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RANDOMIZED HAMILTONIAN MONTE CARLO

BY NAWAF BOU-RABEE! AND JESUS MARIA SANZ-SERNA?
Rutgers University—Camden and Universidad Carlos 11l de Madrid

Tuning the durations of the Hamiltonian flow in Hamiltonian Monte
Carlo (also called Hybrid Monte Carlo) (HMC) involves a tradeoff between
computational cost and sampling quality, which is typically challenging to
resolve in a satisfactory way. In this article, we present and analyze a random-
ized HMC method (RHMC), in which these durations are i.i.d. exponential
random variables whose mean is a free parameter. We focus on the small time
step size limit, where the algorithm is rejection-free and the computational
cost is proportional to the mean duration. In this limit, we prove that RHMC
is geometrically ergodic under the same conditions that imply geometric er-
godicity of the solution to underdamped Langevin equations. Moreover, in the
context of a multidimensional Gaussian distribution, we prove that the sam-
pling efficiency of RHMC, unlike that of constant duration HMC, behaves
in a regular way. This regularity is also verified numerically in non-Gaussian
target distributions. Finally, we suggest variants of RHMC for which the time
step size is not required to be small.

1. Introduction. In the present article, we suggest a randomized version of
the Hamiltonian Monte Carlo (also called Hybrid Monte Carlo) algorithm that,
under very general hypotheses, may be proved to be geometrically ergodic. The
Hamiltonian Monte Carlo (HMC) algorithm is a general purpose Markov Chain
Monte Carlo (MCMC) tool for sampling from a probability distribution IT [11, 22,
31, 33]. It offers the potential of generating proposed moves that are far away from
the current location of the chain and yet may be accepted with high probability.
The algorithm is based on integrating a Hamiltonian system and possesses two
free parameters: the duration of the Hamiltonian flow and the time step size of the
integrator. Unfortunately, the performance of HMC depends crucially on the values
assigned by the user to those parameters; while for some parameter values HMC
may be highly efficient, it is well known that, as discussed below, there are values
for which the algorithm, in its simplest form, is not even ergodic. The Randomized
Hybrid Monte Carlo (RHMC) addresses these shortcomings of HMC.
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We target probability distributions of the form
) Mg =C5leowp(-e@)dg.  Co= [  exp(~(@)da.

where the negative loglikelihood ® : R? — R is seen as a potential energy func-
tion. We assume that & is at least differentiable and such that Cy < co. As is the
case with other MCMC methods, HMC does not require knowing the normaliza-
tion factor Co. HMC enlarges the state space from R? to R?? and considers the
Boltzmann—Gibbs distribution in this space

2) Mpg(dq,dp) = Cy ' 2n)"P?exp(~H(q, p))dq dp,

where the artificial Hamiltonian function (or total energy) H : R — R is taken
to be
pI?

3) H(CI»P)ZT‘FCD(Q)-

The vector p plays the role of a mechanical momentum and the term |p|?/2 is
the corresponding kinetic energy. The target I is the marginal of [1gg on ¢; the
marginal on p is, of course, the standard D-dimensional Gaussian A/ (0, 1)P. More
complicated kinetic energies of the form (1/2)p? M~!p, with M a symmetric
positive definite mass matrix, may also be used, but, for notational simplicity, we
restrict our study to the Hamiltonian (3).

The basic idea of HMC is encapsulated in the following procedure, where the
duration A > 0 is a (deterministic) parameter whose value is specified by the user.

ALGORITHM 1.1 (HMC). Given the duration parameter A > 0 and the current
state of the chain X € R?, the method outputs a state X € RP as follows:

Step 1. Generate a D-dimensional random vector & ~ A (0, 1)?.
Step 2. Evolve over [0, 1] Hamilton’s equations associated to (3)

q=r,
p=-Vo(q),

with initial condition (g (0), p(0)) = (X9, &o).
Step 3. Output X1 =¢qg(}).

“4)

Since Step 2 conserves the Boltzmann—Gibbs distribution, it is clear that the
mapping Xo — X preserves the target 1 and, therefore, may be used to generate
a Markov chain having IT as an invariant distribution (in fact the resulting chain
is actually reversible with respect to IT). Note that Step 1 is easy to perform since
it only involves generating a D-dimensional normal random vector. This step is
the only source of randomness in determining X conditional on Xg. The Hamil-
tonian flow in Step 2 is what, in principle, enables HMC to make large moves in
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state space that reduce correlations in the Markov chain {X;}. Roughly speaking,
one may hope that, by increasing A, X; moves away from Xy, thus reducing cor-
relation. However, simple examples show that this outcome is far from assured.
Indeed, for the univariate normal distribution with ®(g) = ¢2/2, Hamilton’s equa-
tions coincide with those of the harmonic oscillator, (d/dt)q = —p, (d/dt)q = p,
and the flow is a rotation in the (g, p) plane with period 2. It is easy to see (see
Section 5 for a fuller discussion) that, if X is taken from the target distribution,
as A increases from O to m /2, the correlation between X| and X decreases and
for A =m/2, X1 and X are independent. However, increasing A beyond 7 /2 will
cause an increase of the correlation and for A = 7, X1 = — X and the chain is not
ergodic. For general distributions, it is likely that a small A will lead to a highly
correlated chain, while choosing A too large may cause the Hamiltonian trajectory
to make a U-turn and fold back on itself, thus increasing correlation [17].

In practice, a formula for the exact solution used in Step 2 is unavailable and
a numerical solution is used instead. Thus, in addition to the duration A of the
Hamiltonian flow in Step 2, another key parameter in the HMC method is the time
step size At used to generate this numerical solution. To correct the bias intro-
duced by time discretization error, a Metropolis—Hastings accept-reject step is also
added [16, 28]. In order to keep the Metropolis—Hastings ratio simple, typically a
volume-preserving and reversible method is used to numerically simulate Hamil-
ton’s equations in Step 2 [13]. The integrator of choice is the Verlet method, which
is second-order accurate and, like Euler’s rule, only requires one new evaluation of
the gradient V®(g) per step. Unfortunately, time discretization does not remove
the complex dependence of correlation on the duration parameter A. For instance,
in the preceding example where ®(g) = g2/2, it is easy to check that if A is close
to an integer multiple of 7 and Af > 0 is suitably chosen, the Verlet numerical
integration will result, for each Xg, in X1 = — X/ (a move that will be accepted by
the Metropolis—Hasting step). To avoid such poor performance, HMC is typically
operated with values of At that are randomized [23, 31]. Since, due to stability
restrictions, explicit integrators cannot operate with arbitrarily large values of the
time step, At is typically chosen from a uniform distribution in an (often narrow)
interval (Atfmin, Atmax). In any case, the fact remains that increasing the duration
parameter will increase the computational cost and may impair the quality of the
sampling.

In this paper, we randomize the duration of the Hamiltonian flow, cf. [8, 23, 31].
More precisely, in RHMC the lengths of the time intervals of integration of the
Hamiltonian dynamics at the different steps of the Markov chain are identically
distributed exponential random variables; these durations are mutually indepen-
dent and independent of the state of the chain. In what follows, we are primarily
interested in the case where the procedure uses the exact Hamiltonian flow (or,
in practical terms, where the integration is carried out with such a small value
of At which ensures that essentially all steps of the chain result in acceptance).
This leaves the mean duration as the only free parameter. In this exact integration
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scenario, we prove that, regardless of the choice of the mean duration, RHMC is
geometrically ergodic. Furthermore, we show that the dependence of the perfor-
mance of RHMC on this mean duration parameter is simpler than the dependence
of the performance of HMC on its constant duration parameter. A full discussion
of the situation where time-discretization errors are taken into account requires
heavy use of numerical analysis techniques and will be the subject of a future pub-
lication. Nevertheless, in Section 6, we present two variants of RHMC, based on
the ideas of Markov chain approximation methods (MCAM) [7, 20], that replace
the Hamiltonian flow by a numerical approximation and may be treated with the
infinitesimal tools we employ in the exact integration scenario.

Section 2 provides a description of the RHMC method and its infinitesimal gen-
erator L. In Section 3, we prove that the measure [1pg is infinitesimally invariant
for L. We then construct a Lyapunov function for RHMC that is of the same form
as that used for the Langevin equations and requires similar assumptions on the po-
tential energy function [27, 35, 37]. Here, it is important to point out that, while the
Langevin dynamics explicitly includes friction, the dissipative behavior of RHMC
comes from the randomization of the momentum. In particular, if the chain is at a
location of high potential energy, the Hamiltonian dynamics will typically change
a large part of the potential energy into kinetic energy; then, with high probability,
the next momentum randomization will decrease the kinetic energy. With this Lya-
punov function, we extend a local semimartingale representation of the process. It
also follows that Dynkin’s formula holds for functions that satisfy a mild growth
condition. Using Dynkin’s formula, we prove that the measure [1pg is invariant
for RHMC. Using a generating function for the Hamiltonian flow and a Duhamel
formula for the Markov semigroup associated with the RHMC process, we prove
that the transition probability distribution of RHMC satisfies a minorization con-
dition. We then invoke Harris’s theorem to conclude that RHMC is geometrically
ergodic with respect to I[1gg, for any choice of the mean duration parameter A.

Section 4 considers the model problem of a multidimensional Gaussian target
distribution [23, 31]. For both RHMC and HMC, explicit formulas are derived for
(1) the integrated autocorrelation time associated to the standard estimator of the
mean of the target distribution; and (ii) the equilibrium mean-squared displace-
ment. These formulas imply that the sampling efficiency of RHMC behaves in a
simple way, while the sampling efficiency of HMC displays complicated depen-
dence on the duration parameter. Section 5 presents numerical tests for a two-
dimensional double well potential energy and a potential energy used in the chem-
istry literature for a pentane molecule. These tests support our theoretical findings.
Two variants of RHMC that do not assume that integration errors are negligible
are suggested in Section 6. The first of them is easily proved to have a Lyapunov
function under suitable hypotheses but introduces a bias in the target distribution;
the second removes the bias by allowing momentum flips at a rate dictated by a
Metropolis—Hastings ratio. There is an Appendix devoted to Harris’s theorem.

To summarize, the main theoretical contributions of this paper are the following:
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e a proof of a Foster—Lyapunov drift condition for the infinitesimal generator of
RHMC;

e asolution to a martingale problem for RHMC;

e a proof that infinitesimal invariance of the measure [1gg and Dynkin’s formula
imply that the measure I1pg is invariant for RHMC;

e a minorization condition for RHMC;

e a proof that I1gg is the unique invariant measure of RHMC and that RHMC is
geometrically ergodic (which combines all of the previous results); and

e introduced two practical implementations of RHMC, including one that is unbi-
ased.

Let us finish this introduction by pointing out that the RHMC method is re-
lated to Anderson’s impulsive thermostat common in molecular dynamics, which
describes a molecular system interacting with a heat bath [2, 12, 21]. The molecu-
lar system is modeled using Hamiltonian dynamics, and its interaction with a heat
bath is modeled by collisions that cause an instantaneous randomization of the mo-
mentum of a randomly chosen particle. The times between successive collisions
are assumed to be i.i.d. exponential random variables. In [12], E and Li prove that
the Anderson thermostat on a hyper-torus is geometrically ergodic. Since the state
space is bounded, the main issue in that proof is the derivation of a minorization
condition for the process. Our proof of geometric ergodicity of the RHMC method
can be modified to extend their result to an unbounded space.

2. RHMC method. Here, we provide step-by-step instructions to produce
an RHMC trajectory, and afterwards, introduce the infinitesimal generator L of
RHMC.

The RHMC method generates a right-continuous with left limits (cadlag)
Markov process Z;. While Algorithm 1.1 was formulated in R?, the process
Z: = (Q;, P,) is defined in the enlarged space R?? to include the possibility of
partial randomization of the momentum, as in the generalized hybrid Monte Carlo
of Horowitz [1, 18, 19]. This process Z; can be simulated by iterating the fol-
lowing steps. The mean duration A > 0 and the Horowitz angle ¢ € (0, /2] are
deterministic parameters.

ALGORITHM 2.1 (RHMC). Given the current time fy and the current state
Ziy = (Qyy> Pry), the method computes the next momentum randomization time
11 > to and the path of the process Z; = (Qy, Ps) over (o, t1] as follows:

Step 1. Update time via t; = g + 8t where 8tg ~ Exp(1/1).

Step 2. Evolve over [tg, ;] Hamilton’s equations (4) associated with (3) with
initial condition (g (o), p(t0)) = (Qy» Pry)-

Step 3. Set

Zs = (Qy, Ps):(Q(S)sp(s)) forfp <s <.
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Step 4. Randomize momentum by setting

Zi, = (q(t1), cos(¢) p(11) + sin(p)§),

where & ~ N(0, 1)P.
Step 5. Output X1 = ¢q (7).

On test functions f € C!(R?P), the infinitesimal generator of Z is given by

momentum randomization operator

Lf(q.p)=+""E{f(T'(q.p) — f(q.p)}

+p"V,f(q. p) = Ve® @)V, f (g, p).

Liouville operator

&)

The expectation in the momentum randomization operator is over the random vari-
able I'(¢g, p) defined as

(6) I'(q, p) = (g, cos(¢) p + sin()§),

where & ~ N (0, 1)? and ¢ € (0, w/2]. A sample path of this process is given by
the Hamiltonian flow associated with (3) with intermittent and instantaneous jumps
in momentum. The random times between successive jumps are independent and
exponentially distributed with mean A. The Horowitz angle ¢ is a deterministic pa-
rameter that governs how much the momentum immediately after a jump depends
on the value of the momentum immediately prior to a jump. The case ¢ = 0 in (6)
has to be excluded because it leads to I'(¢g, p) = (g, p) and then the generator L
reduces to the Liouville operator associated with the Hamiltonian H, which is in
general not ergodic with respect to [1gg. Note that, if ¢ = /2, the random vector
I"(g, p) does not depend on p (complete momentum randomization).

3. Geometric ergodicity of RHMC.

3.1. Overview. Inthis section, we prove that [1gg is the unique invariant prob-
ability measure of RHMC and that RHMC is geometrically ergodic. Our main tool
to prove geometric ergodicity is Harris’s theorem. In the Appendix, we recall this
theorem in the present context of a continuous-time Markov process with an un-
countable state space.

A main ingredient in Harris’s theorem is Hypothesis A.1 on the existence of a
Lyapunov function, which we refer to as a Foster—Lyapunov drift condition. We
formulate this condition in terms of an abstract infinitesimal generator whose pre-
cise meaning is given in Definition A.1. Note that this definition of an infinitesimal
generator accommodates the Lyapunov function V : R?? — R introduced below
because for any ¢ > 0 the process

t
V(Z;) — V(z)—/ LV (Zy)ds, Zo=z€eR?P,
0
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is always a local martingale, and hence, according to Definition A.1 the function V
belongs to the domain of L. Note that here we assume that this Lyapunov function
is continuously differentiable, since the operator L involves partial derivatives. Af-
ter showing that V is a Lyapunov function for L, we apply this Lyapunov function
to solve the martingale problem for the operator L on functions that are C! with
globally Lipschitz continuous derivative. This solution is used to show that [1gg
is an invariant measure for RHMC. We then prove that the transition probabilities
of RHMC satisfy a minorization condition given in Hypothesis A.2. With these
pieces in place, we invoke Harris’s theorem to conclude that I1pg is the unique
invariant measure for RHMC, and that RHMC is geometrically ergodic.

To establish a Foster—Lyapunov drift condition, we use a Lyapunov function
V originally introduced to prove stochastic stability of a Hamiltonian system
with dissipation and random impulses; see Section 2.2 and equation (14) of [35].
See also Section 3 of [27] and Section 2 of [37] for an application of this Lya-
punov function to prove geometric ergodicity of the solution to underdamped
Langevin equations with nonglobally Lipschitz coefficients. This Lyapunov func-
tion V : R?? — R is of the form

la?

(7) V(@) =H@)+eilg, p)+ e, z=(q,p) e R*",

where H is the Hamiltonian given earlier in (3), and c¢; and ¢, are constants given
by

)\‘—1
(8) o= sin?(¢p) and ¢ = A" er(1 — cos(e)).

Since A > 0 and ¢ € (0, /2], note from (8) that both ¢; and ¢, are positive.

Throughout this section, we will use the following conditions on the potential
energy ®(gq). Note that not all of these assumptions will be required for every
statement, but we find it notationally convenient to have a single set of assumptions
to refer to.

HYPOTHESIS 3.1. The potential energy ® € C*(RP) satisfies the following
conditions:

H1. One has ®(q) >0 and [ppo |qlzexp(—CD(q))dq < 00.
H2. Let c| and cy be the constants appearing in (7). Then there exist a > 0 and
b € (0, 1) such that

(c1b)* + c2b(1 — b)
2(1 — b)

! 2
~(V4®(q),q) = bP(q) + Ig*> —a

2

forall g e RP.
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We stress that these assumptions on the potential energy function are typically
made to prove geometric ergodicity of the solution to underdamped Langevin
equations. For instance, see equation (13) of [35], Hypothesis 1.1 in [37] and Con-
dition 3.1 in [27]. Hypothesis H1 and (7) imply that for any constants c, c2 € R,
we have that

/RZD V(2)Ipg(dz) < oo.

In other words, this Lyapunov function is integrable with respect to [1pg.

The hypothesis that the potential is bounded from below by itself guarantees
that the kinetic energy and, therefore, the momenta are bounded as time increases.
It follows that the configuration variables grow at most linearly with time and,
therefore, solutions of Hamilton’s equations are well defined for all real time.

3.2. The measure Tlpg is an infinitesimally invariant measure. As expected,
the Boltzmann—Gibbs distribution in (2) is an infinitesimally invariant probability
measure for the process Z. By implication the target IT is infinitesimally invariant
for the process Q. To state this result, let C2° (R?P) denote the space of compactly
supported smooth functions from R?? to R.

PROPOSITION 3.1. Suppose Hypothesis 3.1 H1 holds. Then for any f €
cx (R2P) we have that

[, L @g(d) =0.

PROOF. Hypothesis 3.1 H1 guarantees that [p2p e H@ dz7 < 00, and hence,
the measure I1pg is a probability measure. Note that [1gg is an invariant probabil-
ity measure for the momentum randomization operator in (5), and hence,

[, B ) = . p))Tsg(dg. dp) =0,

Moreover, integration by parts shows that the Liouville operator leaves [1gg in-
finitesimally invariant. In particular, the boundary terms resulting from the inte-
gration by parts vanish because f is compactly supported. [

Later in this section, we strengthen this result to [1gg is the unique invariant
probability measure for RHMC.

3.3. Foster—Lyapunov drift condition. The following lemma is remarkable be-
cause it states that the infinitesimal generator L possesses a Lyapunov function,
even though RHMC does not incorporate explicit dissipation.
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LEMMA 3.2. Suppose Hypothesis 3.1 holds, and V (z) is given by (7). Then
there exist real positive constants c1, ¢, y and K such that

) LV(z) =—yV(@+K
for all z € R*P . Moreover, V is nonnegative and

lim V(z) =o0.
|z]—>00

This lemma implies that Hypothesis A.1 of the Harris’s theorem holds. The
proof below shows that the momentum randomizations in RHMC are the source
of dissipation in RHMC.

PROOF. Letz = (g, p) € R*?. From (7), note that
VyV=V,®+cip+cagq,
VpV=p+ciq
and if we set u = cos(¢) p + sin(¢)&, note from (6) that
Elu|* = Dsin®(¢) + cos’ ()| pI%,
E(g, u) = cos(¢)(q, p),

where the expected value is taken over the D-dimensional standard normal vector
£ ~N(0,1)P. We recall that we excluded the case ¢ = 0 in the definition of u
in (6). A direct calculation shows that

1
LV =37'D—sin*(¢) — c1(V, D, q)
2
(10) ,
|p|

+ (2¢c; — 27! sin2(¢))T + (x 7 er(cos(@) — 1) +e2)(q, p).

‘We now choose c; and c¢» such that

2¢1 — A7 sin?(¢) = —2¢;,
A ler(cos(p) — 1) + ¢ =0.

In other words, we pick c¢; and ¢, to eliminate the (g, p) cross term in LV, and to
rescale the (|p|?)/2 term so that it matches the coefficient of the (V4 ®, q) term.
Solving these equations yields (8). With this choice of ¢ and ¢;, (10) simplifies to
pl* 1 a1 .5
(1D LV =—-2c T—FE(V(]CD,q) + DA Esm (0).
Let b be the constant appearing in Hypothesis 3.1 H2. Applying Cauchy’s in-
equality with § > O to the (g, p) cross term in (7) yields

cob

| 2
2 .

b 2 ) 2 1 2
bVig.p) =510 +bd>(q)+61b<§|l7| +oclal) + g
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Choosing § = (1 — b)/(c1b) and invoking Hypothesis 3.1 H2, we obtain

IpI? (c1h)>+cab(1=b)
DV (g p) = 5= +b0(g) +

- 2 2 ’ ’

Together (11) and (12) imply that the desired Foster—Lyapunov drift condition
holds with y = 2¢1b and for some K > 0.

To complete the proof, recall that ® > 0 by Hypothesis 3.1 H1, and thus, it
suffices to check that the quadratic form

Ip? lq1?
> +ci1{q, p) +c2 >

appearing in V (g, p) is positive definite. This condition is met when
2 L.,
c2>ci>0 = (1 —cos(¢)) > 750 (¢)>0

which holds for all ¢ € (0, 7/2]. O

REMARK 3.3. The proof of Lemma 3.2 shows that y oc 1! sin?(¢). Thus, we
see that if A is smaller or ¢ is closer to 7 /2, then y becomes larger. This result is
expected since momentum randomizations are the source of dissipation in RHMC,
and smaller A implies more randomizations of momentum, and larger ¢ implies
the momentum is randomized more completely.

REMARK 3.4. It follows from Lemma 3.2 that
K
E.V(Z) <e "'V()+ —(1—e7").
14
See, for example, the proof of Theorem 6.1 in [29].

3.4. Martingale problem. Here, we use Lemma 3.2 to solve the martingale
problem for the operator L on functions that are C' with globally Lipschitz con-
tinuous derivative.

LEMMA 3.5. Suppose Hypothesis 3.1 holds. For all globally Lipschitz and
continuously differentiable functions f : R?*P — R, for any initial condition Zy =
z € R?*P and for any t > 0, the local martingale

t
M =FZ) - f2) - /0 Lf(Z,)ds

is a martingale.
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A key ingredient in the proof given below is the Lyapunov function for L from
Lemma 3.2. In particular, since globally Lipschitz functions grow at most linearly,
the class of functions that appear in Lemma 3.5 are bounded by this Lyapunov
function. Moreover, Dynkin’s formula holds for this class of functions:

t
(13) E, f(Z) = f(2) + fo E.Lf(Z)ds, Zo=z.120.

See, for example, Chapter 1 of [9] for more discussion on Dynkin’s formula.

PROOF. In this proof, we use the well-known fact (see, e.g., Corollary 3,
Chapter II in [32]) that a local martingale with integrable quadratic variation is
a martingale. Let [M/](¢) denote the quadratic variation of Mtf on the interval
[0, ¢]. The global Lipschitz assumption on f implies that there exists a constant
L ¢ > 0 such that

|f(z1) — f(22)| < Lylz1 — 22|

for all z1, z» € RZP. Moreover, since the process Z; satisfies Hamilton’s differen-
tial equations in between consecutive momentum randomizations, and since the
process f(Z;) — Mtf is continuous and of finite variation, the quadratic variation
of M/ is equal to the sum of the squares of the jumps in f(Z;). Thus,

(M=l =Y (f(Z) - f(Z) = Y. L} —I%

O<s<t O<s<t

In other words, the global Lipschitz property of f enables bounding the quadratic
variation of the scalar-valued process f(Z;) by the quadratic variation of the com-
ponents of the process Z;.

Let {#;} be the sequence of random times at which the momentum randomiza-
tions occur. This sequence can be produced by iterating the recurrence relation:
ti+1 = t; + &t; with initial condition #9 = 0 and where {6#;} are i.i.d. exponential
random variables with mean A. Let N; be the (random) number of momentum ran-
domizations that have occurred up to time ¢. Note that N, is a Poisson process with
intensity A~!, and hence, a.s. bounded. This permits us to interchange expectation
and summation in the following inequalities:

E M) ) < L3E: Y 1Zy— Z,-

1<i<N;
<LIATIY EAIP = PP At — £ AT}
i>0
<2L50 7Y B (1P 1P 4 1P P) (¢ At —t A1)
i>0

<4L5C7 Y B {(V(Zy) 4+ V(Zy ) Aty — 1 A1)
i>0
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K
< 8L§Czrlr(\/(z) + ;),

where in the last two steps we used the Lyapunov function given in Lemma 3.2,
and in addition, we introduced the positive constant C» = 2¢2/(c2 — c%) with ¢

and ¢y being the constants defined in (8). Thus, we may conclude that Mtf is a
martingale for any ¢ > 0.
Alternatively, we could have used the compensator of [M ! 1(2):

t
(M7)(1) = fo (LFA(Zy) — 2f (Zo)Lf(Zy)) ds

t
= [ B((r@) - (20)ds
which would give a similar bound on E,[M No. O

3.5. The measure Tlpg is an invariant measure. In this part, we combine
Proposition 3.1 and Lemma 3.5 to prove that [1pg is an invariant probability mea-
sure for RHMC.

LEMMA 3.6. Suppose Hypothesis 3.1 holds. For any f € CX° (R2P) and for
anyt >0,

[, Eef Zolse@n) = [ | fMsc(dz).
]RZD ]RZD

To prove this lemma, we use Dynkin’s formula and condition on a fixed se-
quence of jump times to exploit the fact that the Hamiltonian flow and the momen-
tum randomization individually leave I1gg invariant.

PROOF. Let f € Cé’o(RZD) and z = (g, p) € R?P. Referring to (5), since f €
Ccx (R2P) the function

Ef(T(2)) =Ef(q,cos(®)p + sin($)&)

is smooth, compactly supported in the g component, and bounded in the p com-
ponent, and hence, Lf € C;° (R?P). Moreover, since any smooth function with
compact support is globally Lipschitz continuous, we can invoke Lemma 3.5 to
conclude that for any f € C° (R?P) and for any ¢ > 0, the process

t
F(Z) - F(2) - /0 Lf(Zyds,  Zo=z,

is a martingale. Thus, Dynkin’s formula holds:

t
E.f(Z) = f() + /0 E.Lf(Zs)ds,
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and in particular,

[, Eer ZoMso@a = [ foMsc(d)
RZD RZD

* fot (_/Rzp EZLf(Zs)HBG(dz)> ds,

where we used Fubini’s theorem to interchange time and space integrals. This in-
terchange (and subsequent ones) are valid since the function Lf is bounded by
the Lyapunov function, which is an integrable function under the measure Ilgg.
We next argue that the second term on the right-hand side of (14) vanishes due to
Lemma 3.1 and some basic properties of Hamiltonian flows (volume and Hamilto-
nian preserving) and the momentum randomization map (Boltzmann—Gibbs pre-
serving).

For this purpose, and as in Lemma 3.2, let {t;} denote a realization of the se-
quence of random times at which the momentum randomizations occur. For any
t >0, let 9; : R*P — R2P be the Hamiltonian flow map associated to H. We re-
call that the jump times and momentum randomizations are mutually independent,
and that the number of jumps in any finite time interval is a.s. finite. By change
of variables, and using the volume and Hamiltonian preserving properties of the
Hamiltonian flow 9,, note that

(14)

(1) |y LA 0@ Mea(@) = [ LF@)Mo(2)

holds for any s € [0, ¢]. In addition, since Ilpg is an invariant measure for the
momentum randomization map and Lf € C;° (R?P), we have the identity:

(16) [y ELAC@)aa(dn) = [ | L7 @) aa(dz).

These facts motivate us to decompose the process Z; into its Hamiltonian and
momentum randomization pieces. To do this, and with a slight abuse of notation,
we regard the process Z : R2P — R2P as an evolution operator and decompose it
via

0S—tk(ztk)’ if Ik =8 <+,

Z (Z) = )
’ {F(ﬂl‘kﬂ—tk(zl‘k)), if s = Tha1

for all s > 0. To leverage this decomposition, we use {t;} to split the time integral
appearing in the second term of the right-hand side of (14) into time intervals
between consecutive momentum randomizations:

]E/Oth(Zs(z))ds:E{Z

tg A Nt
/ Lf(@sol"o(%,k_lo---o@g,o(z))ds}.
k=01

K N\t
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In this form, we can take advantage of the independence between momentum ran-
domizations and jump times, in order to simplify this term. In particular, we con-
dition on the jump times and then average over individual momentum randomiza-
tions to obtain

t
]E/o /ﬂ;{zu Lf(Zs(2))BG(dz) ds

I 1NE
:E f Lf(650T 065, | o---o@g,o(z))HBG(dz)ds}
=0 A R2D

Tk 1 NI
:E / Lf(@sol"o@g,k_l o--- 065, oF(z))l_[Bg(dz)ds}
k=0 A R2D

T 1Nt
=E / Lf(@sol_‘OO(g,kil o006y, (z))HBG(dz)ds}
=0 A R2D

:/0 /R Lf ()G (dz) ds,

where we sequentially used (15) and (16) from initial time O up to final time s. Note
that to use (16) one has to average over the Gaussian random vector associated
to the ith momentum randomization for 1 <i < k in the inner-most expectation.
Substituting this result back into (14), we obtain

/ E. £ (Z)Tpg(dz) = / F@Tpg(dz) + 1 / Lf ()Tlpg(dz).
R2D R2D R2D

To finish, we invoke Lemma 3.1, which implies that [1gg is infinitesimally in-
variant for L, and hence, the second term on the right-hand side of this equation
vanishes, as required. [J

3.6. Minorization condition. Fort > 0, let P; denote the transition semigroup
of the Markov process Z;

P f(z) =Ef(Z:(2)), Zo(z) =z

and let I1; ; denote the associated transition probability distribution

PSG@= [, ST odw).

Recall that the process Z; only moves by either the Hamiltonian flow for a random
duration or momentum randomizations that are instantaneous. Thus, we expect
the semigroup to not have the strong Feller property [10], since it lacks a sufficient
regularizing effect. Nevertheless, we can prove a minorization condition for this
process by using the weaker regularizing effect of the momentum randomizations.
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PROPOSITION 3.7. Suppose Hypothesis 3.1 holds. For every compact set 2 C
R2P | there exist a probability measure 1 over 2, ¢ > 0 and t > 0 such that

I () = en()
holds for all z € Q.

To prove this proposition, it is convenient to introduce the following operator:

(a7 AF@=Ef(C@) = [ @ ng(p.man.
where g4 : R?P — R¥ is defined as
. 2
(18) go(p. ) = (27 sin? p) P72 exp(—w).
2sin” ¢

Note that the operator A appears in the infinitesimal generator in (5). For any
r>0,let 6, : RZP — R2P denote the Hamiltonian flow associated with (3) and Co,
denote the composition operator for 9; defined as

Co, f(2) = f(6:(2)).

This Hamiltonian flow can be characterized by a generating function S;(qo, q1)
[24, 25, 34]. Specifically, if |g; — go| and ¢ > O are sufficiently small, then
(91, p1) = 6:(qo, po) satisfy the following system of equations:

po=—D15:(q0, q1),
(19)
P1=D328:(q0, q1)-

Here, D; denotes the derivative with respect to the ith component of S;. Moreover,
the generating function can be written as

tr]
20) tM%ﬁO=A<jﬂﬂf—Mﬂﬂ0M,

where ¢ : [0, ] = RP solves the Euler-Lagrangian equations § = —V®(g) with
boundary conditions g (0) = gp and g(¢) = q;. In discrete mechanics, the equations
(19) and the generating function S; are known as discrete Hamilton’s equations and
the (exact) discrete Lagrangian, respectively [25].

PROOF. We adapt to our setting some ideas from the proof of Theorem 2.3
in [12]. To establish the desired result, we use the (weak) regularizing effect of
the operator A on a function f in the momentum degrees of freedom. Since the
Hamiltonian flow is regular [24], this regularizing effect can be transferred to the
position degrees of freedom of f. Similar results appear in Lemma 2.2 of [12] and
the proof of Theorem 2.2 of [6].
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Specifically, a change of variables shows that

(21) (ACe,Af)(q,p)=/ﬂ;D /RD flq1, p0)ge((g, P). (q1, p1))dqidpy,

where we have introduced the transition density of the operator ACg, A:

g1.4((q, ), (g1, p1))
=|det D125:(q,q1)|g¢(p. —D15:(q,91))84(D2S:(q, q1). p1)

in terms of g4 in (18) and S; in (20).
To take advantage of (21), we consider the following Duhamel formula:

e 6C Pf(2) S =Pf(z) — et 1Ch f(2)
.
:)”_1/0 &0, AP f(2)ds.

A second application of this Duhamel formula implies that
-2 11
Pf(z)=e Co, f(2) + A A e CQHI .ACe,1 f(2)dn

A B -1
+2172 /0 /0 et DM TCy | ACy, AP, f(2)diydi.

A third application of this formula yields

t ety _
Pf@ =02 [ [T 0T0C, Ay, AC, f@)dndn
22) 0 Jo

_ t 1 —éety 1y,
=i [T ey, Ay, |, AC, f@) dndn
et JO —_—

for ¢ sufficiently small. Since ef < <t and 0 <1, < t; — et;, we have that
gt <t; — t, <t. Combining this result with (21) applied to the bracketed term in
(22), yields the desired result. [

Next, we show that Hypothesis A.2 of Harris’s theorem holds for the transition
probabilities of the RHMC method. To state this proposition, we will use the total
variation (TV) distance between measures. Recall that

(23) Il = viiTv =2sup|u(A) — v(A)],
A

where the supremum runs over all measurable sets. In particular, the total variation

distance between two probability measures is two if and only if they are mutually

singular.
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LEMMA 3.8. Suppose Hypothesis 3.1 holds and let V (z) be the Lyapunov
function from Lemma 3.2. For every E > 0, there exist t > 0 and & > 0 such that

T (z1, ) = T (22, ) | py <2(1 — &)

holds for all z1, zo € R?P satisfying V(z1) vV V(z2) < E.

PROOF. Proposition 3.7 implies the following transition probability 1:[,,Z is
well defined:

- 1 e
I . () = :Ht,z(’) - :77(')

for any z satisfying V(z) < E. Therefore,

T2 () = Ty D ey = (= &) [T 2y () = T2y Oy

for all z1, z satisfying V(z1) V V(z2) < E. Since the TV norm is bounded by 2,
one obtains the desired result. [

3.7. Main result: Geometric ergodicity. With a Lyapunov function and mi-
norization condition in hand, we are now in position to state a main result of this

paper.

THEOREM 3.9. Suppose Hypothesis 3.1 holds and let V (z) be the Lyapunov
function from Lemma 3.2. Then the Markov process induced by L has a unique in-
variant probability measure given by Ilgg. Furthermore, there exist positive con-
stants r and C such that

(24) IT; . — Hpglltv < CV(2)e™"

forallt >0 and all z € R?P.

PROOF. According to Lemma 3.2, the generator L satisfies a Foster—Lyapunov
drift condition. Moreover, its associated transition probabilities satisfy Lemma 3.8.
Hence, Theorem A.1 implies that (i) the process possesses a unique invariant distri-
bution, and (ii) the transition probability of the process converges to this invariant
distribution geometrically fast in the TV metric. Since, by Proposition 3.1, I1gg
is an infinitesimally invariant measure for the process, and that compactly sup-
ported functions are in the domain of L, it follows that [1gg is the unique invariant
measure for the process. [
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4. Model problem. For simplicity, we assume in this section and the next that
the Horowitz angle is chosen as ¢ = /2, that is, the momentum randomizations
are complete rather than partial.

We quantify the sampling capabilities of the RHMC method given in Algo-
rithm 2.1 on a model problem in which the target is a multivariate Gaussian dis-
tribution with uncorrelated components, some of them with small variances. We
also compare against the standard HMC method given in Algorithm 1.1, where
the duration is a fixed parameter. This model problem is discussed in [31] and
analyzed further in [5]. This distribution can be interpreted as a truncation of an
infinite-dimensional normal distribution on a Hilbert space [4]. The potential en-
ergy function is given by

|
(25) P10 4) =) o4
i=

where oiz is the variance in the ith component.
4.1. The process. For (25), a sample trajectory of the RHMC method satisfies

(26) Gi(tns1) = C“(Z Jaiton + o sm( s

with ¢; (0) given and where {t,,} are random jump times related by
h =th—1+ (Stn—la

with 79 = 0. Here, we have introduced the following sequences of random vari-
ables:

ll ll 1
Ean) NO D, ()R Exp( )

where i (resp., n) runs over the components of the target distribution (resp., jump
times).
The solution of the stochastic difference equation (26) is given by

27) qi(tn)zrﬁcos<i )ql(O)+Zo'l Sm(f?t) ”1:[1 (itk>$u

j=0 %i /=it

(We adhere to the standard convention that [];_,, - takes the value 1 if m > n.) At
steady-state the ith component of this process is normally distributed with mean
zero and variance o , that is,

O N(0,6%)  ast— oo.

The corresponding solution for HMC is given by formula (27) with constant, as
opposed to random, durations §¢,. Note that, for constant duration, formula (26)
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makes apparent that, at stationarity, the correlation between g; (¢,+1) and g; (¢,) is
cos(6t, /o). When A is an even integer multiple of wo;, q; (t,+1) = qi (t,,); for odd
multiples, g; (t,+1) = —qi(t,). For those value of A, the chain is not ergodic; for
values of A close to an integer multiple of mo;, the performance of the chain may
be expected to be poor.

4.2. Integrated Autocorrelation Time (IAC). The first measure of the quality
of the samples provided by the algorithm, we consider is the integrated autocor-
relation time (IAC) associated with estimating the mean of the target distribution.
The natural estimator for this purpose is

fi N+1ZQz(t]

As shown in, for example, Chapter IV of [3], asymptotically as n — o0, the vari-
ance of the estimator behaves as 61‘2 /n, where the constant &iz is called the asymp-
totic variance. This may be computed by means of the formula

o0
(28) 67 = Var(gi(0)) +2) " cov(qi(0), gi (t))).

j =1
This holds for any random variables g;(¢;) for which both [E(g;(¢;)) and
E(qi(tj)qi(tj1+«)) are independent of j [it is not necessary, in particular, that the
gi(tj) originate from a Markov chain], provided that the series converges abso-
lutely. If successive samples are independent, then the series vanishes and the
asymptotic variance equals the variance oiz of g;(0). The integrated autocorrela-
tion time (IAC) of the estimator f, ~ is defined as the ratio &iz / al-z. It follows from
(27) that, at stationarity of the chain,

cov(gi(0), gi (t;)) =E(q: (0)gi (t;))

8t
—O’ZE 1_[ cos( k)

Oj
=0; nEcos<—)=ol< 5 L >
k=0 Ti o +22
and hence,
RHMC o’
_ i
(29) IAC; =1+ Zﬁ

Thus, the IAC in each component monotonically decreases with increasing A and
then plateaus at unity.
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A very similar calculation shows that the corresponding formula for the HMC
method is given by

1 —|—cos(i,)
(30) IACIMC = %
I —cos(Z)

Unlike (29), the IAC for the HMC method is an oscillatory function of A: as dis-
cussed in the Introduction it is possible that increasing A (and, therefore, increasing
computational costs) results in higher correlation.

It is useful to discuss the following choices of A:

e A is an even multiple of wo; leading to g;(t,+1) = qi(t,). The chain is not er-
godic and formula (28) is not valid, due to the divergence of the series. Note
however that the estimator yields the value ¢; (0); when ¢ (0) is taken from the
stationary distribution, the variance of the estimator is therefore aiz, regardless
of the number of samples. Thus, the asymptotic variance is not finite, which
agrees with (30), even though this formula was derived from (28), invalid in this
case.

e A is an even multiple of wo;, with ¢g;(¢,4+1) = —¢q;(¢;). The chain is not ergodic
and formula (28) is not valid, due to the divergence of the series. However, for
the particular statistics being considered, the estimation is exceptionally good. If
the number of samples is even, the estimator gives the exact value 0, and, for an
odd number, the estimator yields the very accurate value ¢; (0)/(N + 1) [with
an O(N~1), rather than O(N~!/2) error]. Therefore, the asymptotic variance
vanishes, in agreement with (30).

4.3. Mean Squared Displacement (MSD). As another metric for the quality of
sampling, we consider the single-step, equilibrium mean-squared displacement of
the RHMC and HMC methods. This statistic quantifies how far apart successive
samples are. A direct calculation using (26) shows that

D
MSDRMME = S &g, (11) — ¢:(0) |

. (COS((%> - 1>Qi(0) +o; sin<;_1i)'2}
) )
)l

|
‘MU
&=

Il
—_

Il
‘Mw
&=

N
I
—_

=
=

2
o;,

2—2005(

Il
.MU
&=

1
Q
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which implies that

2)‘2“1'2
al.z + A2

D
(31) MSDRHME = %~
i=1

Note that MSDRHMC monotonically increases with increasing A and then plateaus
at Zf;l 2‘71‘2' Since in the present scenario of small time steps, the computational
cost of the algorithm is proportional to A, the function MSDRHMC /) may be taken
as a measure of the efficiency of the algorithm. For A small, this function increases
with A; it reaches a maximum at

'D_l 04 1/2
(32) Amax = <ID_—12>

i=19;

and then decreases. The quantity (32) is approximately max;<;<p o; and the con-
clusion is that, from this point of view, the best value of A coincides with the stan-
dard deviation of the least constrained variate. Taking A above the optimal value
will not decrease the mean square displacement (as distinct from the situation for
HMC we discuss next), but will waste computational resources.

A similar calculation shows that the single-step, equilibrium mean-squared dis-
placement of the HMC is given by

D
A
(33) MSDHMC — 22<1 — cos(;))aiz
i=1 !
which is an oscillatory function of A.

S. Numerical testing.

5.1. Standard normal distribution. We first numerically illustrate the analysis
in Section 4 assuming D = 1 and unit variance.

Figure 1 corresponds to IAC. In the left panel (HMC), for A close to 7 or 3«7
there is a clear discrepancy between the function in (30) and the empirical estimate
based on a single trajectory: due to the divergence of the series (28) the software
package used to measure IAC does not work satisfactorily. The right panel cor-
responds to RHMC. Note the horizontal asymptote at unity, which is consistent
with (29).

Figure 2 shows results for MSD. On the left (HMC), the lack of ergodicity at
the values 7, 37 entails, in spite of the large number (10°) of samples, discrep-
ancies between the value at stationarity in (33) and the empirical value along the
trajectory considered. We observe the monotonic behavior on the right (RHMC)
with a horizontal asymptote at 2.
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HMC RHMC
10%y . . 10* . . :
‘ I —exact
f ..
| | ‘\‘ | empirical
102H, | 1 10°
\ /
/
AN O ™~
= 10° \ / N / = 10° ————— —
— \ y —
—exact
102} empirical 1 102}
4 | -4 | . .
10 m 27 3 47 10 g 27 37 47
duration A mean duration A

F1G. 1. IAC for Normal Distribution. The left (resp., right) panel of this figure plots TACHMC
(resp., IACRHMC) vs. duration (resp., mean duration) X\ for the HMC (resp., RHMC) method ap-
plied to a standard normal distribution. The black lines in the left (resp., right) panel plot 1ACHMC
(resp., IACRHMC) as given in (30) [resp., (29)]. The grey lines show an empirical estimate obtained
by using an output trajectory with 100 samples and the ACOR software package [14, 36].

5.2. Ten-dimensional normal distribution. We next consider the case D = 10
and

o =—, 1<i<D.
D

Figure 3 compares the IAC of HMC and RHMC. Figure 4 refers to MSD. The
pathologies of HMC in the one-dimensional case discussed above are also manifest
here, but, with 10 different frequencies in the Hamiltonin system, there are more

5 HMC 5 RHMC
45 —exact | a5l —exact |
empirical ’ empirical
4r N\ ~ 1 4r
35+ / / 1 35
/
3 / 3
a \ / \ @)
@ 25 \ \ @ 25
= \ =
2 \ \ 2 —
1.5 \ 1.5 Ve
1 1
05 / 05
0 L L 1.4 / L Nl 0 L L L
T 27 37 4 ™ 27 37 47
duration A mean duration A

F1G. 2.  MSD for Normal Distribution. The left (resp., right) panel of this figure plots MSDHMC
(resp., MSDRHMC) vs. duration (resp. mean duration) A for the HMC (resp., RHMC) method ap-
plied to a standard normal distribution. The black lines in the left (resp. right) panel plot MSDHMC
(resp., MSDRHMC) as given in (33) [resp., (31)]. The grey lines show an empirical estimate obtained
by using an output trajectory with 10° samples.
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HM
3 HMC 10° E ¢
10 T T
!
|
102 g
s\:\
v \\\\:\
— 1 AN \\\:\\
} S NSt
100k ‘ 100 “—::&,, -
WV WY
L] 1 1y Ly [ 1y 1

Al
10 -

T 10°
mean duration A

3r 4r br

duration A
F1G. 3. IAC for Ten-Dimensional Normal Distribution. The left panel plots IACIHNIC given in (30)
as a function of the duration A with i = 10 (dashed light grey) and i = 5 (dashed dark grey); and
an approximation of IAC?’IMC using a time series: {q; (tx)} <j <106 and the ACOR software package
with i = 10 (solid light grey) and i =5 (solid dark grey) [14, 36]. The dashed lines in the right panel
plot IAC?HMC given in (29) as a function of the mean duration A for 1 <i < 10. The solid lines
plot an approximation of IAC?HMC using a time series: {q; (t§)}| <t <106 and the ACOR software
package [14, 36]. Different shades of grey in the right panel indicate different components of the
target distribution, with darker shades corresponding to lower variance.

resonant choices of A leading to lack of ergodicity. In the right panel of Figure 4,
we see that MSDRIMC hag a horizontal asymptote at

10
Y 207 ~1.17.
i=1

RHMC
1 HMC 14 : .
I : ’ —exact
A —exact L.
N o 1) empirical| |
L empirical| |
f" \ 10 -
10+ ‘g 1 / p i
I \
| \ / A\ / \ n
| VA A
o 8 \ \_ / { \ / A ° L —
\ \ \ wn -
@ / \ \ \/ Z
S / \ \ = ot
Vo ‘ /
| \/ /
4 ,‘\ \V, 4 /
[ //
’ I 2/
0 . . . . . o | .
T 27 37 47 57 67 7 87 107 10° 10

duration A mean duration A

F1G. 4. MSD for Ten-Dimensional Normal Distribution. The solid black lines in the left
(resp., right) panel plot the formulas given in (33) [resp., (31)] as a function of the duration
(resp., mean duration) \. The solid grey lines in the left (resp., right) panel plot an approximation of
MSDHMC (resp., MSDRHMC) associated to the time series: {q; (tx)}) <x <106 versus A for 1 <i < D.
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2D Double Well Potential

FI1G. 5. Contours of ®(x) in (34). This potential energy function has local minima located at
xt= (£2, 1) with ®(x1) = & (x7), and a saddle point at the origin.

To summarize, the behavior of MSD of the HMC method as a function of the
duration is complex, whereas for the RHMC method the dependence is monotonic
and plateaus.

5.3. Two-dimensional double well. Consider a Brownian particle with the fol-
lowing two-dimensional double-well potential energy function:

2
(34) q’(xl,m):s(x%_1)2+1_25<x2_%1) ’

whose contours are displayed in Figure 5. The left (resp., right) panel of Fig-
ure 6 plots the IAC 7 versus duration A for estimating the mean of the time se-
ries { f(Q1(fi—1), Q2(ti—1))}<j<106 Where f(x, y) =2x + y produced by a HMC

HMC RHMC

500

450 -

400 -

350 |-

300 -

IAC
TIAC

250 1

200 -

150

100

duration A mean duration A
FI1G. 6. IAC for 2D Double Well. The left (resp., right) panel plot an estimate of the IAC associated

to the time series {20Q1(ti—1) + Q2(ti—1)}1<j<106 versus duration (resp., mean duration) X for a
HMC (resp., RHMC) method applied to the potential energy function graphed in Figure 5.
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HMC RHMC
8 , 8 !
7 7+
6 6
5 5
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3 3
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1 1
0 , . o , .
0 5 10 15 0 5 10 15
duration A mean duration A

FI1G. 7. MSD for 2D Double Well. The left (resp., right) panel plot an estimate of the equilibrium
MSD vs. duration (resp., mean duration) A for a HMC (resp., RHMC) method applied to the potential
energy function graphed in Figure 5.

(resp., RHMC) scheme. This test function is the dot product between the con-
figuration vector (Q1(t;—1), Q2(¢;—1)) and the line connecting the two wells or
span((2, 1)). For the same output trajectory, the left (resp., right) panel of Figure 7
plots an estimate of the equilibrium mean-squared displacement produced by a
HMC (resp., RHMC) scheme.

5.4. Fifteen-dimensional pentane molecule. Consider sampling from the equi-
librium distribution of a chain of five particles with a potential energy that is a func-
tion of bond lengths, bond angles, dihedral angles and inter-particles distances.
This potential energy is described in greater detail in [8], which is based on the
model described in [26]. Figure 8 illustrates and describes the three types of min-
ima of the potential energy for the parameter values selected. Due to symmetries,
each type corresponds to several modes of the distribution. For instance, there is
stable configuration where particles 1 and 5 are above the plane of particles 2, 3,

Pentane Conformations

FIG. 8. 15D Pentane Molecule. This figure shows the three types of potentially stable conforma-
tions of the pentane molecule.
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HMC RHMC

o
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TIAC
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0 05 1 15 2 25 3 35 4 45 5 0 0.5 1 15 2 25 3 35 4 45 5
duration A mean duration A

F1G. 9. IAC for 15D Pentane. The left (resp., right) panel plot an estimate of the IAC associated to
the dihedral angles (labelled ¢1 and ¢ in the figure legends) vs. duration (resp., mean duration) :
for a HMC (resp., RHMC) method applied to the potential energy function of the pentane molecule
described in the text. The time series each consist of 104 samples.

4 and another of the same type where they are below. Figure 9 (resp., 10) com-
pares the IAC (resp., MSD) of HMC and RHMC. For this moderate dimensional
distribution, we again observe a complex dependence of the performance of HMC
on A.

6. Outlook. All of the preceding developments have taken place in the exact

integration scenario. The most obvious modification of Algorithm 2.1 that takes
into account integration errors approximates the Hamiltonian flow by a volume-

HMC RHMC

MSD
MSD

’ ” ‘ * iluraztzon Aa 35 ) 45 ’ ’ ” ‘ * me;n dflsl'atiOBIl A 35 ) 45 ’
FI1G. 10. MSD for 15D Pentane. The left (resp., right) panel plot an estimate of the equilibrium
MSD vs. duration (resp., mean duration) A for a HMC (resp., RHMC) method applied to the potential
energy function of the pentane molecule described in the text. The time series each consist of 104
samples.
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preserving, reversible integrator (such as Verlet) with time step At, updates time
via f; = t9 + M At, where M is a random number of time-steps that is geometri-
cally distributed with mean A/A¢, and uses an accept-reject mechanism to remove
the bias due to the energy errors introduced by this integrator. The study of that
algorithm involves many numerical analysis technicalities, as it is necessary to de-
rive global error bounds for the numerical solution that are valid over integration
legs of arbitrarily long length M At. Such developments do not have much relation
with the mathematical techniques used here so far and are out of the scope of the
present article.

In this section, we suggest two variants of Algorithm 2.1 that do not use the
exact solution of the Hamiltonian dynamics. These variants are based on approxi-
mating the gradients in (5) with the help of a numerical integrator and are therefore
similar to the recently introduced generalized Markov chain Approximation Meth-
ods (MCAM) [7, 20]. We shall not be concerned with comparing the efficiency of
the modifications of Algorithm 2.1 introduced here with that of standard HMC and
related techniques.

In what follows, for a given numerical integrator, we denote by 6, the map that
advances the solution of Hamilton’s equations over a single time-step of length
At; a typical example is provided by the (velocity) Verlet integrator (g1, p1) =

Oa:(q, P):
(A1)?

Vo(q)

<q1) q+ Atp —
P1

- At
——(VO(q)+ VP(q1))

P=

6.1. Variant #1. This variant is defined by the following approximation to the
generator (5) of RHMC:

LY (g, p) =2""E{£(T(q, p)) — f(q@, )} +h " (F(6u(q, p) — f(q. p)),

where & > 0 is a parameter; since the Liouville operator acting on a test function
f represents the time-derivative of f along the solutions of Hamilton’s equations,
it is clear that, for consistent integrators and smooth test functions,

LV f(q, p)=Lf(q, p)+ O(h).

The random jump times and the embedded chain of the Markov process generated
by L;ll) can be produced by iterating the following algorithm.

ALGORITHM 6.1. Given a duration parameter A > 0, a step length parameter
h > 0, the current time 7o, and the current state (Q (1), P(fo)) € R2D, output an
updated state (Q(t1), P(¢1)) at the random time #; using two steps:

Step 1. Generate an exponential random variable §¢ with mean A /(h + 1), and
update time via t| =ty + 4¢.
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Step 2. Generate a uniform random variable u ~ U (0, 1) and set

1—‘(Q(IO), P(to)), u =< m,

(Qun, Pa)) =4 77
0n(Q(t0), P(10)), otherwise,

where " is the momentum randomization map given in (6).

The random variables 8¢, u, and the random vector £ in the momentum ran-
domization map I' are independent. In terms of the sequence of random jump
states {(Q(#;), P(t;))} and random jump times {z;}, the trajectory of the process is

(Q0), P(1)) = (Q), P(t;))  fort € [ti, tit1).

For any ¢ > 0, the time-average of a function f : R?? — R along this trajectory is
given by

t
/Of(Q(s>,P<s>)ds= S F(Q@). Pa))(t Atir — 1 AT,

0<i<oo
The mean holding time of this Markov jump process is constant and given by

(35) Edét = h—)\
h+A

If A is large and £ is small, this process mainly jumps from (g, p) to 6, (g, p), with
occasional randomizations of momentum; in other words, the jump states come
from integration legs of the Hamiltonian dynamics interspersed with occasional
momentum randomizations. Note that, while the holding times §¢ are random, the
step-length parameter in the numerical integrator remains constant. Figure 11 il-
lustrates the use of the algorithm in the case a one-dimensional standard normal
target distribution.

We now show that the generator Lgll) inherits the stochastic Lyapunov function
of L. The hypotheses on the potential energy that we use imply that the tails of the
target exp(—®) are no lighter or heavier than those of a Gaussian distribution; it is
likely that those hypotheses may be relaxed. The hypotheses on 6}, are satisfied by
any reasonable integrator such as the Euler rule or the Verlet method.

PROPOSITION 6.1. Suppose that, in addition to Hypothesis 3.1, the potential
energy is twice-differentiable and satisfies the following conditions:
1. There exists C > 0 such that for all g € RP:
|D*®(g)| <C.
2. There exists C > 0 such that for all g € RP:
®(g) = C(1 +1ql).



RANDOMIZED HMC 2187

ooooooo

time V 7 7 ' 7 Q(t)

time time

FIG. 11. Sample Paths of Variant #1. These figures show a realization produced by iterating Algo-
rithm 6.1 in the case of a one-dimensional normal target distribution. The step length is h = 0.125,
and the duration ). = 1 (these values are chosen for visualization purposes only). The top left panel
shows the evolution of the total energy as a function of time. Note that there have been three momen-
tum randomizations and that, between them, the total energy is essentially constant. The top right
panel shows the evolution of the discrete trajectory in phase space. The size of the markers is related
to t: points along the trajectory corresponding to larger values of t have smaller markers. The bot-
tom panels show the position and momentum as functions of time. The holding time in each state is
random, and Q(t) and P(t) are piecewise constant in time.

Furthermore, assume that the integrator is such that, for any f € C*(R*P, R) with
the property that there exists C1 > 0 such that

ID?f(q.p)| <C1 Vg, p) eR?P,

there exists a constant Co(f) > 0 such that

F0n(q, p)) = f(q. p) +hLf(q, p)+ Rs(q, p, h),

where

IRy(q, p. )| < Co(H)(1+ H(g, p)h*  ¥(g, p) e R*P.
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Then, for h sufficiently small, there exist yy > 0 and Ky, > 0 such that

1
L"V(g, p)<—wmV(g. p)+Kn Vg, p) eR?P.

PROOF. By hypothesis, there exists a constant Cy > 0 such that
h='(V(Orlg, p) = Vg, p)) < LV(q, p) + h(1 +V (g, p))Cv.

Since V is a Lyapunov function for L, we have that

L’V(q, p) <LV(q, p) + h(1+ V(q. p))Cy
<—yV(g, p)+K+h(1+V(g, p)Cy
<—(y —hCy)V(g,p)+ (K +hCy)
which gives the desired result with y, =y —hCy and K, = K + hCy. U

Unfortunately, due to the discretization error, the integrator 9, does not preserve
the Hamiltonian function exactly, and thus, the invariant measure of L,(ll) is not the
invariant measure of L.

6.2. Variant #2. In order to correct the bias in L;ll), we add to Algorithm 6.1
the possibility of additional jumps (momentum flips) from (¢q, p) to ¢(q, p) =
(¢, —p), as follows.

ALGORITHM 6.2. Let v(gq, p) = exp(—H(gq, p)) and define the Metropolis
ratio
v(6r(q, )

v(g, p)
for all (¢, p) € R*P. Given a duration parameter A > 0, a step length parameter

h > 0, the current time 7o, and the current state (Q(to), ﬁ(to)) € R?P | the method
outputs an updated state (Q(#1), P(¢1)) at the random time #; using two steps:

an(q, p)=1An

Step 1. Generate an exponential random variable §¢ with mean A1 /(h + 1), and
update time via | =ty + 6t.
Step 2. Generate a uniform random variable u ~ U (0, 1) and set

(Q(t1), P(11))

T'(Q(10), P(to) "
(Q 0)s 0 ), U= m, i i
~ ~ h h + an(Q(to), P(10))A
9h(~Q(l0),f’(lo)), PR Py :
#(Q0(1), P(to)), otherwise,

where I" is the momentum randomization map given in (6).
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The infinitesimal generator associated to Algorithm 6.2 is given by

LY f(q, p) =2"'E{f(T(q, p)) = f(q, P))
(36) +h " an(q, p)(f(On(g, P)) — f(q, P))
+h7 (1= an(q, ) (f(D(q. p) — f(q. P)).

Like L;l]), the generator Lzz) induces a Markov jump process with a constant mean
holding time given by (35). If A is large and % is small, this process mainly jumps
from (q, p) to 6,(q, p), with occasional randomizations of momentum and mo-
mentum flips. As we show next, the weights o and (1 — o) in (36) have been

chosen to ensure that, for suitable integrators, L;lz) has the same infinitesimally
invariant measure of L.

PROPOSITION 6.2. Suppose that the integrator 0y is reversible, that is,
Oar © ¢ 0 Oar = ¢ and volume-preserving, that is, det(D6y) = 1. Then, for all
fecx (R2PY, we have that

/IZQZD L](’IZ)f(q9 P)V(Qv p) dq dp = 0

PROOF. Note that

L, 17 @ pvig. prdgdp

= A 'E{f(T(q. p)) — f(q. p)}v(q. p)dqdp

R2D

1
T /Rzp(v(q’ ) Av(On(g, P)))(f(Onlg, ) — f(q. p))dgdp

1
+szz,)("(q’m—Wz»p)Av(@uq,p>))(f(<z><q,p>)

— f(g.p))dqdp.

As discussed in Proposition 3.1, the first integral on the right-hand side vanishes.
For the next two integrals, since 6y, is volume-preserving and reversible by hypoth-
esis, a change of variables implies that

R2D L;tZ)f(Q7 pv(g, p)dqdp
1 —1
= Z%}AQZD[U(Qh (q’ p)) 7AN U(q, p)]f(q’p) dC]dp

1 0 dgd
“ RZD[”(‘I’PMU(h(q,p))]f(q,p) gdp
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— % Rw[”@b(% ) Av(Ohod(q. p)flq. p)dqdp

1
+ /Rw[”(q’ p) Av(0n(g, p))]f(q, p)dqdp =0,
where in the last step we used the fact that vo 6y, =vogobly =vo0, IO

We conjecture that Algorithm 6.2 is geometrically ergodic under suitable as-
sumptions on the potential energy function and suitable choices of the reversible,
volume preserving integrator. However, the proof of this appears to be involved
because one needs to estimate carefully the behavior of the jump rate from (g, p)
to 05 (q, p) in regions where H is large, and consequently, the integrator has large
errors. This analysis will be presented in a future publication.

7. Conclusion. In this article, we have primarily studied HMC in the exact in-
tegration scenario. The RHMC method introduced here is a version of HMC where
the durations of the Hamiltonian flows are independent, exponentially distributed
random variables. This method has an infinitesimal generator which is a linear
combination of a momentum randomization operator and a (differential) Liouville
operator.

The analysis in Section 3 related the nonasymptotic properties of RHMC to
those of the underdamped Langevin dynamics. We showed that, under standard
hypotheses on the potential energy function, RHMC possesses a stochastic Lya-
punov function of the same form as that of the underdamped Langevin dynamics.
However, unlike underdamped Langevin dynamics, the trajectories produced by
RHMC are not continuous functions of time due to the instantaneous momentum
randomizations. This difference in regularity made it tricky to use standard approx-
imate controllability arguments to establish a minorization condition for RHMC
and an alternative approach was required. Our analysis showed that the mecha-
nism for dissipation (and hence, exponential stability) in RHMC comes from the
momentum randomizations; therefore, momentum randomizations play here the
role played by the heat bath appearing in underdamped Langevin dynamics. For
sampling, the main qualitative advantage of RHMC compared with underdamped
Langevin dynamics is that the paths of RHMC have a stronger tendency to move
consistently away from the current state of the chain.

In a model test problem, we carried out a quantitative analysis of the sampling
performance of RHMC using integrated autocorrelation time and mean squared
displacement as metrics. Our analysis showed that randomizing the durations of
the Hamiltonian flows mitigates some artifacts associated to using Hamiltonian
dynamics. In particular, we saw that these sampling metrics depend monotonically
on the mean duration parameter. Numerical examples showed that this monotonic-
ity persists for more general target distributions. In contrast, these sampling metrics
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for classical HMC are a more complicated function of its (deterministic) duration
parameter.

As an outlook to future developments of RHMC, we considered two approx-
imations of RHMC based on spatially discretizing the infinitesimal generator of
RHMC. This outlook introduced a new viewpoint to developing Hamiltonian-
based MCMC methods. In particular, it transforms the problem of approximating
the Hamiltonian flow from one of time discretizing Hamilton’s equations into one
of spatially discretizing its associated Liouville operator in high dimension in a
way that generates a Markov process [7]. We showed how to construct such ap-
proximations so that they preserve the Boltzmann—Gibbs distribution. A complete
analysis of these approximations to RHMC will be the subject of future work.

APPENDIX: HARRIS’S THEOREM

Harris’s theorem states that if a Markov process admits a Lyapunov function
such that its sublevel sets are “small,” then it is geometrically ergodic. In this part,
we recall this theorem for the convenience of the reader. Since RHMC has an in-
finitesimal generator, it is convenient to formulate the Foster—Lyapunov condition
in Harris’s theorem in terms of an infinitesimal generator. To make the domain
of this generator sufficiently inclusive, we define the infinitesimal generator of a
Markov process X(¢) on a Polish state space 2 equipped with probability measure
P in the following way.

DEFINITION A.1. Let D(L) be the set of all measurable functions F : 2 — R
such that there exists a measurable function G : 2 — R with the property that for
any x € 2 and for all # > O the process

t
F(X(1)) — F(x) — /0 G(X(s))ds, X(0) =x,

is a local martingale adapted to the natural filtration of X under the probability
measure P. Then we define LF = G and call L the infinitesimal generator of the
process X(¢) with domain D(L).

This definition seems to be due to [9], Definition (14.15) in Chapter 1. In ad-
dition to the infinitesimal generator, denote by P; the Markov semigroup of X(¢),
and denote the transition probabilities of X(¢) by

I, « (A) = Pr(X(z) € A | X(0) = x) vVt >0,Vx € Q.
Sufficient conditions for Harris’s theorem to hold are Hypotheses A.1 and A.2
given below.
HYPOTHESIS A.1 (Foster—Lyapunov Drift Condition). There exist a function
U : Q — R™ and strictly positive constants W and k such that
37 LY (x) < —wW(x) +k,
forall x € Q2.
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REMARK A.1. Hypothesis A.1 implies that
P,W(x) <e WW(x)+ %(1 —e™")
for every ¢ > 0 and for every x € Q.

HYPOTHESIS A.2. There exist a > 0 and t > 0 such that the sublevel set {z €
Q| V(z) <2k/w} is “small,” that is,

(38) 1Tl x =z yllTv < 2(1 —a)

for every pair x, y satisfying ¥ (x) vV V(y) < 2k/w, where the constants k and w
are taken from Hypothesis A.1.

THEOREM A.1 (Harris’s theorem). Consider a Markov process X(t) on 2
with generator L and transition probabilities I1; ., which satisfies Hypotheses A.1
and A.2. Then X(t) possesses a unique invariant probability measure T1, and there
exist positive constants C and r (both depending only on the constants w, kK and a
appearing in the assumptions) such that

[TT;,x — Iltv < Cexp(—r)W(x),
forall x € Q and for any t > 0.

REMARK A.2. It follows from (37) that

k
ITw) < —.
w

For further exposition and a proof of Harris’s theorem in a general context, see
the monograph [30] (or [15] for an alternative proof), and for a treatment in the
specific context of stochastic differential equations, see [27].
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