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A STOCHASTIC MCKEAN–VLASOV EQUATION FOR ABSORBING
DIFFUSIONS ON THE HALF-LINE

BY BEN HAMBLY1,∗ AND SEAN LEDGER2,†

University of Oxford∗ and Heilbronn Institute, University of Bristol†

We study a finite system of diffusions on the half-line, absorbed when
they hit zero, with a correlation effect that is controlled by the proportion
of the processes that have been absorbed. As the number of processes in the
system becomes large, the empirical measure of the population converges to
the solution of a nonlinear stochastic heat equation with Dirichlet boundary
condition. The diffusion coefficients are allowed to have finitely many discon-
tinuities (piecewise Lipschitz) and we prove pathwise uniqueness of solutions
to the limiting stochastic PDE. As a corollary, we obtain a representation of
the limit as the unique solution to a stochastic McKean–Vlasov problem. Our
techniques involve energy estimation in the dual of the first Sobolev space,
which connects the regularity of solutions to their boundary behaviour, and
tightness calculations in the Skorokhod M1 topology defined for distribution-
valued processes, which exploits the monotonicity of the loss process L. The
motivation for this model comes from the analysis of large portfolio credit
problems in finance.

1. Introduction.

Motivation and framework. We prove the weak convergence of a system of
interacting diffusions to the unique solution of a nonlinear stochastic PDE on the
half-line. In our model, the diffusions are absorbed at the origin and the proportion
of absorbed particles influences the diffusion coefficients, which leads to a descrip-
tion of the limiting system as the solution to a stochastic McKean–Vlasov problem.
The motivation for studying the model in this paper is to extend the mathematical
framework of [8] for the pricing of large portfolio credit derivatives to include pro-
cesses whose dynamics are driven by statistics of the entire population. With more
complicated interaction terms, the methods in [8] are no longer tractable and so we
require new techniques. In particular, it is very difficult to analyse the correlation
between pairs of particles in our model (an essential ingredient of [8]) and, from a
practical perspective, it is desirable to allow the coefficients of the diffusions to be
discontinuous, which presents a further complication.
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Portfolio credit derivatives (such as the collateralised debt obligation—CDO)
have a payoff structure which depends on the total notional value of the loss due
to default of entities in the portfolio across the lifetime of the product, after a pro-
cess of partial asset recovery takes place. We will not explore the financial details
of these contracts (see [48]), but two important effects the modeller must capture
are the intensity of defaults and the tendency for defaults to occur simultaneously.
Common modelling approaches include copula-based models, in which the joint
probability of default over a fixed time period is modelled directly, and reduced-
form models, in which the default rates are modelled as correlated stochastic pro-
cesses. The model we will consider is a structural model: default times are rep-
resented as the threshold hitting times of a collection of correlated stochastic pro-
cesses. These models were introduced in the context of portfolio derivatives by
[31] and [55], and their origins trace back to [5] and [44] for single-name deriva-
tives.

Our general framework is as follows. Suppose we have a collection of N ≥ 1 de-
faultable entities and a fixed finite time horizon T > 0. Assign the ith entity a risk
process, Xi,N , called the distance-to-default process, with {Xi,N

0 }1≤i≤N chosen to
be positive independent random variables supported on (0,∞) with common law
ν0. Default of the ith entity is modelled as the first hitting time of zero of the
distance-to-default process:

(1.1) τ i,N := inf
{
t > 0 : Xi,N

t ≤ 0
}
.

The empirical and loss processes then track the spatial evolution of the surviving
particles and the proportion of killed particles; defined respectively as

(1.2) νN
t := 1

N

N∑
i=1

1t<τ i,N δ
X

i,N
t

, LN
t := 1

N

N∑
i=1

1τ i,N≤t .

Here, δx denotes the Dirac delta measure of the point x ∈ R. The empirical process
takes values in the sub-probability measures on R and the loss process takes values
in R. For S ⊆ R, νN

t (S) is simply the proportion of the diffusions that take values
in S at time t that have not yet hit the origin by time t :

νN
t (S) = #{1 ≤ i ≤ N : Xi,N

t ∈ S and t < τ i,N }
N

,

hence we have the relationship

LN
t = 1 − νN

t (0,∞).

In practice, once the dynamics of Xi,N have been specified, the model could be
used to generate realisations of LN from which portfolio credit derivatives (options
on LN ) could be priced using Monte Carlo routines. Instead, we will approximate
LN by its limit as N → ∞. This is known as a large portfolio approximation,
an idea first introduced in [51] and now found in several modern frameworks for



2700 B. HAMBLY AND S. LEDGER

copula-based models [13, 27, 43] and reduced-form models [22, 23, 45]. We will
return to the question of how this approximation is generated in practice after a
precise description of the limiting objects and mode of convergence.

Model specification. We will model the processes {Xi,N }1≤i≤N as correlated
diffusions with parameters that are functions of the current proportional loss:

X
i,N
t = Xi

0 +
∫ t

0
μ
(
s,Xi,N

s ,LN
s

)
ds +

∫ t

0
σ
(
s,Xi,N

s

)
ρ
(
s,LN

s

)
dWs

(1.3)

+
∫ t

0
σ
(
s,Xi,N

s

)(
1 − ρ

(
s,LN

s

)2) 1
2 dWi

s .

Here, W,W 1,W 2, . . . are independent standard Brownian motions and the pre-
cise conditions on the coefficients are given in Assumption 2.1. In particular, we
assume ρ is piecewise Lipschitz with finitely many discontinuities in the loss vari-
able � 	→ ρ(s, �). (It is easy, but perhaps not immediate, to show that this collection
of processes exists; see Remark 2.2.)

In [8], this model is analysed for the case when the coefficients are constants
and it is shown that the sequence of empirical process, (νN)N≥1, converges to a
stochastic limit which can be characterised as the unique solution to a heat equa-
tion with constant coefficients and a random transport term driven by the systemic
Brownian motion W [8], Theorem 1.1. However, numerical experiments show that
the constant coefficient model is too simple to adequately capture the traded prices
of CDOs across all tranches simultaneously [8], Section 5. This problem is com-
mon for Gaussian models—the tails of the risk processes are too light to produce
large losses and so a large correlation parameter is required to generate scenarios
in which many defaults occur over a given time horizon [26, 48]. Consequently,
different products on the same underlying portfolio may produce different corre-
lation parameters when calibrated to market prices. This phenomenon is known as
correlation skew (see Figure 1).

There is a large literature addressing the drawbacks of Gaussian credit models.
Examples include the addition of jump processes and heavy-tailed distributions
[25, 41, 54], stochastic parameters and inhomogeneity [2, 7] and contagion effects
[17, 28, 29]. Close relatives to our framework include [6], in which a jump process
is added to the systemic factor, but in a discretised version of the system, and
[32], in which the particles are taken to be general diffusions. In [1], the constant
coefficient model is studied on the unit interval with absorbing boundaries at 0 and
1 and with an additional multiplicative killing rate as a model for mortgage pools.

Our present approach is inspired by Figure 1. Suppose μ and σ are fixed con-
stants and ρ is only a function of �. If � 	→ ρ(�) was piecewise constant across
intervals corresponding to the CDO tranches in Figure 1, then an obvious strategy
for calibrating ρ to the market prices is to calibrate the first level of ρ to the traded
spread of the most junior tranche, fix this value, repeat the calibration procedure for
the next most junior tranche spread and continue for all tranches. It is therefore a
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FIG. 1. Implied correlation for each tranche for the data set from [8], Figure 2, 7 year maturity.
With ν0, μ and σ fixed in the constant coefficient model, the implied correlation for a given tranche
is the value of the correlation parameter required to give a model spread equal to the market spread
for that tranche. This is an example of correlation skew.

natural assumption to allow the diffusion coefficients in (1.3) to have finitely many
discontinuities. Piecewise Lipschitz coefficients encompass this class of models
whilst giving an analytically tractable system.

Main results. The dynamics of an individual distance-to-default process, Xi,N ,
are controlled by the population behaviour, hence we have an example of a
McKean–Vlasov system; see [50] for an overview. Some applications of these sys-
tems include the modelling of large collections of neurons and threshold hitting
times for membrane potential levels in mathematical neuroscience [21, 42], the
modelling of a large number of noncooperative agents in mean-field games [10,
12], filtering theory [3, 16] and mathematical genetics [18]. Examples in portfo-
lio credit modelling include [17, 49] in which systems with contagion effects are
analysed under their large population limits.

As N → ∞, we will find that the influence of the idiosyncratic Brownian
drivers, W 1,W 2, . . . , averages-out to a deterministic effect, but that the random-
ness due to the systemic Brownian motion, W , remains present. Hence, the sys-
tem must be characterised as the pair (νN,W), and we will follow an established
strategy to demonstrate the convergence in law of this pair and to characterise the
limiting law:

(i) Prove tightness of (νN,W)N≥1 (in a suitable topology).
(ii) Characterise the limit points as weak solutions of a nonlinear evolution

equation.
(iii) Prove uniqueness of solutions for this equation.
(iv) Conclude all limiting laws agree, and hence that we have convergence in

law.

The mathematical challenge comes from the interaction of the individuals
through the boundary behaviour of the population and the discontinuities in the
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diffusion coefficients. A similar model has recently been studied where the parti-
cles interact through the quantiles of the empirical measure [15], however, there
is no general uniqueness theory for this problem. For a model without systemic
noise, there is a uniqueness theory in [35]. Discontinuous coefficients have been
considered in [14], but only on the whole space and in the deterministic setting.
In our model, parameter discontinuities are allowed because the limiting realisa-
tions of the loss process are strictly increasing (Proposition 4.6). This implies the
infinite system spends a null set of time at points where the discontinuities in the
coefficients prevent the application of the continuous mapping theorem (Corol-
lary 5.7). Stochastic PDEs of McKean–Vlasov type are popular tools in the anal-
ysis of mean-field games with common noise [11, 36]. In [19, 20], a system of
diffusions on the half-line is studied in which each particle undergoes a propor-
tional jump towards zero whenever any of the particles hits the absorbing bound-
ary at zero. The purpose of the model is to describe the self-excitatory behaviour
of a large collection of neurons. For small values of the feedback parameter, ex-
istence and uniqueness theorems hold for the limiting system. It is shown in [9],
however, that for large values of the feedback parameter the limiting system must
blow-up (in the sense that no continuous solutions exist) and a complete existence
and uniqueness theory in this case remains a challenge.

The topology we will use for establishing tightness of the sequence of laws
of (νN,W)N≥1 is the product topology (DS ′,M1) × (CR,U), where (DS ′,M1)

is the M1 topological space of distribution-valued càdlàgprocesses on [0, T ], in-
troduced in [40], and (CR,U) is the space of real-valued continuous functions
on [0, T ] with the topology of uniform convergence. (Throughout, S denotes
the space of rapidly decreasing functions and S ′ the space of tempered distri-
butions.) It will not be necessary to explain the full details of the construction of
(DS ′,M1), as the proof Theorem 1.1 uses only Theorem 3.2 and Proposition 2.7
of [40], together with facts about the classical M1 topology on DR. The M1 topol-
ogy is helpful because monotone real-valued processes are automatically tight in
(DR,M1), a fact which has been exploited in many other applications (see [40]
for references). In our infinite-dimensional setting, the decomposition trick in [40],
Proposition 4.2, enables us to exploit the monotonicity of the loss process in prov-
ing tightness of the empirical process. Tightness on the product space implies the
existence of subsequential limit points, whereby we recover the following.

THEOREM 1.1 (Existence). Let (ν,W) realise a limiting law of the sequence
(νN,W)N≥1. Then ν is a continuous process taking values in the sub-probability
measures and satisfies the regularity conditions of Assumption 2.3 and the limit
SPDE:

νt (φ) = ν0(φ) +
∫ t

0
νs

(
μ(s, ·,Ls)∂xφ

)
ds + 1

2

∫ t

0
νs

(
σ 2(s, ·)∂xxφ

)
ds

+
∫ t

0
νs

(
σ(s, ·)ρ(s,Ls)∂xφ

)
dWs with Lt = 1 − νt (1(0,∞)),
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L−1(1/5), L−1(2/5), L−1(3/5), L−1(4/5)

ρ(t, �) =
⎧⎨
⎩

0, if � ∈ [
0, 1

5

)∪ [2
5 , 3

5

)∪ [4
5 ,1

]
,

9
10 , if � ∈ [1

5 , 2
5

)∪ [3
5 , 4

5

)
.

FIG. 2. Heat plot for the solution, ν, of the limit SPDE for a fixed sample path of W . Time is
plotted on the horizontal axis, space on the vertical axis and the value of a pixel represents the
(scaled) intensity of ν at that space-time point (blue for level zero increasing to dark red for maximal
value). The initial condition is a step function, μ = 0, σ = 1 and ρ is given above. Markers are
added to show the times at which the loss process, L, reaches levels 1/5, 2/5, 3/5 and 4/5. Notice
the corresponding three periods of smooth heat flow between the two periods of highly correlated
motion. (Figure produced using the algorithm outlined in Section 10.)

for every t ∈ [0, T ] and φ ∈ Ctest := {φ ∈ S : φ(0) = 0}, with probability 1.
Furthermore, if the limit point is attained along the subsequence (νNk ,W)k≥1,
then (LNk ,W)k≥1 converges in law to (L,W) on the product space (DR,M1) ×
(CR,U).

The limit SPDE is a nonlinear heat equation with stochastic transport term
driven by the systemic Brownian motion (see Figure 2 for an example with an
exaggerated correlation change), and the space of test functions, Ctest, encodes the
Dirichlet boundary conditions. In the limit, the idiosyncratic noise averages-out to
produce the diffusive evolution equation. The intuition for this effect is explained
easily in Section 3, however, a full proof of Theorem 1.1 requires more technical
details and is given in Section 5. Several estimates involving purely probabilistic
arguments are presented in Section 4, where a key result is Proposition 4.6 which
shows (in an asymptotic sense) that over any nonzero time interval the system must
lose a nonzero proportion of mass, and hence any limiting loss process is strictly
increasing.

With Theorem 1.1 established, demonstrating the full weak convergence of
(νN,W)N≥1 is a matter of proving uniqueness of solutions to the limit SPDE.
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THEOREM 1.2 (Uniqueness/Law of large numbers). Let ν0 satisfy Assump-
tion 2.1. Suppose that (ν,W) realises a limiting law of (νN,W)N≥1 and that ν̃

satisfies Assumption 2.3. If ν and ν̃ solve the limit SPDE in Theorem 1.1 with
respect to W and ν0, then with probability 1

νt (S) = ν̃t (S) for every t ∈ [0, t] and Borel measurable S ⊆ R.

Hence, there exists a unique law of a solution to the limit SPDE on (DS ′,M1) ×
(CR,U) and (νN,W)N≥1 converges weakly to this law. Furthermore, if (ν,W)

realises the unique law, then (LN,W)N≥1 converges in law to (L,W) on
(DR,M1) × (CR,U), where Lt = 1 − νt (0,∞).

REMARK 1.3 (Strong solutions). Theorem 1.2 shows that all weak solutions
realise limiting laws, and amongst limiting laws we have pathwise uniqueness.
Following [33], Corollary 5.3.23, we deduce that strong solutions exist on a suffi-
ciently rich probability space, whereby ν (and hence L) is adapted to the filtration
generated by W .

REMARK 1.4 (Density). In Corollary 7.4, we show that ν has a density pro-
cess Vt ∈ L2(0,∞) such that νt (φ) = ∫∞

0 φ(x)Vt (x) dx for all φ ∈ L2(0,∞) and
t ∈ [0, T ]. It is then instructive to write the limit SPDE formally as

Vt(x) = V0(x) −
∫ t

0
∂x

(
μ(s, ·,Ls)Vs(·))ds + 1

2

∫ t

0
∂xx

(
σ 2(s, ·)Vs(·))ds

−
∫ t

0
ρ(s,Ls)∂x

(
σ(s, ·)Vs(·))dWs with Vt(0) = 0.

To prove Theorem 1.2 (Section 7), we use the kernel smoothing method from
[8], which is a technique for mollifying potentially exotic solutions to the limit
SPDE in order to work with smooth tractable objects, at the expense of a small
approximation error. The technique was used on the whole space in [37, 38]. In
[8], the approximation error is controlled in the space L2(0,∞) and there the key
quantity to control is the second moment of the mass near the origin: Eνt (0, ε)2,
for a candidate solution ν. This approach succeeds because the quantity can be
written in terms of the law of a two-dimensional Brownian motion in a wedge, for
which explicit formulae are available. In that case, the kernel smoothing method
can be used to give a precise description of the regularity of the solution [39].
As the particle interactions in our model are more complicated, however, these
explicit formula are no longer available. Although we are able to show that the
unique solution to the limit SPDE has a density in L2 (Corollary 7.4), which is an
auxiliary result towards Theorem 1.2, that method cannot be used to fully establish
uniqueness as it relies on a crude upper bound for ν which neglects the effect of
the absorbing boundary (Remark 7.5). Our solution to this problem is to adapt
the kernel smoothing method to the dual of the first Sobolev space, which then
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only requires us to control the first moment Eνt (0, ε) (Section 6). This is an easier
quantity to estimate as only individual particles need to be studied and not pairs of
particles, hence we do not need to consider the complicated correlation between
particles (see Propositions 4.4 and 5.6).

We must also deal with discontinuities in the coefficients of the limit SPDE and
here the strict monotonicity of the limiting loss processes is again important. Our
strategy is to prove uniqueness up to the first time the level of the loss reaches a
discontinuity point of the coefficients, whereby continuity allows us to propagate
the argument onto the next such time interval. With a strictly increasing loss pro-
cess and only finitely many discontinuities, this argument terminates after finitely
many iterations, whereby we have uniqueness on the whole time horizon [0, T ].

REMARK 1.5 (Pathological ρ). We cannot choose ρ arbitrarily and expect
Theorem 1.2 to hold. As an example, let μ = 0, σ = 1 and

ρ(t, �) =
{
q−1, if � = kq−n for some prime q,n ∈ N and 1 ≤ k ≤ qn − 1,

0, otherwise.

For N = qn, LN is supported on {kq−n}0≤k≤qn , hence νN behaves as the basic
constant correlation system with ρ = q−1, which we denote ν|ρ=q−1 . Therefore,

(νqn
)n≥1 converges weakly to ν|ρ=q−1 as n → ∞, hence there is a distinct limit

point for every prime, so weak convergence fails for this example.

In Section 9, we recast our results as a stochastic McKean–Vlasov problem
(with randomness from W ) and this shows that ν can be written as the conditional
law of a single tagged particle.

THEOREM 1.6 (Stochastic McKean–Vlasov problem). Let (ν,W) be a strong
solution to the limit SPDE (Remark 1.3). For any independent Brownian motion,
W⊥, there exists a continuous real-valued process, X, satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt = X0 +
∫ t

0
μ(s,Xs,Ls) ds +

∫ t

0
σ(s,Xs)ρ(s,Ls) dWs

+
∫ t

0
σ(s,Xs)

(
1 − ρ(s,Ls)

2) 1
2 dW⊥

s ,

τ = inf{t > 0 : Xt ≤ 0},
νt (φ) = E

[
φ(Xt)1t<τ |W ]

,

Lt = P(τ ≤ t |W).

(Here, X0 has law ν0 and is independent of all other random variables.) Further-
more, the law of (X,W) is unique.

Returning to the question of applying our model, regarding a portfolio credit
derivative as an option on the loss process, L, with some payoff function, � :
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DR → R, the main practical question is how to accurately estimate E�(L). This
comes in two parts: we must first generate an approximation to L (through ν) to
a given level of precision for a fixed Brownian trajectory and then we must com-
bine such estimates into a random sample. In Section 10, we give an outline of a
discrete-time algorithm for approximating the system and some potential variance
reduction techniques. We leave the tasks of checking the benefits and correctness
of these methods as open problems. A number of potential modifications to the
model are also stated, along with their corresponding mathematical challenges.

Overview. In Section 2, we state the main technical assumptions on the model
parameters and review their purpose. In Section 3, we derive the evolution equa-
tion satisfied by the empirical measure of the finite system, which gives a heuristic
explanation for arriving at the limit SPDE in Theorem 1.1. In Section 4, several
probabilistic estimates are derived for the finite system and these are applied in
Section 5 to give a proof of Theorem 1.1. In Section 6, we describe the kernel
smoothing method, which is the main tool for the proof of Theorem 1.2 in Sec-
tion 7. In Section 8, several technical lemmas are presented which are used to in
Section 7, but which are deferred for readability. In Section 9, we use our results
to give a short proof of Theorem 1.6. In Section 10, we outline an algorithm for
simulating the solution to the limit SPDE and discuss open problems relating to
this and to potential model extensions.

2. Notation and assumptions. The purpose of this section is to lay out the
technical definitions omitted in the introduction and to explain their purpose.

ASSUMPTION 2.1 (Coefficient assumptions). Let μ : [0, T ]×R×[0,1] →R,
σ : [0, T ]×R→ [0,∞) and ρ : [0, T ]× [0,1] → [0,1) be the coefficients in (1.3)
and ν0 be the common law of the initial values of the distance-to-default processes
introduced above (1.1). We assume that we have a sufficient large constant, C ∈
(1,∞), such that all the following hold:

(i) (Initial condition.) The probability measure ν0 is supported on (0,∞), has
a density V0 ∈ L2(0,∞) and satisfies

ν0(λ,∞) = o
(
exp{−αλ}) as λ → +∞

for every α > 0. [Note: V0 ∈ L2(0,∞) implies ν0(0, ε) = O(ε1/2) = o(1) as
ε → 0.]

(ii) (Spatial regularity.) For all fixed t ∈ [0, T ] and � ∈ [0,1], μ(t, ·, �), σ (t,

·) ∈ C2(R) with ∣∣∂n
x μ(t, x, �)

∣∣, ∣∣∂n
x σ (t, x)

∣∣ ≤ C

for all t ∈ [0, T ], x ∈ R, � ∈ [0,1] and n = 0,1,2.
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(iii) (Nondegeneracy.) For all t ∈ [0, T ], x ∈ R, � ∈ [0,1]
σ(t, x) ≥ C−1 > 0, 0 ≤ ρ(t, �) ≤ 1 − C−1 < 1.

(iv) (Piecewise Lipschitz in loss.) There exists 0 = θ0 < θ1 < · · · < θk = 1 such
that ∣∣μ(t, x, �) − μ(t, x, �̄)

∣∣, ∣∣ρ(t, �) − ρ(t, �̄)
∣∣ ≤ C|� − �̄|,

whenever t ∈ [0, T ], x ∈ R and both �, �̄ ∈ [θi−1, θi) for some i ∈ {1,2, . . . , k}.
(v) (Integral constraint.) sups∈[0,T ]

∫∞
0 |∂tσ (s, y)|dy < ∞.

REMARK 2.2 (Xi,N well-defined). To see that, we can find {Xi,N }1≤i≤N sat-
isfying (1.3) notice that initially L = 0, so we can find N diffusions satisfying
(1.3) up to the first time one of the diffusions hits the origin [i.e., with coeffi-
cients of the form g(t, x,0)]—notice that the coefficients are globally Lipschitz
by (ii) of Assumption 2.1, so standard diffusion theory applies. At this stopping
time LN = 1/N , and so the process can be restarted as a diffusion with coeffi-
cients g(t, x,1/N). This gives a solution up to the first time two particles have hit
the origin. Repeating this argument gives the construction of {Xi,N }1≤i≤N .

Condition (i) ensures that limiting realisations of the system satisfy the regular-
ity conditions in Assumption 2.3, as required for Theorem 1.1. The tail assumption
and boundary behaviour of ν0 are used in Propositions 4.4 and 4.5 to show that νN

inherits the corresponding properties at times t > 0, and this is transferred to limit
points by Proposition 5.6.

The boundedness assumption on the coefficients, given by the case n = 0 in
condition (ii), is used many times throughout this paper. The cases n = 1 and 2 are
used in Lemmas 4.1 and 4.2 to relate the law of X1,N to that of a standard Brownian
motion, and in Lemmas 8.1 and 8.2 to interchange coefficients and measures in the
proof of Theorem 1.2.

Condition (iii) implies that there is always a diffusive effect acting on the sys-
tem, and this ensures that the limiting system does not become degenerate. If σ = 0
or ρ = 1, then the particles are completely dependent and move according to a drift
term given by μ and W . The assumption that ρ is bounded away from 1 is used
directly in the proof of Theorem 1.2 in (7.2) and (7.7).

Condition (iv) is the main motivating assumption, which we have discussed at
length in Section 1.

Condition (v) is purely a technical assumption to ensure that the drift coefficient,
D, in Lemma 4.1 is uniformly bounded by a deterministic constant.

Finally, we will remark on the specific form of σ = σ(t, x) and ρ = ρ(t, �).
From (1.3) we can write the dynamics of a single particle as

dX
i,N
t = μ

(
t,X

i,N
t ,LN

t

)
dt + σ

(
t,X

i,N
t

)
dBi

t ,
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where Bi is a Brownian motion. Although the {Bi}i are coupled through LN , this
representation allows us to relate the law of an individual particle to a standard
Brownian motion as in Lemmas 4.1 and 4.2, since μ is bounded and σ is inde-
pendent of LN . A second advantage of the taking σ and ρ in this form is that the
pairwise correlation between particles is purely a function of ρ(t,LN

t ), and so is
the same for all pairs. This is explicitly made use of in the construction of the time-
change defined in (4.8), and there it is again important that the correlation function
is bounded strictly away from 1, so that the system can be compared to a standard
multi-dimensional Brownian motion.

Below are the constraints we place on solutions to the limit SPDE in Theo-
rem 1.2 to ensure that we have uniqueness. As Theorem 1.1 indicates, these condi-
tions are natural in the sense that all limit points of the finite system satisfy them.

ASSUMPTION 2.3 (Regularity conditions). Let ν be a càdlàg process taking
values in the space of sub-probability measures on R. The regularity conditions on
ν are:

(i) (Loss function.) The process defined by Lt := 1 − νt (0,∞) is nondecreasing
at all times and is strictly increasing when Lt < 1.

(ii) (Support.) For every t ∈ [0, T ], νt is supported on [0,∞).
(iii) (Exponential tails.) For every α > 0,

E
∫ T

0
νt (λ,+∞) dt = o

(
e−αλ) as λ → ∞.

(iv) (Boundary decay.) There exists β > 0 such that

E
∫ T

0
νt (0, ε) dt = O

(
ε1+β) as ε → 0.

(v) (Spatial concentration.) There exists C > 0 and δ > 0 such that

E
∫ T

0

∣∣νt (a, b)
∣∣2 dt ≤ C|b − a|δ for all a < b.

It is essential that limit points satisfy condition (i) in order to apply the contin-
uous mapping theorem to recover the limit SPDE for limit points (Corollary 5.7).
There, strict monotonicity ensures that there are only finitely many t such that
Lt = θi for some i, and hence that this set of times is negligible in the limit. Know-
ing that L is monotone also allows us to split [0, T ] into consecutive intervals such
that in the ith interval Lt ∈ [θi, θi+1), and this argument is used in the uniqueness
proof in Section 7 (Case 2).

Condition (ii) is natural since νN is supported on [0,∞) by construction. How-
ever, it is also convenient to take our test functions, Ctest, to be supported on R,
hence (ii) is needed to rule out pathological solutions that have support on the
negative half-line and that would otherwise break the uniqueness claim.
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Condition (iii) is used several times throughout Section 8 to check various inte-
grability requirements. It is also used in Lemma 8.8 to relate ν and L via the H−1

norm.
Condition (iv) is the key boundary estimate discussed in Section 1. Its main use

is in Lemma 7.6.
Condition (v) guarantees that solutions cannot become too concentrated in spa-

tial locations. This is used to interchange coefficients and measures in Lemmas 8.1
and 8.2.

3. Dynamics of the finite particle system. This section introduces the em-
pirical process approximation to the limit SPDE from Theorem 1.1 and explains
the intuition behind the convergence of (νN)N≥1. Throughout, we will drop the
dependence of the coefficients on the time, space and loss variables and use the
following shorthand when it is safe to do so.

REMARK 3.1 (Shorthand notation). For fixed N , when there is no confusion,
we may use the functional notation:

μt = μ
(
t, ·,LN

t

)
, σt = σ(t, ·), ρt = ρ

(
t,LN

t

)
.

PROPOSITION 3.2 (Finite evolution equation). For every N ≥ 1, t ∈ [0, T ]
and φ ∈ Ctest

νN
t (φ) = νN

0 (φ) +
∫ t

0
νN
s (μs∂xφ)ds + 1

2

∫ t

0
νN
s

(
σ 2

s ∂xxφ
)
ds

+
∫ t

0
νN
s (σsρs∂xφ) dWs + IN

t (φ),

where we have the idiosyncratic driver

IN
t (φ) := 1

N

N∑
i=1

∫ t

0
σ
(
s,Xi,N

s

)(
1 − ρ

(
s,LN

s

)2) 1
2 ∂xφ

(
Xi,N

s

)
1s<τ i,N dWi

s .

PROOF. Apply Itô’s formula to φ(Xi,N) to obtain

φ
(
X

i,N

t∧τ i,N

) = φ
(
X

i,N
0

)+
∫ t

0
(μs∂xφ)

(
Xi,N

s

)
1s<τ i,N ds

+ 1

2

∫ t

0

(
σ 2

s ∂xxφ
)(

Xi,N
s

)
1s<τ i,N ds

+
∫ t

0
(σsρs∂xφ)

(
Xi,N

s

)
1s<τ i,N dWs

+
∫ t

0

(
σs

(
1 − ρ2

s

) 1
2 ∂xφ

)(
Xi,N

s

)
1s<τ i,N dWi

s .
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If φ ∈ Ctest, then

(3.1) φ
(
X

i,N

t∧τ i,N

) = φ
(
X

i,N
t

)
1t<τ i,N .

Substituting this expression into the left-hand side above, summing over i ∈
{1,2, . . . ,N} and multiplying by N−1 gives the result. �

REMARK 3.3. We need to ensure that our test functions satisfy φ(0) = 0 so
that equation (3.1) is valid.

Since the idiosyncratic noise, IN , is a sum of martingales with zero covariation,
the process converges to zero in the limit as N → ∞. This explains why we arrive
at the limit SPDE in Theorem 1.1.

PROPOSITION 3.4 (Vanishing idiosyncratic noise). For every φ ∈ Ctest,

E sup
t∈[0,T ]

∣∣IN
t (φ)

∣∣2 = ‖∂xφ‖2∞ · O(
N−1) as N → ∞.

PROOF. Since σ and ∂xφ are bounded, the result follows from Doob’s martin-
gale inequality and the fact that

[
IN· (φ)

]
t = 1

N2

N∑
i=1

∫ t

0
σ
(
s,Xi,N

s

)2(1 − ρ
(
s,LN

s

)2)
∂xφ

(
Xi,N

s

)2
ds.

�

The whole space process. In the proceeding sections, it will be useful to work
with the process defined by

(3.2) ν̄N
t := 1

N

N∑
i=1

δ
X

i,N
t

,

which is a probability-measure valued processes on the whole of R. Clearly, it is
the case that

(3.3) νN
t (S) ≤ ν̄N

t (S) for all N ≥ 1, t ∈ [0, T ] and S ⊆ R.

Since ν̄N is not affected by the absorbing boundary, from the work in Proposi-
tion 3.2 it follows that ν̄N satisfies the same evolution equation as νN , but on the
whole space. This is encoded through the test functions.

PROPOSITION 3.5 (Evolution of ν̄N ). For every N ≥ 1, t ∈ [0, T ] and φ ∈ S ,

ν̄N
t (φ) = νN

0 (φ) +
∫ t

0
ν̄N
s (μs∂xφ)ds + 1

2

∫ t

0
ν̄N
s

(
σ 2

s ∂xxφ
)
ds

+
∫ t

0
ν̄N
s (σsρs∂xφ) dWs + Ī N

t (φ),
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where

Ī N
t (φ) := 1

N

N∑
i=1

∫ t

0
σ
(
s,Xi,N

s

)(
1 − ρ

(
s,LN

s

)2) 1
2 ∂xφ

(
Xi,N

s

)
dWi

s .

4. Probabilistic estimates. Here, we collect the main probabilistic estimates
used in later proofs. The reader may wish to skip this section and use it only as
a reference. We begin by noting the following simple result, which is just a con-
sequence of the fact that {Xi,N }i are identically distributed: for any measurable
S ⊆R, N ≥ 1 and t ∈ [0, T ],

(4.1) EνN
t (S) = 1

N

N∑
i=1

E[1
X

i,N
t ∈S;t<τ i,N ] = P

(
X

1,N
t ∈ S; t < τ 1,N )

.

Under P, X1,N is a diffusion and with Lemmas 4.1 and 4.2 we are able to estimate
(4.1) for relevant choices of S by relating the law of X1,N to that of standard
Brownian motion. Specifically, in Corollary 4.3 and Propositions 4.4 and 4.5 we
show that νN satisfies the corresponding estimates to those in Assumption 2.3(iii),
(iv) and (v), which is of direct use in Proposition 5.6 when we take a limit as
N → ∞. In Propositions 4.6 and 4.7, we prove two estimates for which (4.1) is
not helpful. These results require us to express the quantities of interest in terms of
independent particles to show that certain events concerning the increments in the
loss process are asymptotically negligible.

LEMMA 4.1 (Scale transformation). Define ζ : [0, T ] ×R→R by

ζ(t, x) :=
∫ x

0

dy

σ(t, y)

and Zt := ζ(t,X
1,N
t ). Then sgn(Zt ) = sgn(X

1,N
t ) and dZt = Dt dt + dBt where

B is the Brownian motion

Bt =
∫ t

0
ρ
(
s,LN

s

)
dWs +

∫ t

0

(
1 − ρ

(
s,LN

s

)2) 1
2 dW 1

s

and the drift coefficient, D, is given by

Dt =
(

μ

σ
− ∂xσ

)(
t,X

1,N
t ,LN

t

)−
∫ X

1,N
t

0

∂tσ

σ 2 (t, y) dy,

which is uniformly bounded (in N and t).

PROOF. Straightforward application of Itô’s formula coupled with Assump-
tion 2.1. �
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LEMMA 4.2 (Removing drift). For every δ ∈ (0,1), there exists cδ > 0 such
that

P
(
X

1,N
t ∈ S; t < τ 1,N ) ≤ cδFt

(
ζ(t, S)

)δ for every measurable S ⊆ R,

where Ft is the marginal law of a killed Brownian motion at time t with initial
distribution ν0 ◦ ζ(0, ·)−1 and ζ is as defined in Lemma 4.1. Likewise, if F̄ is the
marginal law of the Brownian motion without killing at the origin and with the
same initial distribution:

P
(
X

1,N
t ∈ S

) ≤ cδF̄t

(
ζ(t, S)

)δ for every measurable S ⊆ R.

PROOF. Let Z be as in Lemma 4.1, then τ 1,N is also the first hitting time, τZ ,
of 0 by Z so

(4.2) P
(
X

1,N
t ∈ S; t < τ 1,N ) = P

(
Zt ∈ ζ(t, S); t < τZ).

Apply Girsanov’s theorem with the change of measure

dQ
dP

∣∣∣∣
Ft

= exp
{
−
∫ t

0
Ds dBs − 1

2

∫ t

0
D2

s ds

}
=: �t,

then under Q, Z is a standard Brownian motion with Z0 = ζ(0,X
1,N
0 ), and, for

any E ∈ Ft and p−1 + q−1 = 1, Hölder’s inequality gives

P(E) = EQ
[
�−1

t 1E

] ≤ EQ
[
�

−p
t

] 1
p Q(E)

1
q = EP

[
�

1−p
t

] 1
p Q(E)

1
q ≤ CqQ(E)

1
q ,

for some constant Cq > 0 as D is uniformly bounded. Applying this bound to (4.2)
gives

P
(
X

1,N
t ∈ S; t < τ 1,N ) ≤ CqQ

(
Zt ∈ ζ(t, S); t < τZ) 1

q = CqFt

(
ζ(t, S)

) 1
q .

The result is then complete by taking δ = q−1. The case involving F̄ follows by
dropping the dependence on {t < τ 1,N }. �

The following result is a simple consequence of Lemma 4.2 and controls the
expected mass concentrated in an interval.

COROLLARY 4.3 (Spatial concentration). For every δ ∈ (0,1), there exists
cδ > 0 such that

E
∫ T

0
νN
t (a, b) dt ≤ E

∫ T

0
ν̄N
t (a, b) dt ≤ cδ(b − a)δ,

for all a < b and N ≥ 1.
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PROOF. Notice that ζ(t, (a, b)) ⊆ [ζ(t, a), ζ(t, b)], so with F̄ as in Lemma 4.2

F̄t

(
ζ
(
t, (a, b)

)) ≤
∫ ∞

0

∫ ζ(t,b)

ζ(t,a)

1√
2πt

exp
{
−(x − ζ(0, x0))

2

2t

}
dxν0(dx0)

≤ (2πt)−1/2(ζ(t, b) − ζ(t, a)
)

= (2πt)−1/2
∫ b

a

dy

σ(t, y)
≤ (2πt)−1/2 · C · (b − a),

and then the result is immediate from Lemma 4.2 since t 	→ t−δ/2 is integrable at
the origin. �

Boundary estimate. A sharper application of Lemma 4.2 gives control of the
concentration of mass near the origin. Notice the stronger rate of convergence due
to the absorption at the boundary.

PROPOSITION 4.4 (Boundary estimate). There exist β > 0 and δ ∈ (0,1) such
that as ε → 0

EνN
t (0, ε) = t−

δ
2 O

(
ε1+β) and E

∫ T

0
νN
t (0, ε) dt = O

(
ε1+β),

where the O’s are uniform in t ∈ [0, T ] and N ≥ 1.

PROOF. Let F be as in Lemma 4.2. The heat kernel for a Brownian motion
absorbed at the origin is

(4.3) Gt(x0, x) = (2πt)−
1
2

[
exp

{
−(x − x0)

2

2t

}
− exp

{
−(x + x0)

2

2t

}]
,

for x0, x, t > 0. By using the bounds Gt(x0, x) ≤ (2πt)−1/2 and

Gt(x0, x) ≤ 2x0x√
2πt3

exp
{
−(x − x0)

2

2t

}
,

which follows from the simple estimate 1 − e−z ≤ z, for an arbitrary function
f = f (ε) we have, writing π0 := ν0 ◦ ζ(0, ·)−1, that

Ft

(
(0, ε)

) ≤ c1t
− 1

2

∫ ε

0

∫ ε+f (ε)

0
π0(dx0) dx

+ c1t
− 3

2

∫ ε

0

∫ ∞
ε+f (ε)

xx0 exp
{
−(x − x0)

2

2t

}
π0(dx0) dx

≤ c1t
− 1

2 επ0
(
0, ε + f (ε)

)
+ c1t

− 3
2 exp

{
−f (ε)2

2t

}
·
∫ ε

0
x dx ·

∫ ∞
0

x0π0(dx0),
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where c1 > 0 is a numerical constant. By Assumption 2.1(i), we have a constant
c2 > 0 such that

Ft

(
(0, ε)

) ≤ c1t
− 1

2 εν0
(
0, c2

(
ε + f (ε)

))+ c2t
− 3

2 ε2 exp
{−f (ε)2/2t

}
.

Since the function

u 	→ u−α exp{−β/u} for u > 0, α,β > 0

is maximised at u = β/α, we have the bound

Ft

(
(0, ε)

) ≤ c3t
− 1

2 ε
{
ν0
(
0, c2

(
ε + f (ε)

))+ εf (ε)−2}.
Taking f (ε) = ε1/3 gives

Ft

(
(0, ε)

) = t−
1
2 O

(
ε1+ 1

6
)

since ν0(0, x) = O(x1/2) as x → 0 [recall Assumption 2.1(i)]. The result is com-
plete by applying Lemma 4.2 and noting that ζ(t, (0, ε)) ⊆ [0, ζ(t, ε)] ⊆ [0,Cε].

�

Tail estimate. A similar analysis applies for the decay of the mass that escapes
to infinity.

PROPOSITION 4.5 (Tail estimate). For every α > 0, as λ → +∞
EνN

t (λ,∞) = o
(
exp{−αλ}) uniformly in N ≥ 1 and t ∈ [0, T ].

PROOF. Working with F̄ from Lemma 4.2 and splitting the range of integra-
tion at λ/2 gives

F̄t

(
(λ,∞)

) =
∫ ∞

0
P(Bt > λ|B0 = x)π0(dx)

≤ c1t
− 1

2 exp
{
−λ2

8t

}
+ π0(λ/2,∞),

where π0 = ν0 ◦ ζ(0, ·)−1. By the conditions of Assumption 2.1, π0(λ/2,∞) =
o(e−αλ), so

F̄t

(
(λ,∞)

) ≤ c1t
− 1

2 e−2λ2/t + o
(
e−αλ) ≤ c1

{
t−

1
2 e−λ2/t}e−λ2/T + o

(
e−αλ),

as λ → ∞, for every α > 0. The result follows since t 	→ t− 1
2 e−λ2/t is uni-

formly bounded for λ ≥ 1, and using Lemma 4.2 with the fact that ζ(t, (λ,∞)) ⊆
[ζ(t, λ),∞) ⊆ [C−1λ,∞). �
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Loss increment estimate. So far the probabilistic estimates we have seen are
consequences of the behaviour of the first moment of the diffusion processes. The
next two estimates require knowledge of the correlation between particles and
so are harder to prove. Heuristically, the first result shows that over any nonzero
time interval a nonzero proportion of particles hit the absorbing boundary. Later
in Proposition 5.6 this result will directly imply that limiting loss functions are
strictly increasing whenever there is a nonzero proportion of mass remaining in
the system.

PROPOSITION 4.6 (Asymptotic loss increment). For all t ∈ [0, T ), h > 0
(such that t + h ∈ [0, T ]) and r < 1

lim
δ→0

lim sup
N→∞

P
(
LN

t+h − LN
t < δ,LN

t < r
) = 0.

PROOF. Begin by noticing that, for any a, b > 0, if LN
t < r and νN

t (a,∞) ≤ b,
then νN

t (0, a) > 1 − r − b. By applying Markov’s inequality and Proposition 4.5,
we get the bound

P
(
LN

t+h − LN
t < δ,LN

t < r
) ≤ P

(
LN

t+h − LN
t < δ, νN

t (0, a) > 1 − r − b
)

+ P
(
νN
t (a,∞) > b

)
≤ P

(
LN

t+h − LN
t < δ, νN

t (0, a) > 1 − r − b
)

+ o
(
e−a).

Therefore, fix b = 1 − r − c0, for c0 = 1
2(1 − r), to arrive at

P
(
LN

t+h − LN
t < δ,LN

t < r
)

(4.4)
≤ P

(
LN

t+h − LN
t < δ, νN

t (0, a) > c0
)+ o

(
e−a).

We now concentrate on the first term in the right-hand side above with N , t and
a fixed. Let I denote the random set of indices

I := {
1 ≤ i ≤ N : Xi,N

t < a and τ i,N > t
}
.

If νN
t (0, a) > c0, then #I ≥ Nc0, so by conditioning on I (which is Ft -

measurable)

P
(
LN

t+h − LN
t ≤ δ, νN

t (0, a) > c0
)

(4.5)
≤ ∑

I0:#I0≥Nc0

P
(
LN

t+h − LN
t < δ|I = I0

)
P(I = I0)

and

(4.6) P
(
LN

t+h − LN
t < δ|I = I0

) ≤ P
(
#
{
i ∈ I0 : inf

u≤h
X

i,N
t+u ≤ 0

}
< Nδ|I = I0

)
.
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To estimate the right-hand side of (4.6) take ζ as in Lemma 4.1 and define
Zi

t := ζ(t,X
i,N
t ) for 1 ≤ i ≤ N . By Assumption 2.1, there exists a constant c1 > 0

such that |Di
t | ≤ c1 for all t . Returning to (4.6), since ζ(t, x) ≤ 0 if and only if

x ≤ 0, we have

P
(
LN

t+h − LN
t < δ|I = I0

) ≤ P
(
#
{
i ∈ I0 : inf

u≤h
Zi

t+u ≤ 0
}

< Nδ|I = I0

)
.

From the bound Zi
t+u ≤ Zi

t + c1h + Y i
u, for 0 ≤ u ≤ h, where

Y i
u := Iu + J i

u :=
∫ t+u

t
ρ
(
s,LN

s

)
dWs +

∫ t+u

t

√
1 − ρ

(
s,LN

s

)2
dWi

s ,

we obtain

P
(
LN

t+h − LN
t < δ|I = I0

)
≤ P

(
#
{
i ∈ I0 : inf

u≤h
Y i

u ≤ −Zi
t − c1h

}
< Nδ|I = I0

)
.

From Assumption 2.1 |Zi
t | = O(|Xi,N

t |), so we have c2 > 0 such that

P
(
LN

t+h − LN
t < δ|I = I0

)
(4.7)

≤ P
(
#
{
i ∈ I0 : inf

u≤h
Y i

u ≤ −c2a − c2

}
< Nδ|I = I0

)
.

Our next step is to remove the dependence on the process I in (4.7). To do this,
we split the probability on the event {supu≤h |Iu| ≥ c2a} to get

P
(
LN

t+h − LN
t < δ|I = I0

)
≤ P

(
#
{
i ∈ I0 : inf

u≤h
J i

u ≤ −2c2a − c2

}
< Nδ|I = I0

)

+ P
(

sup
u≤h

|Iu| ≥ c2a|I = I0

)
.

Since I is a martingale, this final probability is o(1) as a → ∞, by Doob’s maximal
inequality.

We have reduced the problem far enough to apply a time-change in order to
extract the independence between the particles. To this end, conditioned on the
event I = I0, define

(4.8) v(s) := inf
{
u > 0 :

∫ t+u

t

(
1 − ρ

(
u0,L

N
u0

)2)
du0 = s

}
,

then B , where Bi := J i
v(·), is an R

#I0 -valued standard Brownian motion, therefore,

P
(
LN

t+h − LN
t < δ|I = I0

)
≤ P

(
#
{
i ∈ I0 : inf

v(u)∈[0,h]B
i
u ≤ −2c2a − c2

}
< Nδ|I = I0

)
+ o(1).
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By Assumption 2.1, c3u ≤ |v(u)|, hence

P
(
LN

t+h − LN
t < δ|I = I0

)
≤ P

(
#
{
i ∈ I0 : inf

u∈[0,h/c3]
Bi

u ≤ −2c2a − c2

}
< Nδ|I = I0

)
+ o(1)

≤ P
(
#
{
i ∈ I0 : Bi

h/c3
≤ −2c2a − c2

}
< Nδ|I = I0

)+ o(1)

≤ P
(

1

N

∑
i∈I0

1ξ i≤−c4(a+1) < δ

)
+ o(1),

where {ξ i}1≤i≤N is a collection of i.i.d. standard normal random variables and
c3, c4 > 0 are further numerical constants. By symmetry, this final probability de-
pends only on #I0, hence

P
(
LN

t+h − LN
t < δ|I = I0

) ≤ P

(
1

N

#I0∑
i=1

1ξ i≤−c4(a+1) < δ

)
+ o(1).

Returning to (4.5), we now have

P
(
LN

t+h − LN
t < δ, νN

t (0, a) > c0
)

≤ ∑
S0:#I0≥Nc0

P

(
1

N

#I0∑
i=1

1ξ i≤−c4(a+1) < δ

)
P(I = I0) + o(1)

≤ P

(
1

N

Nc0∑
i=1

1ξ i≤−c4(a+1) < δ

)
+ o(1),

so the law of large numbers gives

(4.9) lim sup
n→∞

P
(
LN

t+h − LN
t < δ,LN

t < r
) ≤ 1c0p(a)≤δ + o(1),

where p(a) := P(ξ1 ≤ −c4(a +1)) and where we have substituted back into (4.4).
This inequality holds for all a and δ, with the o(1) term denoting convergence as
a → ∞. We now choose the free parameter a to be a function of δ, specifically

a(δ) := (
2 log log(1/δ)

) 1
2 .

This guarantees that a(δ) → ∞ as δ → 0, but also

δ−1p
(
a(δ)

) ≥ 1

2
δ−1a(δ)−1e−a(δ)2/2

= 1√
2
δ−1(log(1/δ)

)−1(log log(1/δ)
)1/2 → ∞

as δ → 0, where we have used the well-known Gaussian estimate �(−x) ≥ (x−1 −
x−3)φ(x) ≥ 1

2x−1φ(x), for � and φ the c.d.f. and p.d.f. of the standard normal
distribution. Using this choice of a(δ) in (4.9) completes the result. �
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The following is a partial converse of the previous result in that it shows that the
system cannot lose a large amount of mass in a short period of time. It will be used
in Proposition 5.1 to verify a sufficient condition for the tightness of (νN,W)N≥1.

PROPOSITION 4.7. For every t ∈ [0, T ] and η > 0,

lim
δ→0

lim sup
N→∞

P
(
LN

t+δ − LN
t ≥ η

) = 0.

PROOF. With ε > 0 fixed, we have

P
(
LN

t+δ − LN
t ≥ η

)
≤ P

(
νN
t (0, ε) ≥ η/2

)+ P
(
LN

t+δ − LN
t ≥ η, νN

t (0, ε) < η/2
)

(4.10)
≤ 2η−1P

(
X

1,N
t ∈ (0, ε)

)+ P
(
LN

t+δ − LN
t ≥ η, νN

t (0, ε) < η/2
)

≤ P
(
LN

t+δ − LN
t ≥ η, νN

t (0, ε) < η/2
)+ o(1) as ε → 0,

where the second line uses Markov’s inequality and (4.1) and the third line uses
Proposition 4.4 for t > 0 and Assumption 2.1 (i) for t = 0. Define I to be the
random set of indices

I := {
1 ≤ i ≤ N : Xi,N

t ≥ ε
}
,

then conditioning on I gives

P
(
LN

t+δ − LN
t ≥ η, νN

t (0, ε) < η/2
)

(4.11)
≤ ∑

I0:#I0≥N(1−η/2)

P
(
LN

t+δ − LN
t ≥ η|I = I0

)
P(I = I0).

The conditional expectation in the summand can be bounded by

P
(
LN

t+δ − LN
t ≥ η|I = I0

)
≤ P

(
#
{
i ∈ I0 : inf

s∈[t,t+δ]X
i,N
s ≤ 0

}
≥ Nη

2

∣∣∣I = I0

)

≤ P
(

#
{
i ∈ I0 : inf

s∈[t,t+δ]
(
Xi,N

s − X
i,N
t

) ≤ −ε
}

≥ Nη

2

∣∣∣I = I0

)
.

With t fixed, define the process Ui
s := ζ(t + s,X

i,N
t+s − X

i,N
t ), then

P
(
LN

t+δ − LN
t ≥ η|I = I0

) ≤ P
(

#
{
i ∈ I0 : inf

s∈[0,δ]U
i
s ≤ −c5ε

}
≥ Nη

2

∣∣∣I = I0

)

for c5 > 0 a numerical constant. As for Z in Lemma 4.1, we have

dUi
s = Ei

s ds + ρ
(
t + s,LN

t+s

)
dWt+s + (

1 − ρ
(
t + s,LN

t+s

)2)1/2
dWi

t+s

=: Ei
s ds + dIs + dJ i

s ,
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where Ei
s is uniformly bounded by Assumption 2.1, therefore, we can find c6 > 0

such that

P
(
LN

t+δ − LN
t ≥ η|I = I0

)
≤ P

(
#
{
i ∈ I0 : inf

s∈[0,δ]J
i
s ≤ −c6(ε − δ − a)

}
≥ Nη

2

∣∣∣I = I0

)

+ P
(

sup
s∈[0,δ]

|Is | ≥ a|I = I0

)
.

By applying the time-change argument from (4.8) and using Markov’s and Doob’s
maximal inequality, we have

P
(
LN

t+δ − LN
t ≥ η|I = I0

)
≤ P

(
#
{
i ∈ I0 : inf

s∈[0,δ]B
i
s ≤ −c7(ε − δ − a)

}
≥ Nη

2

)
+ O

(
δa−2),

where Bi are independent standard Brownian motions, a > 0 and c7 > 0 is a nu-
merical constant.

Returning to (4.11) and noticing the the right-hand side above is maximised
when I0 = {1,2, . . . ,N}

P
(
LN

t+δ − LN
t ≥ η, νN

t (0, ε) < η/2
)

≤ P

(
1

N

N∑
i=1

1infs∈[0,δ] Bi
s≤−c7(ε−δ−a)} ≥ η/2

)
+ O

(
δa−2).

The law of large numbers and the distribution of the minimum of Brownian motion
gives

lim sup
N→∞

P
(
LN

t+δ − LN
t ≥ η, νN

t (0, ε) < η/2
)

(4.12)
≤ 1�(−c7δ−1/2(ε−δ−a))≥η/2 + O

(
δa−2),

provided ε − δ − a > 0, where � is the normal c.d.f. We now make the choice

ε(δ) = δ1/2 log(1/δ) and a(δ) = δ1/2 log log(1/δ),

which guarantees

ε(δ) → 0, δ−1/2(ε(δ) − δ − a(δ)
) → ∞ and δa(δ)−2 → 0,

as δ → 0. Hence, the result follows from (4.10), (4.11) and (4.12). �
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5. Tightness of the system and existence of solutions: Proof of Theorem 1.1.
We will now use the results from Section 4 to prove Theorem 1.1, which follows
directly from the combination of Propositions 5.5, 5.6 and 5.11. We first establish
tightness of the sequence of the laws of (νN,W)N≥1 (Proposition 5.1) using the
framework of [40]. The reader is referred to that article for the technical definitions
of the topological spaces used in this section. Once we have tightness, we can then
extract limit points of the sequence (νN,W)N≥1, and Propositions 5.3, 5.5 and 5.6
are devoted to recovering the properties of the limiting laws from the probabilistic
properties of the finite system. Finally, the limit points are shown to satisfy the
evolution equation in Theorem 1.1 via a martingale argument (Proposition 5.11)
and care needs to be taken over the discontinuities in the coefficients of the limit
SPDE (Corollary 5.7).

PROPOSITION 5.1 (Tightness). The sequence (νN)N≥1 is tight on the space
(DS ′,M1), hence (νN,W)N≥1 is tight on the space (DS ′,M1) × (CR,U), where
(CR,U) is the space of real-valued continuous paths with the topology of uniform
convergence.

REMARK 5.2. We note that a version of this result is given in [40], Theo-
rem 4.3, for the case μ = 0, σ = 1.

PROOF. The second statement follows from the first and the fact that joint
tightness is implied by marginal tightness.

By [40], Theorem 3.2, it suffices to show that (νN(φ))N≥1 is tight on (DR,M1)

for every φ ∈ S . To prove this we verify the conditions of [53], Theorem 12.12.2,
the first of which is trivial because νN is a sub-probability measure so |νN

t (φ)| ≤
‖φ‖∞. Hence, we concentrate on condition (ii), which is implied by [40], Propo-
sition 4.1, therefore, we are done if we can find a, b, c > 0 such that

(5.1) P
(
HR

(
νN
t1

(φ), νN
t2

(φ), νN
t3

(φ)
) ≥ η

) ≤ cη−a|t3 − t1|1+b,

for all N ≥ 1, η > 0 and 0 ≤ t1 < t2 < t3 ≤ T , where

HR(x1, x2, x3) := inf
λ∈(0,1)

∣∣x2 − (1 − λ)x1 − λx3
∣∣ for x1, x2, x3 ∈ R,

and if

(5.2) lim
N→∞ P

(
sup

t∈(0,δ)

∣∣νN
t (φ) − νN

0 (φ)
∣∣+ sup

t∈(T −δ,T )

∣∣νN
T (φ) − νN

t (φ)
∣∣ ≥ η

)
= 0,

for every η > 0.
With ν̄N as defined in (3.2), the decomposition in [40], Proposition 4.2, and

Markov’s inequality give

P
(
HR

(
νN
t1

(φ), νN
t2

(φ), νN
t3

(φ)
) ≥ η

)
≤ η−4E

[(∣∣ν̄N
t1

(φ) − ν̄N
t2

(φ)
∣∣+ ∣∣ν̄N

t2
(φ) − ν̄N

t3
(φ)

∣∣)4]
≤ 8η−4(E∣∣ν̄N

t1
(φ) − ν̄N

t2
(φ)

∣∣4 + E
∣∣ν̄N

t2
(φ) − ν̄N

t3
(φ)

∣∣4).
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For any t, s ∈ [0, T ], from Hölder’s inequality we obtain

E
∣∣ν̄N

t (φ) − ν̄N
s (φ)

∣∣4 ≤ 1

N

N∑
i=1

E
∣∣φ(Xi,N

t∧τ i,N

)− φ
(
X

i,N

s∧τ i,N

)∣∣4

≤ ‖φ‖4
lipE

∣∣Xi,N

t∧τ i,N − X
i,N

s∧τ i,N

∣∣4,
where ‖φ‖lip is the Lipschitz constant of φ. By Assumption 2.1 and the
Burkholder–Davis–Gundy inequality [46], Theorem IV.42.1, the final expectation
above is O(|t − s|2) uniformly in N . Therefore, we have (5.1) with a = 4 and
b = 1.

Now consider the first supremum in (5.2). By again using the decomposition
from [40], Prop. 4.2, that is νN

t (φ) = ν̄N
t (φ) − φ(0)LN

t , we have

P
(

sup
t∈(0,δ)

∣∣νN
t (φ) − νN

0 (φ)
∣∣ ≥ η

)

≤ P
(

sup
t∈(0,δ)

∣∣ν̄N
t (φ) − ν̄N

0 (φ)
∣∣ ≥ η/2

)
+ P

(∣∣φ(0)
∣∣LN

δ ≥ η/2
)
.

The first term on the right-hand side vanishes as δ → 0 by the same work as for
(5.1) and the second term vanishes by Proposition 4.7. Therefore,

P
(

sup
t∈(0,δ)

∣∣νN
t (φ) − νN

0 (φ)
∣∣ ≥ η

)
→ 0, as δ → 0,

and likewise for P(supt∈(T −δ,T ) |νN
T (φ) − νN

t (φ)| ≥ η), so we have (5.2), which
completes the proof. �

Limit points. Tightness of (νN,W)N≥1 ensures that the sequence is relatively
compact [40], Theorem 3.2, hence every subsequence of (νN,W)N≥1 has a further
subsequence which converges in law. To avoid possible confusion about multiple
distinct limit points, we will denote by (ν∗,W) any pair of processes that realises
one of these limiting laws. Using ⇒ to denote convergence in law, we have(

νNk ,W
) ⇒ (

ν∗,W
)
, on (DS ′,M1) × (CR,U),

as k → ∞, for some subsequence (Nk)k≥1. Establishing full weak convergence is
equivalent to showing that there is exactly one limiting law.

So far, we have that any limiting empirical process, ν∗, is an element of DS ′ .
The following result recovers ν∗ as a probability-measure-valued process.

PROPOSITION 5.3. Let (ν∗,W) realise a limiting law. Then ν∗
t is a sub-

probability measure supported on [0,∞) for every t ∈ [0, T ], with probability 1.

REMARK 5.4. Technically, what we will show is that, for every t , ν∗
t agrees

with a sub-probability measure on S and from now on we associate ν∗
t with this

measure.
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PROOF OF PROPOSITION 5.3. Take (νNk ,W) ⇒ (ν∗,W). Fix φ ∈ S , then
by [40], Proposition 2.7(i), νNk(φ) ⇒ ν∗(φ) on (DR,M1). Lemma 13.4.1 of [53]
gives

sup
t∈[0,T ]

∣∣νNk
t (φ)

∣∣ ⇒ sup
t∈[0,T ]

∣∣ν∗
t (φ)

∣∣, on R,

therefore, the portmanteau theorem [4], Theorem 2.1, gives

P
(

sup
t∈[0,T ]

∣∣ν∗
t (φ)

∣∣ > ‖φ‖∞
)

≤ lim inf
k→∞ P

(
sup

t∈[0,T ]
∣∣νNk

t (φ)
∣∣ > ‖φ‖∞

)
= 0,

with the final equality due to νN
t being a sub-probability measure. (The supremum

over t ensures that the following argument holds for all t simultaneously.) By a
similar analysis, we have that ν∗

t (φ) is nonnegative when φ is nonnegative and
ν∗
t (φ) = 0 when φ is supported on (−∞,0). Hence, ν∗

t is a positive linear func-
tional on S , so extends to a positive linear functional, ξt , on the space, C0, of
continuous and compactly support function on R with the uniform topology. The
Riesz representation theorem [47], Theorem 2.14, then implies that, for every t ,
there exists a regular Borel measure, ζt , such that

ξt (φ) =
∫
R

φ(x)ζt (dx) for every φ ∈ C0.

Associating ζ and ν∗ gives the result. �

Now that it is safe to regard a limit point, νNk ⇒ ν∗, as taking values in the sub-
probability measures, it makes sense to introduce the limit loss process as L∗

t :=
1 − ν∗

t (0,∞). Of course, we would like to know that LNk ⇒ L∗ on (DR,M1),
however, the function x 	→ 1 is not an element of S , so [40], Proposition 2.7,
does not allow us to deduce this fact from the continuous mapping theorem. To
remedy this, we must work slightly harder.

PROPOSITION 5.5 (Convergence of the loss process). Suppose that (νNk ,

W)k≥1 converges weakly to (ν∗,W) and that L∗
t := 1 − ν∗

t (0,∞). Then (LNk ,

W)k≥1 converges weakly to (L∗,W) on (DR,M1) × (CR,U).

PROOF. For a contradiction, suppose that the weak convergence does not
hold. Since t 	→ LN

t is increasing, LN
t ∈ [0,1] and we have Proposition 4.7, the

conditions of [53] are satisfied and so (LN,Theorem 12.12.2)N≥1 is tight on
(DR,M1), and because marginal tightness implies joint tightness, (LN,W)N≥1 is
also tight. By taking a further subsequence if needed, assume that (LNk ,W)k≥1 ⇒
(L†,W)k≥1 for some L† ∈ DR.

Notice from [53], Theorem 12.4.1, that the canonical time projection from
(DR,M1) to R is only continuous at times for which its argument does not jump.
That is, for every t , πt(x) := xt is continuous at x ∈ DR if and only if xt− = xt .
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To this end, define cont(L†) = {s ∈ [0, T ] : P(L
†
s− = L†

s ) = 1}, which we know
by [4], Section 13, is cocountable in [0, T ]. For λ ∈ N define φλ ∈ S to be any
function satisfying φλ = 1 on [−λ,λ], φλ = 0 on (−∞,−2λ) ∪ (2λ,∞) and
φλ ∈ (0,1) otherwise. By [40], Proposition 2.7(i), νNk(φλ) ⇒ ν∗(φλ), and define
cont(ν∗(φλ)) = {s ∈ [0, T ] : P(ν∗

s−(φλ) = ν∗
s (φλ)) = 1}. Take

T := cont
(
L†)∩

∞⋂
λ=1

cont
(
ν∗(φλ)

)
,

which is cocountable (since it is the countable intersection of cocountable sets)
and so is dense in [0, T ].

Since (LNk ,W) ⇒ (L†,W) and T is dense in [0, T ], if (L∗,W) and (L†,W)

are not equal in law on (DR,M1), then it must be the case that not all of the
finite-dimensional marginals of L∗ and L† on T are equal in law. It is no loss of
generality to assume that there exists ε > 0, m ∈ N, fi, gi : R → R bounded and
Lipschitz and t1, . . . , tm ∈ T such that

E
m∏

i=1

fi

(
L∗

ti

)
gi(Wti ) + ε ≤ lim sup

k→∞
E

m∏
i=1

fi

(
L

Nk
ti

)
gi(Wti ).

By Proposition 4.5,

E
∣∣LNk

t − (
1 − ν

Nk
t (φλ)

)∣∣ = O
(
e−λ) uniformly in t and Nk,

as λ → ∞, therefore, the Lipschitz property of fi gives

E
m∏

i=1

fi

(
L∗

ti

)
gi(Wti ) + ε ≤ lim sup

k→∞
E

m∏
i=1

fi

(
1 − ν

Nk
ti

(φλ)
)
gi(Wti ) + O

(
e−λ),

but ti ∈ cont(ν∗(φλ)), so

E
m∏

i=1

fi

(
L∗

ti

)
gi(Wti ) + ε ≤ E

m∏
i=1

fi

(
1 − ν∗

ti
(φλ)

)
gi(Wti ) + O

(
e−λ).

Since ν∗
t is a probability measure ν∗

t (φλ) → ν∗
t (R) = 1 − L∗

t (recall from Propo-
sition 5.3 that ν∗

t is supported on [0,∞)), so taking λ → ∞ gives the required
contradiction. �

We are now in a position to verify the first half of Theorem 1.1, which is that
any limit point must satisfy the regularity conditions from Assumption 2.3.

PROPOSITION 5.6 (Regularity conditions). If (ν∗,W) realises a limiting law
of (νN,W)N≥1, then ν∗ satisfies Assumption 2.3.
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PROOF. First, ν∗ takes values in the sub-probability measures by Proposi-
tion 5.3, and that result also gives Assumption 2.3(ii).

For conditions (iv) and (v) of Assumption 2.3, let I = (x, y) ⊆ R be any finite
open interval. For δ > 0, take any φδ ∈ S satisfying φδ = 1 on I , φδ = 0 on
(−∞, x − δ) ∪ (y + δ,∞) and φδ ∈ (0,1) otherwise. Taking (νNk ,W) ⇒ (ν∗,W)

and noting that
∫ t

0 ν
Nk
s (φλ) ds ⇒ ∫ t

0 ν∗
s (φλ) ds in R by [53], Theorem 11.5.1, and

that these integrals are uniformly bounded (by T ‖φλ‖∞ = T ), we have

E
∫ T

0
ν∗
t (I ) dt ≤ E

∫ T

0
ν∗
t (φδ) dt = lim

k→∞ E
∫ T

0
ν

Nk
t (φδ) dt.

For both conditions (iv) and (v), we have bounds on the right-hand side which
are independent of Nk (Propositions 4.3 and 4.4), and then the conditions hold
by sending δ → 0. For condition (iii), we have y = ∞, so φδ /∈ S . However, for
I = (λ, η) with η > 0, the above work gives

E
∫ T

0
ν∗
t (λ, η) dt ≤ lim

k→∞ E
∫ T

0
ν∗
t (φλ) dt

≤ lim inf
k→∞ E

∫ T

0
ν

Nk
t (λ − δ, η + δ) dt

= o
(
e−α(λ−δ)),

so sending δ → 0 and η → ∞ (using the dominated convergence theorem) gives
the result.

It remains to show (i) of Assumption 2.3. First, we prove that L∗ is non-
decreasing. By [4], Section 13, there is a (deterministic) cocountable set, T, on
which (L

Nk
t ,L

Nk
s ) ⇒ (L∗

t ,L
∗
s ) in R × R. So for s < t in T [4], Theorem 2.1, im-

plies

P
(
L∗

t − L∗
s < 0

) ≤ lim inf
k→∞ P

(
L

Nk
t − LNk

s < 0
) = 0,

and hence L∗ is nondecreasing on T. But T is dense in [0, T ] and L∗ càdlàg, so
we conclude L∗ is nondecreasing on [0, T ]. To deduce the strict monotonicity,
Proposition 4.6 implies

P
(
L∗

t − L∗
s = 0,L∗

s < r
) = lim

δ
P
(
L∗

t − L∗
s < δ,L∗

s < r
)

≤ lim sup
δ→0

lim sup
k→∞

P
(
L

Nk
t − LNk

s < δ,LNk
s < r

) = 0,

whenever r < 1 and sending r ↑ 1 gives the required result. �

So far, we have seen no reason why it is important L∗ should be strictly in-
creasing whenever the mass in the system is not completely depleted (L∗ < 1).
The following result is such an example and shows why this condition is needed
to pass to a weak limit. The result will be applied directly in the next subsection.
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COROLLARY 5.7 (Weak convergence of integrals). Fix t ∈ [0, T ] and φ ∈ S .
Let g = g(t, x, �) be equal to either μ(t, x, �), σ(t, x)2 or σ(t, x, �)ρ(t, �). Define
A to be all elements in DS ′ that take values in the sub-probability measures and
let B = D[0,1] ⊆ DR. Then the map

(ξ, �) ∈ A × B 	→
∫ t

0
ξs

(
g(s, ·, �s)φ(·))ds ∈R

is continuous [with respect to the product topology on (DS ′,M1) × (D[0,1],M1)]
at all point (ξ, �) which satisfy the conditions of Assumption 2.3. Consequently, if
(νNk ,W) ⇒ (ν∗,W) then∫ t

0
νNk

(
g
(
s, ·,LNk

s

)
φ(·))ds ⇒

∫ t

0
ν∗(g(s, ·,L∗

s

)
φ(·))ds on R.

PROOF. For shorthand we will denote this map � : A×B →R. Suppose that
(ξ̄ , �̄) → (ξ, �) in A × B , then

∣∣�(ξ̄ , �̄) − �(ξ, �)
∣∣ ≤ ∣∣∣∣

∫ t

0
ξ̄s

(
g(s, ·, �s)φ

)
ds −

∫ t

0
ξs

(
g(s, ·, �s)φ

)
ds

∣∣∣∣
(5.3)

+
∫ t

0

∣∣ξ̄s

(
g(s, ·, �s)φ − g(s, ·, �̄s)φ

)∣∣ds =: I + J.

We will control I and J separately.
Begin by fixing ε > 0 and δ > 0. Take k = k(δ) > 0 sufficiently large so that

|g(s, x, �)φ(x)| < δ for all s ∈ [0, T ], x ∈ R \ [−k, k] and � ∈ [0,1], which is
possible because g is bounded and φ is rapidly decreasing. Let ψε be a mollifier
and set gε(s, x, �) := (g(s, ·, �) ∗ ψε)(x) ∈ C∞(R), then we have

I ≤
∣∣∣∣
∫ t

0
ξ̄s

(
gε(s, ·, �s)φ

)
ds −

∫ t

0
ξs

(
gε(s, ·, �s)φ

)
ds

∣∣∣∣
+ 2

∫ t

0
sup
x∈R

∣∣φ(x)
∣∣∣∣gε(s, x, �s) − g(s, x, �s)

∣∣ds.

Since gε(s, ·, �) ∈ C∞(R) and φ ∈ S , gε(s, ·, �)φ(·) ∈ S , so the first term van-
ishes as ξ̄ → ξ . We can then split the second term as

lim sup
ξ̄→ξ

I ≤ 2‖φ‖∞
∫ t

0
sup

x∈[−2k,2k]
∣∣gε(s, x, �s) − g(s, x, �s)

∣∣ds

+ 2c

∫ t

0
sup

x∈R\[−2k,2k]
∣∣φ(x)

∣∣ds,

and here the first term vanishes as ε → 0 by [24], App. C, Theorem 6, since [−k, k]
is compact and the second term can be guaranteed to be less than 2δ for k suffi-
ciently large. Taking δ → 0 gives lim sup I = 0.
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To deal with J in (5.3), first notice that since ξ̄ ∈ A

J ≤ ‖φ‖∞
∫ t

0
sup
x∈R

∣∣g(s, x, �s) − g(s, x, �̄s)
∣∣ds.

Define T0 := {s ∈ [0, t] : �s = θi for some i ∈ {0,1, . . . , k}}, where we recall As-
sumption 2.1 condition (v). For δ > 0, let T

δ
0 := {s ∈ [0, t] : min0≤i≤k |θi −

�s | < δ}. Define T1 to be all s ∈ [0, t] such that �s = �s−, which we know
is a cocountable set [53], Corollary 12.2.1. For s ∈ T1, �̄s → �s in R, so if
s ∈ T1 \ T

δ
0 then eventually �s, �̄s ∈ [θi−1, θi) for some i ∈ {1,2, . . . , k}, whence

supx∈R |g(s, x, �s) − g(s, x, �̄s)| → 0 by Assumption 2.1 condition (iv). We con-
clude

lim sup
ξ̄→ξ

J ≤ c1

∫
([0,T ]\T1)∪Tδ

0

ds ≤ c1kδ for every δ > 0,

where c1 > 0 is a numerical constant due to Assumption 2.1. This completes the
result. �

Martingale approach. We complete this section and the proof of Theorem 1.1
by showing that the limit SPDE holds for a general limit point. For this, we will
use a martingale argument and we introduce three processes.

DEFINITION 5.8 (Martingale components). For a fixed test function φ ∈ Ctest,
define the maps:

(i) Mφ : DS ′ × D[0,1] → DR,

Mφ(ξ, �)(t) := ξt (φ) − ν0(φ) −
∫ t

0
ξs

(
μ(s, ·, �s)∂xφ

)
ds

− 1

2

∫ t

0
ξs

(
σ 2(s, ·)∂xxφ

)
ds.

(ii) Sφ : DS ′ × D[0,1] → DR,

Sφ(ξ, �)(t) := Mφ(ξ, �)(t)2 −
∫ t

0
ξs

(
σ(s, ·)ρ(s, �s)∂xφ

)2
ds.

(iii) Cφ : DS ′ × DR × CR → DR,

Cφ(ξ, �,w)(t) := Mφ(ξ, �)(t) · w(t) −
∫ t

0
ξs

(
σ(s, ·, �s)ρ(s, �s)∂xφ

)
ds.

These processes capture the dynamics of the limit SPDE.

LEMMA 5.9 (Martingale approach). Let W be a standard Brownian motion
and let ξ and Lt = 1 − ξt (0,∞) be random processes satisfying the conditions of
Assumption 2.3. If

Mφ(ξ,L), Sφ(ξ,L) and Cφ(ξ,L,W)
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are martingales for every φ ∈ Ctest, then ξ , L and W satisfy the limit SPDE from
Theorem 1.1.

PROOF. The hypothesis gives

[
Mφ(ξ,L)

]
t =

∫ t

0
ξs

(
σ(s, ·,Ls)ρ(s,Ls)∂xφ

)2
ds,

[
Mφ(ξ,L),W

]
t =

∫ t

0
ξs

(
σ(s, ·,Ls)ρ(s,Ls)∂xφ

)
ds,

hence [
Mφ(ξ,L) −

∫ ·
0

ξs

(
σ(s, ·,Ls)ρ(s,Ls)∂xφ

)
dWs

]
t

= 0,

for every t ∈ [0, T ], which completes the proof. �

Our strategy is to take a limit in Proposition 3.2 and apply weak convergence.
First, notice that we have the following.

LEMMA 5.10. For every fixed φ ∈ Ctest, there exists a deterministic cocount-
able subset of [0, T ] on which

Mφ(νNk ,LNk
)
(t) ⇒ Mφ(ν∗,L∗)(t), Sφ(νNk ,LNk

)
(t) ⇒ Sφ(ν∗,L∗)(t),

Cφ(νNk ,LNk ,W
)
(t) ⇒ Cφ(ν∗,L∗,W

)
(t) in R.

Furthermore, these sequences are uniformly bounded (for fixed φ).

PROOF. Note that all the above processes are uniformly bounded (for fixed φ)
since νN is a probability measure. The result then follows by Corollary 5.7. �

PROPOSITION 5.11 (Evolution equation). Suppose (νNk ,W) ⇒ (ν∗,W).
Then, for every φ ∈ Ctest, the processes Mφ(ν∗,L∗), Sφ(ν∗,L∗) and Cφ(ν∗,
L∗,W) from Definition 5.8 are martingales. Hence, ν∗ and W satisfy the evo-
lution equation from Theorem 1.1. Furthermore, ν∗ is continuous.

PROOF. Fix φ ∈ Ctest and let T be the cocountable set of times on which we
have the conclusion of Lemma 5.10. To show that Mφ(ν∗,L∗) is a martingale, it
is enough to show that, for any arbitrary k ≥ 1, s, t ∈ T, s1, . . . , sk ∈ [0, s] ∩T and
f1, . . . , fk :R→R continuous and bounded, that the map defined by

F(ξ, �) := (
Mφ(ξ, �)(t) − Mφ(ξ, �)(s)

) k∏
i=1

fi

(
Mφ(ξ, �)(si)

)
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satisfies EF(ν∗,L∗) = 0. By Lemma 5.10 and the boundedness and continuity of
the fi ’s

EF
(
ν∗,L∗) = lim

k→∞ EF
(
νNk ,LNk

)
.

However, from Proposition 3.2, we have that Mφ(νNk ,LNk) is a martingale since

(5.4) Mφ(νNk ,LNk
)
(t) =

∫ t

0
νNk

(
σ
(
s, ·,LNk

s

)
ρ
(
s,LNk

)
φ
)
dWs + I

Nk
t (φ),

therefore EF(νNk ,LNk) = 0 and so Mφ(ν∗,L∗) is a martingale.
For Sφ , define the map

G(ξ, �) := (
Sφ(ξ, �)(t) − Sφ(ξ, �)(s)

) k∏
i=1

fi

(
Sφ(ξ, �)(si)

)
.

By applying Itô’s formula to (5.4), we have

Sφ(νNk ,LNk
)
(t) = Sφ(νNk ,LNk

)
(0) + martingale term + 2

[
INk (φ)

]
t .

So be the boundedness of the fi and Proposition 3.4

EG
(
νNk ,LNk

) = O(1/Nk),

so EG(ν∗,L∗) = 0 and Sφ(ν∗,L∗) is a martingale. The work for Cφ follows sim-
ilarly, so we omit it. The result is then complete by Lemma 5.9, and the continuity
of t 	→ ν∗

t follows by the fact that the right-hand side of the evolution equation in
Theorem 1.1 is continuous. �

6. The kernel smoothing method. The kernel smoothing method converts a
measure into an approximating family of functions and, by establishing uniform
results on the functions, enables us to show the existence of a density for the mea-
sure. In the next section, we will use this to prove Theorem 1.2. Let ζ be a finite
signed-measure and pε the Gaussian heat kernel

pε(x) := (2πε)−1/2 exp
{−x2/2ε

}
, x ∈ R.

Begin by noting the familiar fact that ζ can be approximated by its convolution
with pε: For every continuous and bounded φ : R→R,

(6.1)
∫
R

φ(x)(ζ ∗ pε)(x) dx → ζ(φ) =
∫
R

φ(x)ζ(dx),

as ε → 0, and

(6.2) T̄εζ(x) := (pε ∗ ζ )(x) =
∫
R

pε(x − y)ζ(dy)

is a C∞(R) function. We will sometimes abuse notation and write T̄εφ = pε ∗ φ

when φ : R→R is a function. With (·, ·)2 denoting the usual L2(R) inner product,
we have

(6.3) (φ, T̄εζ )2 = ζ(T̄εφ).

Our first observation is that T̄ε is a contraction on L2(R):
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PROPOSITION 6.1 (Contraction). Let f ∈ L2(R). Then ‖T̄εf ‖2 ≤ ‖f ‖2,
where ‖ · ‖2 is the L2 norm on R.

PROOF. The Cauchy–Schwarz inequality gives

∣∣T̄εf (x)
∣∣2 =

∣∣∣∣
∫
R

pε(x − y)f (y) dy

∣∣∣∣2 ≤
∫
R

pε(x − y)dy ·
∫
R

pε(x − y)f (y)2 dy.

The first integral on the right-hand side integrates to one, then integrating over
x ∈ R completes the proof. �

We now give a condition which shows how to recover the existence of a density
via kernel smoothing.

PROPOSITION 6.2. Suppose that ζ is a finite signed measure and

lim inf
ε→0

‖T̄εζ‖2 < ∞.

Then ζ has an L2(R) density, that is, there exists f ∈ L2(R) such that ζ(φ) =
(f,φ)2, for every φ ∈ L2(R). Furthermore, ‖T̄εζ‖2 → ‖f ‖2 in R.

PROOF. The hypothesis gives a bounded sequence (T̄εnζ )n≥1 in L2(R), with
εn → 0. By [24], Appendix D, Theorem 3, we can extract a weakly convergent
subsequence

(T̄εnk
, φ)2 → (f,φ)2 for every φ ∈ L2(R),

for some f ∈ L2(R). But by (6.1) we conclude that ζ(φ) = (f,φ)2 for all φ ∈ S ,
and this gives the first result since S is dense in L2(R).

We now have that T̄εζ = T̄εf , therefore, by Proposition 6.1,

lim sup
ε→0

‖T̄εζ‖2 ≤ ‖f ‖2.

By (6.1), we also have∣∣(f,φ)2
∣∣ = lim

ε→0

∣∣(T̄εζ,φ)2
∣∣ ≤ lim inf

ε→0
‖T̄εζ‖2‖φ‖2 for all φ ∈ S ,

so ‖f ‖2 ≤ lim infε→0 ‖T̄εζ‖2, which completes the proof. �

Smoothing in H−1 and the antiderivative. The material above will be used to
establish a preliminary regularity result (Proposition 7.1) in Section 7. However,
for the main uniqueness proof we will work in a space of lower regularity and on
the half-line. Recall that the first Sobolev space with Dirichlet boundary condition,
H 1

0 (0,∞), is defined to be the closure of C∞
0 (0,∞) under the norm

‖f ‖H 1(0,∞) := (‖f ‖2
L2(0,∞)

+ ‖∂xf ‖2
L2(0,∞)

)1/2
.
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The dual of H 1
0 (0,∞) will be denoted by H−1 and its norm by

‖ζ‖−1 := sup
‖φ‖

H1(0,∞)
=1

∣∣ζ(φ)
∣∣.

This is a natural space for us to work in due to the following.

PROPOSITION 6.3. If ζ is a finite signed measure, then ζ ∈ H−1.

PROOF. First, observe that |ζ(φ)| ≤ |ζ |‖φ‖∞, for every φ ∈ C∞
0 (0,∞). Mor-

rey’s inequality [24], Section 5.6, Theorem 4, gives a universal constant, C > 0,
such that ‖φ‖∞ ≤ C‖φ‖H 1 , and this completes the proof. �

To work on the half-line, we will use the absorbing heat kernel defined, as in
the proof of Proposition 4.4, by

(6.4) Gε(x, y) := pε(x − y) − pε(x + y) for x, y > 0

and define

Tεζ(x) :=
∫ ∞

0
Gε(x, y)ζ(dy).

Notice that Gε(x,0) = 0 for every x, so y 	→ Gε(x, y) is an element of Ctest, and
also notice that Tεζ(0) = 0. For Tεζ to approximate ζ , we need ζ to be supported
on [0,∞).

PROPOSITION 6.4. If ζ is supported on [0,∞), then

(Tεζ,φ)2 → ζ(φ),

as ε → 0, for every φ continuous, bounded and supported on (0,∞).

PROOF. Let φ̃(x) := φ(−x), then from (6.1),

(Tεζ,φ)2 = (T̄εζ,φ)2 − (T̄εζ, φ̃)2 → ζ(φ) − ζ(φ̃).

But by the hypotheses ζ(φ̃) = 0, as required. �

To access the H−1 norm, we will use the antiderivative defined by

∂−1
x f (x) := −

∫ ∞
x

f (y) dy for f : R→R integrable.

Notice that ∂x∂
−1
x f = f , and if ∂xf is also integrable, then ∂−1

x ∂xf = f , too. The
result we will use in Section 7 is the following.

PROPOSITION 6.5. If ζ ∈ H−1, then ‖ζ‖−1 ≤ lim infε→0 ‖∂−1
x Tεζ‖L2(0,∞).
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PROOF. First, notice that for fixed ε∫ ∞
0

∫ ∞
0

(
pε(x − y) + pε(x + y)

)
dx|ζ |(dy) < ∞,

so Tεζ is integrable, and hence ∂−1
x Tεζ is well-defined. Integration by parts gives(

∂−1
x Tεζ, ∂xφ

)
L2(0,∞) = (Tεζ,φ)L2(0,∞) = ζ(Tεφ),

for φ ∈ C∞(0,∞). Therefore, by Proposition 6.4 we have∣∣ζ(φ)
∣∣ = lim

ε→0

∣∣(∂−1
x Tεζ, ∂xφ

)
2

∣∣
≤ lim inf

ε→0

∥∥∂−1
x Tεζ

∥∥
2‖φ‖2

≤ lim inf
ε→0

∥∥∂−1
x Tεζ

∥∥
2‖φ‖H 1,

which gives the result. �

7. Uniqueness of solutions; proof of Theorem 1.2. In this section, we
will prove Theorem 1.2. Therefore, take ν, ν̃ and W as in the statement with
(νNk ,W)k≥1 ⇒ (ν,W) along some subsequence. Let Lt = 1 − νt (0,∞) and
L̃t = 1 − ν̃t (0,∞). The first step will be to show that ν has some L2 regularity
(Proposition 7.1), which is due to a comparison with ν̄Nk from (3.2) and from the
dynamics of Proposition 3.5. We then use this fact, along with energy estimates
in H−1, to complete the proof. Several technical lemmas are used throughout this
section, however, to aid readability, their full statements and proofs are deferred
until Section 8.

L2-Regularity. The result we will prove in this subsection is the following.

PROPOSITION 7.1 (L2-regularity). With ν as introduced at the start of Sec-
tion 7,

sup
s∈[0,T ]

sup
ε>0

‖Tενs‖2
2 < ∞ with probability 1.

We would like to work with some process ν̄ defined analogously to (3.2) that
would satisfy the bound νt (S) ≤ ν̄t (S), for every t ∈ [0, T ] and S ⊆ R. At this
stage, however, we are dealing only with weak limit points, so must recover the
required process through a limiting procedure on (ν̄N )N≥1.

LEMMA 7.2 (Whole space SPDE). On a sufficiently rich probability space,
there exists (ν∗, ν̄∗,W) such that (ν∗,W) is equal in law to (ν,W), ν∗

t (S) ≤ ν̄∗
t (S),
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for every t ∈ [0, T ] and S ⊆ R, and ν̄∗ satisfies the limit SPDE on the whole space:

ν̄∗
t (φ) = ν0(φ) +

∫ t

0
ν̄∗
s

(
μ(s, ·,Ls)∂xφ

)
ds + 1

2

∫ t

0
ν̄∗
s

(
σ 2(s, ·)∂xxφ

)
ds

+
∫ t

0
ν̄∗
s

(
σ(s, ·)ρ(s,Ls)∂xφ

)
dWs with L∗

t = 1 − ν∗
t (0,∞),

for every t ∈ [0, T ] and φ ∈ S , together with condition (v) of Assumption 2.3 and
the two-sided tail bound

Eν̄∗
t

(
(−∞,−λ) ∪ (λ,∞)

) = o
(
e−αλ) as λ → +∞,

for every α > 0.

PROOF. Notice that in Proposition 5.1 we have carried out sufficient work
to prove (ν̄N)N≥1 is tight on (DS ′,M1), hence (νN, ν̄N ,W)N≥1 is tight.
We can therefore conclude that there is a subsequence (Nkr )r≥1 for which
(νNkr , ν̄Nkr ,W)r≥1 converges in law. Any realisation of this limit must have a
marginal law that agrees with the law of (ν,W). As the work in Propositions 5.3
and 5.11 is unchanged for ν̄N in place of νN , we conclude that ν̄∗ is probability-
measure-valued and, due to Proposition 3.5, that ν̄∗ satisfies the limit SPDE on
the whole space. Finally, we note that for every φ ∈ S with φ ≥ 0 we have

ν
Nkr
t (φ) ≤ ν̄

Nkr
t (φ), therefore,

P
(
ν∗
t (φ) > ν̄∗

t (φ)
) ≤ lim inf

r→∞ P
(
ν

Nkr
t (φ) > ν̄

Nkr
t (φ)

) = 0,

for every φ ∈ S , φ ≥ 0, by [4], Theorem 2.1. This inequality holds for all t by the
continuity of ν∗ and ν̄∗ (which follows from being solutions to the limit SPDE)
and suffices to give the required dominance. Condition (v) of Assumption 2.3 is
satisfied by ν̄∗ because the proof of Corollary 4.3 uses only the behaviour of ν̄N .
Likewise, the two-sided tail estimate is satisfied due to the same work as in Propo-
sition 4.5. �

Our strategy is to use the kernel smoothing method with L2-energy estimates on
the SPDE satisfied by ν̄∗. This is possible because we do not have to take boundary
effects into account, which is the main difficulty in the uniqueness proof that will
follow. The following lemma relates ν̄∗ to Proposition 7.1.

LEMMA 7.3. With ν and ν̄∗ as above and T̄ε as in (6.2), if

lim inf
ε→∞ E

[
sup

s∈[0,T ]
∥∥T̄εν̄

∗
s

∥∥2
2

]
< ∞

then Proposition 7.1 holds.
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PROOF. Since ν∗ ≤ ν̄∗, lim infε→∞ E[sups∈[0,T ] ‖T̄εν
∗
s ‖2

2] < ∞. We would
first like to deduce that this fact also holds for T̄εν, but since the map νt 	→ ‖T̄ενt‖2
might not be continuous on S ′, more care must be taken.

By fixing {φi}i≥1 to be the Haar basis of L2(R), we have

E sup
t∈[0,T ]

‖T̄ενt‖2
2 = E sup

t∈[0,T ]
lim

k→∞

k∑
i=1

(T̄ενt , φi)
2
2

(7.1)

≤ lim inf
k→∞ E sup

t∈[0,T ]

k∑
i=1

νt (T̄εφi)
2,

by (6.3) and Fatou’s lemma. Since each φi is compactly supported, we have
that T̄εφi ∈ S , therefore, νt (T̄εφi) is equal in law to ν∗

t (T̄εφi), so by [53],
Lemma 13.4.1,

sup
t∈[0,T ]

k∑
i=1

νt (T̄εφi)
2 =law sup

t∈[0,T ]

k∑
i=1

ν∗
t (T̄εφi)

2.

Returning to (7.1), we now have that

E sup
t∈[0,T ]

‖T̄ενt‖2
2 ≤ lim inf

k→∞ E sup
t∈[0,T ]

k∑
i=1

ν∗
t (T̄εφi)

2 ≤ E sup
t∈[0,T ]

∥∥T̄εν
∗
t

∥∥2
2.

By noting that 0 ≤ Tενt ≤ T̄ενt and applying Fatou’s lemma once more we arrive
at

E
[
lim inf
ε→∞ sup

s∈[0,T ]
‖Tενs‖2

2

]
≤ E

[
lim inf
ε→∞ sup

s∈[0,T ]
‖T̄ενs‖2

2

]

≤ lim inf
ε→∞ E sup

t∈[0,T ]
∥∥T̄εν

∗
t

∥∥2
2 < ∞.

We now have that lim infε→∞ ‖Tενs‖2 < ∞, for every s ∈ [0, T ], with proba-
bility 1. Proposition 6.2 implies that νt has an L2(R)-density, Vt , for every t and
that

‖Vs‖2 ≤ lim inf
ε→0

‖Tενs‖2 ≤ lim inf
ε→∞ sup

s∈[0,T ]
‖Tενs‖2,

therefore, sups∈[0,T ] ‖Vs‖2 < ∞, with probability 1. Then by Proposition 6.1,

sup
s∈[0,T ]

sup
ε>0

‖Tενs‖2 ≤ sup
s∈[0,T ]

‖Vs‖2 < ∞,

almost surely, as required. �

As an immediate consequence of the final part of the previous proof and of the
forthcoming proof of Proposition 7.1, we have the existence of a density process
for ν.
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COROLLARY 7.4 (L2(R)-regularity). With probability 1, for every t ∈ [0, T ]
there exists Vt ∈ L2(R) such that Vt is supported on [0,∞) and is a density of νt ,
that is,

νt (φ) =
∫ ∞

0
φ(x)Vt (x) dx for every φ ∈ L2(R).

Furthermore, supt∈[0,T ] ‖Vt‖2 < ∞, with probability 1.

REMARK 7.5. We might hope that this argument could be used to prove
uniqueness. However, notice that we have no control over ν − ν̃, as all we have
are upper bounds on solutions.

PROOF OF PROPOSITION 7.1. Fix x ∈ R and set the function y 	→ pε(x −
y) ∈ S into the SPDE from Lemma 7.2 to get

dT̄εν̄
∗
t (x) = ν̄∗

t

(
μt(y)∂ypε(x − y)

)
dt + 1

2
ν̄∗
t

(
σt (y)2∂yypε(x − y)

)
dt

+ ν̄∗
t

(
σt (y)ρt∂ypε(x − y)

)
dWt

= −∂xν̄
∗
t

(
μtpε(x − ·))dt + 1

2
∂xxν̄

∗
t

(
σ 2

t pε(x − ·))dt

− ρt∂xν̄
∗
t

(
σtpε(x − ·))dWt,

with the shorthand from Remark 3.1. We would like to move the diffusion coeffi-
cients out of the integral against ν̄∗, and to do so we use Lemma 8.2:

dT̄εν̄
∗
t = −(

μt∂xT̄εν̄
∗
t − ∂xμtH̄μ

t,ε + Ēμ
t,ε

)
dt

+ 1

2
∂x

(
σ 2

t ∂xT̄εν̄
∗
t − ∂xσ

2
t H̄σ 2

t,ε + Ēσ 2

t,ε

)
dt

− ρt

(
σt∂xT̄εν̄

∗
t − ∂xσtH̄σ

t,ε + Ēσ
t,ε

)
dWt,

where H̄ is as defined in Lemma 8.2 and the dependence on x is omitted for clarity.
Applying Itô’s formula to (T̄εν̄

∗
t (x))2 gives

d
(
T̄εν̄

∗
t

)2 = −2T̄εν̄
∗
t

(
μt∂xT̄εν̄

∗
t − ∂xμtH̄μ

t,ε + Ēμ
t,ε

)
dt

+ T̄εν̄
∗
t ∂x

(
σ 2

t ∂xT̄εν̄
∗
t − ∂xσ

2
t H̄σ 2

t,ε + Ēσ 2

t,ε

)
dt

− 2ρt T̄εν̄
∗
t

(
σt∂xT̄εν̄

∗
t − ∂xσtH̄σ

t,ε + Ēσ
t,ε

)
dWt

+ ρ2
t

(
σt∂xT̄εν̄

∗
t − ∂xσtH̄σ

t,ε + Ēσ
t,ε

)2
dt.

Our strategy is to integrate over x ∈ R, take a supremum over t ∈ [0, T ] and
then take an expectation over the previous equation. For the first task, we appeal
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to Lemma 8.2, Lemma 8.3 and Young’s inequality with free parameter η > 0 to
obtain∥∥T̄εν̄

∗
t

∥∥2
2 ≤ ‖T̄εν0‖2

2 + cη

∫ t

0

∥∥T̄εν̄
∗
s

∥∥2
2 ds + cη

∫ t

0

∥∥T̄2εν̄
∗
s

∥∥2
2 ds

+ cη

∫ t

0

∥∥Ēμ
s,ε

∥∥2
2 + ∥∥Ēσ 2

s,ε

∥∥2
2 + ∥∥Ēσ

s,ε

∥∥2
2 ds

−
∫ t

0

∫
R

[
σ 2

s · (1 − (1 + η)ρ2
s

)− η − ημ2
s

](
∂xT̄εν̄

∗
s

)2
dx ds

− 2
∫ t

0

∫
R

ρsT̄εν̄
∗
s

(
σs∂xT̄εν̄

∗
s + ∂xσsH̄s,ε + Ēσ

s,ε

)
dx dWs,

where cη > 0 is a constant depending only on η. Considering the third line, by
Assumption 2.1 it is possible to choose η > 0 small enough so that

(7.2) σ 2
s (x)

(
1 − (1 + η)ρ2

s

)− η − ημs(x)2 ≥ 0 for all x ∈ R, s ∈ [0, T ],
therefore,

∥∥T̄εν̄
∗
t

∥∥2
2 ≤ ‖T̄εν0‖2

2 + cη

∫ t

0

∥∥T̄εν̄
∗
s

∥∥2
2 ds + cη

∫ t

0

∥∥T̄2εν̄
∗
s

∥∥2
2 ds

+ cη

∫ t

0

(∥∥Ēμ
s,ε

∥∥2
2 + ∥∥Ēσ 2

s,ε

∥∥2
2 + ∥∥Ēσ

s,ε

∥∥2
2

)
ds

− 2
∫ t

0

∫
R

ρsT̄εν̄
∗
s

(
σs∂xT̄εν̄

∗
s + ∂xσsH̄s,ε + Ēσ

s,ε

)
dx dWs.

Using Lemma 8.5 to take a supremum over t and then expectation gives

E sup
s∈[0,t]

∥∥T̄εν̄
∗
s

∥∥2
2 ≤ ‖T̄εν0‖2

2 + c1E
∫ t

0

∥∥T̄εν̄
∗
s

∥∥2
2 ds + c1E

∫ t

0
‖T̄2εν̄

∗
s ‖2

2 ds

+ c1E
∫ t

0

(∥∥Ēμ
s,ε

∥∥2
2 + ∥∥Ēσ 2

s,ε

∥∥2
2 + ∥∥Ēσ

s,ε

∥∥2
2

)
ds,

where c1 > 0 is a numerical constant.
Taking lim inf as ε → 0 over the previous inequality and applying Proposi-

tion 6.1 (to V0 ∈ L2) and Lemma 8.2 yields

f (t) := lim inf
ε→0

E sup
s∈[0,t]

∥∥T̄εν̄
∗
s

∥∥2
2

≤ c1‖V0‖2
2 + 2c1 lim inf

ε→0
E
∫ t

0

∥∥T̄εν̄
∗
s

∥∥2
2 ds

≤ c1‖V0‖2
2 + 2c1tf (t).

Hence, for t < 1/4c1 we have f (t) ≤ 2c1‖V0‖2
2. The proof is completed by prop-

agating the argument onto [1/4c1,2/4c1] by the same work as above but started
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from s = 1/4c1, rather than s = 0. This gives

lim inf
ε→0

E
[

sup
s∈[(4c1)

−1,2(4c1)
−1]

∥∥T̄εν̄
∗
s

∥∥2
2

]

≤ 2c1 lim inf
ε→0

E
[

sup
s∈[0,(4c1)

−1]

∥∥T̄εν̄
∗
s

∥∥2
2

]
≤ (2c1)

2,

and so in general

lim inf
ε→0

E
[

sup
s∈[k(4c1)

−1,(k+1)(4c1)
−1]

∥∥T̄εν̄
∗
s

∥∥2
2

]
≤ (2c1)

k+1 for k ≥ 0.

Since the largest such k we need to take is k0 := 4c1T , the simple bound

f (T ) ≤ lim inf
ε→0

E
k0−1∑
k=0

sup
s∈[k(4c1)

−1,(k+1)(4c1)
−1]

∥∥T̄εν̄
∗
s

∥∥2
2 ≤

k0−1∑
k=0

(2c1)
k+1 < ∞

completes the proof. �

Resuming the uniqueness proof. Returning to proof of Theorem 1.2, notice
that for a fixed x > 0, the function y 	→ Gε(x, y) from (6.4) is an element of Ctest.
Setting into the SPDE for ν gives

dνt

(
Gε(x, ·)) = νt

(
μt∂yGε(x, ·))dt + 1

2
νt

(
σ 2

t ∂yyGε(x, ·))dt

+ ρtνt

(
σt∂yGε(x, ·))dWt,

and by applying Lemma 8.6,

dTενt (x) = −∂xνt

(
μtGε(x, ·))dt + 1

2
∂xxνt

(
σ 2

t Gε(x, ·))dt

− ρt∂xνt

(
σtGε(x, ·))dWt − 2∂xνt

(
μtpε(x + ·))dt

− 2ρt∂xνt

(
σtpε(x + ·))dWt .

To introduce the antiderivative, we integrate the above equation over x > 0 and
apply Lemma 8.3 to switch the time and space integrals. [Note: Lemma 8.3 is
stated for ν̄∗, however the proof only relies on the tail bound from Assumption 2.3
condition (iii), which is satisfied by ν and ν̃.] We arrive at

d∂−1
x Tενt (x) = −νt

(
μtGε(x, ·))dt + 1

2
∂xνt

(
σ 2

t Gε(x, ·))dt

− ρtνt

(
σtGε(x, ·))dWt − 2νt

(
μtpε(x + ·))dt

− 2ρtνt

(
σtpε(x + ·))dWt,
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which, after rewriting using the notation from Lemma 8.1, becomes

d∂−1
x Tενt = −(

μtTενt + Eμ
t,ε

)
dt + 1

2
∂x

(
σ 2

t Tενt + Eσ 2

t,ε

)
dt

− ρt

(
σtTενt + Eσ

t,ε

)
dWt − 2νt

(
μtpε(x + ·))dt(7.3)

− 2ρtνt

(
σtpε(x + ·))dWt .

We will now introduce the simplifying notation osq(1) to denote any family of
L2(0,∞)-valued processes, {(ft,ε)t∈[0,T ]}ε>0, satisfying

E
∫ T

0
‖ft,ε‖2

L2(0,∞)
dt → 0 as ε → 0.

Thus, a formal linear combination of osq(1) terms is of order osq(1). Therefore,
(7.3) can be written (using Lemma 8.1) as

d∂−1
x Tενt = −μtTενt dt + 1

2
∂x

(
σ 2

t Tενt + Eσ 2

t,ε

)
dt − σtρtTενt dWt

+ osq(1) dt + osq(1) dWt(7.4)

− 2νt

(
μtpε(x + ·))dt − 2ρtνt

(
σtpε(x + ·))dWt,

and we claim that the integrands in the final two terms are also of order osq(1).
This claim is in fact the critical boundary result from [8], but here we only need
first moment estimates.

LEMMA 7.6 (Boundary estimate). We have

E
∫ T

0

∫ ∞
0

(∫ ∞
0

pε(x + y)νt (dy)

)2
dx dt → 0 as ε → 0,

hence νt (μtpε(x + ·)) = osq(1) and νt (σtpε(x + ·)) = osq(1).

PROOF. Begin by noting that∣∣νt

(
pε(x + ·))∣∣ ≤ e−x2/ε

∫ ∞
0

pε(y)νt (dy)

≤ c1e
−x2/εε−1/2[νt

(
0, εη)+ exp

{−ε2η−1/2
}]

,

for η ∈ (0, 1
2) a free parameter and c1 > 0 a universal constant. Squaring and inte-

grating over x > 0 gives∫ ∞
0

∣∣νt

(
pε(x + ·))∣∣2 dx ≤ c2ε

−1/2[νt

(
0, εη)2 + exp

{−ε2η−1}],
with c2 > 0 another numerical constant. Condition (iv) of Assumption 2.3 and the
fact that νt (S)2 ≤ νt (S), since νt is a sub-probability measure, allows us to write

E
∫ T

0

∫ ∞
0

∣∣νt

(
pε(x + ·))∣∣2 dx = O

(
εη(1+β)−1/2)+ O

(
ε−1/2 exp

{−ε2η−1}),
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which vanishes if we choose η to satisfy

1

2(1 + β)
< η <

1

2
,

and this completes the proof. �

With Lemma 7.6, we can now reduce (7.4) to

d∂−1
x Tενt = −μtTενt dt + 1

2
∂x

(
σ 2

t Tενt + Eσ 2

t,ε

)
dt − σtρtTενt dWt

(7.5)
+ osq(1) dt + osq(1) dWt ,

and this equation is also satisfied by ν̃, as so far all we have used is Assumption 2.3.
Writing � := ν − ν̃ and δ

g
t (x) := g(t, x,Lt) − g(t, x, L̃t ), taking the difference of

(7.5) for ν and ν̃ yields

d∂−1
x Tε�t = −(

μ̃tTε�t + δ
μ
t Tενt

)
dt + 1

2
∂x

(
σ 2

t Tε�t + Eσ 2

t,ε − Ẽσ 2

t,ε

)
dt

− σt

(
ρ̃tTε�t + δ

ρ
t Tενt

)
dWt + osq(1) dt + osq(1) dWt ,

where Ẽσ 2

t,ε is as in Lemma 8.1, but with ν replaced by ν̃. Applying Itô’s formula
to the square (∂−1

x Tε�t)
2 gives

d
(
∂−1
x Tε�t

)2 = −2∂−1
x Tε�t

(
μ̃tTε�t + δ

μ
t Tενt

)
dt

+ ∂−1
x Tε�t∂x

(
σ 2

t Tε�t + Eσ 2

t,ε − Ẽσ 2

t,ε

)
dt

− 2∂−1
x Tε�tσt

(
ρ̃tTε�t + δ

ρ
t Tενt

)
dWt(7.6)

+ σ 2
t

(
ρ̃tTε�t + δ

ρ
t Tενt

)2
dt

+ ∂−1
x Tε�t · osq(1) dt + ∂−1

x Tε�t · osq(1) dWt + osq(1)2 dt.

Note that the initial condition for this equation is zero because ν and ν̃ have the
same initial condition.

Since the work in establishing the bounds in Lemma 8.3 only uses the tail esti-
mate (iii) of Assumption 2.3, they remain valid and so, together with Lemma 8.7,
the stochastic integrals in (7.6) are martingales for fixed x and ε. Therefore, first
taking an expectation and then integrating over x > 0 and using Young’s inequality
with free parameter η > 0 produces a constant cη > 0 such that

E
∥∥∂−1

x Tε�t

∥∥2
2 ≤ cηE

∫ t

0

∥∥∂−1
x Tε�s

∥∥2
2 ds + cηE

∫ t

0

∥∥(∣∣δμ
s

∣∣+ ∣∣δρ
s

∣∣)|Tενs |
∥∥2

2 ds

− E
∫ t

0

∫ ∞
0

[
σ 2

s

(
1 − (1 + η)ρ̃2

s

)− η − ημ̃2
s

]|Tε�s |2 dx ds(7.7)

+ o(1),
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where the terms involving osq(1) have collapsed to order o(1). Also notice that
(7.7) remains valid if t is a stopping time.

If it was the case that E
∫ t

0 ‖Tε�s‖2
2 ds = 0, then by Proposition 6.2 we would

have � = 0 on [0, t], and so would have completed the proof for this value of t . It
is therefore no loss of generality to assume that this value is bounded away from
zero for all ε > 0 sufficiently small. Then by taking η > 0 we can find a positive
value c0 > 0 such that

E
∥∥∂−1

x Tε�t

∥∥2
2 ≤ cE

∫ t

0

∥∥∂−1
x Tε�s

∥∥2
2 ds

(7.8)

+ cE
∫ t

0

∥∥(∣∣δμ
s

∣∣+ ∣∣δρ
s

∣∣)|Tενs |
∥∥2

2 ds − c0 + o(1),

for c > 0 constant. We now want to introduce a comparison between solutions in
the δ terms, and to do so we consider two cases.

Case 1: Globally Lipschitz coefficients. First, consider the simpler case where
μ and ρ are Lipschitz in the loss variable, rather than piecewise Lipschitz. There-
fore, we have |δg

t | ≤ C|Lt − L̃t |, so the inequality in (7.8) becomes

E
∥∥∂−1

x Tε�t

∥∥2
2 ≤ c1E

∫ t

0

∥∥∂−1
x Tε�s

∥∥2
2 ds

+ c1E
∫ t

0
|Ls − L̃s |2‖Tενs‖2

2 ds − c0 + o(1),

with c1 > 0 constant.
To bound the second term above, we introduce the stopping times

tn := inf
{
t > 0 : sup

s∈[0,T ]
sup
ε>0

‖Tενs‖2
2 > n

}
∧ T .

From Proposition 7.1 we know that tn → T as n → ∞, with probability 1. Since
(7.7) is valid for stopping times, we have

E
∥∥∂−1

x Tε�t∧tn

∥∥2
2 ≤ c1E

∫ t∧tn

0

∥∥∂−1
x Tε�s

∥∥2
2 ds

+ c1nE
∫ t∧tn

0
|Ls − L̃s |2 ds − c0 + o(1)

≤ c1E
∫ t

0

∥∥∂−1
x Tε�s∧tn

∥∥2
2 ds

+ c1nE
∫ t

0
|Ls∧tn − L̃s∧tn |2 ds − c0 + o(1).

By using the integrating factor e−c1t , we obtain

E
∥∥∂−1

x Tε�t∧tn

∥∥2
2 ≤ c1nec1T E

∫ t

0
|Ls∧tn − L̃s∧tn |2 ds − c′

0,
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and applying Fatou’s lemma and Propositions 6.3 and 6.5 gives

E‖�t∧tn‖2−1 ≤ c1nec1T E
∫ t

0
|Ls∧tn − L̃s∧tn |2 ds − c′

0,

where c′
0 = c0e

−c1T > 0.
Finally, we apply Lemma 8.8 to the above inequality to reintroduce � to the

right-hand side. With fixed α > 0, we have

E‖�t∧tn‖2−1 ≤ c2
(
δ−1 + λ

)
E
∫ t

0
‖�s∧tn‖2−1 ds + c2δ + cαe−αλ − c′

0,

where c2 > 0 does not depend on α (but does depend on n). Now fix δ = c′
0/c2 so

that we have

E‖�t∧tn‖2−1 ≤ c3(1 + λ)E
∫ t

0
‖�s∧tn‖2−1 ds + cαe−αλ

with c3 > 0 independent of α. By using the integrating factor e−c3(1+λ)t , we deduce

E‖�t∧tn‖2−1 ≤ cαec3(1+λ)t−αλ,

so setting α = 2c3t and sending λ → ∞ gives E‖�t∧tn‖2−1 = 0. Therefore, ν = ν̃

on [0, tn], and since tn → T we have Theorem 1.2 in Case 1.
Case 2: Piecewise Lipschitz coefficients. To extend the argument to the general

case, we use a stopping argument and consider the system only on time intervals
where the loss processes are in the same interval [θi, θi+1)—recall Assumption 2.1.

Define the stopping times:

T0 := inf{t > 0 : Lt ≥ θ1} ∧ T , T̃0 := inf{t > 0 : L̃t ≥ θ1} ∧ T

and S0 = T0 ∧ T̃0. For the reason immediately proceeding (7.6), the argument in
Case 1 can be replicated on [0, S0) by replacing t by t ∧ S0, since before S0, the
coefficients can be compared using the Lipschitz property on [θ0, θ1). Therefore,
we conclude νt = ν̃t for t ≤ S0, which forces Lt = L̃t for t ≤ S0 and thus T0 =
S0 = T̃0.

We can then repeat the argument for the interval [S0, S1), since �S0 = 0 (by
continuity of ν and ν̃), where

T1 := inf{t > S0 : Lt ≥ θ2} ∧ T , T̃1 := inf{t > S0 : L̃t ≥ θ2} ∧ T

and S1 = T1 ∧ T̄1. Continuing up to Sk covers all the [θi, θi+1) intervals, and this
completes the proof, since L and L̃ are increasing [Assumption 2.3, condition (i)]
so [0, T ] ⊆ ⋃k−1

i=0 [Si, Si+1).
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8. Technical lemmas. This section collects all the technical lemmas that were
used in Section 7, and should be read only as a reference.

LEMMA 8.1. Let gs(x) = g(s, x,Ls) where g is one of μ, σ or σ 2 and Ls =
1 − νs(0,∞). Define the error term

Eg
t,ε(x) := νt

(
gt (·)Gε(x, ·))− gt (x)Tενt (x).

Then

E
∫ T

0

∥∥Eg
t,ε

∥∥2
L2(0,∞) dt → 0 as ε → 0.

PROOF. Let λ = λ(ε) → ∞, as ε → 0, be a function that we will specify later.
For any x > 0,

∣∣Eg
t,ε(x)

∣∣ ≤ ‖∂xg‖∞
∫ ∞

0
|x − y|pε(x − y)νt (dy)

≤ c1ε
η− 1

2 νt

(
x − εη, x + εη)+ c1ε

−1/2 exp
{−ε2η−1/2

}
,

with c1 > 0 a universal constant, and where the second line follows by splitting the
integral on |y − x| < εη and its complement. By considering the range x < λ and
using condition (v) of Assumption 2.3,

E
∫ T

0

∥∥Eg
t,ε

∥∥2
L2(−λ,λ) dt = λ(ε)O

(
ε(2+δ)η−1 + ε−1 exp

{−ε2η−1})
(8.1)

= λ(ε)O
(
εγ ),

for some δ, γ > 0, by fixing η in the range

1

2 + δ
< η <

1

2
.

Now consider the range x ≥ λ. Decomposing the y-integral on the range y <

x/2 and its complement gives

∣∣Eg
t,ε(x)

∣∣ ≤ 2‖g‖∞
∫ ∞

0
pε(x − y)νt (dy) ≤ c2pε(x/2) + c2ε

−1/2νt

(|x|/2,+∞)
,

with c2 > 0 another universal constant. Therefore,

E
∫ T

0

∥∥Eg
t,ε

∥∥2
L2((−λ,λ)c) dt

= O

(
ε−1/2e−λ(ε)2/8ε

∫ ∞
−∞

pε(x/2) dx + ε−1
∫ ∞
λ(ε)

e−x dx

)
(8.2)

= O
(
ε−1e−λ(ε)).

Summing (8.1) and (8.2) and fixing λ(ε) = log(ε−2) completes the proof. �
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LEMMA 8.2. Let gs(x) = g(s, x,L∗
s ) where g is one of μ, σ or σ 2 and L∗

s =
1 − ν̄∗

s (0,∞). Define the error term

Ēg
t,ε(x) := ∂xν̄

∗
t

(
gtpε(x − ·))− gt (x)∂xT̄εν̄

∗
t (x) + ∂xgt (x)H̄g

t,ε(x)

where H̄g
t,ε(x) := ν̄∗

t

(
(x − y)∂xpε(x − ·)).

Then

E
∫ T

0

∥∥Ēg
t,ε

∥∥2
L2(R) dt → 0 as ε → 0

and there exists a numerical constant c > 0 such that∣∣H̄g
t,ε(x)

∣∣ ≤ cT̄2εν̄
∗
t (x) for all t ∈ [0, T ], x ∈ R and ε > 0.

PROOF. Interchanging differentiation and integration with respect to ν̄∗
t gives

Ēg
t,ε(x) =

∫
R

[
gt (y) − gt (x) + (y − x)∂xgt (x)

]
∂xpε(x − y)ν̄∗

t (dy).

By bounding with the second-order derivative and using ∂xpε(x−y) = −2ε−1(x−
y)pε(x − y) gives

∣∣Ēg
t,ε(x)

∣∣ ≤ 1

2

∫
R

∣∣∂xxgt (x)
∣∣|x − y|3ε−1pε(x − y)ν̄∗

t (dy).

We therefore have the same order of ε as in Lemma 8.1, so the first result follows
by the same work. For the second result, notice that

∣∣z∂xpε(z)
∣∣ = 1√

2πε
ε−1z2e−z2/2ε = √

2ε−1z2e−z2/4εp2ε(z),

and supz∈R z2e−z2/4ε = ε. �

LEMMA 8.3 (Stochastic Fubini). For all n,m ≥ 0, ε > 0 and t ∈ [0, T ],
∫
R

(∫ t

0
E
[∣∣∂n

x T̄εν̄
∗
s (x) · ∂m

x T̄εν̄
∗
s (x)

∣∣2]ds

)1/2
dx < ∞,

hence the stochastic Fubini theorem [52, (1.4)] gives∫
R

∫ t

0
gt (x) · ∂n

x T̄εν̄
∗
s (x) · ∂m

x T̄εν̄
∗
s (x) dWs dx

=
∫ t

0

∫
R

gt (x) · ∂n
x T̄εν̄

∗
s (x) · ∂m

x T̄εν̄
∗
s (x) dx dWs

whenever supt∈[0,T ],x∈R |gt (x)| < ∞.
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PROOF. By applying Young’s inequality and concavity of z 	→ √
z, it suffices

to show that ∫
R

(∫ t

0
E
[∣∣∂n

x T̄εν̄
∗
s (x)

∣∣4]ds

)1/2
dx < ∞.

First, notice that

∂n
x T̄εν̄

∗
s (x) = ν̄∗

s

(
∂n
x pε(x − ·)) = ν̄∗

s

(
Pn

(
ε−1(x − ·))pε(x − ·)),

where Pn is a polynomial of degree n. Since ν̄∗
s is a probability measure, Hölder’s

inequality gives

(8.3) E
[∣∣∂n

x T̄εν̄
∗
s (x)

∣∣4] ≤ E
∫
R

∣∣Pn

(
ε−1(x − y)

)∣∣4pε(x − y)4ν̄∗
s (dy).

For any value of x, the integrand above is bounded (recall that ε is fixed). Hence,
it suffices to bound the right-hand side of (8.3) in terms of x only for large values
of |x|. Splitting the y-integral on the region |y| < x/2 and its complement gives
the bound

E
[∣∣∂n

x T̄εν̄
∗
s (x)

∣∣4]
≤ cεEν̄∗

s

(
(x/2,+∞) ∪ (−∞,−x/2)

)+ cε exp
{−x2/2ε

} = O
(
e−x),

where cε and the O depend only on ε and where we have used the tail estimate
from Lemma 7.2. This suffices to complete the proof. �

LEMMA 8.4 (An integration-by-parts calculation). Let f,g ∈ C1(R) be
bounded with bounded first derivatives. Assume also that these functions and their
first derivatives vanish at ±∞. Then∫

R

g(x)f (x)∂xf (x) dx = −1

2

∫
R

∂xg(x)f (x)2 dx.

PROOF. Integration by parts. �

LEMMA 8.5. There exists a constant c > 0 such that

E sup
u∈[0,t]

∣∣∣∣∣2
∫ u

0

∫
R

ρsT̄εν̄
∗
s

(
σs∂xT̄εν̄

∗
s + ∂xσsH̄s,ε + Ēσ

s,ε

)
dx dWs

∣∣∣∣∣
≤ 1

2
E sup

s∈[0,t]
∥∥T̄εν̄

∗
s

∥∥2
2 + cE

∫ t

0

∥∥T̄εν̄
∗
s

∥∥2
2 ds + cE

∫ t

0

∥∥Ēσ
s,ε

∥∥2
2 ds

for all t ∈ [0, T ].

PROOF. By a similar analysis to (8.3), we know that, for every fixed ε, the
integrand above is a rapidly decaying function of x, hence the stochastic integral is
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a martingale, so the Burkholder–Davis–Gundy inequality ([46], Theorem IV.42.1)
gives a universal constant, c1 > 0, for which the left-hand side above is bounded
by

2c1E
[(∫ t

0

(∫
R

ρsT̄εν̄
∗
s

(
σs∂xT̄εν̄

∗
s + ∂xσsH̄s,ε + Ēσ

s,ε

)
dx

)2
ds

)1/2]
.

By Lemma 8.4, this is equal to a constant multiple of

E
[(∫ t

0

(∫
R

ρsT̄εν̄
∗
s

(−∂xσsT̄εν̄
∗
s + ∂xσsH̄s,ε + Ēσ

s,ε

)
dx

)2
ds

)1/2]
,

which, by Hölder’s inequality, is bounded by a constant multiple of

E
[(∫ t

0

∥∥T̄εν̄
∗
s

∥∥2
2

∥∥−∂xσsT̄εν̄
∗
s + ∂xσsH̄σ

s,ε + Ēσ
s,ε

∥∥2
2 ds

)1/2]

≤ E
[

sup
s∈[0,t]

∥∥T̄εν̄
∗
s

∥∥
2

(∫ t

0

∥∥−∂xσsT̄εν̄
∗
s + ∂xσsH̄σ

s,ε + Ēσ
s,ε

∥∥2
2 ds

)1/2]
.

The result then follows by applying Young’s inequality with parameter 1/2 and
using the boundedness of the coefficients. �

LEMMA 8.6 (Switching derivatives). For all x, y ∈ R and ε > 0, we have:

(i) ∂yGε(x, y) = −∂xGε(x, y) − 2∂xpε(x + y),
(ii) ∂yyGε(x, y) = ∂xxGε(x, y).

PROOF. An easy calculation. �

LEMMA 8.7. For all x > 0, t ∈ [0, T ] and ε > 0,∣∣∂−1
x Tε�t(x)

∣∣ ≤ νt (x/2,+∞) + ν̃t (x/2,+∞) + e−x2/8ε.

PROOF. Split the integral

∂−1
x Tενt (x) = −

∫ ∞
x

∫ ∞
0

Gε(y, z)νt (dz) dy

at z < x/2 and its complement to obtain

∣∣∂−1
x Tενt (x)

∣∣ ≤ 1√
2πε

∫ ∞
x

e−(y−x/2)2/2ε dy + νt (x/2,+∞)

≤ e−x2/8ε + νt (x/2,+∞).

The triangle inequality completes the result. �
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LEMMA 8.8. Let ν, ν̃, L, L̃ and � be as in Section 7. For every α > 0, there
exists a constant cα > 0 such that

E
∫ t

0
|Ls − L̃s |2 ds ≤ c

(
δ−1 + λ

)
E
∫ t

0
‖�s‖2−1 ds + cδ + cαe−αλ,

for all t ∈ [0,1], 0 < δ < 1 and λ ≥ 1, where c > 0 is a constant that does not
depend on α.

PROOF. For 0 < δ < 1 and λ ≥ 1, let φδ,λ ∈ H 1
0 (0,∞) be any cutoff function

satisfying

φδ,λ(x)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

= 0, if x = 0,

∈ (0,1), if 0 < x < δ,

= 1, if δ ≤ x ≤ λ,

∈ (0,1), if λ < x < λ + 1,

= 0, if x ≥ λ + 1,

‖∂xφδ,λ‖L∞(0,δ) ≤ c1δ
−1 and ‖∂xφδ,λ‖L∞(λ,λ+1) ≤ c1, for some constant c1 > 0.

Then

‖φδ,λ‖2
H 1

0
≤

∫ λ+1

0
dx +

∫ δ

0
c2

1δ
−2 dx +

∫ λ+1

λ
c2

1 dx = c2
(
δ−1 + λ

)
,

for c2 > 0 a constant. Therefore,

|Lt − L̃t | = ∣∣νt (0,∞) − ν̃t (0,∞)
∣∣

≤ ∣∣νt (φδ,λ) − ν̃t (φδ,λ)
∣∣+ ∣∣νt (0, δ)

∣∣+ ∣∣ν̃t (0, δ)
∣∣

+ ∣∣νt (λ,+∞)
∣∣+ ∣∣ν̃t (λ,+∞)

∣∣
≤ c

1/2
2

(
δ−1 + λ

)1/2‖νt − ν̃t‖−1 + ∣∣νt (0, δ)
∣∣+ ∣∣ν̃t (0, δ)

∣∣
+ ∣∣νt (λ,+∞)

∣∣+ ∣∣ν̃t (λ,+∞)
∣∣

and so the result follows from conditions (iii) and (iv) of Assumption 2.3 [and that
|νt (S)|2 ≤ |νt (S)| for all S ⊆ R]. �

The following result will be used in Section 9.

LEMMA 8.9 (Interchanging stochastic integration and conditional expectation).
Suppose we are working on a probability space with filtration {Ft } and W is a
standard Brownian motion with natural filtration {FW

t }. Let H be a real-valued
{Ft }-adapted process with

E
∫ T

0
H 2

s ds < ∞.
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Then, with probability 1,

E
[∫ t

0
Hs dWs

∣∣∣FW
t

]
=

∫ t

0
E
[
Hs |FW

s

]
dWs

and

E
[∫ t

0
Hs dW 1

s

∣∣∣FW
t

]
= 0

for every t ∈ [0, T ].

PROOF. As we can multiply Hs by 1s<t , it suffices to take t = T . First, sup-
pose that H is a basic process, that is,

Hu = Z1s1<u≤s2,

where s1 < s2 ≤ T are real numbers and Z is Fs1 -measurable. Then

E
[∫ T

0
Hs dWs

∣∣∣FW
T

]
= E

[
Z(Ws2 − Ws1)|FW

T

]
= E

[
Z|FW

s1

]
(Ws2 − Ws1)

=
∫ T

0
E
[
Z|FW

s

]
1s1<s≤s2 dWs

=
∫ T

0
E
[
Hs |FW

s

]
dWs

and

E
[∫ T

0
Hs dW 1

s

∣∣∣FW
t

]
= E

[
Z
(
W 1

s2
− W 1

s1

)|FW
t

]
= E

[
E
[
Z
(
W 1

s2
− W 1

s1

)|σ (FW
T ,Fs1

)]|FW
t

]
= E

[
ZE

[(
W 1

s2
− W 1

s1

)|σ (FW
T ,Fs1

)]|FW
t

]
= E

[
ZE

[
W 1

s2
− W 1

s1

]|FW
T

] = 0,

where we have used the fact that W 1
s2

− W 1
s1

is independent of σ(FW
T ,Fs1) since

W 1 and W are independent and W 1 has independent increments. So the result
holds in this case and immediately extends to linear combinations of basic pro-
cesses. The usual density argument then allows us to extend the result to all re-
quired H . �
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9. Stochastic McKean–Vlasov problem; proof of Theorem 1.6. This sec-
tion presents a short proof of Theorem 1.6. Take a strong solution (ν,W) to the
limit SPDE (Remark 1.3), an independent Brownian motion W⊥ and define X by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xt = X0 +
∫ t

0
μ(s,Xs,Ls) ds +

∫ t

0
σ(s,Xs)ρ(s,Ls) dWs

+
∫ t

0
σ(s,Xs)

(
1 − ρ(s,Ls)

2) 1
2 dW⊥

s

τ = inf{t > 0 : Xt ≤ 0}.
[It is possible to find such an X by standard diffusion theory, since t → Lt =
1 − νt (0,∞) is given and fixed.] Let ν̃ be the conditional law of X given W killed
at zero, that is,

ν̃t (S) := P(Xt ∈ S; t < τ |W).

We will have the existence statement of Theorem 1.6 if we can prove ν = ν̃.
Applying Itô’s formula to φ(Xt) as in the proof of Proposition 3.2 gives

φ(Xt)1t<τ = φ(X0) +
∫ t

0
(μs∂xφ)(Xs)1s<τ ds + 1

2

∫ t

0

(
σ 2

s ∂xxφ
)
(Xs)1s<τ ds

+
∫ t

0
(σsρs∂xφ)(Xs)1s<τ dWs

+
∫ t

0

(
σs

(
1 − ρ2

s

) 1
2 ∂xφ

)
(Xs)1s<τ dW⊥

s .

Take a conditional expectation with respect to W by applying Lemma 8.9 [and
using that L is σ(W)-measurable] to get

ν̃t (φ) = ν0(φ) +
∫ t

0
ν̃s

(
μ(s, ·,Ls)∂xφ

)
ds + 1

2

∫ t

0
ν̃s

(
σ 2(s, ·,Ls)∂xxφ

)
ds

+
∫ t

0
ν̃s

(
σ(s, ·)ρ(s,Ls)∂xφ

)
dWs with Lt = 1 − νt (0,∞).

Now, ν also satisfies this equation, however, in both cases the coefficients depend
only on L. Therefore, we can regard L as fixed and ν and ν̃ as solving the limit
SPDE in the special case when coefficients do not depend on the loss-variable.
This is a much easier linear problem and Theorem 1.2 is certainly sufficient to
conclude ν = ν̃, as required.

We have also just shown that if (X,W) solves the McKean–Vlasov problem
in Theorem 1.6, then its conditional law ν = ν̃ solves the limit SPDE. By Theo-
rem 1.2, this fixes the law of ν, hence we have the uniqueness statement too.

10. Open problems. We end by giving some open problems arising from our
model and its related extensions:
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(i) As indicated at the end of Section 1, the most important practical question
is how do we numerically approximate ν from a given realisation of W ? This
leads to the further questions of how do we combine these approximations to get
an estimator for E�(L), where � : DR →R is some payoff function, and how do
we calibrate the model to any data on traded prices for options with payoff �(L)?

Our proposed algorithm for the first problem is as follows. Here, we discretise
the time variable and treat the outputs of the following subroutines as functions
on [0,∞)—in practise we would also need a discretisation scheme for the spatial
variable, too, but we will not consider that problem here. Fix a precision level δ > 0
and assume we are given a piecewise constant or piecewise linear approximation
to a Brownian trajectory t 	→ wt to precision at least δ (generating such a path
contributes negligible computational cost in this algorithm) and an initial density
V (0). Set L(0) = 0. For 1 ≤ n ≤ T/δ − 1, form V (n) recursively by setting V (n) =
uδ where u solves the deterministic linear PDE

dut (x) = −μ
(
t, x,L(n−1))∂xut (x) dt + 1

2
σ(t, x)ρ

(
t,L(n−1))∂xxut (x) dt

(10.1)
− σ(t, x)

√
1 − ρ

(
t,L(n−1)

)2
∂xut (x) dwt with ut (0) = 0,

for t ∈ [0, δ] and x > 0. Set L(n) = 1 − ∫∞
0 V (n)(x) dx (calculated using some

quadrature routine). Our approximation to the density process, V , of ν and the
loss process, L, are given by piecewise interpolation of {V (n)}n and {L(n)}n:

Ṽt := (
1 − frac{s})V ([s]) + frac{s}V ([s]+1),

L̃t := (
1 − frac{s})L([s]) + frac{s}L([s]+1),

where s := t/δ, [s] is the floor of s and frac{s} = s − [s].
In the case when σ and μ are constant and ρ depends only on the loss variable

and w is given as a piecewise constant interpolation of W with precision δ, the
solution to (10.1) can be written explicitly in terms of the Brownian transition
kernel. A numerical solution can then be found by quadrature. (This instance of
the algorithm was used to produce Figure 2.) If these assumption do not hold, then
further approximations may be necessary. In [30], (10.1) is solved (for the constant
coefficient case) by finite element methods and the scheme is proven to converge
when the system is considered on the whole space. The authors conjecture and
provide numerical evidence for a convergence rate for the scheme on the half-line
with space-time discretisation. A first open problem is to verify that the piecewise-
constant time-discretisation, Ṽ , above converges in law to the solution ν of limit
SPDE as δ → 0. A harder problem is to establish the rate of convergence, in some
appropriate norm, averaged over realisations of W .

Returning to the task of calculating the payoff E�(L), we have the estimator

Em,δ := 1

m

m∑
i=1

�(L̃wi,δ),
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where {wi}1≤i≤m are independent standard Brownian motions and L̃w,δ denotes
the approximation to the loss function using the algorithm above with precision δ

and Brownian trajectory w. As the Monte Carlo routine depends on δ, a natural
variance reduction technique is to use multi-level Monte Carlo as in [30]. Another
potentially useful technique is to alter the drift coefficient in (1.3) using Girsanov’s
theorem to produce a reweighted estimator. In the case when the payoff function,
� , is supported on large losses, and hence is sensitive only to rare events, changing
the measure to one under which the particles have a large negative drift and mul-
tiplying by the appropriate Radon–Nikodym derivative is a form of importance
sampling. A simpler observation in this scenario is that if the systemic Brownian
motion has a realisation that has followed a largely increasing path on [0, T ], then
although that realisation is likely to contribute little to Em,δ , the negative of this
realisation is likely to give a heavy contribution. Hence, the simple antithetic sam-
pling routine in which we draw 2m samples of the common Brownian motion in
pairs (w,−w) is a candidate for variance reduction. An open problem is to verify
the usefulness of these techniques either numerically or analytically.

(ii) Following on from the previous point, a natural extension to the model is
to replace the systemic Brownian motion term in (1.3) with a Lévy process. This
would allow the possibility of generating extreme losses. Mathematically, we ex-
pect to arrive at a nonlinear SPDE driven by a Lévy process on the half-line; see,
for example, [34].

(iii) Another possibility for generating large systemic losses is to incorporate a
contagion term in the particle dynamics along the lines of [19, 20]. For simplicity,
consider the model where particles move according to the dynamics

X
i,N
t = Xi

0 + Wi
t − αLN

t ,

τ i = inf
{
t > 0 : Xi,N

t ≤ 0
}
,(10.2)

LN
t =

N∑
i=1

1τ i≤t ,

with α > 0. Whenever a particle hits the origin, every other particle jumps by size
α/N towards the boundary. This can begin an avalanche effect where a default
causes many other entities to default. Convergence of a finite particle system to a
limiting McKean–Vlasov equation is shown in [20], and it is known that for small
values of α the solution is unique. For large values of α the limiting system under-
goes a jump, whereby a macroscopic proportion of mass is lost in an infinitesimal
period of time. It remains a challenge to prove uniqueness of solutions in this
regime and to characterise a critical value of α. From our perspective, a natural
extension is to consider the system with a common Brownian noise term between
particles.



2750 B. HAMBLY AND S. LEDGER

Acknowledgements. The authors thank the anonymous referees for their
helpful corrections. We are grateful to Andreas Sojmark for his very thorough
reading and suggestions for improvements. S. Ledger thanks Christoph Reisinger
and Francois Delarue for discussions on this material.

REFERENCES

[1] AHMAD, F., HAMBLY, B. M. and LEDGER, S. (2016). A stochastic partial differential equation
model for mortgage backed securities. Preprint.

[2] ANDERSEN, L. and SIDENIUS, J. (2005). Extensions to the Gaussian copula: Random recovery
and random factor loadings. J. Credit Risk 1 29–70.

[3] BAIN, A. and CRISAN, D. (2009). Fundamentals of Stochastic Filtering. Stochastic Modelling
and Applied Probability 60. Springer, New York. MR2454694

[4] BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
[5] BLACK, F. and COX, J. (1976). Valuing corporate securities: Some effects of bond indenture

provisions. J. Finance 31 351–367.
[6] BUJOK, K. and REISINGER, C. (2012). Numerical valuation of basket credit derivatives in

structural jump-diffusion models. J. Comput. Finance 15 115–158.
[7] BURTSCHELL, X., GREGORY, J. and LAURENT, J.-P. (2007). Beyond the Gaussian copula:

Stochastic and local correlation. J. Credit Risk 3 31–62.
[8] BUSH, N., HAMBLY, B. M., HAWORTH, H., JIN, L. and REISINGER, C. (2011). Stochastic

evolution equations in portfolio credit modelling. SIAM J. Financial Math. 2 627–664.
[9] CÁCERES, M. J., CARRILLO, J. A. and PERTHAME, B. (2011). Analysis of nonlinear noisy

integrate & fire neuron models: Blow-up and steady states. J. Math. Neurosci. 1 Art. 7,
33. MR2853216

[10] CARMONA, R. and DELARUE, F. (2013). Probabilistic analysis of mean-field games. SIAM J.
Control Optim. 51 2705–2734.

[11] CARMONA, R., DELARUE, F. and LACKER, D. (2015). Mean field games with common noise.
Available at http://arxiv.org/abs/1407.6181.

[12] CHASSAGNEUX, J.-F., CRISAN, D. and DELARUE, F. (2015). A probabilistic approach to
classical solutions of the master equation for large population equilibria. Available at
http://arxiv.org/abs/1411.3009.

[13] CHERUBINI, U., LUCIANO, E. and VECCHIATO, W. (2004). Copula Methods in Finance.
Wiley, Chichester. MR2250804

[14] CHIANG, T. S. (1994). McKean–Vlasov equations with discontinuous coefficients. Soochow J.
Math. 20 507–526. MR1309485

[15] CRISAN, D., KURTZ, T. G. and LEE, Y. (2014). Conditional distributions, exchangeable
particle systems, and stochastic partial differential equations. Ann. Inst. Henri Poincaré
Probab. Stat. 50 946–974. MR3224295

[16] CRISAN, D. and XIONG, J. (2010). Approximate McKean–Vlasov representations for a class
of SPDEs. Stochastics 82 1–16.

[17] DAI PRA, P., RUNGGALDIER, W. J., SARTORI, E. and TOLOTTI, M. (2009). Large portfolio
losses: A dynamic contagion model. Ann. Appl. Probab. 19 347–394. MR2498681

[18] DAWSON, D. and GREVEN, A. (2014). Spatial Fleming–Viot Models with Selection and Mu-
tation. Springer, Berlin.

[19] DELARUE, F., INGLIS, J., RUBENTHALER, S. and TANRÉ, E. (2015). Global solvability of
a networked integrate-and-fire model of McKean–Vlasov type. Ann. Appl. Probab. 25
2096–2133. MR3349003

[20] DELARUE, F., INGLIS, J., RUBENTHALER, S. and TANRÉ, E. (2015). Particle systems with a
singular mean-field self-excitation. Application to neuronal networks. Stochastic Process.
Appl. 125 2451–2492. MR3322871

http://www.ams.org/mathscinet-getitem?mr=2454694
http://www.ams.org/mathscinet-getitem?mr=2853216
http://arxiv.org/abs/1407.6181
http://arxiv.org/abs/1411.3009
http://www.ams.org/mathscinet-getitem?mr=2250804
http://www.ams.org/mathscinet-getitem?mr=1309485
http://www.ams.org/mathscinet-getitem?mr=3224295
http://www.ams.org/mathscinet-getitem?mr=2498681
http://www.ams.org/mathscinet-getitem?mr=3349003
http://www.ams.org/mathscinet-getitem?mr=3322871


A STOCHASTIC MCKEAN–VLASOV EQUATION ON THE HALF-LINE 2751

[21] DE MASI, A., GALVES, A., LÖCHERBACH, E. and PRESUTTI, E. (2015). Hydrodynamic
limit for interacting neurons. J. Stat. Phys. 158 866–902. MR3311484

[22] DING, X., GIESECKE, K. and TOMECEK, P. (2009). Time-changed birth processes and multi-
name credit derivatives. Oper. Res. 57 990–1005.

[23] ERRAIS, E., GIESECKE, K. and GOLDBERG, L. R. (2010). Affine point processes and portfo-
lio credit risk. SIAM J. Financial Math. 1 642–665.

[24] EVANS, L. C. (2010). Partial Differential Equations, 2nd ed. Graduate Studies in Mathematics
19. Amer. Math. Soc., Providence, RI. MR2597943

[25] FANG, F., JÖNSSON, H., OOSTERLEE, C. and SCHOUTENS, W. (2010). Fast valuation and
calibration of credit default swaps under Lévy processes. J. Comput. Finance 14 1–30.

[26] FINGER, C. C. (2005). Issues in the pricing of synthetic CDOs. J. Credit Risk 1 113–124.
[27] FREY, R. and MCNEIL, A. (2003). Dependent defaults in modes of portfolio credit risk. J. Risk

6 59–92.
[28] GIESECKE, K., SPILIOPOULOS, K., SOWERS, R. B. and SIRIGNANO, J. A. (2015). Large

portfolio asymptotics for loss from default. Math. Finance 25 77–114.
[29] GIESECKE, K. and WEBER, S. (2006). Credit contagion and aggregate losses. J. Econom.

Dynam. Control 30 741–767. MR2224986
[30] GILES, M. and REISINGER, C. (2012). Stochastic finite differences and multilevel Monte

Carlo for a class of SPDEs in finance. SIAM J. Financial Math. 3 572–592.
[31] HULL, J. and WHITE, A. (2001). Valuing credit default swaps II: Modeling default correla-

tions. J. Derivatives 8 12–21.
[32] JIN, L. (2010). Particle systems and SPDEs with applications to credit modelling. Ph.D. thesis,

Univ. Oxford.
[33] KARATZAS, I. and SHREVE, S. E. (1991). Brownian Motion and Stochastic Calculus.

Springer, New York.
[34] KIM, K.-H. (2014). A Sobolev space theory for parabolic stochastic PDEs driven by Lévy

processes on C1-domains. Stochastic Process. Appl. 124 440–474. MR3131301
[35] KOLOKOLTSOV, V. N. (2013). Nonlinear diffusions and stable-like processes with coefficients

depending on the median or VaR. Appl. Math. Optim. 68 85–98. MR3072241
[36] KOLOKOLTSOV, V. N. and TROEVA, M. (2015). On the mean field games with common noise

and the McKean–Vlasov SPDEs. Available at http://arxiv.org/abs/1506.04594.
[37] KOTELENEZ, P. (1995). A class of quasilinear stochastic partial differential equations of

McKean–Vlasov type with mass conservation. Probab. Theory Related Fields 102 159–
188.

[38] KURTZ, T. G. and XIONG, J. (1999). Particle representations for a class of nonlinear SPDEs.
Stochastic Process. Appl. 83 103–126.

[39] LEDGER, S. (2014). Sharp regularity near an absorbing boundary for solutions to second order
SPDEs in a half-line with constant coefficients. Stoch. Partial Differ. Equ. Anal. Compu-
tat. 2 1–26. MR3249578

[40] LEDGER, S. (2016). Skorokhod’s M1 topology for distribution-valued processes. Electron.
Commun. Probab. 21 Paper No. 34, 11. MR3492929

[41] LINDSKOG, F. and MCNIEL, A. (2003). Common Poisson shock models: Applications to in-
surance and credit risk modelling. Astin Bull. 33 209–238.

[42] LUÇON, E. and STANNAT, W. (2014). Mean field limit for disordered diffusions with singular
interactions. Ann. Appl. Probab. 24 1946–1993. MR3226169

[43] MERINO, S. and NYFELER, M. A. (2002). Calculating portfolio loss. RISK 82–86.
[44] MERTON, R. (1974). On the pricing of corporate debt: The risk structure of interest rates.

J. Finance 29 449–470.
[45] MORTENSEN, A. (2006). Semi-analytical valuation of basket credit derivatives in intensity-

based models. J. Derivatives 13 8–26.

http://www.ams.org/mathscinet-getitem?mr=3311484
http://www.ams.org/mathscinet-getitem?mr=2597943
http://www.ams.org/mathscinet-getitem?mr=2224986
http://www.ams.org/mathscinet-getitem?mr=3131301
http://www.ams.org/mathscinet-getitem?mr=3072241
http://arxiv.org/abs/1506.04594
http://www.ams.org/mathscinet-getitem?mr=3249578
http://www.ams.org/mathscinet-getitem?mr=3492929
http://www.ams.org/mathscinet-getitem?mr=3226169


2752 B. HAMBLY AND S. LEDGER

[46] ROGERS, L. C. G. and WILLIAMS, D. (2000). Diffusions, Markov Processes, and Martingales.
Vol. 2. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge.

[47] RUDIN, W. (1987). Real and Complex Analysis, 3rd ed. McGraw-Hill, New York. MR0924157
[48] SCHÖNBUCHER, P. J. (2003). Credit Derivatives Pricing Models: Models, Pricing and Imple-

mentation. Wiley, New York.
[49] SPILIOPOULOS, K., SIRIGNANO, J. A. and GIESECKE, K. (2014). Fluctuation analysis for

the loss from default. Stochastic Process. Appl. 124 2322–2362.
[50] SZNITMAN, A.-S. (1991). Topics in propagation of chaos. In Ecole D’Eté de Probabilités de

Saint-Flour XIX—1989 (P.-L. Hennequin, ed.). Lecture Notes in Mathematics, Chapter 3,
1464 165–251. Springer, Berlin.

[51] VASICEK, O. (1991). Limiting loan loss probability distribution. Technical report, KMV Cor-
poration.

[52] VERAAR, M. (2012). The stochastic Fubini theorem revisited. Stochastics 84 543–551.
MR2966093

[53] WHITT, W. (2002). Stochastic-Process Limits: An Introduction to Stochastic-Process Limits
and Their Application to Queues. Springer, New York. MR1876437

[54] WU, J.-L. and YANG, W. (2013). Valuation of synthetic CDOs with affine jump-diffusion
processes involving Lévy stable distributions. Math. Comput. Modelling 57 570–583.
MR3011182

[55] ZHOU, C. (2001). An analysis of default correlations and multiple defaults. Rev. Financ. Stud.
14 555–576.

MATHEMATICAL INSTITUTE

UNIVERSITY OF OXFORD

WOODSTOCK ROAD

OXFORD

OX2 6GG
UNITED KINGDOM

E-MAIL: hambly@maths.ox.ac.uk

HEILBRONN INSTITUTE

FOR MATHEMATICAL RESEARCH

UNIVERSITY OF BRISTOL

HOWARD HOUSE

BRISTOL

BS8 1SN
UNITED KINGDOM

E-MAIL: sean.ledger@bristol.ac.uk

http://www.ams.org/mathscinet-getitem?mr=0924157
http://www.ams.org/mathscinet-getitem?mr=2966093
http://www.ams.org/mathscinet-getitem?mr=1876437
http://www.ams.org/mathscinet-getitem?mr=3011182
mailto:hambly@maths.ox.ac.uk
mailto:sean.ledger@bristol.ac.uk

	Introduction
	Motivation and framework
	Model speciﬁcation
	Main results
	Overview

	Notation and assumptions
	Dynamics of the ﬁnite particle system
	The whole space process

	Probabilistic estimates
	Boundary estimate
	Tail estimate
	Loss increment estimate

	Tightness of the system and existence of solutions: Proof of Theorem 1.1
	Limit points
	Martingale approach

	The kernel smoothing method
	Smoothing in H-1 and the antiderivative

	Uniqueness of solutions; proof of Theorem 1.2
	L2-Regularity
	Resuming the uniqueness proof

	Technical lemmas
	Stochastic McKean-Vlasov problem; proof of Theorem 1.6
	Open problems
	Acknowledgements
	References
	Author's Addresses

