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ments. In this article, we study identification and estimation of the net
effect of each treatment in the treatment sequence. We construct a point
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ments through their point effects under the constraint by maximum likeli-
hood and reduce the number of point parameters in the estimation by the
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1. Introduction

In many economic and medical practices, a sequence of treatments are assigned
to influence an outcome of interest that occurs after the last treatment of the se-
quence. Between consecutive treatments, time-dependent covariates are present
that may be post-treatment variables of the earlier treatments (Rosenbaum
[16], Robins [8], Frangakis & Rubin [1]) and confounders of the subsequent
treatments. In this article, we aim at the net effect of each treatment in the
sequence, i.e. the causal effect of the treatment on the subpopulation defined by
the previous treatments and time-dependent covariates while setting the sub-
sequent treatments at controls. The net effect of treatment is also called the
blip effect in the context of semi-parametric sequential causal inference (Robins
[9, 10, 14, 15]).

By using the G-computation algorithm formula (also called the G-formula),
Robins [7, 10, 12, 14, 15] identified the net effect of treatment by standard
parameters, which are usually the means of the outcome in subpopulations de-
fined by all the treatments and time-dependent covariates. Robins illustrated
that any constraint imposing equalities among standard parameters may lead
to automatic rejection of the null hypothesis of net effects if the time-dependent
covariate is a post-treatment variable of the earlier treatments and a confounder
of the subsequent treatments. As the treatment sequence gets long, the num-
ber of standard parameters becomes huge, and with no constraint on these
parameters, the maximum-likelihood (ML) estimates of net effects may not be
consistent (Robins & Ritov [11]). To obtain non-genuine likelihood-based esti-
mates of net effects, two semi-parametric approaches have been developed: the
structural nested model (Robins [9, 10, 14, 15], Robins et al. [13], Murphy [6],
Henderson et al. [4]) and the marginal structural model (Robins [12, 15], Mur-
phy et al. [5]).

On the other hand, every treatment in the sequence can be considered as a
single-point treatment. In the framework of single-point causal inference (Rosen-
baum & Rubin [17], Rosenbaum [18], Rubin [19]), a treatment has a point
causal effect on a subpopulation defined by the previous treatments and time-
dependent covariates. The point causal effect of the treatment can be identified
by the point effect of the treatment, which corresponds to differences between
the means of the outcome in the sub-subpopulations assigned with different
treatments. In this case, the time-dependent covariates act only as confounders.
As a result, a constraint on point effects does not necessarily lead to automatic
rejection of the null hypothesis of point causal effects.

Intuitively, the point causal effect of each treatment in the sequence results
from the net effects of this and all the subsequent treatments. If one can identify
the point causal effects by the point effects, then one should be able to identify
the net effects by the point effects. Because a constraint on point effects does
not necessarily lead to automatic rejection of the null hypothesis of point causal
effects, it should not lead to automatic rejection of the null hypothesis of net
effects. The purpose of this article is to identify and estimate the net effects
through their point effects in line of the above observation.
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In Section 2, we introduce the background and notation of the identification
and estimation of the net effects of treatments. In Section 3, we construct a
point parametrization for the joint distribution of treatments, time-dependent
covariates and an outcome after the last treatment, in which the point param-
eters of interest are the point effects of treatments. In Section 4, we identify
net effects by their point effects, express patterns of net effects by constraints
on point effects and analyze the role of treatment assignment conditions in the
identification. In Section 5, we estimate net effects through their point effects
under the constraint and reduce the number of point parameters in the esti-
mation by the treatment assignment condition. In Section 6, we illustrate our
method via an analytical example, a simulation study and a real example. In
Section 7, we conclude the article with remarks and discussion.

2. Background and notation

2.1. Treatment sequence, potential covariates and potential outcome

Let zt indicate the treatments at time t (t = 1, . . . , T ). Assume that all zt are
discrete variables and have the values 0, 1, . . .. We take zt = 0 as the control
treatment and zt = 1, 2, . . . as active treatments. Let the set zt1 = (z1, . . . , zt)
indicate the treatment sequences from times 1 to t. Suppose that every treatment
sequence zT1 could be applied to each unit of a population. Assume that there
is no interference between units and no represented treatment sequence for any
unit. For notational simplicity, we use one subpopulation defined by stationary
covariates of the population as our population, and henceforth, do not consider
stationary covariates in the following development.

In the framework of sequential causal inference, each unit could have a po-
tential (time-dependent) covariate vector xt(z

t
1) between treatments zt and zt+1

and a potential outcome y(zT1 ) of our interest after the last treatment zT un-
der treatment sequence zT1 . Assume that xt(z

t
1) is a discrete vector with non-

negative components. We take xt(z
t
1) = 0 as the reference level. Let xt

1(z
t
1) =

{x1(z1),x2(z
2
1), . . . ,xt(z

t
1)} be the potential covariate array between treatments

z1 and zt+1.
In the above definition of the potential covariates and outcome, every zt in

zT1 is a deterministic function of the earlier treatments and potential covariates,
i.e. zt = zt{zt−1

1 ,xt−1
1 (zt−1

1 )}. If each zt in zT1 does not depend on the earlier
treatments and potential covariates, then zT1 is a static treatment sequence, and
otherwise, it is a dynamic treatment sequence.

2.2. Net effects of treatments

In most practical cases, treatments zt (t = 1, . . . , T ) are consecutively and ran-
domly assigned, so the potential covariate vectors xt(z

t
1) (t = 1, . . . , T − 1) and

the potential outcome y(zT1 ) become consecutively and randomly observable.
Denote the observable covariate vector simply by xt (t = 1, . . . , T − 1) and the
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observable outcome by y. Let xt
1 = (x1, . . . ,xt). The assigned treatments zt−1

1

are assumed to be a treatment sequence, which can be static or dynamic and
leads to the observable covariate array xt−1

1 . This assumption is known as the
consistency assumption (Robins [7, 8, 9, 10, 12, 14, 15]). Let (zt−1

1 ,xt−1
1 ) be a

set of observable variables in which the treatment sequence zt−1
1 leads to the

observable covariate array xt−1
1 .

Let zTt = (zt, . . . , zT ) be the treatment sequence given the observable vari-
ables (zt−1

1 ,xt−1
1 ). Under zTt given (zt−1

1 ,xt−1
1 ), each unit could have poten-

tial covariate vectors xt(z
t
1), . . . ,xT−1(z

T−1
1 ) and a potential outcome y(zT1 ).

Let xT−1
t (zT−1

t ) = {xt(z
t
1), . . . ,xT−1(z

T−1
1 )} and y(zTt ) = y(zT1 ) for a given

(zt−1
1 ,xt−1

1 ).

Robins [9, 10, 14, 15] defined the net effect of zt > 0 given the observable
variable (zt−1

1 ,xt−1
1 ) as

φ(zt−1
1 ,xt−1

1 , zt)

= E{y(zt, zTt+1 = 0) | zt−1
1 ,xt−1

1 } − E{y(zt = 0, zTt+1 = 0) | zt−1
1 ,xt−1

1 }
(1)

for t = 1, . . . , T . Here the expectation E(b | a) is with respect to the conditional
distribution of b given a in the population.

Throughout the article, we adopt the following notational conventions. First,
the notations zvu, x

v
u and xv

u(z
v
u) with u > v or u = v = 0 should be omitted

from relevant expressions. For instance, the notations z01 and x0
1 in (1) for t = 1

should be omitted, and so (1) becomes

φ(z1) = E{y(z1, zT2 = 0)} − E{y(zT1 = 0)}.

Similarly, the notation zTT+1 = 0 in (1) for t = T should be omitted, and so (1)
becomes

φ(zT−1
1 ,xT−1

1 , zT ) = E{y(zT ) | zT−1
1 ,xT−1

1 } − E{y(zT = 0) | zT−1
1 ,xT−1

1 }.

Second, the sigma notation
∑v

i=u ai with v < u should be omitted from relevant
expressions. Third, the notations zvu, x

v
u, x

v
u(z

v
u) and

∑v
i=u ai with u < 1 and

v ≥ 1 are treated as zv1, x
v
1, x

v
1(z

v
1) and

∑v
i=1 ai. Fourth, the notation (zvu,x

v−1
u )

is equal to (zv−1
u ,xv−1

u , zv), and (zvu,x
v
u) to (zvu,x

v−1
u ,xv); we may use one or

another notation in different contexts.

2.3. G-formula for net effects of treatments

In the following assumption, let z∗t indicate the treatments randomly assigned
at time t. We assume that the assignment of z∗t (t = 1, . . . , T ) satisfies

{
xT−1
t (zT−1

t ), y(zTt )⊥z∗t | zt−1
1 ,xt−1

1

0 < pr(z∗t | zt−1
1 ,xt−1

1 ) < 1
(2)
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for any treatment sequence zTt given the observable variable (zt−1
1 ,xt−1

1 ). Here
A⊥B | C means that A is conditionally independent of B given C. The zt is a
specified treatment at time t in the specified treatment sequence zTt .

The first part of (2) is known as the assumption of no unmeasured con-
founders (Robins [7, 8, 9, 10, 12, 14, 15]). The second part is known as the
positivity assumption. There may exist other observable covariates than xT−1

1

but the assignment of z∗t does not depend on them and no further information
is available about them.

Standard parameters for the conditional distribution of y given (zT1 ,x
T−1
1 )

are the means E(y | zT1 ,xT−1
1 ) denoted by μ(zT1 ,x

T−1
1 ). Standard parameters

for the conditional distribution of the discrete variable xt given (zt1,x
t−1
1 ) are

the probabilities pr(xt | zt1,xt−1
1 ). Using assumption (2), Robins (1986, 1997)

derived the G-formula

E{y(zTt ) | zt−1
1 ,xt−1

1 } =
∑
xT−1
t

μ(zT1 ,x
T−1
1 )

T−1∏
s=t

pr(xs | zs1,xs−1
1 ) (3)

for t = 1, . . . , T − 1 and E{y(zT ) | zT−1
1 ,xT−1

1 } = μ(zT1 ,x
T−1
1 ).

Combining (1) and (3), we obtain the G-formula for the net effect

φ(zt−1
1 ,xt−1

1 , zt)

=
∑
xT−1
t

μ(zt1, z
T
t+1 = 0,xT−1

1 )

T−1∏
s=t

pr(xs | zt1, zst+1 = 0,xs−1
1 )

−
∑
xT−1
t

μ(zt−1
1 , zTt = 0,xT−1

1 )

T−1∏
s=t

pr(xs | zt−1
1 , zst = 0,xs−1

1 ) (4)

for t = 1, . . . , T − 1 and

φ(zT−1
1 ,xT−1

1 , zT ) = μ(zT1 ,x
T−1
1 )− μ(zT−1

1 ,xT−1
1 , zT = 0),

which identifies the net effect φ(zt−1
1 ,xt−1

1 , zt) by the standard parameters μ(zT1 ,
xT−1
1 ) and pr(xs | zs1,xs−1

1 ) (s = t, . . . , T − 1) under assumption (2).
If xt (t = 1, . . . , T − 1) are post-treatment variables of zs (s ≤ t), then

the standard parameters essentially do not have any pattern (Rosenbaum [16],
Robins [8], Frangakis & Rubin [1]). If xt are simultaneously confounders of
zs (s > t), then one needs to use all these standard parameters to identify
φ(zt−1

1 ,xt−1
1 , zt). With a long treatment sequence, the number of these param-

eters is huge. Without a constraint on standard parameters, the ML estimates
of φ(zt−1

1 ,xt−1
1 , zt) may not be consistent (Robins [7, 10, 12, 14, 15], Robins &

Ritov [11]).
In this article, instead of standard parameters, we are going to use point

effects of treatments to identify the net effects of treatments under assumption
(2).
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3. Point parametrization for the joint distribution of observable
variables

3.1. Joint distribution of observable variables

Instead of one set (zT1 ,x
T−1
1 , y) of the observable variables, we consider N inde-

pendent and identically distributed sets, {zTi1,xT−1
i1 , yi}, i = 1, . . . , N . The joint

distribution of {zTi1,xt−1
i1 , yi}Ni=1 can be factorized into

f({zTi1,xT−1
i1 , yi}Ni=1) (5)

=

N∏
i=1

f(yi | zTi1,xT−1
i1 ) (6)

T−1∏
t=1

N∏
i=1

f(xit | zti1,xt−1
i1 ) (7)

T∏
t=1

N∏
i=1

f(zit | zt−1
i1 ,xt−1

i1 ). (8)

Here f(u | v) is a conditional probability distribution of u given v if u is discrete,
and a conditional density distribution of u given v if u is continuous. We are
going to construct point parameterizations for (6) in Section 3.2 and for (7), (8)
and then (5) in Section 3.3.

3.2. Point parametrization for the conditional outcome distribution
(6)

Given N sets {zTi1,xT−1
i1 }Ni=1, a stratum is a set of those sets satisfying certain

conditions. For instance, a stratum (zt1,x
t−1
1 ) is a set of those sets satisfying

(zti1,x
t−1
i1 ) = (zt1,x

t−1
1 ). Let prop(A) denote the proportion of stratum A in

the N sets and prop(A | B) denote the conditional proportion of stratum A in
stratum B.

Consider the mean of y in stratum (zt1,x
t−1
1 )

ν(zt1,x
t−1
1 ) =

∑
zT
t+1,x

T−1
t

μ(zT1 ,x
T−1
1 )prop(zTt+1,x

T−1
t | zt1,xt−1

1 )

for t = 1, . . . , T−1 and ν(zT1 ,x
T−1
1 ) = μ(zT1 ,x

T−1
1 ). The point effect of treatment

zt > 0 on stratum (zt−1
1 ,xt−1

1 ) is then

ϑ(zt−1
1 ,xt−1

1 , zt) = ν(zt−1
1 ,xt−1

1 , zt)− ν(zt−1
1 ,xt−1

1 , zt = 0). (9)

Consider the mean of y in stratum (zt1,x
t
1)

ν(zt1,x
t
1) =

∑
zT
t+1,x

T−1
t+1

μ(zT1 ,x
T−1
1 )prop(zTt+1,x

T−1
t+1 | zt1,xt

1)
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for t = 1, . . . , T − 1. The point effect of covariate xt > 0 on stratum (zt1,x
t−1
1 )

is then
ζ(zt1,x

t−1
1 ,xt) = ν(zt1,x

t−1
1 ,xt)− ν(zt1,x

t−1
1 ,xt = 0). (10)

Let
ν =

∑
zT
1 ,xT−1

1

μ(zT1 ,x
T−1
1 )prop(zT1 ,x

T−1
1 ) (11)

which is the grand mean of y in all the N sets {zTi1,xT−1
i1 }Ni=1. Given

{zTi1,xT−1
i1 }Ni=1, the proportions of treatments and covariates can be treated

as constants. Therefore the point effects of treatments, the point effects of co-
variates and the grand mean are linear functions of the standard parameters
μ(zT1 ,x

T−1
1 ) and thus are parameters of (6) which are called point parameters.

According to (9), (10) and (11), each point parameter can be expressed in
terms of the standard parameters μ(zT1 ,x

T−1
1 ). Conversely, we show in Appendix

A.1 that each standard parameter can be expressed in terms of the point pa-
rameters by

μ(zT1 ,x
T−1
1 )

=

T∑
t=1

⎧⎨
⎩

∑
z∗
t >0

−ϑ(zt−1
1 ,xt−1

1 , z∗t )prop(z
∗
t | zt−1

1 ,xt−1
1 ) + ϑ(zt−1

1 ,xt−1
1 , zt)

⎫⎬
⎭

+

T−1∑
t=1

⎧⎨
⎩

∑
x∗
t>0

−ζ(zt1,x
t−1
1 ,x∗

t )prop(x
∗
t | zt1,xt−1

1 ) + ζ(zt1,x
t−1
1 ,xt)

⎫⎬
⎭+ ν

(12)

where we take ϑ(zt−1
1 ,xt−1

1 , zt = 0) = 0 and ζ(zt1,x
t−1
1 ,xt = 0) = 0.

Let Ψy be the set of all the point parameters, i.e. Ψy = {ϑ(zt−1
1 ,xt−1

1 , zt),
t = 1, . . . , T ; ζ(zt1,x

t−1
1 ,xt), t = 1, . . . , T − 1; ν}. Then Ψy forms a parametriza-

tion for (6).

Definition 1. The set Ψy is called a point parametrization for the conditional
outcome distribution (6) of {yi}Ni=1 given {zTi1,xT−1

i1 }Ni=1.

3.3. Point parametrization for the joint distribution (5)

Treating xt as an outcome conditional on the observable variable (zt1,x
t−1
1 ) and

repeating the procedure of the previous subsection, we construct point parame-
ters and the point parametrization for the conditional distribution

∏N
i=1 f(xit |

zti1,x
t−1
i1 ) in (7). Denote the point parametrization by Ψxt (t = 1, . . . , T − 1).

In observational studies, treatments zt (t = 1, . . . , T ) can be exposures, whose
assignments are unknown and need to be estimated. Treating zt as an outcome
conditional on the observable variable (zt−1

1 ,xt−1
1 ) and repeating the proce-

dure of the previous subsection, we construct point parameters and the point
parametrization for the conditional distribution

∏N
i=1 f(zit | zt−1

i1 ,xt−1
i1 ) in (8).

Denoted the point parametrization by Ψzt .
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Let Ψ = {Ψy; Ψzt , t = 1, . . . , T ; Ψxt , t = 1, . . . , T − 1}. Then Ψ forms a
parametrization for the joint distribution (5).

Definition 2. The set Ψ is called a point parametrization for the joint distri-
bution (5) of {zTi1,xT−1

i1 , yi}Ni=1.

4. Identification of net effects of treatments by point effects of
treatments

4.1. Limits of point parameters of Ψy

As described in Section 3, the point parameters of Ψy are conditional on N
sets {zTi1,xT−1

i1 }Ni=1 of treatments and covariates. Given different {zTi1,xT−1
i1 }Ni=1,

the proportions of treatments and covariates are different and therefore these
parameters may be different. On the other hand, the limits of these parameters
as N approaches infinity exist and are properties of the population.

As N approaches infinity, the proportion prop(zTt+1,x
T−1
t | zt1,x

t−1
1 ) con-

verges to the probability pr(zTt+1,x
T−1
t | zt1,xt−1

1 ), and ν(zt1,x
t−1
1 ) to

μ(zt1,x
t−1
1 ) =

∑
zT
t+1,x

T−1
t

μ(zT1 ,x
T−1
1 )pr(zTt+1,x

T−1
t | zt1,xt−1

1 ),

which is the mean of y in subpopulation (zt1,x
t−1
1 ). Formula (9) implies that

ϑ(zt−1
1 ,xt−1

1 , zt) converges to

θ(zt−1
1 ,xt−1

1 , zt) = μ(zt−1
1 ,xt−1

1 , zt)− μ(zt−1
1 ,xt−1

1 , zt = 0), (13)

which is the point effect of treatment zt > 0 on subpopulation (zt−1
1 ,xt−1

1 ).

As N approaches infinity, prop(zTt+1,x
T−1
t+1 | zt1,x

t
1) converges to pr(zTt+1,

xT−1
t+1 | zt1,xt

1), and ν(zt1,x
t
1) to

μ(zt1,x
t
1) =

∑
zT
t+1,x

T−1
t+1

μ(zT1 ,x
T−1
1 )pr(zTt+1,x

T−1
t+1 | zt1,xt

1).

Formula (10) implies that ζ(zt1,x
t−1
1 ,xt) converges to

ξ(zt1,x
t−1
1 ,xt) = μ(zt1,x

t−1
1 ,xt)− μ(zt1,x

t−1
1 ,xt = 0), (14)

which is the point effect of covariate xt > 0 on subpopulation (zt1,x
t−1
1 ). Formula

(11) implies that ν converges to

μ =
∑

zT
1 ,xT−1

1

μ(zT1 ,x
T−1
1 )pr(zT1 ,x

T−1
1 ), (15)

which is the grand mean in the population.
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Letting N approach infinity in (12), we obtain

μ(zT1 ,x
T−1
1 )

=

T∑
t=1

⎧⎨
⎩

∑
z∗
t >0

−θ(zt−1
1 ,xt−1

1 , z∗t )pr(z
∗
t | zt−1

1 ,xt−1
1 ) + θ(zt−1

1 ,xt−1
1 , zt)

⎫⎬
⎭

+

T−1∑
t=1

⎧⎨
⎩

∑
x∗
t>0

−ξ(zt1,x
t−1
1 ,x∗

t )pr(x
∗
t | zt1,xt−1

1 ) + ξ(zt1,x
t−1
1 ,xt)

⎫⎬
⎭+ μ.

(16)

We are going to show that we only need the point effects θ(zt−1
1 ,xt−1

1 , zt) to
identify the net effects φ(zs−1

1 ,xs−1
1 , zs).

4.2. Net effects of treatments versus point effects of treatments

Inserting (16) into (3), we derive the following formula in Appendix A.2

E{y(zTt ) | zt−1
1 ,xt−1

1 }
= μ(zt−1

1 ,xt−1
1 )

+
∑
z∗
t >0

−θ(zt−1
1 ,xt−1

1 , z∗t )pr(z
∗
t | zt−1

1 ,xt−1
1 ) + θ(zt−1

1 ,xt−1
1 , zt)

+

T∑
s=t+1

∑
xs−1
t

⎧⎨
⎩

∑
z∗
s>0

−θ(zs−1
1 ,xs−1

1 , z∗s )pr(z
∗
s | zs−1

1 ,xs−1
1 ) + θ(zs−1

1 ,xs−1
1 , zs)

⎫⎬
⎭

s−1∏
k=t

pr(xk | zk1 ,xk−1
1 ) (17)

for t = 1, . . . , T − 1 and

E{y(zT ) | zT−1
1 ,xT−1

1 }
= μ(zT−1

1 ,xT−1
1 )

+
∑
z∗
T>0

−θ(zT−1
1 ,xT−1

1 , z∗T )pr(z
∗
T | zT−1

1 ,xT−1
1 ) + θ(zT−1

1 ,xT−1
1 , zT ).

Inserting (17) into (1), using θ(zs−1
1 ,xs−1

1 , zs = 0) = 0 and
∑

xt
pr(xt |

zt1,x
t−1
1 ) = 1, and then dropping the unnecessary superscript *, we express

each net effect φ(zt−1
1 ,xt−1

1 , zt) in terms of the point effects of treatments and
the probabilities of covariates and treatments by

φ(zt−1
1 ,xt−1

1 , zt)

= θ(zt−1
1 ,xt−1

1 , zt)− [Q(zt−1
1 ,xt−1

1 , zt)−Q(zt−1
1 ,xt−1

1 , zt = 0)] (18)
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for t =, . . . , T − 1 and

φ(zT−1
1 ,xT−1

1 , zT ) = θ(zT−1
1 ,xT−1

1 , zT ),

where

Q(zt−1
1 ,xt−1

1 , zt)

=

T∑
s=t+1

∑
xs−1
t

∑
zs>0

θ(zt1, z
s−1
t+1 = 0,xs−1

1 , zs)pr(zs | zt1, zs−1
t+1 = 0,xs−1

1 )

s−1∏
k=t

pr(xk | zt1, zkt+1 = 0,xk−1
1 ).

Formula (18) shows that each net effect φ(zt−1
1 ,xt−1

1 , zt) can be expressed in
terms of the point effects of treatments and the probabilities of covariates and
treatments.

In Appendix A.3, we derive the following formula, under assumption (2),

μ(zt1,x
t−1
1 )

= E{y(zTt = 0) | zt−1
1 ,xt−1

1 }+ φ(zt−1
1 ,xt−1

1 , zt)

+

T∑
s=t+1

∑
zs−1
t+1 ,x

s−1
t

∑
zs>0

φ(zs−1
1 ,xs−1

1 , zs)pr(z
s−1
t+1 ,x

s−1
t , zs | zt1,xt−1

1 ) (19)

for t = 1, . . . , T − 1 and

μ(zT1 ,x
T−1
1 ) = E{y(zT = 0) | zT−1

1 ,xT−1
1 }+ φ(zT−1

1 ,xT−1
1 , zT ).

Formula (19) implies that the mean μ(zt1,x
t−1
1 ) arises from the net effects of

active treatments zs > 0 at times s ≥ t on substrata (zs1,x
s−1
1 ) in stratum

(zt1,x
t−1
1 ). Formula (19) can also be derived from formula (8.3) of Robins [10].

Inserting (19) into (13), we obtain

θ(zt−1
1 ,xt−1

1 , zt)

= φ(zt−1
1 ,xt−1

1 , zt) +R(zt−1
1 ,xt−1

1 , zt)−R(zt−1
1 ,xt−1

1 , zt = 0) (20)

for t = 1, . . . , T − 1 and

θ(zT−1
1 ,xT−1

1 , zT ) = φ(zT−1
1 ,xT−1

1 , zT ),

where

R(zt−1
1 ,xt−1

1 , zt)

=
T∑

s=t+1

∑
zs−1
t+1 ,x

s−1
t

∑
zs>0

φ(zs−1
1 ,xs−1

1 , zs)pr(z
s−1
t+1 ,x

s−1
t , zs | zt1,xt−1

1 ).
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Formula (20) shows that each point effect θ(zt−1
1 ,xt−1

1 , zt) can be expressed
in terms of the net effects of treatments and the probabilities of covariates
and treatments. The formula decomposes θ(zt−1

1 ,xt−1
1 , zt) into the net effects

of treatments zs > 0 at times s ≥ t in subpopulation (zt−1
1 ,xt−1

1 , zt) versus
subpopulation (zt−1

1 ,xt−1
1 , zt = 0).

In summary, we have the following identification theorem:

Theorem 1. Under assumption (2), for the given probabilities of covariates
and treatments, the point effects θ(zt−1

1 ,xt−1
1 , zt) (t = 1, . . . , T ) are a one-to-

one linear transformation of the net effects φ(zs−1
1 ,xs−1

1 , zs) (s = 1, . . . , T )
according to (18) and (20).

Remark 1. The identification of φ(zs−1
1 ,xs−1

1 , zs) in this theorem does not
involve the point effects ξ(zt1,x

t−1
1 ,xt) (t = 1, . . . , T − 1) and the grand mean

μ. Although the G-formula (4) also identifies φ(zs−1
1 ,xs−1

1 , zs), the identifying
standard parameters μ(zT−1

1 ,xT−1
1 , zT ) are not a one-to-one transformation of

φ(zs−1
1 ,xs−1

1 , zs).

4.3. Patterns of net effects of treatments versus constraints on
point effects of treatments

Suppose that the data-generating mechanism is such that the net effects φ(zt−1
1 ,

xt−1
1 , zt) follow a certain pattern. One example of such patterns is

φ(zt−1
1 ,xt−1

1 , zt) = ϕ1zt + ϕ2zt−1 + ϕ3x
′
t−1

for any (zt−1
1 ,xt−1

1 , zt) at t = 1, . . . , T , where the parameter vector ϕ = (ϕ1,
ϕ2, ϕ3) indexes all the net effects. Generally, we consider a pattern of the net
effects described by a function

φ(zt−1
1 ,xt−1

1 , zt) = φ(zt−1
1 ,xt−1

1 , zt;ϕ) (21)

where the k-dimensional parameter vector ϕ = (ϕ1, . . . , ϕk) indexes all the net
effects. We call ϕ the net effect vector.

Inserting (21) into (20), we obtain a constraint on the point effects θ(zt−1
1 ,

xt−1
1 , zt).

Corollary 1. For the given probabilities of covariates and treatments, under
pattern (21), all the point effects θ(zt−1

1 ,xt−1
1 , zt) are indexed by the net effect

vector ϕ and given by

θ(zt−1
1 ,xt−1

1 , zt)

= φ(zt−1
1 ,xt−1

1 , zt;ϕ)

+

T∑
s=t+1

∑
zs−1
t+1 ,x

s−1
t

∑
zs>0

φ(zs−1
1 ,xs−1

1 , zs;ϕ)pr(z
s−1
t+1 ,x

s−1
t , zs | zt1,xt−1

1 )
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−
T∑

s=t+1

∑
zs−1
t+1 ,x

s−1
t

∑
zs>0

φ(zt−1
1 , zt = 0, zs−1

t+1 ,x
s−1
1 , zs;ϕ)

pr(zs−1
t+1 ,x

s−1
t , zs | zt−1

1 , zt = 0,xt−1
1 ) (22)

for t = 1, . . . , T − 1 and θ(zT−1
1 ,xT−1

1 , zT ) = φ(zT−1
1 ,xT−1

1 , zT ;ϕ).

Despite pattern (21), the covariate xt can still be a post-treatment variable of
zt1 (Robins [7, 10, 12, 14, 15]). In this case, the standard parameter μ(zT1 ,x

T−1
1 )

does not have any pattern for treatments zt (t < T ) (Rosenbaum [16], Robins
[8], Frangakis & Rubin [1]). If xt is additionally a confounder of zTt+1, then one
needs all the standard parameters to identify the net effect.

Remark 2. Generally, pattern (21) does not simplify the G-formula (4).

4.4. Role of treatment assignment conditions in the identification of
net effects of treatments

In the framework of single-point causal inference, it is well known that treatment
assignment conditions may reduce the number of parameters in the identifica-
tion of the causal effect of a single-point treatment (Rosenbaum & Rubin [17],
Rosenbaum [18], Rubin [19]). In randomized trials, one does not need to use co-
variates to identify the single-point causal effect. In observational studies even
with a large number of covariates, one can approximate the treatment assign-
ment by several sub-randomized trials called subclasses, and one only needs to
use the subclasses to identify the single-point causal effect.

In sequential randomized trials, the covariate vector xt typically has a small
dimension, but the array xt−1

1 has a huge dimension at large t. In observational
sequential studies, the vector xt can easily have a dimension of several dozens.
On the other hand, every treatment in the treatment sequence can be treated
as a single-point treatment. We may use assignment conditions of individual
treatments zt to reduce the number of point parameters in constraint (22). For
illustration, we consider the Markov process, a common assignment mechanism
of a treatment sequence, in which the assignment of zt only depends on a limited
history of previous treatments and covariates, for instance, xt−1. In this case,
the following proportion equality is satisfied, at least approximately:

prop(zt−1
1 ,xt−2

1 | xt−1, zt) = prop(zt−1
1 ,xt−2

1 | xt−1). (23)

Assuming equality (23), given {zTi1,xT−1
i1 }Ni=1, the mean of y in stratum

(xt−1, zt) is

ν(xt−1, zt) =
∑

zt−1
1 ,xt−2

1

ν(zt1,x
t−1
1 )prop(zt−1

1 ,xt−2
1 | xt−1, zt)

=
∑

zt−1
1 ,xt−2

1

ν(zt1,x
t−1
1 )prop(zt−1

1 ,xt−2
1 | xt−1).
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Taking the average on both sides of (9) with respect to prop(zt−1
1 ,xt−2

1 | xt−1),
we then obtain the following point effect of treatment zt > 0 on stratum xt−1

ϑ(xt−1, zt)

=
∑

zt−1
1 ,xt−2

1

ϑ(zt−1
1 ,xt−1

1 , zt)prop(z
t−1
1 ,xt−2

1 | xt−1)

= ν(xt−1, zt)− ν(xt−1, zt = 0). (24)

As N approaches infinity, prop(zt−1
1 ,xt−2

1 | xt−1, zt) converges to pr(zt−1
1 ,

xt−2
1 | xt−1, zt) and prop(zt−1

1 ,xt−2
1 | xt−1) to pr(zt−1

1 ,xt−2
1 | xt−1). Then (23)

converges to the following probability equality:

pr(zt−1
1 ,xt−2

1 | xt−1, zt) = pr(zt−1
1 ,xt−2

1 | xt−1).

Hence ν(xt−1, zt) converges to

μ(xt−1, zt) =
∑

zt−1
1 ,xt−2

1

μ(zt1,x
t−1
1 )pr(zt−1

1 ,xt−2
1 | xt−1, zt)

=
∑

zt−1
1 ,xt−2

1

μ(zt1,x
t−1
1 )pr(zt−1

1 ,xt−2
1 | xt−1),

which is the mean of y in subpopulation (xt−1, zt), and ϑ(xt−1, zt) to

θ(xt−1, zt) =
∑

zt−1
1 ,xt−2

1

θ(zt−1
1 ,xt−1

1 , zt)pr(z
t−1
1 ,xt−2

1 | xt−1)

= μ(xt−1, zt)− μ(xt−1, zt = 0),

which is the point effect of zt > 0 on subpopulation xt−1.
Now we consider a constraint on θ(xt−1, zt). For illustration, suppose the

following pattern of the net effects

φ(zt−1
1 ,xt−1

1 , zt) = φ(xt−1, zt;ϕ) (25)

for t = 1, . . . , T . Firstly inserting (25) into (20), secondly taking the average
on both sides of (20) with respect to pr(zt−1

1 ,xt−2
1 | xt−1) and noticing the

probability equality above, and finally using the equality∑
zs−1
t+1 ,x

s−2
t

pr(zs−1
t+1 ,x

s−1
t , zs | zt,xt−1) = pr(xs−1, zs | zt,xt−1),

we obtain a constraint on the point effects θ(xt−1, zt).

Corollary 2. For the given probabilities of covariates and treatments, under
the Markov process and pattern (25), all θ(xt−1, zt) are indexed by the net effect
vector ϕ and given by
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θ(xt−1, zt)

= φ(xt−1, zt;ϕ)

+

T∑
s=t+1

∑
xs−1

∑
zs>0

φ(xs−1, zs;ϕ)pr(xs−1, zs | xt−1, zt)

−
T∑

s=t+1

∑
xs−1

∑
zs>0

φ(xs−1, zs;ϕ)pr(xs−1, zs | xt−1, zt = 0) (26)

for t = 1, . . . , T − 1 and θ(xT−1, zT ) = φ(xT−1, zT ;ϕ).

Despite the Markov process and pattern (25), the covariate xt can still be
a post-treatment variable of zt (Robins [7, 10, 12, 14, 15]). In this case, the
standard parameter μ(zT1 ,x

T−1
1 ) does not have any pattern for treatments zt

(t < T ) (Rosenbaum [16], Robins [8], Frangakis & Rubin [1]). If xt is additionally
a confounder of zt+1, then one needs all the standard parameters to identify the
net effect.

Remark 3. Generally, the Markov process and pattern (25) do not simplify
the G-formula (4).

5. ML estimation of net effects of treatments through point effects
of treatments

5.1. Likelihoods of point parameters

The data set comprises independent observations {zTi1,xT−1
i1 , yi} on units i =

1, . . . , N . Using distribution (5) in Section 3.1, we obtain the following likelihood
of the point parameters

L(Ψ; {yi, zTi1,xT−1
i1 }Ni=1)

=

N∏
i=1

f(yi | zTi1,xT−1
i1 ; Ψy) (27)

T−1∏
t=1

N∏
i=1

f(xit | zti1,xt−1
i1 ; Ψxt) (28)

T∏
t=1

N∏
i=1

f(zit | zt−1
i1 ,xt−1

i1 ; Ψzt). (29)

Ignoring the sampling variability of the treatments and covariates
{zTi1,xT−1

i1 }Ni=1, we treat the proportions as the probabilities and ϑ(zt−1
1 ,xt−1

1 , zt)
as θ(zt−1

1 ,xt−1
1 , zt) (t = 1, . . . , T ). Hence we can use (27) alone to estimate the

net effect φ(zt−1
1 ,xt−1

1 , zt). In some circumstances, it is also of interest to in-
corporate this sampling variability into the estimation of the net effect. In this
case, we can use (28) and (29) to estimate this variability. With the estimate of
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this variability, we can obtain the estimate of the net effect incorporating this
sampling variability of treatments and covariates.

In the rest of the article, we are going to focus on the estimation of the net
effect based on (27), thus ignoring the sampling variability of treatments and
covariates.

5.2. ML estimation of net effects of treatments under a constraint

The outcome model is

μi = μ(zTi1,x
T−1
i1 ) (30)

where μi = E(yi | zTi1,xT−1
i1 ) and μ(zTi1,x

T−1
i1 ) = μ(zT1 = zTi1,x

T−1
1 = xT−1

i1 )
which is expressed by (12) in terms of the point parameters in Ψy defined in
Section 3.2.

Ignoring the sampling variability of {zTi1,xT−1
i1 }Ni=1, we replace the probabil-

ities by the proportions and the point parameter θ(zt−1
1 ,xt−1

1 , zt) of the popu-
lation by the point parameter ϑ(zt−1

1 ,xt−1
1 , zt) of the sample in constraint (22),

leading to the following constraint on ϑ(zt−1
1 ,xt−1

1 , zt)

ϑ(zt−1
1 ,xt−1

1 , zt)

= φ(zt−1
1 ,xt−1

1 , zt;ϕ)

+

T∑
s=t+1

∑
zs−1
t+1 ,x

s−1
t

∑
zs>0

φ(zs−1
1 ,xs−1

1 , zs;ϕ)prop(z
s−1
t+1 ,x

s−1
t , zs | zt1,xt−1

1 )

−
T∑

s=t+1

∑
zs−1
t+1 ,x

s−1
t

∑
zs>0

φ(zt−1
1 , zt = 0, zs−1

t+1 ,x
s−1
1 , zs;ϕ)

prop(zs−1
t+1 ,x

s−1
t , zs | zt−1

1 , zt = 0,xt−1
1 ) (31)

for t = 1, . . . , T −1 and ϑ(zT−1
1 ,xT−1

1 , zT ) = φ(zT−1
1 ,xT−1

1 , zT ;ϕ). Formula (31)
decomposes ϑ(zt−1

1 ,xt−1
1 , zt) into the net effects of treatments zs > 0 at times

s ≥ t in stratum (zt−1
1 ,xt−1

1 , zt) versus stratum (zt−1
1 ,xt−1

1 , zt = 0).

For common distributions, the net effects can be estimated according to the
following procedure. First, we estimate the mean ν(zt−1

1 ,xt−1
1 , zt) (t = 1, . . . , T )

by using likelihood (27) and model (30). The estimate ν̂(zt−1
1 ,xt−1

1 , zt) is the av-
erage of y in stratum (zt−1

1 ,xt−1
1 , zt). Second, we use ν̂(z

t−1
1 ,xt−1

1 , zt) to calculate
the estimate of the point effect ϑ(zt−1

1 ,xt−1
1 , zt) according to formula (9). Third,

we perform a regression of ϑ̂(zt−1
1 ,xt−1

1 , zt) on prop(zs−1
t+1 ,x

s−1
t , zs | zt1,xt−1

1 ) and

prop(zs−1
t+1 ,x

s−1
t , zs | zt−1

1 , zt = 0,xt−1
1 ) according to (31) to obtain the estimate

of the net effect vector ϕ. Finally, we replace ϕ by ϕ̂ in pattern (21) to obtain

the estimate of φ(zt−1
1 ,xt−1

1 , zt), that is, φ̂(z
t−1
1 ,xt−1

1 , zt) = φ(zt−1
1 ,xt−1

1 , zt; ϕ̂).
This procedure will be further illustrated in Section 6. Here we discuss the
unbiasedness and consistency of the estimate.



1624 X. Wang and L. Yin

The estimate ν̂(zt−1
1 ,xt−1

1 , zt) is unbiased for finite sample and so is ϑ̂(zt−1
1 ,

xt−1
1 , zt). If φ(z

t−1
1 ,xt−1

1 , zt;ϕ) is a linear function of ϕ, then the estimate ϕ̂ is un-

biased according to (31) treated as a regression model, and so is φ̂(zt−1
1 ,xt−1

1 , zt).
If φ(zt−1

1 ,xt−1
1 , zt;ϕ) is not linear in ϕ, then ϕ̂ is biased. However, we believe that

φ̂(zt−1
1 ,xt−1

1 , zt) is still unbiased if φ(zt−1
1 ,xt−1

1 , zt;ϕ) satisfies simple regularity
conditions, for instance, that it is a smooth and monotone function of ϕ.

Oftentimes, the dimension k of ϕ is finite, that is, the net effects have a
pattern of finite dimension. Treating (31) as a regression model, we see that ϕ̂

is consistent and so is φ̂(zt−1
1 ,xt−1

1 , zt) if there exist at least k different point
effects ϑ(zt−1

1 ,xt−1
1 , zt) which contain the k-dimensional vector ϕ and whose

estimates have zero covariance matrices as the sample sizeN approaches infinity.
This condition can be satisfied even with a long treatment sequence, where the
variables zt and xt−1 take finite numbers of values.

5.3. ML estimation of net effects of treatments using treatment
assignment conditions

At large t, the number of possible strata (zt−1
1 ,xt−1

1 ) is huge, and with a fi-
nite sample, most of these strata do not have both active and control values
of the treatment variable zt, so most of the point effects ϑ(zt−1

1 ,xt−1
1 , zt) are

not estimable. In this case, it is highly difficult to estimate the net effects
φ(zt−1

1 ,xt−1
1 , zt) through ϑ(zt−1

1 ,xt−1
1 , zt).

However, as described in Section 4.4, we may estimate the net effects φ(zt−1
1 ,

xt−1
1 , zt) through the point effects on large strata under treatment assignment

conditions, for instance, ϑ(xt−1, zt) under the Markov process. Even with a
small sample and large t, stratum xt−1 is large enough for zt to take both active
and control values so that ϑ(xt−1, zt) is estimable. Furthermore, the proportion
equality (23), or equivalently,

prop(zt−1
1 ,xt−2

1 | xt−1, zt > 0) = prop(zt−1
1 ,xt−2

1 | xt−1, zt = 0)

can be approximately satisfied. For instance, a small sample is sufficient to allow
approximately the same marginal distribution of each variable of (zt−1

1 ,xt−2
1 )

in stratum (xt−1, zt > 0) versus stratum (xt−1, zt = 0). In some applications,
correlations between the variables, often the nearest ones in the sequence, have
an influence on the net effect. With a slightly larger sample, we may obtain
approximately the same correlations between the nearest variables in stratum
(xt−1, zt > 0) versus stratum (xt−1, zt = 0).

The outcome model is still (30), i.e.

μi = μ(zTi1,x
T−1
i1 ).

Ignoring the sampling variability of {zTi1,xT−1
i1 }Ni=1, we replace the probabilities

by the proportions and θ(xt−1, zt) by ϑ(xt−1, zt) in constraint (26), leading to
the following constraint on ϑ(xt−1, zt)
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ϑ(xt−1, zt)

= φ(xt−1, zt;ϕ)

+

T∑
s=t+1

∑
xs−1

∑
zs>0

φ(xs−1, zs;ϕ)prop(xs−1, zs | xt−1, zt)

−
T∑

s=t+1

∑
xs−1

∑
zs>0

φ(xs−1, zs;ϕ)prop(xs−1, zs | xt−1, zt = 0) (32)

for t = 1, . . . , T−1 and ϑ(xT−1, zT ) = φ(xT−1, zT ;ϕ). Formula (32) decomposes
ϑ(xt−1, zt) into the net effects of treatments zs > 0 at times s ≥ t in stratum
(xt−1, zt) versus stratum (xt−1, zt = 0).

All arguments and statements about the estimation procedure, unbiased-
ness and consistency of the ML estimate φ̂(zt−1

1 ,xt−1
1 , zt) are carried over from

those in the previous subsection if we replace ν(zt−1
1 ,xt−1

1 , zt) by ν(xt−1, zt),
ϑ(zt−1

1 ,xt−1
1 , zt) by ϑ(xt−1, zt), φ(z

t−1
1 ,xt−1

1 , zt;ϕ) by φ(xt−1, zt;ϕ), prop(z
s−1
t+1 ,

xs−1
t , zs | zt1,xt−1

1 ) by prop(xs−1, zs | xt−1, zt), (9) by (24), and (31) by (32).

6. Illustrations

6.1. An analytical example

6.1.1. The setting

Suppose that two types of treatments are alternately assigned. Let zt = 1
(t = 1, 3, . . . , T ) be a treatment of type one, zt = 1 (t = 2, 4, . . . , T − 1) be
a treatment of type two, and zt = 0 (t = 1, . . . , T ) be the control treatment,
i.e. no treatment. Between treatments zt and zt+1 there is a covariate vector
xt = (xt1, xt2) of two dichotomized components. Let y be the outcome after the
last treatment zT . Given (zt−1

1 ,xt−1
1 ), there is only one net effect φ(zt−1

1 ,xt−1
1 ,

zt = 1) denoted by φ(zt−1
1 ,xt−1

1 ) and one point effect ϑ(zt−1
1 ,xt−1

1 , zt = 1) de-
noted by ϑ(zt−1

1 ,xt−1
1 ). In particular, φ(z1 = 1) = φ and ϑ(z1 = 1) = ϑ at

t = 1.
Suppose that all treatments of type one have the same net effect ϕ1 and all

treatments of type two have the same net effect ϕ2. Then the pattern of the net
effects is {

φ(zt−1
1 ,xt−1

1 ) = ϕ1, t = 1, 3, . . . , T
φ(zt−1

1 ,xt−1
1 ) = ϕ2, t = 2, 4, . . . , T − 1.

(33)

Let T (1)(t) denote the set of times since t at which treatments of type one
are assigned and T (2)(t) the set of times since t at which treatments of type
two are assigned. Decomposing the point effect ϑ(zt−1

1 ,xt−1
1 ) of zt = 1 into

the net effects of zs = 1 (s ≥ t) in stratum (zt−1
1 ,xt−1

1 , zt = 1) versus stra-
tum (zt−1

1 ,xt−1
1 , zt = 0) and using the pattern above, we obtain the following

constraint on ϑ(zt−1
1 ,xt−1

1 ) (t = 1, . . . , T )

ϑ(zt−1
1 ,xt−1

1 ) = ϕ1c
(1)(zt−1

1 ,xt−1
1 ) + ϕ2c

(2)(zt−1
1 ,xt−1

1 ) (34)
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with

c(q)(zt−1
1 ,xt−1

1 )

=
∑

s∈T (q)(t)

{prop(zs = 1 | zt−1
1 ,xt−1

1 , zt = 1)− prop(zs = 1 | zt−1
1 ,xt−1

1 , zt = 0)}

where q = 1, 2 indicates treatments of types one and two respectively.

6.1.2. ML estimates of net effects of treatments under a constraint

Now suppose that y is normally distributed. For simplicity, additionally suppose
that the variance is equal to one for any given (zT1 ,x

T−1
1 ). Given the data set

{zTi1,xT−1
i1 , yi}Ni=1, likelihood (27) then becomes

N∏
i=1

1√
2π

exp

[
−1

2
{yi − μ(zTi1,x

T−1
i1 )}2

]

where μ(zTi1,x
T−1
i1 ) is expressed in terms of point parameters by (12). The out-

come model we use is (30), i.e.

μi = μ(zTi1,x
T−1
i1 ).

First we estimate the point effect ϑ(zt−1
1 ,xt−1

1 ). Let s(A) be the set of units
in stratum A and n(A) be the number of units in stratum A. Using the outcome
model and the likelihood above, we obtain the estimate for the mean of y in
stratum (zt−1

1 ,xt−1
1 , zt)

ν̂(zt−1
1 ,xt−1

1 , zt) =

∑
i∈s(zt−1

1 ,xt−1
1 ,zt)

yi

n(zt−1
1 ,xt−1

1 , zt)

and its variance

var{ν̂(zt−1
1 ,xt−1

1 , zt)} =
1

n(zt−1
1 ,xt−1

1 , zt)
.

Using (9), we then obtain the estimate for the point effect of zt = 1 on stratum
(zt−1

1 ,xt−1
1 )

ϑ̂(zt−1
1 ,xt−1

1 ) = ν̂(zt−1
1 ,xt−1

1 , zt = 1)− ν̂(zt−1
1 ,xt−1

1 , zt = 0) (35)

and its variance

var{ϑ̂(zt−1
1 ,xt−1

1 )}
= var{ν̂(zt−1

1 ,xt−1
1 , zt = 1)}+ var{ν̂(zt−1

1 ,xt−1
1 , zt = 0)}. (36)

In Appendix A.4, we prove

Proposition 1. Suppose that the outcome y is normal and has the same known
variance for all given (zT1 ,x

T−1
1 ). Then the score function Uϑ(zt−1

1 ,xt−1
1 ) depends
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only on ϑ(zt−1
1 ,xt−1

1 ). Therefore the estimate ϑ̂(zt−1
1 ,xt−1

1 ) is independent of
the estimates of all other point parameters.

Remark 4. For the outcome of other distributions, the estimate ν̂(zt−1
1 ,xt−1

1 , zt)

and thus ϑ̂(zt−1
1 ,xt−1

1 ) are highly robust to point parameters at time s > t.

Therefore ϑ̂(zt−1
1 ,xt−1

1 ) at time t is weakly correlated with estimates of the
point parameters at the other times and the correlation may be omitted.

As a result of the proposition, we treat constraint (34) as a linear regression

with unequal variances var{ϑ̂(zt−1
1 ,xt−1

1 )}. Using techniques of the linear regres-

sion, we regress ϑ̂(zt−1
1 ,xt−1

1 ) on c(1)(zt−1
1 ,xt−1

1 ) and c(2)(zt−1
1 ,xt−1

1 ) to obtain
the estimates of ϕ1 and ϕ2. The closed form for these estimates can easily be
derived and are not presented here due to space restrictions. The estimates ϕ̂1

and ϕ̂2 are both unbiased and consistent.

6.1.3. ML estimates of net effects of treatments under the Markov process

Suppose that the net effects have pattern (33) while the treatment assignment
mechanism is a Markov process, described in Sections 4.4 and 5.3, in which
the assignment of zt depends only on xt−1. Given xt−1, there is only one net
effect φ(xt−1, zt = 1) denoted by φ(xt−1) and one point effect ϑ(xt−1, zt = 1)
denoted by ϑ(xt−1), and noticeably, φ(z1 = 1) = φ and ϑ(z1 = 1) = ϑ at
t = 1. Notice that stratum xt−1 is much larger than stratum (zt−1

1 ,xt−1
1 ) and

so ϑ(xt−1) is almost always estimable even with a long treatment sequence and
a finite sample.

Decomposing ϑ(xt−1) into the net effects of zs = 1 (s ≥ t) in stratum
(xt−1, zt = 1) versus stratum (xt−1, zt = 0) and using pattern (33), we obtain
the following constraint on ϑ(xt−1) (t = 1, . . . , T )

ϑ(xt−1) = ϕ1c
(1)(xt−1) + ϕ2c

(2)(xt−1) (37)

with

c(q)(xt−1) =
∑

s∈T (q)(t)

{prop(zs = 1 | xt−1, zt = 1)− prop(zs = 1 | xt−1, zt = 0)}

where q = 1, 2 indicates treatments of types one and two respectively.

Using the likelihood and the outcome model given in the beginning of the pre-
vious subsection, we obtain the estimate for the mean of y in stratum (xt−1, zt)

ν̂(xt−1, zt) =

∑
i∈s(xt−1,zt)

yi

n(xt−1, zt)

and its variance

var{ν̂(xt−1, zt)} =
1

n(xt−1, zt)
.
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Under the Markov process, we use (24) to obtain the estimate for point effect
ϑ(xt−1) of zt = 1 on stratum xt−1

ϑ̂(xt−1) =
∑

zt−1
1 ,xt−2

1

ϑ̂(zt−1
1 ,xt−1

1 )prop(zt−1
1 ,xt−2

1 | xt−1)

= ν̂(xt−1, zt = 1)− ν̂(xt−1, zt = 0)

and its variance

var{ϑ̂(xt−1)} = var{ν̂(xt−1, zt = 1)}+ var{ν̂(xt−1, zt = 0)}.

From Proposition 1, we see that ϑ̂(xt−1) at time t is independent of the estimates
of point parameters at the other times, i.e. ϑ(zs−1

1 ,xs−1
1 ) including ϑ(xs−1)

(t �= s), the point effects ζ(zs1,x
s−1
1 ,xs) (s = 1, . . . , T−1) and the grand mean ν.

Therefore we can treat constraint (37) as a linear regression with unequal

variances var{ϑ̂(xt−1)}. Using techniques of the linear regression, we regress

ϑ̂(xt−1) on c(1)(xt−1) and c(2)(xt−1) to obtain a closed form for the estimates
of ϕ1 and ϕ2, which are not presented here given space considerations. The
estimates ϕ̂1 and ϕ̂2 are both unbiased and consistent.

In the estimation above, we have only used the likelihood, the outcome model
and constraint (37), albeit in the point parametrization. It is theoretically pos-
sible to do the same estimation in the standard parametrization by using the
G-computation algorithm, but this is practically difficult due to the high dimen-
sion of standard parameters and the complex expression of constraint (37) in
terms of standard parameters. Furthermore, if equalities are imposed on stan-
dard parameters, then the estimation is biased (Robins [7, 10, 12, 14, 15]).

6.2. A simulation study

Here we show by simulation that interval estimation of the net effect of treat-
ment achieves the nominal coverage probability in the example of the previous
subsection. We consider the case of T = 3, so pattern (33) of the net effects is{

φ(zt−1
1 ,xt−1

1 ) = ϕ1, t = 1, 3
φ(z1,x1) = ϕ2.

We are going to study three situations with the net effect (ϕ1, ϕ2) = (20, 10),
(20, 0), (0, 0) respectively. In particular, the vector (20, 0) represents the null net
effect of treatment z2 in the presence of non-zero net effects of treatments z1
and z3; the vector (0, 0) represents the null net effects of all treatments.

To generate the data with the above pattern of net effects, we construct
the standard parameters μ(z1,x1, z2, x2, z3), as explained here. First, we con-
struct the proportions of z1, x1, z2, x2, and z3 which give a sample size of
648 units yielding integer frequencies for all (z1,x1, z2,x2, z3). Second, with the
obtained proportions and a given value of (ϕ1, ϕ2), we calculate the point ef-
fect ϑ(zt−1

1 ,xt−1
1 ) (t = 1, 2, 3) according to formula (34). The second part of
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(34) is used to calculate the constants c(1)(zt−1
1 ,xt−1

1 ) and c(2)(zt−1
1 ,xt−1

1 ) while
the first part is used to calculate ϑ(zt−1

1 ,xt−1
1 ). Third, we arbitrarily choose

the point effect ζ(zt1,x
t
1) (t = 1, 2) and the grand mean ν, which according to

Theorem 1 do not affect the net effect. Finally, we insert the obtained point
parameters ϑ(zt−1

1 ,xt−1
1 ), ζ(zt1,x

t
1) and ν into (12) to obtain the standard pa-

rameters μ(zT1 ,x
T−1
1 ). In this setting, we have also made the time-dependent

covariates x1 and x2 post-treatment variables of the earlier treatments and con-
founders of the subsequent treatments. Furthermore, the treatment assignment
follows a Markov process such that the assignment of z2 only depends on x1

and that of z3 on x2. A detailed description of the procedure is presented in
Table 1. The standard parameters and the relevant SAS code are given in the
supplementary material [20].

Because we have ignored the sampling variability of treatments and covariates
since Section 5.1, we only generate the outcome y given (z1,x1, z2,x2, z3). With
the obtained standard parameter μ(z1,x1, z2,x2, z3), assuming that the variance
of the outcome y given (z1,x1, z2,x2, z3) is one, we generate y to form a data
set of 648 observations on (z1,x1, z2,x2, z3, y). A total of 2000 data sets are
generated. For each data set, we calculate the confidence interval of the net
effect as follows. Using the method described in Section 6.1.3, we calculate the
estimate ϑ̂(xt−1) and the constants c(1)(xt−1) and c(2)(xt−1) and then regress

ϑ̂(xt−1) on c(1)(xt−1) and c(2)(xt−1) according to (37) to obtain the estimates
ϕ̂1 and ϕ̂2. With ϕ̂1 and its variance, we calculate the confidence interval of
ϕ1. With 2000 data sets, we obtain 2000 confidence intervals. By counting how
many confidence intervals contain the given value of ϕ1, we obtain the actual
coverage probability for the confidence interval of ϕ1. The same procedure is
followed for ϕ2. The SAS code generating the data set and calculating the actual
coverage probability is presented in the supplementary material. The mean and
standard deviation of ϕ̂i (i = 1, 2) and the actual coverage probability of the
95 % confidence interval of ϕi are presented in Table 2, together with the given
value of ϕi.

Table 2 shows that for the three simulations with (ϕ1, ϕ2) = (20, 10), (20, 0),
(0, 0) respectively, the actual coverage probability for the 95% confidence interval
is the same: 95.20% for ϕ1 and 94.85% for ϕ2.

6.3. A real example

Here we use a medical example to illustrate the practical procedure of estimat-
ing the net effect. Many HIV-infected patients use recreational drugs such as
cocaine. A relevant medical question is how the recreational drug influences the
count of CD4 cells which reflects progression of the disease. We attempt to es-
timate the net effect of the recreational drug on the CD4 count when the drug
is used repeatedly.

The Multicenter AIDS Cohort Study enrolled nearly 5000 gay or bisexual men
from Baltimore, Pittsburgh, Chicago and Los Angeles between 1984 and 1991,
and required these men to return every 6 months to complete a questionnaire
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Table 1

The procedure of constructing standard parameters given net effects of treatments as
described in Section 6.2. The SAS code and the obtained standard parameters are given in

the supplementary material

(1) Set proportions of z1,x1, z2,x2, z3 where x1 = (x11, x12) and x2 = (x21, x22)

prop(z1 = 1) 1/2

prop(x1 | z1)
prop(0, 0 | 0) = 1/6, prop(0, 0 | 1) = 2/6,
prop(1, 0 | 0) = 2/6, prop(1, 0 | 1) = 1/6,
prop(0, 1 | 0) = 2/6, prop(0, 1 | 1) = 1/6

prop(z2 | x1)
= prop(z2 | z1,x1)

prop(1 | 0, 0) = 1/3, prop(1 | 0, 1) = 2/3,
prop(1 | 1, 0) = 2/3, prop(1 | 1, 1) = 1/3

prop(x2 | z2)
= prop(x2 | z1,x1, z2)

prop(0, 0 | 0) = 1/6, prop(0, 0 | 1) = 2/6,
prop(1, 0 | 0) = 2/6, prop(1, 0 | 1) = 1/6,
prop(0, 1 | 0) = 2/6, prop(0, 1 | 1) = 1/6

prop(z3 | x2)
= prop(z3 | z1,x2, z2,x2)

prop(1 | 0, 0) = 1/3, prop(1 | 0, 1) = 2/3,
prop(1 | 1, 0) = 2/3, prop(1 | 1, 1) = 1/3

Using the above proportions, we obtain other proportions of z1,x1, z2,x2, z3, for instance,
prop(z1,x1, z2,x2, z3) = prop(z1)prop(x1 | z1)prop(z2 | x1)prop(x2 | z2)prop(z3 | x2). The
sample size is set at 648, which yields integer frequencies for all (z1,x1, z2,x2, z3).

(2) Calculate the point effects of treatments according to (34)

Using the above proportions, we calculate the following constants:

c(1) = 1 + prop(z3 = 1 | z1 = 1)− prop(z3 = 1 | z1 = 0);

c(2) = prop(z2 = 1 | z1 = 1)− prop(z2 = 1 | z1 = 0);

c(1)(z1,x1) = prop(z3 = 1 | z1,x1, z2 = 1)− prop(z3 = 1 | z1,x1, z2 = 0); c(2)(z1,x1) = 1;

c(1)(z1,x1, z2,x2) = 1; c(2)(z1,x1, z2,x2) = 0.

With a given value of (ϕ1, ϕ2), we then calculate the point effects of treatments

ϑ(zt−1
1 ,xt−1

1 ) = ϕ1c(1)(z
t−1
1 ,xt−1

1 ) + ϕ2c(2)(z
t−1
1 ,xt−1

1 ) for t = 1, 2, 3.

(3) Choose the point effects of covariates and the grand mean arbitrarily

For z1 = 0, 1, we have

ζ(z1,x1) =

⎧⎨
⎩

10 + 5z1, x1 = (0, 1)
12 + 5z1, x1 = (1, 0)
13 + 5z1, x1 = (1, 1)

For z1 = 0, 1, z2 = 0, 1, and f(x1) = 0, 3, 6, 9 when x1 = (0, 0), (0, 1), (1, 0), (1, 1) respectively,
we have

ζ(z1,x1, z2,x2) =

⎧⎨
⎩

10− 5z1 − 2z2 + f(x1), x2 = (0, 1)
12− 5z1 − 2z2 + f(x1), x2 = (1, 0)
10− 5z1 − 3z2 + f(x1), x2 = (1, 1)

For the grand mean, we have ν = 15

(4) Calculate the standard parameters according to (12)

μ(z1,x1, z2,x2, z3)

= −
∑3

t=1 ϑ(z
t−1
1 ,xt−1

1 ){prop(z∗t = 1 | zt−1
1 ,xt−1

1 )− I(zt)}
= −

∑2
t=1{

∑
x∗
t >0 ζ(zt1,x

t−1
1 ,x∗

t )prop(x
∗
t | zt1,x

t−1
1 )− ζ(zt1,x

t−1
1 ,xt)}

+ ν

where I(zt) equals one when zt = 1 and zero otherwise.
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Table 2

Results from a simulation study of the net effect vector (ϕ1, ϕ2) in Section 6.2: (1) mean
and (2) standard deviation (sd) for the ML estimate of the net effect and (3) actual

coverage probability (acp) for the 95 % confidence interval of the net effect. 2000 data sets
are used, each having 648 units. The SAS code is given in the supplementary material

Point and interval estimations of the net effect
ϕ1 ϕ2

(ϕ1, ϕ2) mean sd acp mean sd acp
(20,10) 20.00 0.06 95.20 10.00 0.09 94.85
(20,0) 20.00 0.06 95.20 −0.00 0.09 94.85
(0,0) −0.00 0.06 95.20 −0.00 0.09 94.85

and undergo various examinations (Kaslow et al. [3]). Our data was a subset of
the data from the study which involved 375 participants who were seronegative
at entry and seroconverted during the follow-up (Zeger and Diggle [21]). In the
initial period of seroconversion, these participants were not exposed to anti-HIV
drugs, which might complicate the net effect of the recreational drug. Hence we
restricted our study to the visit before seroconversion (t = 0) and the first and
second visits after seroconversion (t = 1, 2). Furthermore, some participants lost
their follow-ups due to unknown non-ignorable missing data mechanism, so we
excluded these patients and finally obtained a data set of 256 participants. The
data set is presented in the supplementary material.

At each visit t = 0, 1, 2, a participant recalled or was examined for the drug
use (zt), CD4 count (xt1), the number of packs of cigarettes smoked daily (xt2),
the number of sexual partners (xt3) and a mental illness score (xt4). We as-
sumed that zt occurred prior to xt1, . . . , xt4. Age (x05) was also included as a
covariate at visit t = 0. Consequently, the temporal order of these variables is
{z0, (x01, . . . , x05), z1, (x11, . . . , x14), z2, (x21, . . . , x24)}.

The treatment variables are drug uses z1 and z2. Due to incomplete infor-
mation about covariates prior to drug use z0, it is not possible to obtain the
net effect of z0. Instead, we use z0 and x01, . . . , x05 as stationary covariates to
adjust for participants’ differences. The time-dependent covariates between z1
and z2 are x11, . . . , x14. The outcome is the logarithm of CD4 count at t = 2,
i.e. y = log(x21). All variables prior to y are dichotomized, with ones meaning
‘yes’ or ‘high’ and zeros meaning ‘no’ or ‘low’. We assume that y is normally
distributed.

Let x0 = (x01, x02, x03, x04, x05) and x1 = (x11, x12, x13, x14). We are going
to estimate the net effect φ(z0,x0) of z1 = 1 and the net effect φ(z0,x0, z1,x1)
of z2 = 1. Given the small sample size, it is reasonable to assume the pattern
φ(z0,x0) = ϕ1 and φ(z0,x0, z1,x1) = ϕ2.

As described in Section 5.2, we use the model, for i = 1, . . . , 256,

νi = ν(zi0,xi0, zi1,xi1, zi2)

to estimate the point effect ϑ(z0,x0) of drug use z1 = 1 and the point effect
ϑ(z0,x0, z1,x1) of drug use z2 = 1. When implementing this estimation by
common statistical softwares like SAS, we (1) use the model to estimate the
variance of y given (z0,x0, z1,x1, z2), i.e. var(y | z0,x0, z1,x1, z2), (2) use the
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same model to estimate ϑ(z0,x0, z1,x1), and (3) use the model

νi = ν(zi0,xi0, zi1)

to estimate ϑ(z0,x0) but we use the variance estimated from step (1).
We improve the estimation in the usual framework of statistical modeling.

By the likelihood ratio-based significance test of the model parameters at the
significance level of 10 %, we find that only the CD4 count x01 is significant of
all covariates and so ϑ(z0,x0) is considered equal to the point effect ϑ(x01) of
drug use z1 = 1. Furthermore, x01 does not have a significant interaction with
z1. As a result, we use the model

νi = ν(xi01, zi1) = α1 + zi1β1 + xi01γ01 (38)

to estimate ϑ(x01) = β1. Similarly, we find that only the CD4 counts x01 and
x11 are significant of all covariates and so ϑ(z0,x0, z1,x1) is considered equal to
the point effect ϑ(x01, x11) of drug use z2 = 1. Furthermore, x01 and x11 do not
have a significant interaction with z2. As a result, we use the model

νi = ν(xi01, xi11, zi2) = α2 + zi2β2 + xi01λ01 + xi11λ11 (39)

to estimate ϑ(x01, x11) = β2. In the estimation above, the variance of y given
(x01, z1, x11, z2), i.e. var(y | x01, z1, x11, z2), is estimated by using the model

νi = ν(xi01, zi1, xi11, zi2). (40)

We decompose the point effects β1 and β2 into the net effects ϕ1 and ϕ2

according to their proportions and obtain{
β1 = ϕ1 + ϕ2{prop(z2 = 1 | z1 = 1)− prop(z2 = 1 | z1 = 0)},
β2 = ϕ2.

(41)

According to this decomposition, we regress β̂1 and β̂2 on the proportions to
estimate ϕ1 and ϕ2. The estimate (variance) of ϕ1 is 0.04(0.08) whereas that of
ϕ2 is 0.08(0.06). This result shows that the recreational drug has an immediate
positive effect on CD4 count (i.e. ϕ2), which is well-known in the medical liter-
ature, and a decreasing distant effect on CD4 count (i.e. ϕ1), which is observed
in this study. The estimation procedure and the results are presented in Table 3.

In the procedure above, we estimated the variances var(β̂1) and var(β̂2)
through var(y | x01, z1, , x11, z2) estimated from model (40). On the other hand,

we can estimate var(β̂1) through var(y | x01, z1) estimated from model (38),

and var(β̂2) through var(y | x01, x11, z2) estimated from model (39). Because
(40) avoids dispersion of the covariates, var(y | x01, z1, x11, z2) is smaller than

var(y | x01, x11, z2) and var(y | x01, z1), yielding smaller estimates for var(β̂1)

and var(β̂2).
However, the latter method can be useful in the case of a long treatment

sequence. As an example, recall the example described in Section 6.1.3, where



Net effect of treatment 1633

Table 3

The procedure and results of estimating the net effects of the recreational drugs z1 and z2
on the logarithm y of the CD4 count after z2. The medical background is described in
Section 6.3. The SAS code and the data set are given in the supplementary material

(1) Estimating the point effects of treatments according to (38) and (39)
Point effect of treatment Estimate (standard deviation)

ϑ(x01) 0.10 (0.07)
ϑ(x01, x11) 0.08 (0.06)

(2) Decomposing the point effects into the net effects according to (41)
ϑ(x01) = ϕ1 + 0.73ϕ2

ϑ(x01, x11) = ϕ2

(3) Estimate the net effects according to the decomposition above
Net effect of treatment Estimate (standard deviation)

ϕ1 0.04 (0.08)
ϕ2 0.08 (0.06)

we calculated the variance var{ϑ̂(xt−1)} through the variance var(y | zT1 ,xT−1
1 ).

However, with a long treatment sequence and a finite sample, it is highly difficult
to estimate var(y | zT1 ,xT−1

1 ). In this case, we can estimate var{ϑ̂(xt−1)} through
var(y | xt−1, zt) estimated from the model

νi = ν(xi(t−1), zit).

7. Conclusion

In this article we have identified net effects of treatments by point effects of treat-
ments and estimated net effects of treatments via point effects of treatments by
maximum likelihood. Using methods in the single-point causal inference (Rosen-
baum & Rubin [17], Rosenbaum [18], Rubin [19]), we improve estimation of the
net effects by using constraints on their point effects and treatment assignment
conditions.

Given a data, model and the likelihood, our estimation of the net effects
is most efficient due to the nature of maximum likelihood. The point estima-
tion is unbiased while the interval estimation achieves the nominal coverage
probability. Furthermore, the ML estimate of the net effect is consistent in
many practical applications where the net effect has a pattern of finite dimen-
sion while treatments and covariates take finite numbers of values. The con-
sistency is true even when the treatment sequence gets long and the number
of point parameters increases exponentially. It is interesting to compare this
consistency with the inconsistency of the ML estimate of the causal effect of
a single-point treatment when adjusting for a confounder of infinite dimension
(Robins & Ritov [11]). In the latter case, the ML estimate of the single-point
causal effect is highly correlated with that of the confounder of infinite dimen-
sion.

There are rich literatures on semi-parametric approaches to estimation of
the net effect, for instance, the marginal structural model and the structural
nested model. These approaches are also used to estimate the causal effects of
treatment sequences including dynamic ones under special conditions where,
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for instance, study units remain on active treatments after treatment initiation
and the net effects are the same for all treatments (Lok & DeGruttola [2]).
In comparison, our approach estimates the net effects of all treatments in the
sequence, though in a relatively simple setting. Together with the proportions
of treatments and covariates, the ML estimates of these net effects can be used
to obtain the ML estimate of the causal effect of any treatment sequence (for
instance, Robins [10]). Due to the scope of this article, we have only focused on
the net effect.

Due to the scope of this article, we have only considered the situation where
treatments are assigned at fixed times, treatments and covariates are discrete,
there is no missing data, the outcome model is linear and the point and net
effects are measured by differences. However, there are methods available for
estimating the causal effect of one single-point treatment in more complex set-
tings. We believe that analogous methods can be developed to estimate the net
effects in more complex settings in the context of a treatment sequence.
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Appendix A

A.1. Proof of formula (12)

Using (9) at t = T , we obtain

ν(zT1 ,x
T−1
1 ) = ν(zT−1

1 ,xT−1
1 , zT = 0) + ϑ(zT−1

1 ,xT−1
1 , zT ) (42)

where we take ϑ(zT−1
1 ,xT−1

1 , zT = 0) = 0. Taking the average on both sides of
(42) with respect to prop(zT | zT−1

1 ,xT−1
1 ), we obtain

ν(zT−1
1 ,xT−1

1 )

= ν(zT−1
1 ,xT−1

1 , zT = 0) +
∑
zT>0

ϑ(zT−1
1 ,xT−1

1 , zT )prop(zT | zT−1
1 ,xT−1

1 )

which implies that

ν(zT−1
1 ,xT−1

1 , zT = 0)

= −
∑
zT>0

ϑ(zT−1
1 ,xT−1

1 , zT )prop(zT | zT−1
1 ,xT−1

1 ) + ν(zT−1
1 ,xT−1

1 ).

Inserting this into (42), we obtain
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ν(zT1 ,x
T−1
1 )

=
∑
z∗
T>0

−ϑ(zT−1
1 ,xT−1

1 , z∗T )prop(z
∗
T | zT−1

1 ,xT−1
1 )

+ ϑ(zT−1
1 ,xT−1

1 , zT ) + ν(zT−1
1 ,xT−1

1 ). (43)

Using (10) at t = T − 1 and then following the procedure above, we obtain

ν(zT−1
1 ,xT−1

1 )

=
∑

x∗
T−1>0

−ζ(zT−1
1 ,xT−2

1 ,x∗
T−1)prop(x

∗
T−1 | zT−1

1 ,xT−2
1 )

+ ζ(zT−1
1 ,xT−2

1 ,xT−1) + ν(zT−1
1 ,xT−2

1 ). (44)

Inserting (44) into (43), we obtain

ν(zT1 ,x
T−1
1 )

=
∑
z∗
T>0

−ϑ(zT−1
1 ,xT−1

1 , z∗T )prop(z
∗
T | zT−1

1 ,xT−1
1 ) + ϑ(zT−1

1 ,xT−1
1 , zT )

+
∑

x∗
T−1>0

−ζ(zT−1
1 ,xT−2

1 ,x∗
T−1)prop(x

∗
T−1 | zT−1

1 ,xT−2
1 )

+ ζ(zT−1
1 ,xT−2

1 ,xT−1) + ν(zT−1
1 ,xT−2

1 ).

We continue with the same procedure for ν(zT−1
1 ,xT−2

1 ), . . . , ν(z1) consecu-
tively and then use ν(zT1 ,x

T−1
1 ) = μ(zT1 ,x

T−1
1 ). Finally we obtain formula (12).

Formula (43) is true for any T . Taking T = t, we obtain

ν(zt1,x
t−1
1 )

=
∑
z∗
t >0

−ϑ(zt−1
1 ,xt−1

1 , z∗t )prop(z
∗
t | zt−1

1 ,xt−1
1 )

+ ϑ(zt−1
1 ,xt−1

1 , zt) + ν(zt−1
1 ,xt−1

1 ) (45)

which will be used in Appendix A.4.

Starting from formula (44) and following the same procedure for ν(zT−1
1 ,

xT−2
1 ), . . . , ν(z1) consecutively, we obtain

ν(zT−1
1 ,xT−1

1 )

=

T−1∑
s=1

⎧⎨
⎩

∑
z∗
s>0

−ϑ(zs−1
1 ,xs−1

1 , z∗s )prop(z
∗
s | zs−1

1 ,xs−1
1 ) + ϑ(zs−1

1 ,xs−1
1 , zs)

⎫⎬
⎭

+

T−1∑
s=1

⎧⎨
⎩

∑
x∗
s>0

−ζ(zs1,x
s−1
1 ,x∗

s)prop(x
∗
s | zs1,xs−1

1 ) + ζ(zs1,x
s−1
1 ,xs)

⎫⎬
⎭+ ν.
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This expression is true for any T . Taking T = t and then letting N approach
infinity, we obtain

μ(zt−1
1 ,xt−1

1 )

=

t−1∑
s=1

⎧⎨
⎩

∑
z∗
s>0

−θ(zs−1
1 ,xs−1

1 , z∗s )pr(z
∗
s | zs−1

1 ,xs−1
1 ) + θ(zs−1

1 ,xs−1
1 , zs)

⎫⎬
⎭

+

t−1∑
s=1

⎧⎨
⎩

∑
x∗
s>0

−ξ(zs1,x
s−1
1 ,x∗

s)pr(x
∗
s | zs1,xs−1

1 ) + ξ(zs1,x
s−1
1 ,xs)

⎫⎬
⎭+ μ

(46)

which will be used in Appendix A.2.

A.2. Proof of formula (17)

We rewrite (16) as
μ(zT1 ,x

T−1
1 ) = q1 + q2 + q3 (47)

with

q1 =

t−1∑
s=1

⎧⎨
⎩

∑
z∗
s>0

−θ(zs−1
1 ,xs−1

1 , z∗s )pr(z
∗
s | zs−1

1 ,xs−1
1 ) + θ(zs−1

1 ,xs−1
1 , zs)

⎫⎬
⎭

+

t−1∑
s=1

⎧⎨
⎩

∑
x∗
s>0

−ξ(zs1,x
s−1
1 ,x∗

s)pr(x
∗
s | zs1,xs−1

1 ) + ξ(zs1,x
s−1
1 ,xs)

⎫⎬
⎭+ μ,

q2 =
T∑

s=t

⎧⎨
⎩

∑
z∗
s>0

−θ(zs−1
1 ,xs−1

1 , z∗s )pr(z
∗
s | zs−1

1 ,xs−1
1 ) + θ(zs−1

1 ,xs−1
1 , zs)

⎫⎬
⎭ ,

q3 =
T−1∑
s=t

⎧⎨
⎩

∑
x∗
s>0

−ξ(zs1,x
s−1
1 ,x∗

s)pr(x
∗
s | zs1,xs−1

1 ) + ξ(zs1,x
s−1
1 ,xs)

⎫⎬
⎭

for t = 1, . . . , T − 1 and μ(zT1 ,x
T−1
1 ) = q1 + q2 for t = T . According to (46), we

have
q1 = μ(zt−1

1 ,xt−1
1 ).

Combining formula (3) with (47) for t = T , we obtain

E{y(zT ) | zT−1
1 ,xT−1

1 }
= μ(zT−1

1 ,xT−1
1 )

+
∑
z∗
T>0

−θ(zT−1
1 ,xT−1

1 , z∗T )pr(z
∗
T | zT−1

1 ,xT−1
1 ) + θ(zT−1

1 ,xT−1
1 , zT ),

which is (17) for t = T .
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Now we derive (17) for t = 1, . . . , T − 1. Combining (3) with (47) for t =
1, . . . , T − 1, we obtain

E{y(zTt ) | zt−1
1 ,xt−1

1 } =
∑
xT−1
t

(q1 + q2 + q3)

T−1∏
k=t

pr(xk | zk1 ,xk−1
1 ).

Because q1 does not involve xT−1
t and

∑
xT−1
t

∏T−1
k=t pr(xk | zk1 ,xk−1

1 ) = 1, the

term involving q1 is equal to

∑
xT−1
t

q1

T−1∏
k=t

pr(xk | zk1 ,xk−1
1 ) = q1 = μ(zt−1

1 ,xt−1
1 ).

The term involving q3 is equal to

∑
xT−1
t

q3

T−1∏
k=t

pr(xk | zk1 ,xk−1
1 )

=

T−1∑
s=t

∑
xT−1
t

{ ∑
x∗
s>0

−ξ(zs1,x
s−1
1 ,x∗

s)pr(x
∗
s | zs1,xs−1

1 ) + ξ(zs1,x
s−1
1 ,xs)

}

T−1∏
k=t

pr(xk | zk1 ,xk−1
1 )

=
T−1∑
s=t

∑
xs
t

{ ∑
x∗
s>0

−ξ(zs1,x
s−1
1 ,x∗

s)pr(x
∗
s | zs1,xs−1

1 ) + ξ(zs1,x
s−1
1 ,xs)

}

s∏
k=t

pr(xk | zk1 ,xk−1
1 )

=

T−1∑
s=t

∑
xs−1
t

∑
xs

{ ∑
x∗
s>0

−ξ(zs1,x
s−1
1 ,x∗

s)pr(x
∗
s | zs1,xs−1

1 ) + ξ(zs1,x
s−1
1 ,xs)

}

pr(xs | zs1,xs−1
1 )

s−1∏
k=t

pr(xk | zk1 ,xk−1
1 ) = 0

where the second equality is due to
∑

xT−1
s+1

∏T−1
k=s+1 pr(xk | zk1 ,xk−1

1 ) = 1 and

the last equality is due to

∑
xs

{ ∑
x∗
s>0

−ξ(zs1,x
s−1
1 ,x∗

s)pr(x
∗
s | zs1,xs−1

1 ) + ξ(zs1,x
s−1
1 ,xs)

}
pr(xs | zs1,xs−1

1 )

=
∑
x∗
s>0

−ξ(zs1,x
s−1
1 ,x∗

s)pr(x
∗
s | zs1,xs−1

1 )+
∑
xs

ξ(zs1,x
s−1
1 ,xs)pr(xs | zs1,xs−1

1 )=0

where we have used ξ(zs1,x
s−1
1 ,xs = 0) = 0.
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The term involving q2 is equal to

∑
xT−1
t

q2

T−1∏
k=t

pr(xk | zk1 ,xk−1
1 )

=

T∑
s=t

∑
xT−1
t

⎧⎨
⎩

∑
z∗
s>0

−θ(zs−1
1 ,xs−1

1 , z∗s )pr(z
∗
s | zs−1

1 ,xs−1
1 ) + θ(zs−1

1 ,xs−1
1 , zs)

⎫⎬
⎭

T−1∏
k=t

pr(xk | zk1 ,xk−1
1 )

=
∑
z∗
t >0

−θ(zt−1
1 ,xt−1

1 , z∗t )pr(z
∗
t | zt−1

1 ,xt−1
1 ) + θ(zt−1

1 ,xt−1
1 , zt)

+

T∑
s=t+1

∑
xs−1
t

⎧⎨
⎩
∑
z∗
s>0

−θ(zs−1
1 ,xs−1

1 , z∗s )pr(z
∗
s | zs−1

1 ,xs−1
1 ) + θ(zs−1

1 ,xs−1
1 , zs)

⎫⎬
⎭

s−1∏
k=t

pr(xk | zk1 ,xk−1
1 ),

where the last equality is due to
∑

xT−1
s

∏T−1
k=s pr(xk | zk1 ,xk−1

1 ) = 1 for s =
t, . . . , T−1. Adding the three terms together, we obtain (17) for t = 1, . . . , T−1.

A.3. Proof of formula (19)

Formula (3) for t = T is

μ(zT1 ,x
T−1
1 ) = E{y(zT ) | zT−1

1 ,xT−1
1 }. (48)

Using definition (1) for t = T , we then obtain

μ(zT1 ,x
T−1
1 ) = E{y(zT = 0) | zT−1

1 ,xT−1
1 }+ φ(zT−1

1 ,xT−1
1 , zT )

which is (19) for t = T .
Now we derive formula (19) for t = 1, . . . , T − 1. Using (48), we obtain

μ(zt1,x
t−1
1 ) =

∑
zT
t+1,x

T−1
t

μ(zT1 ,x
T−1
1 )pr(zTt+1,x

T−1
t | zt1,xt−1

1 )

=
∑

zT
t+1,x

T−1
t

E{y(zT ) | zT−1
1 ,xT−1

1 }pr(zTt+1,x
T−1
t | zt1,xt−1

1 ). (49)

Let A(t) = E{y(zt, zTt+1 = 0) | zt−1
1 ,xt−1

1 } and

A(s) =
∑

zs
t+1,x

s−1
t

E{y(zs, zTs+1 = 0) | zs−1
1 ,xs−1

1 }pr(zst+1,x
s−1
t | zt1,xt−1

1 )

for s = t+1, . . . , T . Comparing (49) with A(T ), we see that μ(zt1,x
t−1
1 ) = A(T ).
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We rewrite A(T ) by

A(T ) =
∑

zT
t+1,x

T−1
t

[E{y(zT ) | zT−1
1 ,xT−1

1 } − E{y(zT = 0) | zT−1
1 ,xT−1

1 }]

pr(zTt+1,x
T−1
t | zt1,xt−1

1 )

+
∑

zT
t+1,x

T−1
t

E{y(zT = 0) | zT−1
1 ,xT−1

1 }pr(zTt+1,x
T−1
t | zt1,xt−1

1 ) (50)

=
∑

zT−1
t+1 ,xT−1

t

∑
zT>0

φ(zT−1
1 ,xT−1

1 , zT )pr(z
T−1
t+1 ,xT−1

t , zT | zt1,xt−1
1 )

+
∑

zT−1
t+1 ,xT−2

t

E{y(zT = 0) | zT−1
1 ,xT−2

1 }pr(zT−1
t+1 ,xT−2

t | zt1,xt−1
1 ). (51)

Here the first summation term in (50) is equal to the first summation term in
(51) according to definition (1) for t = T ; the second summation term in (50),
after being summed over zT and then xT−1, is equal to the second summation
term in (51).

Assumption (2) for t = T − 1 implies

y(zT−1, zT )⊥z∗T−1 | zT−2
1 ,xT−2

1

which implies

E{y(zT−1, zT = 0) | zT−2
1 ,xT−2

1 } = E{y(zT−1, zT = 0) | zT−2
1 ,xT−2

1 , zT−1}
= E{y(zT = 0) | zT−2

1 ,xT−2
1 , zT−1}.

Hence the second summation term in (51) is equal to∑
zT−1
t+1 ,xT−2

t

E{y(zT−1, zT = 0) | zT−2
1 ,xT−2

1 }pr(zT−1
t+1 ,xT−2

t | zt1,xt−1
1 )

which is A(T − 1).
Therefore we obtain

A(T )

=
∑

zT−1
t+1 ,xT−1

t

∑
zT>0

φ(zT−1
1 ,xT−1

1 , zT )pr(z
T−1
t+1 ,xT−1

t , zT | zt1,xt−1
1 ) +A(T − 1).

(52)

We continue with the same procedure to rewrite A(T − 1), · · · , A(t+1) consec-
utively and rewrite

A(t) = E{y(zt, zTt+1 = 0) | zt−1
1 ,xt−1

1 } − E{y(zt = 0, zTt+1 = 0) | zt−1
1 ,xt−1

1 }
+ E{y(zt = 0, zTt+1 = 0) | zt−1

1 ,xt−1
1 }

= φ(zt−1
1 ,xt−1

1 , zt) + E{y(zTt = 0) | zt−1
1 ,xt−1

1 }.

Finally we obtain formula (19) for t = 1, . . . , T − 1.
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A.4. Proof of Proposition 1

In Section 6, treatment zt takes values one or zero and ϑ(zt−1
1 ,xt−1

1 , zt = 1) is de-
noted by ϑ(zt−1

1 ,xt−1
1 ). Using the chain rule, the score function for ϑ(zt−1

1 ,xt−1
1 )

based on model (30) is equal to

Uϑ(zt−1
1 ,xt−1

1 ) =
∑

z∗T
1 ,x

∗(T−1)
1

U
μ(z∗T

1 ,x
∗(T−1)
1 )

∂μ(z∗T1 ,x
∗(T−1)
1 )

∂ϑ(zt−1
1 ,xt−1

1 )
. (53)

Let Ia(x) be an indicator function taking the value one if x = a and the value
zero otherwise. Using formula (12), which has been proved in Appendix A.1, we
obtain

μ(z∗T1 ,x
∗(T−1)
1 ) =

T∑
t=1

{
−ϑ(z

∗(t−1)
1 ,x

∗(t−1)
1 )prop(z∗∗t = 1 | z∗(t−1)

1 ,x
∗(t−1)
1 )

+ϑ(z
∗(t−1)
1 ,x

∗(t−1)
1 )I1(z

∗
t )
}
+A

where A is some function of the terms that do not depend on ϑ(z
∗(t−1)
1 ,x

∗(t−1)
1 )

(t = 1, . . . , T ). Hence we obtain

∂μ(z∗T1 ,x
∗(T−1)
1 )

∂ϑ(zt−1
1 ,xt−1

1 )

= I(zt−1
1 ,xt−1

1 )(z
∗(t−1)
1 ,x

∗(t−1)
1 ){I1(z∗t )− prop(z∗∗t = 1 | zt−1

1 ,xt−1
1 )}. (54)

Furthermore, the score function U
μ(z∗T

1 ,x
∗(T−1)
1 )

for μ(z∗T1 ,x
∗(T−1)
1 ) is

U
μ(z∗T

1 ,x
∗(T−1)
1 )

=
∑

i∈s(z∗T
1 ,x

∗(T−1)
1 )

{yi − μ(z∗T1 ,x
∗(T−1)
1 )} (55)

because y is normal, where the variance of y given (z∗T1 ,x
∗(T−1)
1 ) is assumed to

be one for notational simplicity.
Inserting (54) and (55) into (53) and then summing the expression over

(x
∗(T−1)
t , z∗Tt+1), we obtain

Uϑ(zt−1
1 ,xt−1

1 )

=
∑

z∗
t =0,1

{
I1(z

∗
t )− prop(z∗∗t =1 | zt−1

1 ,xt−1
1 )

} ∑
i∈s(zt−1

1 ,xt−1
1 ,z∗

t )

{yi − ν(zt−1
1 ,xt−1

1 , z∗t )}

=
∑

z∗
t =0,1

{
I1(z

∗
t )− prop(z∗∗t =1 | zt−1

1 ,xt−1
1 )

}
⎧⎨
⎩

∑
i∈s(zt−1

1 ,xt−1
1 ,z∗

t )

yi − n(zt−1
1 ,xt−1

1 , z∗t )ν(z
t−1
1 ,xt−1

1 , z∗t )

⎫⎬
⎭ .
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Replacing zt by z∗t and z∗t by z∗∗t in formula (45) and noticing that z∗t and
z∗∗t take values one or zero, we obtain

ν(zt−1
1 ,xt−1

1 , z∗t ) = ϑ(zt−1
1 ,xt−1

1 )
{
I1(z

∗
t )− prop(z∗∗t = 1 | zt−1

1 ,xt−1
1 )

}
+ ν(zt−1

1 ,xt−1
1 ).

Hence we obtain

Uϑ(zt−1
1 ,xt−1

1 )

=
∑

z∗
t =0,1

{
I1(z

∗
t )− prop(z∗∗t = 1 | zt−1

1 ,xt−1
1 )

}
[ ∑

i∈s(zt−1
1 ,xt−1

1 ,z∗
t )

yi − n(zt−1
1 ,xt−1

1 , z∗t )

ϑ(zt−1
1 ,xt−1

1 )
{
I1(z

∗
t )− prop(z∗∗t = 1 | zt−1

1 ,xt−1
1 )

}

− n(zt−1
1 ,xt−1

1 , z∗t )ν(z
t−1
1 ,xt−1

1 )

]
.

Furthermore, we have∑
z∗
t =0,1

{
I1(z

∗
t )− prop(z∗∗t = 1 | zt−1

1 ,xt−1
1 )

}
n(zt−1

1 ,xt−1
1 , z∗t )ν(z

t−1
1 ,xt−1

1 )

= {n(zt−1
1 ,xt−1

1 , z∗t = 1)− prop(z∗∗t = 1 | zt−1
1 ,xt−1

1 )n(zt−1
1 ,xt−1

1 )}ν(zt−1
1 ,xt−1

1 )

= {n(zt−1
1 ,xt−1

1 , z∗t = 1)− n(zt−1
1 ,xt−1

1 , z∗∗t = 1)}ν(zt−1
1 ,xt−1

1 ) = 0.

Therefore we obtain

Uϑ(zt−1
1 ,xt−1

1 )

=
∑

z∗
t =0,1

{
I1(z

∗
t )− prop(z∗∗t = 1 | zt−1

1 ,xt−1
1 )

}
[ ∑

i∈s(zt−1
1 ,xt−1

1 ,z∗
t )

yi − n(zt−1
1 ,xt−1

1 , z∗t )

ϑ(zt−1
1 ,xt−1

1 )
{
I1(z

∗
t )− prop(z∗∗t = 1 | zt−1

1 ,xt−1
1 )

}]
. (56)

From this formula, we see that Uϑ(zt−1
1 ,xt−1

1 ) depends only on ϑ(zt−1
1 ,xt−1

1 ), thus

proving the proposition.

Supplementary Material

SAS codes and SAS data sets
(doi: 10.1214/15-EJS1046SUPP; .zip). The supplementary material contains
(1) SAS codes and SAS data sets for the simulation study in Section 6.2 and
(2) SAS code and SAS data set for the illustrative study in Section 6.3. (Zip file)

http://dx.doi.org/10.1214/15-EJS1046SUPP
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