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THE ROUNDING OF THE PHASE TRANSITION FOR
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The presence of frozen-in or quenched disorder in a system can often
modify the nature of its phase transition. A particular instance of this phe-
nomenon is the so-called rounding effect: it has been shown in many cases
that the free energy curve of the disordered system at its critical point is
smoother than that of the homogeneous one. In particular some disordered
systems do not allow first-order transitions. We study this phenomenon for
the pinning of a renewal with stretched-exponential tails on a defect line
(the distribution K of the renewal increments satisfies K (n) ~ cg exp(—nf),
¢ € (0,1)) which has a first order transition when disorder is not present.
We show that the critical behavior of the disordered system depends on the
value of ¢: when ¢ > 1/2 the transition remains of first order, whereas the
free energy diagram is smoothed for ¢ < 1/2. Furthermore we show that the
rounding effect is getting stronger when ¢ diminishes.

1. Introduction. The effect of a quenched disorder on critical phenomena is
a central topic in equilibrium statistical mechanics. In many cases, it is expected
that the presence of impurities in a system rounds or smoothes the phase transition
in the following sense: the order parameter can be continuous at the phase tran-
sition for the disordered system whereas it presents a discontinuity for the pure
system (see, e.g., the pioneering work of Imri and Ma [26]). An instance for which
this phenomenon is rigorously proved is the magnetization transition of the two-
dimensional random field Ising model at low temperature [1].

This phenomenon has been particularly studied for the polymer pinning on a
defect line, introduced by Fisher in [15]. Whereas the model can be defined for a
renewal with any kind of tail which is heavier than exponential [see (1.2)], the case
of power-law tail has focused most of the attention, due to its physical interpreta-
tion and its rich mathematical structure. The interested reader can refer to [11, 18,
19] for reviews on the subject. The smoothing of the free energy curve for the pin-
ning model with power-law tails was proved in [23] (with some restriction on the
law of the disorder, see [10] for a recent generalization of the result; see also [6, 29]
for related models). This confirmed predictions made by theoretical physicists [13]
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based on an interpretation of the Harris criterion [25]. Some other consequences
of the introduction of disorder such has critical point shift were studied in [3-5, 7,
12, 21, 22, 31].

The present paper aims to study how this phenomenology transposes for re-
newals which have a much lighter tail: stretched exponential ones. Whereas this
issue does not seem to be discussed much in the literature, it is clear from a math-
ematical point of view that the type of argument used in [23] do not extend to that
case (see Section 2.2 for a more detailed discussion). This hints that when renewal
tails gets lighter, Harris predictions on disorder relevance might not apply (or at
least not in a straight-forward manner). We show that this is indeed the case and
provide a necessary and sufficient condition on the return exponent for smoothing
of the free energy curve to hold.

Let us finally notice that renewal with stretched exponential tails have recently
been the object of a study by Torri [32] with a different perspective: he focuses on
the issue of the scaling limit of the process when the environment is heavy tailed.

1.1. The disordered pinning model. Let us shortly introduce the model: set
T := (10, 71, . . .) to be a renewal process of law P, with inter-arrival law K (-), that
is, 7o =0 and (t; — Ti—1)ieN 18 a sequence of IID positive integer-valued random
variables. Set

(1.1) K(n) =Pty =n].

We assume that

(1.2) lim n~'log K (n) = 0.
n—oo

Note that with a slight abuse of notation, 7 can also be considered as a subset of
N and we write {n € t} for {3i, 7; = n}. The random potential ® := {w1, w7, ...} is
a sequence of IID centered random variables which have unit variance and expo-
nential moments of all order

(1.3) A(B) :=logE[ef*] < cc.

Given S > 0 (the inverse temperature) and /& € R, we define P’ls\,’ m® 3 measure
whose Radon—-Nikodym derivative w.r.t. P is given by

dP%h’w 1 N
(1.4) o= 25 exp(Z(ﬁwn +h)8n)6N,

n=0

where 6, = 1{,¢7) and Zf,’h’w is the renormalizing constant which makes P’f\,’h’w a
probability law:

(1.5) ZEMO = X (Bonthing, |
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REMARK 1.1. In the definition (1.4) of Pﬁ,’h’w, the § corresponds to con-
straining the end point to be pinned. This conditioning is present for technical
reasons and makes some computations easier but is not essential.

By ergodic super-additivity, (see [18], Chapter 4), the limit
. B.h,w
1. = lim —logZy"™
(16) F(B.h) = lim —logZ

exists and is nonrandom. It is nonnegative because of assumption (1.2) and convex
in & as a limit of convex functions. The expectation also converges to the same
limit

1 Boh,
(1.7) F(B,h) = lim —ElogZ) “.

The function F is called the free energy (or sometimes pressure) of the system. Its
derivative in & gives the asymptotic contact fraction of the renewal process, that is,
the mean number of contact per unit length,

. 1 B.h,w N
(1.8) WE(B, h) = Jim NE [’; 5,,}.
The above convergence holds by convexity as soon as d,F(8, h) is defined (i.e.,
everywhere except eventually at a countable number of points). If (1.2) holds,
the system undergoes a phase transition from a de-pinned state [F(8, h) = 0] to
a pinned one [F(B, h) > 0 and 9, F(B, h) > 0] when h varies.
We define h.(B), the critical point at which this transition occurs

(1.9) he(B) := min{h | F(B, h) > 0}.

As the renewal process t we started with is recurrent, we have s.(0) = 0.

REMARK 1.2. From [24], Theorem 2.1, [proved in the context of power-law
renewal, but the proof remains valid with assumption (1.2)], the free energy is
infinitely differentiable in /4 in the interval (h.(B8), 00), so that (1.8) holds every-
where except maybe at the critical point.

The phase transition for the pure system, that is, for 8 =0, is very well under-
stood. The pure model is said to be exactly solvable and there is a closed expression
for F(0, /) in terms of the renewal function K (see [15]).

1.2. Disorder relevance and Harris criterion for power-law renewals. The
disordered system (8 > 0) is much more complicated to analyze and has given
rise to a rich literature, most of which devoted to the case where when n — oo

(1.10) K(n)=cxn (1 4 0(1))
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for some o > 0. For the pure model, the free energy vanishes like a power of % at
the vicinity of 0+ (see [18], Theorem 2.1).

(1.11) F(0, h) = ¢l ™D (1 4 o(1)),

for o # 1 (a logarithmic correction is present in the case o« = 1). The main ques-
tion for the study of disordered pinning model is how this property of the phase
transition is affected by the introduction of disorder. For g > 0, do we have, at the
vicinity of /.(8)+

(1.12) F(B. 1)~ (h—he(B))"?

In what case does v equal max(1,a~"), like for the pure system? A first partial
answer to that question was given by Giacomin and Toninelli [23] (or in [10] with
more generality) where it was shown that

h—?w»{

meaning that the quenched critical exponent for the free energy v, if its exists,
satisfies v > 2. In particular, it cannot be equal to the one of the pure system when
a>1/2.

On the other hand, for small 8 and o < 1/2 it was shown by Alexander [3] (see
[28, 31] for alternative proofs) that h.(8) = —A(B) [recall (1.3)] and that

(1.13) F(B, h) < c<

(1.14) E(B, u —A(B)) "X E(0, ).
In view of (1.11), this implies that v exists and is equal to max(1, &~!) as for the
pure model.

Another aspect of the relevance of disorder is the shift of the quenched critical
point with respect to the annealed one. The annealed critical point is the one cor-
responding to the phase transition of the annealed partition function obtained by
averaging over the environment

agpy . 1 B.hw _
(1.15) hc(ﬁ)._lnf{h‘l\,h_r)nooﬁlogE[ZN ]>0}_—x(ﬂ).

It follows from Jensen’s inequality that

(1.16) he(B) = he(B).

The question of whether the above inequality is strict was investigated in [4, 12,
21, 22] yielding the conclusion that 4.(8) > —A(B) forevery 8 > 0 and « > 1/2.

These results were predicted in the Physics literature [13, 16], based on an in-
terpretation of the Harris criterion [25]: when the specific-heat exponent of the
pure system [for the pinning this exponent is equal to 2 — max (1, @~ )] is positive,
then disorder affects the critical properties of the system and is said to be relevant,
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whereas when the specific-heat exponent is negative disorder is irrelevant for small
values of S.

Relevant disorder affects both the location of the critical point which is shifted
with respect to the annealed bound (1.16) [4, 12, 21, 22], and the critical exponent
of the free energy [10, 23]. Note that the value of v (and even its existence) when
disorder is relevant is an open question even among physicists, let us mention the
recent work [14] where heuristics in favor v = oo (infinitely derivable free energy
at the critical point) are given for a toy-model.

Let us also mention that in [20, 27], the issue of disorder relevance was studied
for an higher dimensional generalization of pinning model, where the set of contact
point is given by a level set of the lattice free field on Z¢, d > 2. The result obtained
were in contrast with what occurs in the one dimensional setup: while the critical
exponent for the free energy is always affected by disorder [it is equal to 1 for
the pure model, and to 2 (d > 3) or infinity (d = 2) with quenched disorder], the
critical point coincides with the annealed bound (1.16) at every temperature.

In this paper, we choose to look at renewal processes whose tails are stretched
exponential, that is, we assume that there exists ¢ € (0, 1) such that

(1.17) K (n) ~ exp(—n?),

in some sense. As T is positive recurrent (i.e., its inter-arrival has finite mean), the
transition of the pure model is of first order, meaning that F(0, /) is not derivable
at h.(0) = 0 positive recurrent. More precisely from [18], Theorem 2.1, we have

(1.18) F0, )"~ E[hto]

as for the case a > 1 in (1.10). Hence, a standard interpretation of the Harris cri-
terion would tell us that disorder should be relevant for every . This is partially
true in the sense that this conclusion is right if one considers only the question of
the critical point shift. The method developed in [12] can be adapted almost in a
straight-forward manner to show the following.

PROPOSITION 1.3. When K (n) has stretched-exponential tails, then for all
B >0,

(1.19) he(B) > —A(B).

The more challenging question is the one about the order of the phase transition.
Indeed the smoothing inequality proved in [23] strongly relies of the fact that K (-)
has a power-law tail.

We are in fact able to find a necessary sufficient condition on ¢ for a smoothing
inequality to hold: we prove that when ¢ > 1/2, the transition remains of first order
for the disordered system, while for ¢ < 1/2 the transition is rounded. We also give
upper and lower bounds, which do not coincide, on the exponent v, informally
defined in (1.12), when rounding occurs, in particular we show that for any value
of ¢ € (0, 1), the disordered phase transition remains of finite order.
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2. Presentation of the results.

2.1. Results. We assume here and in what follows that there exists a constant
ck and ¢ € (0, 1) which is such that

(2.1) K (n) = ck (1 +o(1)) exp(—n?).

The law K (n) as well as the law of w are considered to be fixed, and constants
that are mentioned throughout the proof can depend on both. Unless it is specified,
they will not depend on § and h.

We need to assume for our first result, that the law of our product environment
satisfies a concentration inequality. We define the Lipschitz seminorm of F by

[F() = F(y)|
(2.2) IFlip= sup ——— =2 <00
x#yeRN lx — vl

where |x — y| =,/Y_(x; — y;)? is the Euclidean norm.

ASSUMPTION 2.1. There exists constants C and C, such that for any N and
for any Lipchitz convex function F on RY, we have

’

2

u

(2.3) P(|F(wi,...,on) —E[F(®1,...,oN)]| >u) <Cie C2IF Iy

A crucial point here is that inequality is independent of the dimension N. This
is the reason why we use concentration for the Euclidean norm rather than for the
L1 norm.

REMARK 2.2. The concentration assumption is not very restrictive, it holds
for bounded w (see [30], Chapter 4) or when w satisfies a log-Sobolev inequality
(see [30], Chapter 5, in this case there is no convexity required). This second case
includes in particular the case of Gaussian variables and many others classic laws.

Our first result states that transition is of first order for the system for ¢ > 1/2
(no smoothing holds). Here and in what follows, x; := max(x, 0) denotes the pos-
itive part of x € R.

THEOREM 2.3. Assume that Assumption 2.1 holds:

(1) For ¢ > 1/2, there exists a constant ¢ such that for all B > 0 and u > 0,
24 F(B, he(B) +u) = cmin(1, B7%)u.
(1) For ¢ <1/2, there exists a constant c such that for u > 0 close to zero

2.5) F(B. he(B) + 1) > %(L)g
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Our second result show that in fact smoothing holds for ¢ < 1/2. For this result,
we need to assume that the environment is Gaussian. The assumption could be
partially relaxed but the exposition of the Gaussian case is much easier. Let us
mention that the recent work [10] gives hopes to extend the proof to general w.

THEOREM 2.4. Let us assume that the environment is Gaussian. Then for all
¢ < 1/2 there exists a constant ¢ (which depends on K) such that in a neighbor-

hood of h:(B)

h—he(B)\21=9
2.6 Jh) <ce| ———— .
2.6) F(B )<c( ; )

+

Finally, with an extra assumption on K (-) we are able to state that the transition
is smooth also when ¢ = 1/2. We say that K (n) is log convex if log K can be
extended to a convex function on R, ; or equivalently if

2.7 Vn,l e N n>0l>1) = Kn+DK(I-1)=KmnK({).

This assumption is necessary to prove positive correlation, or the FKG inequality
(see [17]) for the disordered renewal.

THEOREM 2.5. Assume that log K (n) is a convex function of n. Then for { =
1/2,

(2.8) F(B,h) =o((h — hc(,B))+).

REMARK 2.6. The log-convex assumption is not that restrictive and is rather
natural as assumption (1.2) already implies that the derivative of log K tends to
zero. A particular instance of log-convex K is the case where 7 is the set of return
times to zero of a one-dimensional nearest-neighbor random walk on Z. This is
related to log-convexity of the sequence of Catalan numbers (see [9] for a paper
on the subject).

2.2. The smoothing for polynomial tails. Let us explain briefly in this section
why the proof strategy from [23] fails to give any results in the case of stretched
exponential renewals (for more details the reader should refer to the original ar-
ticle). For simplicity, we assume here that the environment is Gaussian and that
g=1.

The main idea in [23] is the following. Let & = h.(8) + u be fixed, and N be
chosen very large. We look at a system at the critical point /. (8) (for which the free
energy is zero): in a typical segment of length N the empirical mean of @ should
be of order O due to the law of large number; however, with probability of order
exp(—Nu?/2) the empirical mean is larger than . In that case, the system does
not locally look critical and the partition function corresponding to the segment



924 H. LACOIN

should be of order eNFB:r<(B)+1) if N is chosen sufficiently large to avoid finite
size effects.

The distance between these segments of length N which give an unusually
“good” contribution to the partition function should be typically huge: of order
exp(u”N /2), and thus the cost making a huge jump between two consecutive good
segments to avoid bad environment should be of order K (exp(u®N/2)). As the
free energy at criticality is zero, the strategy visiting all the “good” segments and
avoiding all the bad ones should not give an exponentially large contribution to
the partition function, hence the cost of making the large jump should completely
compensate for the energy reward one gets when visiting a good segment. For this
reason, one must have for sufficiently large N

(2.9) K (exp(uN /2))eNTPB-heBru) 1.

In the case where K has a power-law tail, this immediately yields a quadratic
bound on the free energy. However, when K has a lighter tail, (2.9) fails to give
any interesting information, as K (exp(u>N/2)) decays super-exponentially.

Some elements of this strategy can somehow be recycled (this is what is done in
Section 5) provided we have some information about the behavior of finite volume
systems (see Lemma 3.1). However, as will be seen, this fails to give a quadratic
bound on the free energy.

2.3. The case of renewals with exponential and sub-exponential tails. An-
other instance of pinning model with absence of smoothing has been exhibited
in [2]: disordered pinning of transient renewals with exponential tails [the case
K (n) = O(exp(—nb)) for some b > 0]. However, let us mention that this case is
quite special. When the tail of the renewal is exponential Remark 1.1 is not valid
anymore. On the contrary, the behavior of the system crucially depends on whether
one pins the renewal at the end:

e The free energy F(8, h) defined by (1.7), which corresponds to a system con-
strained to be pinned, is negative for small values of #.

e The free energy of the system with no constraints is obtained by considering the
best of two strategies: either the walk will avoid the wall completely or it will
try to pin the end point. The reward for this is equal to max(0, F(8, h)), which
is easily shown to have a first-order transition in 4.

Here, the mechanism which triggers a first-order phase transition is completely
different: we have to perform an analysis of local fluctuation of the environment to
see whether or not the benefit of a good rare region is sufficient to compensate the
cost of a large jump coming to it. An upper bound on the fluctuations is obtained
via concentration. To obtain a lower-bound we choose to restrict to the Gaussian
model for simplicity but similar ideas could in principle be implemented by the
use of tilting (like in [10]).
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3. Preliminaries.

3.1. Notation. The dependence in § and h will frequently be omitted to
lighten the notation. When A is an event for 7 we set

3.1) Z9/(A) := E[eXn=1 Bonthing 1,7,
For k € N, the shift operator 6% acting on the sequence w is defined by
(3.2) 0% wp = wnix.

For any couple of integers a < b, one sets

(33) E(L)l,b] — e(/swa+h)1a>ozg_52

to be the partition function associated to the segment [a, b] (with the convention
that Z§ = 1). Note that the environment at the starting point of the interval a is
taken into account only for a > 0O (for technical reasons).

For ¢ > 0, one defines

A?:={t:#(tN(0,N]) <eN,N €1},

(3.4
B :={t:#(rN(0,N]) >¢eN, N €1},

the set of renewals whose contact fraction is smaller, respectively, larger, than &.

3.2. Finite volume bounds for the free energy. The following result allows us
to estimate the free energy only knowing the value of %E[log Zy1, for a given N.

LEMMA 3.1. There exists a constant ¢ such that for every N, B and h,

%E[Iog Zy] <F(B, h),
3.5)

NE-1 20(=B) +h)+ +c¢

w
NE[logZN]ZF(,B,h)— = N

PROOF. The first inequality is a consequence of the following super-
multiplicative property:
(3.6) Z8 =29 x 20,

(see, e.g., the proof of Proposition 4.2 in [18]). For the second one, the proof is
similar to [24], Proposition 2.7, we have

(3.7) Z%y = E[ezﬁﬁl<ﬁwn+h>an3N52N] + E[ezi’ll<ﬁwn+h>an(1 — 5x)8aw].
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The first term is equal to Z§{ Z ?\,N‘“. For the second term, by comparing the weight
of each 7 to the one of T U {/N} one obtains

E[ezﬁ’ll(ﬁwﬁhwn - 5N)82N]

Kb —a)

(3.8) < Z‘,‘V’Z?VN“)e_ﬂ“’N_h max
0<a<N<b<2N K(N —a)K (b — N)

< CePov—hz0 767w exp(NY),

for some constant C > 1. The last line of (3.8) is obtained by observing that for
any choiceof 0 <a < N <b <2N

(N —a) 4+ (b—N)*—(b—a)f <N°.

Hence, taking the log and expectation in (3.7) we have

1
ﬁE[log Z5y]

=

1

E[log Z% ] + NE[log(l + Ce Pev =N exp(N?))]
1

(3.9) = Ellog Zy] + - log(1 + P exp(NY))

1
< Ellog Zi] + N+ Zlog(1 + Ce* =P

< NIE[log Z9]+ NS 4 %[log(ZC) + (AM(=B)—h)_],

where the first inequality is simply Jensen’s inequality. Then we iterate the in-

equality and obtain
1 N&l
F(B,h) < —E[log Z{] + ———
N 1—2¢-1
(3.10)

2
+ +[10220) + (A(=p) = h) . O

3.3. The FKG inequality for log-convex renewals. For the proof of Theo-
rem 2.5 (and only then), we need to use the fact that the presence of renewal
point are positively correlated. This is were the assumption of log convexity of
the function K.

In this subsection T denotes a subset of {1, ..., N} which contains N, and with
some abuse of notation P’Ig\,’h’w is considered to be a law on P({1, ..., N}) (the set
of subsets of {1,..., N}).

Now let us introduce some definition. A function f : P({1,..., N}) - Ris said
to be increasing if

(3.11) vr, ' e P({1,...,N}) tct = f(o)<f(T).
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Note that the result was proved in [8] for renewal processes in continuous time.
Our proof is essentially similar and is based on the use of the celebrated FKG
criterion from [17] but we choose to include it for the sake of completeness.

PROPOSITION 3.2. Assume that the function K is log-convex. Then for all

B,w,hand N, the P’i,’ hiw satisfies the FKG inequality. For all increasing functions
fandg,

(3.12) EN" [ f(Dg@)] = ER" [ f]ER"“[¢(D)].

PROOF. From [17], Proposition 1, it is sufficient to check that for any t and
7’ we have
(3.13) PO (U PE O (r nt) = PR (PR ().

Foro C {0, ..., N} whose elements are 0p =0 < 0] < --- <0, = N, one sets

K (o) =[] K(0i —0i-1).

i=1
The reader can check that after simplification (3.13) is equivalent to
(3.14) K(zrUt)K(znt')=K(@K(7).

This inequality is obviously true when t’ C 7. Then we can reason by induction
and it is sufficient to check is that if @ ¢ T U 7" and (3.14) holds for 7 and t’ then
it holds for = and 7’ U {a}. To this purpose, we only need to check that for any 7,
7’ and a ¢ T U1’ we have

KUt Ula)) - K('U{a))

3.15

( ) Ktut) — K@)

Let us set

(3.16) ap:=sup{x <a:xetUt’}, Bi:=inf{x >a:x et Ut}
' oy :=sup{x <a:x et} Br:=inf{x >a:x e’}

We remark that

o =ap <a<pi < po.
The inequality (3.15) is equivalent to
K —a)K@a—a)  K(fr—a)K(a —a2)
K (B —a1) B K (B2 —a2)
By convexity of log K, the function
KB —a)K(a —a)
K (B —ar)

is nonincreasing in 8 and nondecreasing in « on the set {(«, 8) : @ < a < }. Thus,
(3.17) holds. U

(3.17)

(3.18) (o, B) —
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4. Proof of Theorem 2.3.

4.1. Decomposition of the proof. The key point consists in proving the follow-
ing upper bound to Z4 (A®) [recall (3.4) and (1.5)].

PROPOSITION 4.1. There exists positive constants ey and C such that for all
& < gg we have almost surely, for all N sufficiently large, for all h <1 and B > 0,

elogl
)

@G — log Z$ (A%) < 1F(h, B)+ sup (Cﬂ _ L (logl)_z).
N 2 I>(3e)-1 8
The restriction 2 < 1 is chosen for convenience but does not convey any partic-
ular significance (& < ¢ for some ¢ > 0 would be just as good). The proof of this
statement is postponed to Section 4.2.
Now, we observe that if ¢ is chosen to be larger than the asymptotic contact
fraction 9, F(B, h), the left-hand side of (4.1) converges to the free energy.

LEMMA 4.2. Forevery h > h.(8) when ¢ > d0yF(B, h), we have

(4.2) 1}ivlgigofpf‘v’h"“[m] > 0.
Asa consequence,
1
43) limsup - log Z§y(4°) = F(8. ).
—00

REMARK 4.3. Without much more efforts, one can even prove in facts that
the limit in (4.2) is equal to one, but this is not necessary for our purpose.

The idea to prove Theorem 2.3 is to use (4.1) where ¢ is replaced by 20, F(8, h)
and %log Z3 (A®) is replaced by its limit: F(B, k). This gives a differential in-
equality in 2 which once integrated gives the claimed bounds on the free energy.
Details follow at the end of the section.

PROOF OF LEMMA 4.2. For simplicity (and with no loss in generality), as-
sume that ¢ = (1 4 §)9,F(B, h) for some § < 1 By (1.8) for N sufficiently large,

N
(4.4) %Elﬂ\;h’w[z 5,1} <(1+8)(1—8/2)F(B, h) = (1 —8§/2)e.

n=1

As

1 N
4.5) NE%’““[Z sN} > ePR" (B,
n=1
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this implies
(4.6) PiheIBE <1 —5)2. O
PROOF OF THEOREM 2.3. Let gy be such that Proposition 4.1 holds (in the

case ¢ > 1/2, we will also require ¢ to satisfy another condition). If 2 < 1 is such
that

4.7 ep :=20,F(B, h) < &p.

Then combining (4.3) with Proposition 4.1, we have

(4.8) F(B,h) < sup (2Cﬂ enlogl 114“‘(1og1)2>.
1= Gep) ! L4
Let us start with the case ¢ > 1/2. Let us assume that (recall Remark 1.2),
4.9) lim  9,F(B,h) < l80 min(1, ﬁ_z).
h—h.(B)+ 2

From a standard convexity argument (see [18], Proposition 5.1), we have h.(8) <
0. Thus, we can find & € (h.(B), 1] such that
en < eomin(l, ,3_2).

Then for this value of % the right-hand side of (4.8) is smaller than

logl 1
sup (2C,/ F008t  p —1(1og1)—2)
12 (3eq)! ! 4

which is equal to zero if &y has been chosen sufficiently small. Hence, we obtain a
contradiction as F(8, h) > 0.

Let us move to the case ¢ < 1/2. We can assume that

4.10 lim 9,F(B,h)=0

(4.10) im0 (B )
as if not, there is nothing to prove.

For £ sufficiently close to the critical point, we hence have ¢, < &g (and & < 1),
and hence equation (4.8) holds. Computing the maximum in the left-hand side of
(4.8), we obtain

1—
C(B2enllogenl’) T [logen| 2 for¢ <172,
exp(—c(B%en) ') for¢ =1/2.

Replacing &, by its value (4.7) and ignoring the |logey,|~2 factor in the first line,
we obtain for all 4 such that 1 — h.(B8) € (0, ug(B8)], with ug(8) sufficiently small

4.11) F(B,h) <

-1 5 2
(4.12) F -0 |logF|?opF > cf™~.
Integrating the above inequality between /.(f) and 4 yields the result. []
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4.2. Proof of Proposition 4.1. A key tool in the proof is the following con-

centration inequality. What is crucial in this step is to control the Lipshitz norm in
order to obtain better concentration when the contact fraction is smaller.

LEMMA 4.4. When Assumption 2.1 holds then for any event A C A°*

2
(4.13) P[log Z§; (A) — [logZ%(A)]Zf]ScleXP<—m)-

PROOF. For any pair of environment w and «’, the following holds:

ZG(A
log 24| < Yo — )

ZN (A) {rcC[O,N]: \rﬂ[O N]|<£N}xer

(4.14) v
<BVeN | > wl.
x=1
Hence, the Lipshitz norm of
w > log Z (A)

is smaller than B+/eN. It is also a convex function, thus the results follows from
Assumption 2.1. [

Given 7 € A?, we want to introduce a notion of “typical” size of jumps in 7, we
call it £(7). The idea is to choose £(t) in a way that the interval [0, N] is mostly
spanned by jumps whose size is of order £. Let us set

0z) = min{r > (3e)7 !
(4.15)

N
Z (tn — T—D) Y{(y—1u_)elr2r) = ) }
(n:Ta<N) (logr)

Let us check quickly if this definition makes sense.

LEMMA 4.5. If ¢ < gg is sufficiently small, then for any N > 0, for any t €
A?, we have

N
> (3e)" ! — 1z — -2 z.
(4.16) {r_( €) . ;N}(Tn Tn— D {(x, 7, 1)elr,2r) (logr)Z} #

Moreover, we have for all T € A°

o

(4.17) Y @ = - D@ -t elr2n) <
{n:t, <N}
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PROOF. We work by contradiction and assume that the set is empty. Let us set
ro:=[@Be)"']and ry = 2%ry for k > 1. Then we have, provided &g is chosen in an
adequate manner

(e e]
2 = T, 1 )=o) tir <)

n=1
ad 1

(4.18) <N)>

= (logre)?

ad 1 N
§N§j <—.
= (klog2 + |log(3e))? ~ 6

On the other hand, using the definition of A® we have

o0
- N
@419) 3 (T = D, <o)t <) < BT HET N O, N < =

n=1

Thus, we obtain the contradiction to the fact thatif N € t

00
Z(Tn - tn—l)l{rngN} =N.

n=1

Using the same argument as in (4.18), we obtain

o0
N
(4.20) 2 = T D (g, pelGer tonim=N) = o

n=l1

which together with (4.19) allows us to conclude that (4.17) holds. [

Define £(t) and L(7) to be the set of indices and the number of jumps whose
size is larger than £(7)
L(t):={n:7, <N; (1, — Tp—1) = £(0)},
L(t) :=#L(7).
Note that by definition

4.21)

(4.22) L(r) e |: N N ]

2¢()(log £(7))* " £(7)

For fixed /, L € N, 1 € [(3e)~", N1 and L € [5;50 757, 71, e set

N
2l(log!
4.23) T L) :={(t.t)e([0,NINZ)* :¥ie[l,L].t]>t;_1.6; > 1/ +1)

which is the set of possible locations for (t,—1, Tn)ner(r). For t,)eT(d, L), we
set

(4.24) Awy =17 € A 1 l(D) =L {1, T ey = 11 1)1y ).
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m&w&—»

0t t th to = th ts N

FIG. 1. A schematic representation of a set (t',t) € T (I,3), and a renewal in t € A(t’,t) (in green).
In the yellow region, the length of the jumps must be either smaller than l. A consequence that
£(t) =1 is that the total length of the yellow region is smaller than N /2.

It is the subset of .A? for which the jumps of T whose length is larger than £(7) (the
jumps of “typical” size) exactly span the segments (#/, t,-)iL:1 (see also Figure 1).
We have

(4.25) 5= Y > > ZR(Aw)-
le[(3s)~!,N]INN Le[ﬁ,%]ﬂl\l (t',HeT (L)

In particular,

log Z$ (A®)
<2logN+  max [log(#T(l, L))
le[(3e)~!,N]
(4.26)
Le[zz(kivglﬂ’%

+ max 10 Zw A , ‘
(t.HeT (L) gZn( (t,t))]

The idea is then to use Lemma 4.4 to find a good bound on the right-hand side.
A first easy step is to get an estimate on the cardinal of 7 (/, L).

LEMMA 4.6. There exist constants C and &g such that for all ¢ < gy, and all

choices of N, | € [3e)~',N],Le [W, #] we have
4.27) #T(, L) < Cexp(3Llogl).

PROOF. The set {t,-}iL:l U {t + l}iL:l is a subset of {1,..., N} with 2L ele-
ments. Hence,

N N2L 2N 2L
(4.28) 4T, L) < (2L) < 50 < C(T) ,

where we used in the last line that n! > C~!(n/4)". We conclude by observing that
for & small enough we have

2N 3
(4.29) log<T> < log[4l(log])?] < 5 logl. 0

To use Lemma 4.4 efficiently, we must also know about the expected value of
log Z% (A(t/,t)) .
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LEMMA 4.7. Forany (t,t) € T(l, L), for ¢ sufficiently small (depending only
on K)

1 1 1
(4.30) ~Ellog Zyy (Aw.0)] < SF(B, h) + |- Zlf ~(logh™?

[\

PROOF. We have [recall (3.3)]

L
(431) Z% (A(t’,t)) < |:1_[ Zﬁ);,lifl]K(ti — tl/)i| EL;LvN]'
i=1
Hence,
E[log Z]a\} (A(t/,t))]
(4.32)

L L
<> E[log Zﬁ‘);,fi—l]] +E[log Zf}, ]+ D _log K (i — 1;).
i=1 i=1

From Lemma 3.1, we have

L
Z E[log ZEZ/JFI]] + E[log ZFI‘)LyN]]

i=l

(4.33) )
< (Z(r{ —4i 1)+ (N — ti))F(,B, h)+ Lh < NF(B,h)/2+ L,

i=1

where in the last inequality we used the fact that 2 < 1, and (4.17). Concerning the
last term in (4.32), we have [recall (4.22)] for ¢ sufficiently small

§Lj i —1)° > Ly s 1sz*‘(l 1)~2
— = - 0 ,
P =27 T4 g

l\)l'—‘

L
434)  => logK (i —
which completes the proof. [J

LEMMA 4.8. There exists a constant C such that for N sufficiently large, for

alll €[(3e)"!,Nland L € [21(1og1>2’ 7]

elogl 1
435 P(M(. L) > CBN <
(4.35) (Ma.1y=con |8 ) < 45
where
(4.36) M(I,L)y= max (logZy(Aw.) —E[logZy(Aw.p)])-

t,t)eT(,L)
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PROOF. From Lemma 4.4 and a standard union bounds, we have for any u > 0

w w
P((t,’grel%u)(log Z5(Aw,n) — Ellog Z§ (A o)) = 1)

(4.37) 5

Using Lemma 4.6, and setting u := CBN glogl

C is chosen sufficiently large. [

, one can conclude provided that

PROOF OF PROPOSITION 4.1.  Using Lemma 4.8 and Lemma 4.7, and Borel-
Cantelli’s lemma we have, almost surely for all large N, for all [ € [(3e)~!, N]and

N N
L € 502> T1

1
max log Z% (Aw
N w.oerin ¢ v(Aw.p)

(4.38)
I 1
< F(,B m 4+~ +cpff (l’g — 1 dog) .
Combining this with (4.26), we obtain
1 2logN 1
log Z§(A%) = T2 4 JR (B )
N 2
log#7(, L)
(4.39) * 12%3?'( N !
1 1
cB,/E Og 2 1(1og1)2>.
4
The terms ZI(ﬁN and IOg#;(I’L) can be neglected if [ is sufficiently large (i.e., € is

sufficiently small) and /¢~ (log/)~2/4 is replaced by 1*~!(log/)~2/8. O

5. Proof of Theorem 2.4: Rounding for ¢ < 1/2. The idea to find an upper
bound on the free energy is somehow inspired by what is done in [23]. The main
difference is that here, we must combine the argument with the finite volume crite-
rion given by Lemma 3.1 to get a result. We use that w is Gaussian in the following
way.

LEMMA 5.1. For any N if w are IID Gaussian variables, then the sequence

P&\
n=1 x=1

is independent of "N_, w,.
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With this observation, we see that changing the value of 4 by an amount § is in
fact equivalent to changing the empirical mean of the w by an amount §8~!.

In a first step, we try to control the expectation of the free energy for a typical
value of Z,]f:l wy.

PROPOSITION 5.2. There exists a constant C such that for all N sufficiently
large and all u,

Bhc(B),
5.1 E[log Zy @

N
> o> u«/ﬁ:| < CNS(1+ [ulf)ef /2 4 p2.

n=1

This will be done using the finite volume criterion of Lemma 3.1: if (5.1) does
not hold, one can find a strategy which gives a positive-free energy for & = h.(8),
and hence yields a contradiction. Then the idea is to integrate this bound over all
values of u to obtain a bound for E[log Zi,’h’w]. Of course, the bound obtained in
this manner is a good one only if N is wisely chosen. We can finally conclude
using the finite volume criterion Lemma 3.1.

REMARK 5.3. In our proof, we actually use variant version of the inequality
(5.1) where the conditioning is Z,I,V:] wn = u~/N. The inequality (5.1) remains of
course valid in that case, by stochastic domination of one conditioned law by the
other, and the fact that log Z f,’h“(ﬂ ) s an increasing function of w.

PROOF OF THEOREM 2.4. Now for & = h.(8) + v one sets N := 2v~2 (as-
suming that we have chosen v such that N is an integer). We have

E[log Zﬁ,’h’w]

1 2 1 B.h,w
= exp(—u“/2)—=E|log Z;"

N
Za)x =u\/ﬁ:| du

n=l1

(5.2)

:/J%_ﬂexp<_ (u —ﬁ‘;vﬁ)z)

N
wa =u«/ﬁi| du.

n=1

1 B.he(),
X NIE|:10g Zy “

Using Proposition 5.2, we have the following inequality provided that v is suf-
ficiently small (in which case the 8% can be neglected):

E[log Zﬁ’h’w]

(53) ;-MZ _ (Lt _ 1)2

<CN¢
- 2

1+|u|€)exp( )dugc/NC.

[ &=
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Hence, using Lemma 3.1 (the lower-bound part), we obtain
(5.4) F(B,h) < C'N*~ ' =C"(wp—1)>¢"D, O
PROOF OF PROPOSITION 5.2. One can assume u > 1 without loss of gener-
ality. Set
M :=uexp(u’/2).
Let X¢ be the smallest integer such that

(Xo+DHN
(5.5) > wu=uVN.

n=XoN+1

Then we obtain a lower bound on Zyjs by deciding to visit the stretch [XoN,
(Xo+ 1N]if Xg < M —2 and to do only a long excursion in the other case [recall
(3.3)] (see Figure 2):

(5.6) o N = K (XoN) Z8,n.xornyn K (M — Xo + D N)ePovmuthe®

if Xo<M —2,and

(5.7 7%y = K(MN)ePonuthe(®)

when Xo > M — 1. Taking the expectation one obtains, by translation invariance

| Xo < (M —2)]
(5.8) N
> —2(MN)¢ +he(B) + E[Iog PN N v, = uﬁ].
n=1

e \\.,A . .,
0 XoN (Xo +1)N NM
— —
0

FIG. 2. Here, we present our strategy to obtain a lower bound on the partition function Zy .
The yellow segments are those which are such that the empirical mean of w of uN—Y2 and
[XoN, (Xo + 1)N] is the first of them. We allow pinning only on the segment [XoN, (Xo + 1)N]
and only if Xo <M — 2.
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We also have (as wysn is independent of the event {Xo < M — 2} its conditional
mean is zero)

E[log[ K (M N)ePenvuThe®| xo> M — 2]
=logK(MN) + h.(B).

(5.9

And hence [recall that h.(8) > —p?/2 for Gaussian environments],

E[log ZX)/[N]
N
(5.10) > E[log Z POl g > m/ﬁ]ﬂv[xo <M —2]
n=1
—2(MN)¢ — g2

By standard estimates on Gaussian tails, there exists a constant ¢ > 0 such that
N c _2
Yu > 1 ]P’|:Za)x2quj|2—e_” 2
u
n=1
and hence, using the definition of M we have
P[Xo<M —2]>¢,

for some positive constant ¢’. This implies [recall Lemma 3.1 and that F(S,
h.(B)) = 0] that there exists ¢” > 0 such that

0> E[log Z{n]

(5.11)
> E|log Zf,’h"(ﬂ)’w

N
Za)x > u«/ﬁi|) —ub SN B2.

n=1

The above inequality is in fact only valid if one assumes that

E|:log Zf,’h”(ﬁ)’w

N
> o, Zu\/ﬁi| >0,

n=1

but if this is not the case there is nothing to prove. [

6. Proof of Theorem 2.5: Rounding for { =1/2. Thecasefor¢ =1/2isa
bit more complicated. Assume that
6.1) lim  9,F(B,h)=co >0,
h—hc(B)+
and let us derive a contradiction. First, we prove that the contact fraction at the

critical point, if well defined, cannot be equal to ¢ as there is always a positive
probability for the polymer to have a very small contact fraction.
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LEMMA 6.1. The following three statements hold.

(i) Forall e > 0,

(6.2) limsup E[P5,"< P (B8%)] < 1

N—o0

(i) For any u > cy,

(6.3) lim E[P5"<®-* ()] =

N—o0

(iii)) We have

N
(6.4) 1imsupE[E’;hf<ﬁ)’“’<Z 3N)} < co.

N—oo n—=1

PROOF. Point (iii) is a simple consequence of the two first point as

6.5) [ﬁh(ﬂ)w(za )} / E[PE ) (54)] du.

Point (ii) is rather easy to prove: Assume that for # > ¢ and for some § > 0 one
has

(6.6) P[P P2 () > 5] > 6,
for infinitely many N. We note that if
P%hc(ﬂ)sw(Bu) =3

then

Z[f\g]»hc(/g)sw(Bu) Z SZl%hC(ﬂ)#w

(6.7)
> SK(N)eﬁwN-l-hc(ﬁ)’

where the last inequality is just obtained by considering renewal trajectories with
only one contact. Hence, for every 4 > h.(f) we have

(6.8) ZBe 5 ZBho(gu) 5 geNuthi—ho) g () pPon+he®),

This implies (as we know that the limit exists and is nonrandom) that for every

h>h:(B)

(6.9) lim %log ZB7 > u(h — he(B))

N—o00

which contradicts assumption (6.1) for small 4.
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To prove (i), let us assume that

(6.10) lim E[P5"< P (B%)] =

N—o00

(or that it occurs along a subsequence) and derive a contradiction from it. Set

6.11) fnu) = [P’S heB)e ge) Z wy = uv/N 1}
We have
Je(B),w 406 2
(6.12) E[P5"< P (B?) exp(—u?/2) fi (u) du.
[ =
As fn(u) is an increasing function of u this implies that for all u € R
(6.13) lim fy(u)=1.
N— o0

Fix u = —10e~! and let N be sufficiently large so that fy(u) > 3/4. Then neces-
sarily

N-1
(6.14) P(P’;hc(ﬂ)"“(sg) >1/2 Y oy =uv/N - 1) >1/2.
x=1
B.he(B).w pae : e :
Note that Py (Bf) > 1/2 implies in particular that
Z]%h(‘(ﬂ)sw(Bé‘) Z Z%hC(ﬂ)vw((BS)c) Z K(N)eﬁwN+hC(ﬁ),

and hence (6.14)

(6.15) P(zl’%hf(ﬂ%w(gs) > K (N)ebox+he(®)

N-1
> wy=uv/N-— 1) >1/2.

x=1

From Lemma 5.1, replacing u by v in the conditioning is equivalent to replacing
wp by w, + (0 —u)(N —1)"12 forn e{l,..., N — 1}. Hence, for v > u we have

N—1
(6.16) P(Z%hc(ﬂ)*“’(zag) > FOOVN=Te 1 S™ o —ud/N = 1) >1/2,
x=1

where
¢n o= K (N)ePovthe®),

This implies that for any v (this is obvious for v < u)

N-—1
(6.17) ]P’(fo,’h”(ﬂ)"’) > fCTOVN=T ey | 3™ 6 = 0d/N — 1) >1/2.

x=1
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Hence, using the obvious bound Z f,’h“(ﬂ )@ > K (N)ePon +he(B) one obtains

N-1
E[log 28000 |3 ) N1 1}

(6.18) x=1
>log K(N)+ h.(B) + %S(U —u)v/N — 1.

Hence, integrating over v one obtains (recall the value we have chosen for u)

E[log Z]ﬁ\',’h“(ﬁ)’w]

>logK(n)+hB)+-— | e(v—u)vN — le_% dv
(6.19) \/_/

=10gK(n)+hc(,3)—7 N —1

=log K(N)+h.(B) +5vN —1>0.

This contradicts the fact that the free energy is zero. [

Then we can conclude by exhibiting a finite volume bound similar to those of
Lemma 3.1 for the free energy derivative.

LEMMA 6.2. For K log-convex, for any N and h

(6.20) —E[ EN" ‘”(Z 3N>] > 94 F (B, h).

n=1

PROOF. This is a simple consequence of the FKG inequality, as the number
of contact is an increasing function. For M > 1, on has

NM
el 3 o |2 e S
n=1

(SiNzl,Vi E{l,...,M— 1}:|
(6.21)

u B.h,0/Nw al
=Y Ey" [Z an}
i=0 n=1

and hence taking the average

o e (s

n=1

The result follows by taking M to infinity. [
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PROOF OF THEOREM 2.5. For afixed N,

1 N
h > NE[E%}””[Z anﬂ
n=1

is a continuous function. Hence from (6.1), one can find N sufficiently large and
h > h. such that

N
(6.23) %E[E’Z’h"" [Z 5,1]} <co.

n=1

By Lemma 6.2, this implies that o5F(8, h) < co which yields a contradiction.
Hence, one must have a smooth transition. [

REMARK 6.3. In fact, the proof in this section yields a nontrivial result for
¢ < 1/2: when K is log-convex we have

1 N
(6.24) Nli_r)nooﬁE[Eﬁ,’h“(ﬂ)’w[Z(Snﬂ= lim  ,F(B, h).

= h—he(B)+

In other words, the contact fraction at the critical point is equal to the right-
derivative of the free energy.
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