

t = eLn
t Dn

t , with Dn
t given by (19).

Since b is Lipschitz, we have∣∣Dn
t

∣∣ ≤ |x0| + C
∥∥e−Ln·

∥∥+ C

∫ t

0

∣∣Dn
s

∣∣ds,

so from Gronwall’s lemma ‖Dn‖ ≤ C‖e−Ln· ‖ and then (20) is a straightforward
consequence of (21). �

From these intermediate results, we deduce a bound for the Wasserstein distance
between the law of the diffusion and the law of its Euler approximation. Our main
result is the following.
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THEOREM 2. For p ≥ 1, there exists a positive constant C such that for n

large enough:

Wp

(
L(X),L

(
X

n)) ≤ C
logn

n
.

PROOF. The result of Theorem 2 follows from Proposition 2 and Lemma 1
below, applying the triangle inequality and observing that Wp(L((X

n

t )t∈[0,1]),
L((X̃n

t )t∈[0,1])) ≤ E1/p supt∈[0,1] |Xn

t − X̃n
t |p . �

For the statement of Lemma 1, we recall that (X
n

t ) and (X̃n
t ) are defined on the

same probability space by (8) and (10).

LEMMA 1. For p ≥ 1, there exists a positive constant C such that ∀n ≥ 1:(
E sup

t∈[0,1]
∣∣Xn

t − X̃n
t

∣∣p)1/p ≤ C/n.

PROOF. To simplify the notation, we write 	Bt = Bt − Bϕn(t) and 	t = t −
ϕn(t) and we denote by (Un

t )t∈[0,1] = (X̃n
t − X

n

t )t∈[0,1] the error process.
We first remark that for all p ≥ 1, E supt∈[0,1] |Xn

t |p ≤ C (see [10], page 306)

and E supt∈[0,1] |X̃n
t |p ≤ C [see (20)], so E supt∈[0,1] |Un

t |p ≤ C, for some positive
constant C. Moreover, from these bounds, it is easy to see that for p ≥ 1, there
exists C > 0 such that

∀t ∈ [0,1], E
∣∣Xn

t − X
n

ϕn(t)

∣∣p ≤ C/np/2,(23)

∀t ∈ [0,1], E
∣∣X̃n

t − X̃n
ϕn(t)

∣∣p ≤ C/np/2.(24)

From (8) and using the preceding notation, we have X
n

t − X
n

ϕn(t) = b(X
n

ϕn(t))	t +
X

n

ϕn(t)	Bt and we can write the dynamic of the Euler scheme as

dX
n

t = b
(
X

n

t

)
dt + X

n

t dLn
t − (

b
(
X

n

t

)− b
(
X

n

ϕn(t)

))
dt

+ (
X

n

t − X
n

ϕn(t)

)
	Bt dBt − b

(
X

n

ϕn(t)

)
	t dBt .

Now, it is easy to verify from the expressions of X̃n and Ln [equations (10) and
(9)] and the preceding equation that (Un

t ) satisfies the equation:

(25) Un
t =

∫ t

0

(
b
(
X̃n

s

)− b
(
X

n

s

))
ds +

∫ t

0
Un

s (1 − 	Bs)dBs + Rn
t ,

with

dRn
t = −1

2
X̃n

t

(
2	Bt − (	Bt)

2)dt + (
b
(
X

n

t

)− b
(
X

n

ϕn(t)

))
dt

− (
X

n

t − X
n

ϕn(t)

)
	Bt dBt + b

(
X

n

ϕn(t)

)
	t dBt .

(26)
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From Burkholder–Davis–Gundy inequality and using the Lipschitz assumption
on b, we have

E sup
t∈[0,1]

∣∣∣∣ ∫ t

0
b
(
X

n

ϕn(s)

)
	s dBs

∣∣∣∣p ≤ C/np

and since
∫ t

0 X̃n
ϕn(s)	Bs ds = ∫ t

0 X̃n
ϕn(s)[(t ∧ (ϕn(s) + 1

n
)) − s]dBs , we obtain

E sup
t∈[0,1]

∣∣∣∣ ∫ t

0
X̃n

ϕn(s)	Bs ds

∣∣∣∣p ≤ C/np,

and similarly

E sup
t∈[0,1]

∣∣∣∣ ∫ t

0
X

n

ϕn(s)	Bs ds

∣∣∣∣p ≤ C/np.

Moreover, we have the expansion, for ηt ∈ [Xn

ϕn(t),X
n

t ]:
b
(
X

n

t

)− b
(
X

n

ϕn(t)

) = b(1)(ηt )
(
X

n

t − X
n

ϕn(t)

)
= [

b(1)(Xn

ϕn(t)

)+ (
b(1)(ηt ) − b(1)(Xn

ϕn(t)

))](
X

n

t − X
n

ϕn(t)

)
.

This permits to conclude, after a few computation involving the estimations (23)–
(24) and the Lipschitz assumption on b and b(1) that

(27) E sup
t∈[0,1]

∣∣Rn
t

∣∣p ≤ Cp/np.

Turning back to (25), we deduce, using once again the Lipschitz assumption on b

together with convexity and Burkholder–Davis–Gundy inequalities and the bound
(27), for p ≥ 2:

(28) E sup
v≤t

∣∣Un
v

∣∣p ≤ C

(∫ t

0
E
((

1 + |	Bs |)p sup
v≤s

∣∣Un
v

∣∣p)ds + 1

np

)
.

Moreover, introducing the truncation 1|	Bs |≤C1 , we have for any q ≥ 1:

P
(|	Bs | > C1

) ≤ C/nq,

and so from the Cauchy–Schwarz inequality,

E
((

1 + |	Bs |)p sup
v≤s

∣∣Un
v

∣∣p1|	Bs |>C1

)
≤ C/np,

this gives

E
((

1 + |	Bs |)p sup
v≤s

∣∣Un
v

∣∣p) ≤ C

(
E sup

v≤s

∣∣Un
v

∣∣p + 1

np

)
.

Reporting this in (28), we deduce

E sup
v≤t

∣∣Un
v

∣∣p ≤ C

(∫ t

0
E sup

v≤s

∣∣Un
v

∣∣p ds + 1

np

)
,

and the result of Lemma 1 follows from Gronwall’s lemma. �
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4. Quantile coupling inequalities and proof of Theorem 1. This section is
devoted to the proof of Theorem 1 and is organized as follows. In Section 4.1,
we construct a coupling between a sequence of i.i.d. standard Gaussian variables
(Yk)1≤k≤n and a sequence of i.i.d. variables (Xn

k )1≤k≤n such that Xn
k has the same

distribution as Y
n

k given in (2). Then, in Section 4.2 we prove that (3) of Theorem 1
holds true for this specific coupling. In Sections 4.3–4.4, we provide the proof of
technical lemmas which are used in Sections 4.1–4.2.

For technical reasons, essentially the nonintegrability of the characteristic func-
tion of the random variables Y

n

k , we regularize them by adding independent nor-
mally distributed random variables. For that, we consider a sequence of indepen-
dent identically distributed standard Gaussian variables (ξk)k≥1, independent of
the sequence (Yk)k≥1, and we set

Y
�,n

k = Y
n

k + 1

n
ξk,(29)

S
�,n

k =
k∑

i=1

Y
�,n

i .(30)

We need to introduce some notation for the law of the variables we will consider in
the construction of the coupling. We denote by φ the density of a standard Gaussian
law, and by 
 its cumulative distribution function.

We let p
�,n
k be the density function of 1√

k
S

�,n

k and denote by Fk its cumulative
distribution function. To simplify the notation, we have omitted the dependence
upon n for Fk .

For k = 2p, an even integer in {2, . . . , n}, we define

S̃
�,n
k = 2S

�,n

k/2 − S
�,n

k =
k/2∑
i=1

Y
�,n

i −
k∑

i=k/2+1

Y
�,n

i .

We denote by p̃
�,n
k (· | y) the conditional density of 1√

k
S̃

�,n
k given 1√

k
S

�,n

k = y. The

associated conditional cumulative distribution function is denoted by F̃k(· | y) =∫ ·
−∞ p̃

�,n
k (x | y)dx, where again we have suppressed the dependence upon n in the

notation.
In the sequel, we denote by F−1

k the generalized inverse of the function Fk , and
F̃−1

k (· | y) the generalized inverse of the function x �→ F̃k(x | y).

4.1. The dyadic KMT construction. The construction of the coupling follows
the dyadic construction scheme introduced by [11], pages 116–118 (see also [7],
pages 51–53) and we give it for the sake of completeness. We adopt the notation
of [11]. In the sequel, it will be convenient to assume that n is a dyadic num-
ber, n = 2N . Remark that if n is not a dyadic number, the construction below
gives a coupling between the random variables (Yk) and (Xn

k ) for k ∈ {1, . . . ,2N }
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where 2N−1 < n ≤ 2N , and the deviation bound (3) in Theorem 1 holds true for√
n sup1≤k≤2N |Sk − T

n

k |. Consequently, we can assume that n = 2N without loss
of generality.

Assume we are given a sequence of independent standard Gaussian variables
(Yk)k≥1 on some probability space.

For k equal 1 to 2N , we set

Sk :=
k∑

i=1

Yi, S0 = 0,

and

Vm,k := S(k+1)2m − Sk2m, 0 ≤ k < 2N−m,0 ≤ m ≤ N,

Ṽm,k := Vm−1,2k − Vm−1,2k+1, 0 ≤ k < 2N−m,1 ≤ m ≤ N.

Remark that we have Vm,0 = S2m . Moreover, for 1 ≤ m ≤ N , 0 ≤ k < 2N−m, the
Gaussian variables Vm,k and Ṽm,k are independent and (Ṽm,k)0≤k<2N−m is an i.i.d.
sequence for all m.

We now construct a sequence of independent identically distributed vari-
ables (Xn

k )1≤k≤2N with distribution defined by (2). We first construct some in-
dependent variables (X

�,n
k )1≤k≤2N equal in law to (Y

�,n

k )1≤k≤2N , defined by
(29). The procedure consists in constructing by induction the sums of size 2m,
(
∑(k+1)2m

i=k2m+1 X
�,n
i )k∈{0,...,2N−m−1}, starting the construction with the level m = N

and eventually obtaining the variable X
�,n
i at level m = 0.

First, for m = N , we set

UN,0 := 2N/2F−1
2N

(



(
VN,0

2N/2

))
,

ŨN,0 := 2N/2F̃−1
2N

(



(
ṼN,0

2N/2

) ∣∣∣ 1

2N/2 UN,0

)
.

(31)

We define then UN−1,0 and UN−1,1, by the relations:

UN−1,0 := 1

2
(UN,0 + ŨN,0), UN−1,1 := 1

2
(UN,0 − ŨN,0).

By construction, UN,0 is distributed as S
�,n

2N and using that ṼN,0 is indepen-
dent of UN,0, it is easy to verify that (UN,0, ŨN,0) is distributed as (S

�,n

2N , S̃
�,n

2N )

(see, e.g., Theorem 6 in [7]). Hence, (UN−1,0,UN−1,1) has the distribution

of (S
�,n

2N−1,
∑2N

i=2N−1+1 Y
�,n

i ). We deduce that the random variables UN−1,0 and

UN−1,1 are independent and both distributed according to S
�,n

2N−1 .
We next continue the construction by induction on m. Assuming that Um,k is

constructed, for 0 ≤ k < 2N−m, we set

(32) Ũm,k := 2m/2F̃−1
2m

(



(
Ṽm,k

2m/2

) ∣∣∣ 1

2m/2 Um,k

)
,
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and we define

(33) Um−1,2k := 1

2
(Um,k + Ũm,k), Um−1,2k+1 := 1

2
(Um,k − Ũm,k).

We can observe that the joint distribution of the pair (Um,k, Ũm,k) is the one of
(S

�,n

2m , S̃
�,n
2m ). In turn, Um−1,2k and Um−1,2k+1 are independent and distributed ac-

cording to S
�,n

2m−1 .
Moreover, it can be verified that, for any fixed 0 ≤ m ≤ N , the constructed

random variables Um,k , for 0 ≤ k < 2N−m, are independent.
At the final step, m = 0, this permits to construct a sequence of independent

random variables (X
�,n
k )1≤k≤2N , equal in law to (Y

�,n

k )1≤k≤2N by setting

(34) X
�,n
k := U0,k−1, 1 ≤ k ≤ 2N.

We end the construction with the variables (Xn
k )1≤k≤2N , distributed according to

the law of (Y
n

k)1≤k≤2N . Let F�(· | y) be the cumulative density function of Y
n

k

given Y
�,n

k = y. It is clear by (2) and (29) that F� does not depend on k. We set

Xn
k := (

F�)−1(
ηk | X�,n

k

)
, 1 ≤ k ≤ 2N,

where (ηk)k≥1 is a sequence of independent random variables, uniformly dis-
tributed on [0,1], and independent of (Yk)k≥1. The pair (Xn

k ,X
�,n
k ) has the distri-

bution of (Y
n

k, Y
�,n

k ) and the difference Xn
k −X

�,n
k has the distribution of a centered

Gaussian variable with variance 1/n2.
In that follows, we set

T
�,n

k :=
k∑

i=1

X
�,n
i , T

n

k :=
k∑

i=1

Xn
i , 1 ≤ k ≤ 2N,

T
�,n

0 := 0, T
n

0 := 0,

where X
�,n
i and Xn

i are constructed above.
From (33) and (34), we easily deduce that

Um,k =
(k+1)2m−1∑

i=k2m

U0,i =
(k+1)2m∑
i=k2m+1

X
�,n
i

(35)
= T

�,n

(k+1)2m − T
�,n

k2m, 0 ≤ k < 2N−m,0 ≤ m ≤ N,

Ũm,k = Um−1,2k − Um−1,2k+1, 0 ≤ k < 2N−m,1 ≤ m ≤ N.(36)

Moreover, from the dyadic construction, we have the following representation
(see Lemma 5 in [7]), for 1 ≤ k ≤ 2N :

(37) T
�,n

k = k

2N
UN,0 +

N∑
m=1

cmŨm,l(m,k), Sk = k

2N
VN,0 +

N∑
m=1

cmṼm,l(m,k),
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where cm ∈ [0,1] and l(m, k) is defined by

l(m, k)2m < k ≤ (
l(m, k) + 1

)
2m.

Remark that (37) can be obtained as a consequence of the following decomposition
on the Haar basis of �2({1, . . . ,2N }):

1{1,...,k}(u) = k

2N
1{1,...,2N }(u) +

N∑
m=1

cmψm,l(m,k)(u) ∀u ∈ {
1 . . . ,2N}

,

where ψm,l = 1{l2m+1,...,l2m+2m−1} − 1{l2m+2m−1+1,...,(l+1)2m}.
In the next section, we will assess the probability of deviation between the ran-

dom walks (Sk)k and (T
n

k)k . This crucially relies on the two following lemmas,
which assess the difference between the random variables UN,0, VN,0 and Ũm,k ,
Ṽm,k related by (31)–(32).

LEMMA 2. There exist ε > 0 and C > 0 such that for N large enough we have

|UN,0 − VN,0| ≤ C

2N/2

( |UN,0|2
2N

+ 1
)
, if |UN,0| ≤ ε2N2N/2.

LEMMA 3. There exist ε > 0 and C > 0 such that, for all m ∈ {1, . . . ,N},
k ∈ {0, . . . ,2N−m − 1} and N large enough

|Ũm,k − Ṽm,k| ≤ C

2N/2

( |Um,k|2 + |Ũm,k|2
2m

+ 1
)
,

if max
(|Um,k|, |Ũm,k|) ≤ ε2m2N/2.

The proof of these two lemmas are postponed to Sections 4.3–4.4.

4.2. Proof of Theorem 1. In this section, we prove that the control (3) holds
true for the variables constructed in Section 4.1.

We first prove that for any positive constant K and λ, we have for n large enough
and x > 0,

(38) P
(√

n max
1≤k≤n

∣∣T �,n

k − T
n

k

∣∣ ≥ K logn + x
)

≤ Ce−λx.

By construction,
√

nmax1≤k≤n |T �,n

k − T
n

k | is equal in law to 1√
n

×
sup1≤k≤n |∑k

i=1 ξi |, where (ξi)i are i.i.d. standard Gaussian variables,
and also equal in law to max1≤k≤n |Bk/n|, where (Bt ) is a standard Brownian
motion. So we deduce, using the exponential inequality for the Brownian motion
(see Proposition 1.8, Chapter 2, in [16]),

P
(√

n max
1≤k≤n

∣∣T �,n

k − T
n

k

∣∣ ≥ K logn + x
)

≤ P
(

sup
t∈[0,1]

|Bt | ≥ K logn + x
)

≤ 2e− 1
2 (K logn+x)2

,
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and (38) is proved. Consequently, to prove Theorem 1, it is sufficient to prove that
for some positive constant C, K and λ (independent of n and x), we have for n

large enough and for all x > 0:

P
(√

n max
1≤k≤n

∣∣T �,n

k − Sk

∣∣ ≥ K logn + x
)

≤ Ce−λx,

or equivalently (recalling that n = 2N ), there exist positive constants C, α and λ,
such that for all x and N :

(39) P
(

max
1≤k≤2N

∣∣T �,n

k − Sk

∣∣ ≥ x
)

≤ CeαN−λ2N/2x.

To prove (39), we distinguish between the cases x < 8ε2N/2 and x ≥ 8ε2N/2 where
ε is deduced from Lemmas 2–3.

In that follows, we note

(40) 	 = max
1≤k≤2N

∣∣T �,n

k − Sk

∣∣.
First case: x < 8ε2N/2.
We define the event

(41) A =
2N−1⋂
k=0

{|U0,k| ≤ ε2N/2} =
2N⋂
k=1

{∣∣X∗,n
k

∣∣ ≤ ε2N/2},
which will be useful for the application of Lemmas 2 and 3.

To prove (39), we use the decomposition:

P(	 ≥ x) ≤ P
({	 ≥ x} ∩ A

)+ P
(
Ac).

We first control P(Ac). By (41), we have for t0 > 0:

P
(
Ac) ≤ 2NP

(∣∣X�,n
1

∣∣ > ε2N/2) ≤ 2N (
P
(
X

�,n
1 > ε2N/2)+ P

(−X
�,n
1 > ε2N/2))

≤ 2N ((
Et0X

�,n
1 + E−t0X

�,n
1
)
e−t0ε2N/2)

.

Since X
�,n
1 is equal in law to Y

�,n

1 , we have E[etX
�,n
1 ] = e�(t) with � given by (54),

and we deduce for t > −2N/2/2:

EtX
�,n
1 ≤ e

3
2 t2+ t

22N/2
1√

1 + t/2N/2
,

so by choosing t0 = ε2N/2/2, we obtain

P
(
Ac) ≤ C2Ne−ε22N/8,

where C is a positive constant depending on ε. Since x < 8ε2N/2, we deduce the
bound

(42) P
(
Ac) ≤ C2Ne−εx2N/2/64.
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Turning to the control of P({	 ≥ x} ∩ A), we first have

P
({	 ≥ x} ∩ A

) ≤ 2N sup
1≤k≤2N

P
({∣∣T �,n

k − Sk

∣∣ > x
}∩ A

)
.

Now from (37), we deduce

(43)
∣∣T �,n

k − Sk

∣∣ ≤ |UN,0 − VN,0| +
N∑

m=1

|Ũm,l(m,k) − Ṽm,l(m,k)|,

where l(m, k) satisfies l(m, k)2m < k ≤ (l(m, k) + 1)2m.
But on A, we have for all m and for all k [this is immediate from the definition

of A and (35)–(36)]

|Um,k| ≤ ε2m2N/2, |Ũm,k| ≤ ε2m2N/2.

Consequently, using the results of Lemmas 2 and 3, we obtain on A:

|UN,0 − VN,0| ≤ C

2N/2

( |UN,0|2
2N

+ 1
)
,

|Ũm,l(m,k) − Ṽm,l(m,k)| ≤ C

2N/2

( |Um,l(m,k)|2 + |Ũm,l(m,k)|2
2m

+ 1
)
.

Plugging these bounds in (43), this gives on A:

(44)
∣∣T �,n

k − Sk

∣∣ ≤ C

2N/2

( |UN,0|2
2N

+ N + 1 + δk

)
,

where

δk =
N∑

m=1

|Um,l(m,k)|2 + |Ũm,l(m,k)|2
2m

.

From Lemma 4 below, we observe that on A we have the equality in law:

δk =L δ1 =
N∑

m=1

|Um,0|2 + |Ũm,0|2
2m

,

and we can write

P
({	 ≥ x} ∩ A

) ≤ 2NP

({
C

2N/2

( |UN,0|2
2N

+ N + 1 + δ1

)
≥ x

}
∩ A

)
.

Since Um,0 = Um−1,0 + Um−1,1 and Ũm,0 = Um−1,0 − Um−1,1, we remark that

δ1 = 2
N∑

m=1

|Um−1,0|2 + |Um−1,1|2
2m

=
N−1∑
m=0

|Um,0|2 + |Um,1|2
2m
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and we obtain

P
({	 ≥ x} ∩ A

)
≤ 2NP

({
C

2N/2

( |UN,0|2
2N

+ N + 1 +
N−1∑
m=0

|Um,0|2 + |Um,1|2
2m

)
≥ x

}
∩ A

)
.

Now, we get to control
∑N

m=0
|Um,0|2

2m by
∑N−1

m=0
|Um,1|2

2m . First, we have, using (35),

|Um,0|2 =
∣∣∣∣∣U0,0 +

m−1∑
j=0

2j+1−1∑
i=2j

U0,i

∣∣∣∣∣
2

=
(
U0,0 +

m−1∑
j=0

Uj,1

)2

,

so by Cauchy–Schwarz inequality with q = 1/
√

2, we obtain

|Um,0|2 ≤
(∑

j≥0

qj

)(
1

qm
U2

0,0 +
m−1∑
j=0

1

qm−j−1 U2
j,1

)

≤ C

(
1

qm
U2

0,0 +
m−1∑
j=0

1

qm−j−1 U2
j,1

)
.

It yields after some calculus:

N∑
m=0

|Um,0|2
2m

≤ C

(
U2

0,0 +
N−1∑
m=0

U2
m,1

2m

)
,

and finally

(45) P
({	 ≥ x} ∩ A

) ≤ 2NP

({
C

2N/2

(
U2

0,0 + N + 1 +
N−1∑
m=0

U2
m,1

2m

)
≥ x

}
∩ A

)
.

To end the proof, we introduce the notation, for 0 ≤ m ≤ N − 1,

(46) τm = U2
m,1

2m
1{|Um,1|≤ε2m2N/2},

and

(47) τ 0 = U2
0,01{|U0,0|≤ε2N/2}.

The random variables (τ 0, τ0, τ1, . . . , τN−1) are independent and this permits to
deduce

P
({	 ≥ x} ∩ A

) ≤ 2NP

(
C

2N/2

(
τ 0 + N + 1 +

N−1∑
m=0

τm

)
≥ x

)

≤ 2NeCt(N+1)EeCtτ 0

N−1∏
m=0

EeCtτme−t2N/2x,
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where the last inequality holds for any t > 0. Consequently, to obtain the bound

P
({	 ≥ x} ∩ A

) ≤ CeαN−λ2N/2x

for some positive constants C, α and λ independent of N and x, it is sufficient to
prove that

(48) ∃t0 > 0,∃C > 0, such that ∀0 ≤ m ≤ N − 1 Eet0τm ≤ C.

Integrating by parts, we first remark that

Eet0τm = 1 +
∫ ε22m2N

0
t0e

t0yP (τm > y)dy,

so to prove (48) we just have to prove that for 0 ≤ y ≤ ε22m2N :

(49) P(τm > y) ≤ Ce−ηy

for positive constant C and η (independent of m, y, N ). We have

P(τm > y) ≤ P
(
U2

m,1 > 2my
)

≤ P
(
Um,1 > 2m/2√y

)+ P
(−Um,1 > 2m/2√y

)
≤ EetUm,1e−t2m/2√y + Ee−tUm,1e−t2m/2√y,

where the last inequality holds for any t > 0. We recall that Um,1 is equal in law
to

∑2m

i=1 Y
�,n

i , this gives EetUm,1 = e2m�(t), where � is defined by (54). Moreover,
using the notation,

(50) �∗(u) = inf
t

(
�(t) − tu

)
,

one has [since �(1)(0) = 0]: for u ≥ 0, �∗(u) = inft≥0(�(t)− tu) and �∗(−u) =
inft≤0(�(t) + tu). This gives

P(τm > y) ≤ e2m�∗(2−m/2√y) + e2m�∗(−2−m/2√y).

From the estimation (61) [where t is defined by (59) with k = 2m and x = √
y],

we deduce, since
√

y ≤ ε2m/22N/2, that (choosing ε small enough and N large
enough),

2m�∗(2−m/2√y
) ≤ −ηy and 2m�∗(2−m/2√y

) ≤ −ηy

for some η > 0 and (49) is proved. This achieves the proof of (39) in the first case.
Second case: x ≥ 8ε2N/2.
Following [11] and [7], we first choose an integer M such that

x

8ε
< 2M2N/2 ≤ x

4ε
.
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Such an integer exists since x ≥ 8ε2N/2. Without loss of generality, we may as-
sume that M ≤ N (if it is not the case the proof reduces to consider 	1 and 	2
below with M = N ). We set

(51) B =
2N−M−1⋂

k=0

{|UM,k| ≤ ε2M2N/2}.
We remark that on B , we have for all m ≥ M + 1 and for all k

|Um,k| ≤ ε2m2N/2, |Ũm,k| ≤ ε2m2N/2.

Moreover, we define

	1 = max
0≤k≤2N−M

max
1≤l≤2M

∣∣T �,n

k2M+l − T
�,n

k2M

∣∣,
	2 = max

0≤k≤2N−M
max

1≤l≤2M
|Sk2M+l − Sk2M |,

	3 = max
0≤k≤2N−M

∣∣T �,n

k2M − Sk2M

∣∣.
We immediately see that

	 ≤ 	1 + 	2 + 	3,

where 	 is defined by (40). Moreover, observing that Bc ⊂ {	1 ≥ ε2M2N/2}, we
have

{	 ≥ x} ⊂ {
	1 ≥ ε2M2N/2}∪ {

	2 ≥ ε2M2N/2}∪ ({	3 ≥ x/2} ∩ B
)
,

and so

(52) P(	 ≥ x) ≤ P
(
	1 ≥ ε2M2N/2)+P

(
	2 ≥ ε2M2N/2)+P

({	3 ≥ x/2}∩B
)
.

We first bound P({	3 ≥ x/2} ∩ B). Starting with the decomposition [similar to
(37)],

T
�,n

k2M = k

2N
UN,0 +

N∑
m=M+1

cmŨm,l(m,k2M),

and proceeding as in the proof of the first case, one can show that

P
({	3 ≥ x/2} ∩ B

) ≤ 2NP

(
C

2N

(
N + 1 +

N−1∑
m=M

τm

)
≥ x

)
,

where the variables τm are defined by (46). This permits to conclude, using the
same arguments as previously, that

P
({	3 ≥ x/2} ∩ B

) ≤ CeαN−λ2N/2x.
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Turning to P(	1 ≥ ε2M2N/2), we have

P
(
	1 ≥ ε2M2N/2) ≤ 2NP

(
max

1≤k≤2M

∣∣T �,n

k

∣∣ ≥ ε2M2N/2
)
.

Applying Doob’s maximal inequality to the positive submartingales (etT
�,n
k ) and

(e−tT
�,n
k ), where t > 0, and optimizing on t , we deduce using the notation (50),

P
(
	1 ≥ ε2M2N/2) ≤ 2N (

e2M�∗(ε2N/2) + e2M�∗(−ε2N/2)).
With help of (61) below writing, for example, 2M�∗(ε2N/2) ≤ 2M�(t) −
t
√

2M(ε2N/22M/2) with the choice of t corresponding to (59), �(1)(t)
√

2M =
ε2N/22M/2, we get

P
(
	1 ≥ ε2M2N/2) ≤ 2N+1e−ηε22N 2M ≤ 2N+1e−ηεx2N/2/8,

for some η > 0. Similarly, for the standard Gaussian variables, we have

P
(

max
1≤k≤2M

|Sk| ≥ ε2M2N/2
)

≤ 2e−ε22M2N/2,

and so

P
(
	2 ≥ ε2M2N/2) ≤ 2N+1e−εx2N/2/16.

This achieves the proof of (3), and hence of Theorem 1. �

LEMMA 4. We have the equality in law, for all k ∈ {1, . . . ,2N },(
1A,

(|Um,l(m,k)|)m=0,...,N ,
(|Ũm,l(m,k)|)m=1,...,N

)
=L

(
1A,

(|Um,0|)m=0,...,N ,
(|Ũm,0|)m=1,...,N

)
,

(53)

where A is given by (41).

PROOF. The proof is based on the fact that the law of the vector (U0,i )i is
invariant by permutation, and that one can find permutations that transform the
left-hand side of (53) into the right-hand side. Let us sketch how to construct these
permutations.

If k = 1, then l(m, k) = 0 for all m, and the result (53) is immediate. Otherwise,
we write k − 1 = ∑N−1

m=0 dm2m, where dm ∈ {0,1}. Let us remark that we have
l(m, k) = ∑N−1

j=m dj 2j−m for all m ∈ {0, . . . ,N − 1}. Let us denote m0 = sup{m |
dm = 1,0 ≤ m ≤ N − 1} which is well-defined since k − 1 �= 0. We define (U ′

0,i )i
a permutation of the random vector (U0,i)i as follows:

U ′
0,i :=

⎧⎪⎪⎨⎪⎪⎩
U0,i+2m0 if 0 ≤ i < 2m0 ,

U0,i−2m0 if 2m0 ≤ i < 2m0+1,

U0,i if 2m0+1 ≤ i < 2N − 1,
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and set U ′
m,l = ∑l2m+2m−1

i=l2m U ′
0,i , Ũ ′

m,l = U ′
m−1,2l − U ′

m−1,2l+1 for 1 ≤ m ≤ N and

0 ≤ l ≤ 2N−m − 1. We set k′ = k − 2m0 . Then one can check that l(m, k′) =
l(m, k) = 0 for m > m0 and l(m, k′) = l(m, k) − 2m0−m for 0 ≤ m ≤ m0. More-
over, we easily get U ′

m,l = Um,l and Ũ ′
m,l = Ũm,l for all m > m0 + 1, 0 ≤ l ≤

2N−m − 1. By construction, we have U ′
m0+1,l(m0+1,k′) = U ′

m0+1,0 = Um0+1,0 =
Um0+1,l(m0+1,k) and Ũ ′

m0+1,l(m+1,k′) = Ũ ′
m0+1,0 = −Ũm0+1,0 = −Ũm0+1,l(m0+1,k).

For 1 ≤ m ≤ m0, we can write

U ′
m,l(m,k′) =

l(m,k′)2m+2m−1∑
i=l(m,k′)2m

U ′
0,i =

l(m,k)2m−2m0+2m−1∑
i=l(m,k)2m−2m0

U ′
0,i

=
l(m,k)2m+2m−1∑

i=l(m,k)2m

U ′
0,i−2m0 =

l(m,k)2m+2m−1∑
i=l(m,k)2m

U0,i

= Um,l(m,k), since l(m, k)2m ∈ {
2m0, . . . ,2m0+1 − 1

}
.

Using that the set A is invariant by permutation of the U0,i [see (41)], we deduce
from the discussion above that(

1A,
(|Um,l(m,k)|)m=0,...,N ,

(|Ũm,l(m,k)|)m=1,...,N

)
=L

(
1A,

(|Um,l(m,k′)|)m=0,...,N ,
(|Ũm,l(m,k′)|)m=1,...,N

)
,

where k′ < k. Hence, for k �= 1, this shows that we can replace k by k′ < k in the
left-hand side of (53) without changing its law. By a finite number of iterations of
the procedure, we deduce (53). �

4.3. Quantile coupling inequalities. In this section, we prove Lemma 2. We
first establish a sharp expansion for the law of 1√

k
S

�,n

k .

LEMMA 5. Let p
�,n
k be the density function of 1√

k
S

�,n

k , φ and 
 be respectively

the density and the cumulative distribution function of the standard Gaussian law.
There exist some constants ε > 0 and C > 0 such that for all k ≥ 1 and n large
enough, we have:

(i) for |x| ≤ ε
√

kn:

p
�,n
k (x) = φ(x)e

1√
n
T 1

k (x)
,

(ii) for 0 ≤ x ≤ ε
√

kn:

P

(
1√
k
S

�,n

k > x

)
= (

1 − 
(x)
)
e

1√
n
T 2

k (x)
,

P

(
1√
k
S

�,n

k ≤ −x

)
= 
(−x)e

1√
n
T 3

k (x)
,
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where

∣∣T j
k (x)

∣∣ ≤ C
(1 + |x|3)√

k
, for 1 ≤ j ≤ 3.

REMARK 2. For k = n, the approximation of p
�,n
k (x) by φ(x) is of order 1/n,

for |x| ≤ εn. In the classical KMT result, the order of approximation is 1/
√

n for
|x| ≤ ε

√
n. It is important to have a better approximation result which holds for

larger values of x to improve the final bound in the KMT construction (compare,
e.g., to the refined quantile inequalities given in [14]).

An inspection of the proof below shows that without the regularization tech-
nique [i.e., without adding the small Gaussian variables ξk in (29)], the result of
Lemma 5 still holds but with k ≥ 3 only.

PROOF OF OF LEMMA 5. We can prove (i) and (ii) by the technique of con-
jugated random variables (see [7, 12, 13]). We only give the proof of (i) and the
proof of (ii) being very similar (see, e.g., [13]). We first compute the Laplace trans-
form of the variables Y

�,n

k . For t > −√
n, let R(t) = EetY

�,n
k and �(t) = logR(t).

A simple computation gives

(54) �(t) = t

2
√

n
+ t2

2(1 + t/
√

n)
− 1

2
log(1 + t/

√
n) + t2

2n2 .

In particular, we have �(0) = 0, �(1)(0) = 0, �(2)(0) = 1 + 1
2n

+ 1
n2 and it is

easy to verify from the computations of �(2) and �(3) that for 0 ≤ |t | ≤ c
√

n,
0 < 1/C ≤ �(2)(t) ≤ C and |�(3)(t)| ≤ C/

√
n, for some positive constants c

and C. Fixing t such that |t | ≤ c
√

n, we consider the sequence of independent
random variables (Zn

k )k≥1 such that, Zn
k admits the density function etx

R(t)
f

Y
�,n
k

(x),

where f
Y

�,n
k

denotes the density function of Y
�,n

k . One can easily verify that

E(Zn
k ) = �(1)(t) and V (Zn

k ) = �(2)(t). We denote by qn
k the density function of

the normalized sum 1√
k�(2)(t)

∑k
i=1(Z

n
i − �(1)(t)). The following relation holds

between p
�,n
k and qn

k :

(55) p
�,n
k (x) = ek�(t)−tx

√
k√

�(2)(t)
qn
k

(
x
√

k − k�(1)(t)√
k�(2)(t)

)
.

The next step to obtain the result of Lemma 5 is to prove that that for |t | ≤ c
√

n:

(56) sup
x

∣∣qn
k (x) − φ(x)

∣∣ ≤ C
1√
kn

.
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Let q̂n
k (u) be the Fourier transform of qn

k , we have

q̂n
k (u) = (

Ee
iu√

k�(2)(t)
(Zn

1 −�(1)(t)))k
,

and consequently

(57) q̂n
k (u) =

(R(t + iu√
k�(2)(t)

)

R(t)

)k

e
− iu�(1)(t)√

�(2)(t)

√
k
.

Now, by the Fourier inversion formula (see Theorem 4.1, page 41, in [3]),

sup
x

∣∣qn
k (x) − φ(x)

∣∣ ≤ 1

2π

∫ ∣∣q̂n
k (u) − e− u2

2
∣∣du ≤ I

n,0
k + I

n,1
k + I

n,2
k ,

where

I
n,0
k = C

∫
|u|≤α

√
kn

∣∣q̂n
k (u) − e− u2

2
∣∣du,

I
n,1
k = C

∫
|u|>α

√
kn

∣∣q̂n
k (u)

∣∣du,

I
n,2
k = C

∫
|u|>α

√
kn

e− u2
2 du,

and α is a positive constant which will be precised below.

Since for x > 0,
∫∞
x e− u2

2 du ≤ 1
x
e− x2

2 , one can easily see that

I
n,2
k ≤ C√

kn
.

Turning back to I
n,1
k , a tedious computation using (54) and (57) gives

∣∣q̂n
k (u)

∣∣ = e
− u2

2n2�(2)(t)

(1 + u2

kn�(2)(t)(1+t/
√

n)2 )k/4
× e

kt2(1+t/
√

n)

2((1+t/
√

n)2+ u2

kn�(2)(t)
)

e
kt2

2(1+t/
√

n)

g(u),

where

logg(u) = −u2(1 − t/
√

n)

2�(2)(t)((1 + t/
√

n)2 + u2

kn�(2)(t)
)
.

We deduce then the bound:

(58)
∣∣q̂n

k (u)
∣∣ ≤ e

− u2

2n2�(2)(t)

(1 + u2

kn�(2)(t)(1+t/
√

n)2 )
k/4

g(u).
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We remark that the contribution of the regularization variables (ξk) in the numer-

ator of equation (58) (the term e
− u2

2n2�(2)(t) ) ensures the integrability of |q̂n
k (u)| for

the small values of k (k = 1 and k = 2).
Recalling that if |t | ≤ c

√
n, we have 0 < 1/C ≤ �(2)(t) ≤ C, we deduce that

for |u| > α
√

kn, 0 ≤ g(u) ≤ e−Ckn. This finally yields

I
n,1
k ≤ Ce−Ckn

∫
e
−C u2

2n2 du ≤ Cne−Ckn ≤ C√
kn

.

It remains to bound the main term I
n,0
k . With the previous notation, we rewrite (57)

as

q̂n
k (u) = e

k�(t+ iu√
k�(2)(t)

)−k�(t)− iu�(1)(t)√
�(2)(t)

√
k
.

A Taylor expansion up to order three of v �→ �(t + iv√
k�(2)(t)

) on [0, u] gives

q̂n
k (u) = e

− u2
2 − iu3

6�(2)(t)
√

k�(2)(t)
ηu

,

where |ηu| ≤ sup|y|≤|u| |�(3)(t + iy√
k�(2)(t)

)|. We deduce then that

∣∣q̂n
k (u) − e− u2

2
∣∣ = e− u2

2
∣∣1 − e

− iu3

6�(2)(t)
√

k�(2)(t)
ηu ∣∣.

Using the inequality |1 − ez| ≤ |z|e|z| for any complex number z, we obtain by
choosing α such that | u

�(2)(t)
√

k�(2)(t)
ηu| ≤ 1, for |u| ≤ α

√
kn,

∣∣q̂n
k (u) − e− u2

2
∣∣ ≤ C

|u|3√
kn

e− u2
2 e

u2
6 = C

|u|3√
kn

e− u2
3 .

This gives

I
n,0
k ≤ C√

kn
.

This achieves the proof of (56).
We turn back to (55). We first recall that for |t | ≤ c

√
n, 0 ≤ 1/C ≤

�(2)(t) ≤ C. As a consequence, �(1) is increasing, for |t | ≤ c
√

n, with values in
[−C

√
n,C

√
n], for some constant C. It follows that for |x| ≤ ε

√
kn, the equation

x = �(1)(t)
√

k admits a unique solution. In the sequel, we fix t to be the unique
solution of

(59) x = �(1)(t)
√

k.

We have |t | ≤ c
√

n and so combining (55) with (56), we obtain

(60) p
�,n
k (x) = ek�(t)−tx

√
k√

�(2)(t)

1√
2π

(
1 + O(1)√

kn

)
,
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where O(1) is a bounded function. Next, considering (59), by a Taylor expansion
of [�(1)]−1 on [0, x/

√
k] up to order two, we obtain

t = x√
k�(2)(0)

+ x2

k
√

n
O(1),

where we have used [�(1)]−1(0) = 0, ([�(1)]−1)(1)(0) = 1/�(2)(0),

([�(1)]−1)(2)(u) = ψ(3)([�(1)]−1(u))

[�(2)([�(1)]−1(u))]2 and recalling that for |u| ≤ c
√

n, we have

0 ≤ 1/C ≤ �(2)(u) ≤ C and |�(3)(u)| ≤ C/
√

n.

Now, since �(t) = t2

2 �(2)(0)+ t3

6 ηt , with |ηt | ≤ sup|u|≤|t | |�(3)(u)|, we deduce
the expansion

k�(t) = x2

2�(2)(0)
+ x3

√
kn

O(1),

where O(1) is a function which is bounded uniformly in k and n, for |x| ≤ ε
√

kn.
Using �(2)(0) = 1 + 1

2n
+ 1

n2 , this finally leads to

(61) k�(t) − t
√

kx = −x2

2
+ x2

n
O(1) + x3

√
kn

O(1).

Reporting (61) in (60), it yields

p
�,n
k (x) = φ(x)

e
x2
n

O(1)+ x3√
kn

O(1)√
�(2)(t)

(
1 + O(1)√

kn

)
.

We conclude, observing that �(2)(t) = �(2)(0) + x√
kn

O(1),

p
�,n
k (x) = φ(x)e

O(1)
(1+x3)√

kn ,

and (i) is proved. �

Based on the refined quantile inequalities for the law of 1√
k
S

�,n
stated in

Lemma 5(ii), we deduce the result of Lemma 2.

PROOF OF OF LEMMA 2. Recalling that UN,0 = 2N/2F−1
2N (
(

VN,0
2N )), the re-

sult of Lemma 2 is a consequence of the more general following result, applied to
the particular case m = N .

There exist ε > 0 and C > 0 such that, for all m ∈ {0, . . . ,N} and n = 2N large
enough, we have∣∣∣∣2m/2F−1

2m

(



(
Vm,0

2m/2

))
− Vm,0

∣∣∣∣ ≤ C

2N/2

(∣∣∣∣F−1
2m

(



(
Vm,0

2m/2

))∣∣∣∣2 + 1
)
,

if |2m/2F−1
2m (
(

Vm,0

2m/2 ))| ≤ ε2m2N/2.
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To get this result, we have to prove that for 0 ≤ |x| ≤ ε
√

kn,

(62) 

(
x − u(x)

) ≤ Fk(x) ≤ 

(
x + u(x)

)
,

where u(x) = C√
n
( x2√

k
+ 1√

k
). Indeed, observing that (62) is equivalent to

x − u(x) ≤ 
−1(Fk(x)) ≤ x + u(x), we obtain the above result for x =
F−1

k (
( 1√
k
Vm,0)) and k = 2m.

From Lemma 5, part (ii), we have for 0 ≤ x ≤ ε
√

kn,(
1 − 
(x)

)
e
−C

(1+x3)√
kn ≤ 1 − Fk(x) ≤ (

1 − 
(x)
)
e
C

(1+x3)√
kn ,(63)


(−x)e
−C

(1+x3)√
kn ≤ Fk(−x) ≤ 
(−x)e

C
(1+x3)√

kn .(64)

Now from Mason and Zhou [14], Lemma 3, we have for all A > 0, k ≥ 64A2 and
0 ≤ x ≤ √

k/(8A),

log
(


(−x + u)


(−x)

)
= log

(
1 − 
(x − u)

1 − 
(x)

)
≥ A

(
1 + x3
√

k

)
,(65)

log
(


(−x − u)


(−x)

)
= log

(
1 − 
(x + u)

1 − 
(x)

)
≤ −A

(
1 + x3
√

k

)
,(66)

where u = 2A1+x2√
k

. Combining (65) and (66) with A = C/
√

n and n large enough,

with (63) and (64), we deduce that ∀k ≥ 1 and 0 ≤ |x| ≤ ε
√

kn, (62) holds. �

4.4. Conditional quantile inequalities. In this section, we prove Lemma 3.
Recall that, for k even, p̃

�,n
k (· | y) is the conditional density of 1√

k
S̃

�,n
k given

1√
k
S

�,n

k = y, where the joint law of (S̃
�,n
k , S

�,n

k ) = (2S
�,n

k/2 − S
�,n

k , S
�,n

k ) is defined
via (29)–(30). In the following three lemmas, we establish some expansions for the
conditional density p̃

�,n
k (· | y) and the associated conditional quantile inequalities.

Then we will deduce Lemma 3.

LEMMA 6. There exist some constants ε > 0 and C > 0 such that for all k ≥ 1
and n large enough, we have, for |x| ≤ ε

√
kn, |y| ≤ ε

√
kn,

p̃
�,n
k (x | y) = φ(x)e

1√
n
T̃ 1

k (x,y)
,

where |T̃ 1
k (x, y)| ≤ C

1+|x|3+|y|x2+|y|√
k

.

PROOF. First, we show the following expansion for the density of 1√
k
S

�,n

k :

∃ε > 0,∀|x| ≤ ε
√

nk,

p
�,n
k (x) = φ(x) exp

(
x3

√
nk

rn

(
x√
nk

)
+ cnx

2 + 1 + |x|√
nk

Bn,k(x)

)
,

(67)
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where rn is a sequence of smooth functions defined on some neighbourhood
[−ε, ε] of 0 and whose derivatives up to order two are bounded independently
of n; cn is a sequence such that cn = O(1/n); and Bn,k(·) is some measurable
function bounded independently of k and n.

Recalling the representation (60), where t is the unique solution of (59),
�(2)(t) = �(2)(0) + |x|√

kn
O(1) and �(2)(0) = 1 + 1

2n
+ 1

n2 yields to the represen-
tation:

p
�,n
k (x) = 1√

2π
exp

(
k�(t) − tx

√
k + 1 + |x|√

nk
O(1)

)
.

Let us denote 
n(s) = 1
n
�(

√
ns) and by hn the inverse of the function s �→

1√
n
�(1)(

√
ns). Due to the expression (54), it is simple to check that both func-

tions are well-defined on some neighborhoods of 0 independent of n, and we
can assume that hn is well-defined on the interval [−ε, ε], up to reducing the
value of ε. Using these notation, we get t = √

nhn(
x√
nk

), and in turn, p
�,n
k (x) =

1√
2π

exp(nk
n(hn(
x√
nk

)) − √
nkhn(

x√
nk

)x + 1+|x|√
nk

O(1)). Now, since 
n(0) =



(1)
n (0) = 0, 


(2)
n (0) = 1 + 1

2n
+ 1

n2 , we can write 
n(s) = 

(2)
n (0) s2

2 + s3γn(s) =
(1/2+O(1/n))s2 + s3γn(s), where γn is some function. Using that 
n, and all its
derivatives, are bounded independently of n on [−ε, ε], we deduce that the same
property holds true for γn. Analogously, we can show that

(68) hn(s) = h(1)
n (0)s + s2βn(s) = (

1 + O(1/n)
)
s + s2βn(s),

where the function βn, and its derivatives of any order, are bounded independently
of n on [−ε, ε]. With simple computation, we deduce that

nk
n

(
hn

(
x√
nk

))
− √

nkhn

(
x√
nk

)
x

= nk
n

((
1 + O(1/n)

) x√
nk

+ x2

nk
βn

(
x√
nk

))

− √
nkx

((
1 + O(1/n)

) x√
nk

+ x2

nk
βn

(
x√
nk

))

= −1

2
x2 + x2O(1/n) + x3

√
nk

rn

(
x√
nk

)
,

where rn is some bounded function, with bounded derivatives. This gives (67).
Now, using the independence of the random variables S

�,n

k + S̃
�,n
k and

S
�,n

k − S̃
�,n
k , we easily deduce

(69) ∀x, y, p̃
�,n
k (x | y) =

p
�,n
k/2(

x+y√
2

)p
�,n
k/2(

−x+y√
2

)

p
�,n
k (y)

.
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From (67), we readily get

p̃
�,n
k (x | y) =

φ(
x+y√

2
)φ(

−x+y√
2

)

φ(y)
exp

(
δn(x, y) + 1 + |x| + |y|√

nk
O(1) + cnx

2
)

= φ(x) exp
(
δn(x, y) + 1 + |x| + |y|√

nk
O(1) + cnx

2
)
,

(70)

where δn(x, y) = nk
2 [(x+y√

nk
)3rn(

x+y√
nk

) + (
−x+y√

nk
)3rn(

−x+y√
nk

) − 2(
y√
nk

)3rn(
y√
nk

)].
From a second-order Taylor expansion of z �→ z3rn(z) around y√

nk
, it can be

shown that |δn(x, y)| = x2O(
∑3

i=1(| x√
nk

|i + | y√
nk

|i )). Using |x| ≤ ε
√

nk and

|y| ≤ ε
√

nk, this yields to |δn(x, y)| = 1√
nk

O(|x|3 + x2|y|). Using the expansion
(70), we deduce the lemma. �

LEMMA 7. Let ε > 0, then there exist 0 < ε′′ < ε′ < ε, and C > 0, such that
for n large enough, and all k,

∀|y| ≤ ε′′√nk,∀|x| ≥ ε′√nk, we have,

p̃
�,n
k (x | y) ≤ C exp

(
−

√
nk

C

[
|x| − ε′√nk

2

])
.

(71)

PROOF. We just consider the case x > 0, since the proof for x < 0 is similar.
We first need to prove the following upper bound on the density of S

�,n

k :

∃ε′ > 0,∀0 ≤ y ≤ ε′√nk,∀z ≥ 0,

p
�,n
k (y + z) ≤ 1√

2π
e
− y2

2 − yz
2 +O(

1+|y|3√
nk

)
.

(72)

From (55) with x = y+z and for t given by t = √
nhn(

y√
kn

) where hn is defined
in the proof of Lemma 6, we have

p
�,n
k (y + z) = ek�(t)−ty

√
k√

�(2)(t)
qn
k

(
(y + z)

√
k − k�(1)(t)√

k�(2)(t)

)
e−tz

√
k.

Remark that t is well-defined for y√
nk

in a neighbourhood [−ε′, ε′] of 0 and is

solution to �(1)(t) = y/
√

k. Then, proceeding exactly as in the proof of Lemma 5,
we can deduce that

(73) p
�,n
k (y + z) = 1√

2π
e
− y2

2 +O(
1+|y|3√

nk
)
e−tz

√
k.
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Now, from (68), we deduce −tz
√

k = −yz[1 + O( 1
n
)] + O(

|z|y2√
kn

). Using that
|y|√
kn

≤ ε′ < 1/4, as soon as we choose the value of ε′ small enough, we get

−tz
√

k ≤ −yz/2, for n large. Finally, (72) follows from (73).
We now prove (71). Up to a modification of the value of ε′, we can assume that

the result of Lemma 5(i) holds true for x ≤ ε′√nk. Thus, from (69), we get for
x ∈ R, |y| ≤ ε′√nk:

p̃
�,n
k (x | y) ≤ √

2πe
y2

2 +C
1+|y|3√

nk p
�,n
k/2

(
x + y√

2

)
p

�,n
k/2

(−x + y√
2

)
,

where C > 0 is some constant. From (55)–(56), it is easily seen that p
�,n
k/2 is a

bounded function. Hence, we deduce

(74) p̃
�,n
k (x | y) ≤ Ce

y2

2 +C
1+|y|3√

nk p
�,n
k/2

(
x + y√

2

)
,

where C > 0 is some constant.
We assume for the sequel that x ≥ ε′√nk and |y| ≤ ε′′√nk with ε′′ = ε′/8.

We write p
�,n
k/2(

x+y√
2

) as p
�,n
k/2((

ε′√nk
2 + y) 1√

2
+ (x − ε′√nk

2 ) 1√
2
) and use (72). Since

ε′√nk
2 + y ∈ [3

8ε′√nk, 5
8ε′√nk] ⊂ [1

4ε′√nk, 3
4ε′√nk], we deduce

p
�,n
k/2

(
x + y√

2

)
≤ C exp

(
− 1

43 ε′2nk + C√
nk

+ Cε′3nk − ε′√nk

16

(
x − ε′

√
nk

2

))
for some constant C > 0. From (74) and |y| ≤ ε′√nk/8, we deduce

p̃
�,n
k (x | y) ≤ C exp

(
− 1

2.43 ε′2nk
(
1 − ε′C

)+ C√
nk

− ε′√nk

16

(
x − ε′

√
nk

2

))
,

where C is some positive constant. Up to a modification of ε′, we can assume that
ε′C ≤ 1 and the latter equation gives (71). �

We recall that F̃k(x | y) = ∫ x
−∞ p̃

�,n
k (u | y)du, is the conditional cumulative

distribution function of 1√
k
S̃

�,n
k given 1√

k
S

�,n

k = y.

LEMMA 8. There exist ε > 0 and C > 0, such that for all 0 < x ≤ ε
√

nk and
|y| ≤ ε

√
nk:

1 − F̃k(x | y) = (
1 − 
(x)

)
e

1√
n
T̃ 2

k (x,y)
,(75)

F̃k(−x | y) = 
(−x)e
1√
n
T̃ 3

k (x,y)
,(76)

where |T̃ j
k (x, y)| ≤ C

1+|x|3+|y|x2+|y|√
k

, for j = 2,3.
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PROOF. We only prove (75), since the proof of (76) is similar.
Using Lemma 6, let us consider ε1 > 0, such that for all |x| ≤ ε1

√
nk,

|y| ≤ ε1
√

nk, we have

p̃
�,n
k (x | y) ≤ 1√

2π
e− x2

2 e
C1

1+|x|3+|y|x2+|y|√
nk

for some constant C1 > 0. Hence, for 0 ≤ x < A ≤ ε1
√

nk and |y| ≤ ε1
√

nk, we
can write

(77) F̃k(A | y) − F̃k(x | y) ≤ e
C1

1+|y|√
nk

∫ A

x
e
− u2

2 (1−2C1
u+|y|√

nk
) du√

2π
.

Assume now on that ε1 < 1
8C1

, up to a modification of the value of ε1. Then the

change of variable v = u(1 − 2C1
u+|y|√

nk
)1/2 is one to one as the variable u ranges

in [x,A] and it is easy to see that | dv
du

| ≤ 1 + C2
v+|y|√

nk
, with some constant C2 > 0.

As a result, after a change of variable, we get∫ A

x
e
− u2

2 (1−2C1
u+|y|√

nk
) du√

2π

≤
∫ ∞
x̂(y,n,k)

e− v2
2

(
1 + C2

v + |y|√
nk

)
dv√
2π

= [
1 − 


(
x̂(y, n, k)

)](
1 + C2|y|√

nk

)
+ C2√

nk
φ
(
x̂(y, n, k)

)
,

(78)

where we have noted x̂(y, n, k) = x(1 − 2C1
x+|y|√

nk
)1/2.

From the mean value theorem,

log
(

1 − 
(x̂(y,n, k))

1 − 
(x)

)
= (

x − x̂(y, n, k)
) φ(ξ)

1 − 
(ξ)
≤ C3

(
x2 + x|y|) φ(ξ)

1 − 
(ξ)
,

where ξ ∈ [x̂(y, n, k), x] and C3 > 0 is some constant. From Lemma 2 in [14], we
know that z �→ φ(z)

1−
(z)
is increasing and Lemma 1 in [14] easily implies

(79)
φ(z)

1 − 
(z)
≤ C4(1 + z)

for any z ≥ 0 and C4 > 0 some constant. We deduce

(80) log
(

1 − 
(x̂(y,n, k))

1 − 
(x)

)
≤ C5

(
x2 + x|y|)(1 + x),

where C5 is some constant. Putting together (77), (78) and (80) we deduce

F̃k(A | y) − F̃k(x | y) ≤ [
1 − 
(x)

]
e
C5

1+|x|3+|y|x2+|y|√
nk

(
1 + C2

1 + |y|√
nk

)

+ C2√
nk

φ
(
x̂(y, n, k)

)
.
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Using (79) and (80), we have

φ
(
x̂(y, n, k)

) ≤ C4
(
1 + |x|)(1 − 
(x)

)
eC5(x

2+x|y|)(1+x).

As a consequence, we easily deduce

F̃k(A | y) − F̃k(x | y) ≤ [
1 − 
(x)

]
e
C6

1+|x|3+|y|x2+|y|√
nk ,

(81)
∀0 ≤ x < A ≤ ε1

√
nk, |y| ≤ ε1

√
nk,

and where C6 > 0 is some constant.
In order to prove (75), it remains to control 1 − F̃k(A | y) = ∫∞

A p̃
�,n
k (u | y)du.

From Lemma 7, there exists 0 < ε′′
1 < ε′

1 < ε1 and C7 > 0 such that for all |y| ≤
ε′′

1

√
nk, u ≥ ε′

1

√
nk, p̃

�,n
k (u | y) ≤ C7 exp(−

√
nk

C7
[|x| − ε′

1

√
nk

2 ]). We choose A =
ε′

1

√
nk ≤ ε1

√
nk, and with easy computations deduce that

∫∞
A p̃

�,n
k (u | y)du ≤

C2
7√
nk

e
− ε′1

4C7
nk

. If we let ε2 =
√

ε′
1

4C7
∧ ε′

1, and if x ≤ ε2
√

nk, we have 1 − 
(x) ≥
φ(x)

C4+C4x
≥ e

− ε′1nk

8C7√
2π(C4+C4ε2

√
nk)

. This implies

(82) ∀0 ≤ x ≤ ε2
√

nk,

∫ ∞
A

p̃
�,n
k (u | y)du ≤ C8

[
1 − 
(x)

]
exp

− nk
C8

for some constant C8 > 0. Joining (81) with (82) yields to the result (75). �

PROOF OF OF LEMMA 3. Recalling (32) and repeating the same reasoning
as in the proof of Lemma 2, it is sufficient to prove that for 0 ≤ |x| ≤ ε

√
kn, and

0 ≤ |y| ≤ ε
√

kn:

(83) 1 − 

(
x + u(x, y)

)≤ 1 − F̃k(x | y) ≤ 1 − 

(
x − u(x, y)

)
,

where u(x, y) = C(1+x2+y2)√
nk

. We focus on the case x ≥ 0, as the proof is similar

for x ≤ 0. Using Lemma 8, there exist ε1 and C1 such that for 0 ≤ x ≤ ε1
√

nk,
|y| ≤ ε1

√
nk:(

1 − 
(x)
)
e
−C1

1+|x|3+|y|x2+|y|√
nk ≤ 1 − F̃k(x | y) ≤ (

1 − 
(x)
)
e
C1

1+|x|3+|y|x2+|y|√
nk .

We set A = C1√
n

1+|x|3+x2|y|+|y|
1+|x|3 . Then it is simple to check that if ε1 is small enough

and n sufficiently large, we have A2 ≤ 2C2
1

n
+ 4C2

1y2

n
≤ k

64 , for all k ≥ 1. In the
same way, we easily check that if ε1 is small enough, we have 8Ax ≤ √

k. As a
consequence, we can apply (65)–(66) to get

(84) 1 − 
(x + u) ≤ [
1 − 
(x)

]
e
−A 1+x3√

k ≤ [
1 − 
(x)

]
e
A 1+x3√

k ≤ 1 − 
(x − u),

where u = 2A1+x2√
k

≤ C
(1+x2+y2)√

nk
= u(x, y), for some constant C. Since A1+x3√

k
=

C1
1+|x|3+|y|x2+|y|√

nk
, the equation (84) gives (83). �
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