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Bayesian Analysis of Continuous Time Markov
Chains with Application to Phylogenetic

Modelling

Tingting Zhao∗, Ziyu Wang†, Alexander Cumberworth‡, Joerg Gsponer§,
Nando de Freitas¶, and Alexandre Bouchard-Côté‖

Abstract. Bayesian analysis of continuous time, discrete state space time series
is an important and challenging problem, where incomplete observation and large
parameter sets call for user-defined priors based on known properties of the pro-
cess. Generalized linear models have a largely unexplored potential to construct
such prior distributions. We show that an important challenge with Bayesian
generalized linear modelling of continuous time Markov chains is that classical
Markov chain Monte Carlo techniques are too ineffective to be practical in that
setup. We address this issue using an auxiliary variable construction combined
with an adaptive Hamiltonian Monte Carlo algorithm. This sampling algorithm
and model make it efficient both in terms of computation and analyst’s time to
construct stochastic processes informed by prior knowledge, such as known prop-
erties of the states of the process. We demonstrate the flexibility and scalability of
our framework using synthetic and real phylogenetic protein data, where a prior
based on amino acid physicochemical properties is constructed to obtain accurate
rate matrix estimates.

MSC 2010 subject classifications: Primary 60K35, 60K35; secondary 60K35.

Keywords: CTMCs, Bayesian GLMs rate matrix, MCMC, AHMC,
uniformization, phylogenetic tree.

1 Introduction

CTMCs are used to model a variety of data types, including time series, survival, and
phylogenetic data (Jukes and Cantor (1969); Kay (1977); Neuts (1981); Kalbfleisch and
Lawless (1985), inter alia). A CTMC specifies a random piecewise constant path via
memoryless holding times on a continuous time axis and jump conditional probabilities
over a discrete state space. This description can be conveniently organized into a matrix
of parameters called the rate matrix. As the number of discrete states increases, the
number of parameters therefore grows quadratically in a naive model.
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The practical challenge of reliably estimating a large number of parameters from
partially observed time series has motivated the construction of lower-dimensional pa-
rameterizations of rate matrices; one example of this is parameter tying, a practice
that is widespread in CTMC modelling (Kimura (1980); Hasegawa et al. (1985), inter
alia). However, constructing lower-dimensional parameterizations of rate matrices cre-
ates another difficulty: the question of selecting one lower dimensional model from an
intractable class of possible such models. Prior knowledge helps making these decisions.
In DNA evolutionary modelling, for example, biochemical considerations suggest tying
transversion parameters together (a transversion is a mutation changing purines (ade-
nine or guanine) into pyrimidines (cytosine or thymine), or vice-versa; these mutations
are less frequent than the mutations within each class).

This still leaves open many possible ways of tying parameters. First, there are vari-
ous levels of granularity to be considered, the trade-off being that reducing the number
of parameters (going from a fine-grained parameterization to a coarser one) generally
achieves better performance on small datasets, but can create a ceiling on the per-
formance on larger datasets. Hierarchical models provide an approach to this issue.
However, using a single hierarchy is not always natural. For example, in the protein
evolution problem motivating the work in this paper, one could tie parameters based
on mass, charge, and a wide range of other largely orthogonal factors.

From a Bayesian perspective, we can view the problem of constructing tied rate ma-
trix parameterizations as a special case of the problem of constructing structured priors
on rate matrices. We take this route, applying Generalized Linear Models (GLM) ideas
to Bayesian rate matrix modelling. Parameter tying emerges as a special case of this
Generalized Linear Model for Continuous Time Markov Chains (GLM-CTMC) struc-
tured prior construction. The structured priors we describe also allow the combination
of several granularities concurrently, and importantly, non-hierarchical combinations. In
fact, we show an example of a structured prior where naive counting of the number of
parameters would suggest poor generalization (the number of parameters being larger
than the number of upper-triangular entries in the rate matrix of a certain reversible
CTMC rate matrix), but where performance is in fact superior for all dataset sizes con-
sidered to that of a model with an unstructured prior on a full rank parameterization.

While these GLM-CTMC-based structured priors are useful, their construction is not
surprising from a statistical point of view. In fact, their cousins in the maximum likeli-
hood framework are widely known and used (Kalbfleisch and Lawless, 1985). The sur-
prise is rather that the Bayesian counterpart is not more broadly used in applications—
with the important exception of a simple special case of our framework corresponding
to Bayesian Cox models in survival analysis (Clayton, 1991; Ibrahim et al., 2005).

We show that an important challenge with Bayesian GLM modelling of CTMCs—
and perhaps the reason for their lack of more widespread use—is that posterior sim-
ulation using classical Markov Chain Monte Carlo (MCMC) techniques can be highly
ineffective. We then describe how recent advances in two disparate fields can be com-
bined to address this issue. The first ingredient in our proposed solution is the use of an
Adaptive Hamiltonian Monte Carlo (AHMC) algorithm, which uses the gradient of the
log target density to efficiently sample from the posterior. The second ingredient comes
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from a set of techniques called substitution mapping, which have undergone intensive
developments in the recent years. These techniques allow us to efficiently maintain a set
of auxiliary variables that make gradient calculations fast and simple.

Our goal is to be efficient not only in a computational and statistical sense, but also
in terms of the modeller’s time. While some aspects of the inner working of our method
may seem complex, this complexity is masked to the user. The user can specify the
prior structure in a declarative fashion without having to worry about the details of the
MCMC sampling strategy, parameter tuning, or about gradient calculations. In fact,
much of the inner complexity arises from making the tool easy to use, in particular,
the attention to automatic parameter tuning explained in Section 4.2. Our open-source
implementation, publicly available on github https://github.com/zhaottcrystal/

conifer, strives to be useable and customizable by non-programmers.

For pedagogical reasons we first discuss our notation and methodology in the context
of a general Hidden Markov Model (HMM) (Sections 2, 3, and 4). We then show that
our methodology readily extends to reversible processes (Section 5) and to phylogenetic
trees (Section 6). We apply our method to amino acid evolutionary modelling, both on
synthetic data (Sections 7.2, 7.3 and 7.4) and on real data (Section 7.5). We conclude
by discussing limitations and extensions of our work in Section 8.

2 Background and notation

We introduce the notation and background of CTMCs under a HMM framework. We
discuss the priors on the rate matrix and existing MCMC algorithms in prior work,
followed by a discussion on the limitations of previous approaches.

2.1 Conventions

We use bold letters for (random) vectors and sample paths, and normal fonts for (ran-
dom) scalars, sets, and matrices. We denote random variable and vectors by capitaliza-
tion of the symbol used for their realization, with the exception of Greek letters, random
sets, and random matrices, where we do not draw such distinction. Densities and con-
ditional densities are denoted by f , and (conditional) probability mass functions, by p;
subscripts are used in both cases to identify the random variables in question. Unless
specified, the reference measures are (products) of Lebesgue measures and are omitted
from the notation. The function 1 denotes the indicator function, i.e. for any set A,
1A(x) is equal to 1 if and only if x ∈ A, and equal to zero otherwise. To assist the
reader, most symbols and abbreviations in the document are hyperlinked to their first
occurrence in the text.

2.2 CTMCs

Recall that a (homogeneous) CTMC is a probability distribution over piecewise constant
functions X := (X(t) : t ∈ T ) where the abscissa T = [0, |T |) is a segment of the real
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line representing time, and the ordinate is a discrete set X of states, which we assume
to be finite. Without loss of generality, X = {1, 2, . . . , |X |}. The distribution over the
length of each piecewise constant function is exponential, with a rate that depends on
the current state, and a transition matrix determines the conditional probability of
jumping to a new state x′ ∈ X given a position x just before the jump.

For computational reasons described in Section 2.3, it is convenient to organize the
parameters for these exponential and categorical distributions into a rate matrix Q
indexed by X . The rate of the exponential departure distribution from state x is given
by −qx,x, and the probability of transitioning to x′ given that a jump is initiated from
x is given by −qx,x′/qx,x, x �= x′, with the constraints that qx,x = −

∑
x′∈X :x �=x′ qx,x′ ,

qx,x′ ≥ 0 for x �= x′. We denote the induced probability model by PQ.

We start by reviewing the form of the density of fully observed paths in terms of
known rate parameters. This density of a sample path x only depends on the following
sufficient statistics:

Initial states. For all x ∈ X , let nx(x) ∈ {0, 1, 2, . . . } denote the number of paths
initialized at state x. Let n(x) := (n1(x), n2(x), . . . , n|X |(x)).

Sojourn times. Let hx(x) ∈ [0,∞) denote the total time spent in state x. In other
words, it is the sum of all sojourn times across all jumps and paths. Let h(x) :=
(h1(x), h2(x), . . . , h|X |(x)).

Transition counts. For all distinct (x, x′) ∈ X distinct := {(x, x′) ∈ X 2 : x �= x′}, let
cx,x′(x) ∈ {0, 1, 2, . . . } denote the number of times that a jump ends at state x′

right after jumping from x. Let c(x) denote the vector of all transition counts
organized according to some arbitrary fixed order of X distinct.

Given a sample path x, let z(x) := (n(x),h(x), c(x)) denote the corresponding suf-
ficient statistics. In terms of these statistics (n,h, c) := (n(x),h(x), c(x)), the density
of a sample path x from a CTMC with rate matrix Q is given by:

fx|Q,Δ(x|Q,Δ) :=

(∏
x∈X

pini(x)
nx

)⎛
⎝ ∏

(x,x′)∈Xdistinct

q
cx,x′
x,x′

⎞
⎠

×
(∏

x∈X
exp (hxqx,x)

)
1 [x ∈ S(Δ)] , (1)

where pini(·) is the probability mass function of the initial distribution, and S(Δ) denotes
the set of CTMC paths of total length Δ. In Sections 2–4, we assume pini is fixed and
known, reducing the sufficient statistics to z := (h, c). In Section 5.1, we show how
to estimate pini when it is set to the stationary distribution. When Δ = |T |, we write
fx|Q(x|Q) := fx|Q,Δ(x|Q, |T |) for short. We say that a process is reversible if, for all
t, t′ ∈ T , PQ(Xt = x,Xt′ = x′) = PQ(Xt = x′, Xt′ = x).
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2.3 Observations

The sample path is only partially observed in many scenarios of interest. Hence, it is
typically not possible to work directly with the simple density given in (1).

Let V := {1, 2, . . . , |V |} denote a set indexing observation times, and E, the set of
consecutive observation index pairs, E := {(v, v + 1) : v ∈ {1, 2, . . . , |V | − 1}}. For all

v ∈ V , we denote the corresponding observation time by t
(obs)
v . We denote the sorted

times by t(obs) := (t
(obs)
1 , t

(obs)
2 , . . . , t

(obs)
|V | ), t

(obs)
v < t

(obs)
v′ for all (v, v′) ∈ E. From the

known observed times t(obs), we construct a mapping d(·) that takes a sample path x as
input, and outputs a vector containing the state of the CTMC at each of the observation

times, d(x) := (d1(x), . . . , d|V |(x)), where dv(x) := x(t
(obs)
v ).

To compute the marginal transition probability ptrans between a state x and a state
x′ separated by an interval of time Δ ≥ 0, we use the matrix exponential of the rate
matrix scaled by Δ:

ptrans(x
′|x,Q,Δ) := PQ (X(Δ) = x′|X(0) = x) (2)

= (exp(ΔQ))x,x′ . (3)

In general, there is no closed form expression in terms of the parameters qx,x′ for the
matrix exponential in (3), but pointwise evaluation can be done in time O(|X |3) using
numerical methods (Moler and Van Loan, 1978).1

To simplify the notation, we assume that t
(obs)
1 = 0.2 After marginalization, the

probability of a discretely observed sample path D := d(X) becomes

pd|Q(d|Q) := pini(d1)
∏

e=(v,v+1)∈E

ptrans (dv+1|dv, Q,Δe) , (4)

where Δ(v,v+1) := t
(obs)
v+1 − t

(obs)
v is the spacing between consecutive observations.

The random variable D is not necessarily observed directly. Instead, we may only
have access to a collection of random variables Y = (Y1, . . . , Y|V |), conditionally inde-
pendent given D, and with an emission probability or density denoted by femi(yv|dv):

fd,y|Q(d,y|Q) := pd|Q(d|Q)
∏
v∈V

femi(yv|dv). (5)

The density of the data given a rate matrix would naively involve a sum over an expo-
nential set of latent states

fy|Q(y|Q) =
∑
d1∈X

· · ·
∑

d|V |∈X
fd,y|Q(d,y|Q), (6)

1For reversible processes, it is typical to use a method based on spectral decompositions, for general
processes, the Padé approximant combined with squaring and scaling is a reasonable default choice
(Moler and Van Loan, 1978).

2We can assume t
(obs)
1 = 0 without loss of generality. If t

(obs)
1 > 0, modify the initial distribution

to p′ini(d1) :=
∑

x∈X pini(x)ptrans(d1|x,Q, t
(obs)
1 ), and subtract t

(obs)
1 to all observed times.
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but we compute the sum in polynomial time using standard HMM inference methods
(see for example Kschischang et al. (2006) for a general treatment of the sum-product
algorithm on factor graphs). This is possible since the density fd,y|Q(d,y|Q) can be
decomposed into a chain-shaped graphical model with a structure given by vertices V
and edges E (since (4) and (5) are products of edge-local and vertex local factors).
Excluding the cost of matrix exponentiation, 3 this means that computing (6) takes
time O(|V | · |X |2). The posterior distribution over the discrete latent states, pd|y,Q, is
computed in the same way.

2.4 Priors on Q in prior work

A requirement in the design of priors on Q is that the prior density should have its
support containing only valid rate matrices. To do this, it is customary to define a
density for the off-diagonal entries ofQ, which are organized into a vector of non-negative
numbers denoted by λ := (qx,x′ : (x, x′) ∈ X distinct). We call this parameterization the
General Non-Reversible model (GNR), following Baele et al. (2010). We denote the
rate matrix corresponding to λ by Q(λ); the diagonal elements are simply formed by
negating the sum of the off-diagonal entries of each row, qx,x = −

∑
x′∈X :x �=x′ qx,x′ .

Various prior densities fλ on λ can be used. For example, in Huelsenbeck et al.
(2002), the authors used independent gamma priors with unit mean and precision γ for
each qx,x′ , x �= x′:

fλ(λ) = fgam(λ) :=
∏

(x,x′)∈Xdistinct

1[qx,x′ > 0]q
1/γ−1
x,x′ exp(qx,x′/γ). (7)

There are also priors for reversible matrices, these are reviewed in Section 6.1.

2.5 Existing MCMC algorithms

In this section, we review existing MCMC approaches to posterior approximation of
CTMC parameters. We view the paths X as nuisance variables which are marginalized
using matrix exponentiation. A state of the MCMC algorithm therefore consists of only
the variable λ. We denote the state at MCMC iteration i by λ(i).

Given a state λ(i) from the previous iteration, existing MCMC algorithms typically
propose the next sample λ(i+1) using a Metropolis within Gibbs strategy. For example,
in MrBayes, a prominent software package for Bayesian phylogenetic inference (Huelsen-
beck and Ronquist, 2001; Ronquist et al., 2012), sliding window and multiplier proposals
(where the new value of a univariate variable is perturbed additively or multiplicatively
at random), as well as Dirichlet proposals (as an independence sampler) are available.

3While the cost of one matrix exponential is O(|X |3), performing it |V | times (for each of the time
intervals Δe) can be done faster than O(|V | · |X |3) for reversible CTMCs (Schadt et al., 1998). Under
the reversibility condition, reliable numerical methods can be used to obtain a spectral decomposition
of Q, which can be reused across all the time intervals, obtaining a running time of O(|X |3 + |V | · |X |2)
(Moler and Van Loan, 1978).
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We denote the density of the proposal by fprop. The proposed parameters λ′ are then
accepted with probability

min

{
1,

fλ(λ
′)

fλ(λ
(i))

fy|Q(y|Q(λ′))

fy|Q(y|Q(λ(i)))

fprop(λ
(i)|λ′)

fprop(λ
′|λ(i))

}
,

in which case λ(i+1) = λ′, otherwise, λ(i+1) = λ(i). The computational bottleneck is in
computing the factor fy|Q.

2.6 Limitations of previous approaches

The GNR model can lack flexibility in practice: an important issue is the scalability with
respect to the size of the state space, |X |. The number of parameters in a GNR model
is O(|X |2), so even for a state space of moderate size, there is often not enough data
available to obtain a useful posterior distribution on the parameters. One can reduce
the number of parameters by enforcing certain agreements (i.e. tying parameters); for
example, setting q1,2 = q1,3 removes one effective degree of parameterization. This can
be applied to several groups of pairs of states believed to behave similarly. For example,
in order to model DNA evolution, Kimura (1980) used this parameter tying technique to
group all the nucleotide transversions. However, parameter tying can be restrictive, such
as when several overlapping ways of grouping states are conceivable. For example, each
amino acid can be described with several properties including composition, polarity, and
volume; Sneath lists as many as 134 potentially useful side chain properties (Sneath,
1966). Using all of these properties by taking intersections of equivalence classes would
get us back to an overparameterized model close to the GNR model we were trying to
simplify in the first place.

3 Bayesian rate matrix GLMs

To address the issue described in the previous section, we consider the following model,
which we call GLM-CTMC, for the off-diagonal entries of a rate matrix Q(nr)(w):

q
(nr)
x,x′(w) := exp

{
〈w,ϕ(x, x′)〉

}
q
¯
(x, x′), (8)

constructed from the following quantities:

Natural parameters (weights), w ∈ R
P , for some fixed integer P .

Sufficient statistic, ϕ : X distinct → R
P , an arbitrary, user-specified function taking a

pair of distinct states as input, ϕ(x, x′) := (ϕ1(x, x
′), . . . , ϕP (x, x

′)).

Base measure, q
¯
, as an unnormalized mass function assumed to be known. This could

come from a simpler model; for simplicity, we set q
¯
≡ 1.
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As before, diagonal entries are defined so that each row sums to zero, q
(nr)
x,x (w) :=

−
∑

x′∈X :x �=x′ q
(nr)
x,x′(w). The power of this model comes from the flexibility brought by

ϕ, which allows the user to encode their prior knowledge. How to do this is explained
in the next section.

The model is related to Kalbfleisch and Lawless (1985); however, this previous work
used GLMs for a different purpose, namely the incorporation of covariate dependences
into the rate matrix. The two approaches can be combined: covariates can be integrated
to our model by including them as input to the sufficient statistic ϕ, but we ignore
them to simplify the notation.

3.1 Examples

Going back to the amino acid example from the introduction, the P components of the
mapping ϕ can be interpreted as representing different side chain properties, designed
from biochemical prior knowledge. Following the terminology from machine learning, we
call each of these components a feature. We now describe some examples of features in
the context of amino acid evolutionary modelling. In a first step, we give a description
of a single feature. We then progressively generalize to more general mechanisms for
feature generation.

First, we construct a mapping for the purpose of defining classes of amino acids
sharing certain physicochemical properties. For example, we show in Table 1 the def-
inition of a mapping called “size,” where size : X → {Micro,Big}, based on Barnes
et al. (2003). As an illustration, for the amino acid Serine (S), size(S) = Micro. Also, if
e := (x, x′) ∈ X distinct is a pair of states, we define size((x, x′)) to be the list obtained
by applying the map to the individual elements in e. For example, for the amino acids
Phenylalanine (F) and Serine (S), size((S,F)) = (Big,Micro).

Using these definitions, we define our first feature as follows:

ϕ1(x, x
′) := 1(Big,Big)(size((x, x

′))).

The feature ϕ1(x, x
′) is equal to 1 if and only if the size of the amino acid is pre-

served by the substitution between x and x′. We call this first feature “Big→Big” for
short. Note that this ties several entries of rate matrix, since more than one pairs
e1, e2, . . . ∈ X distinct are such that ϕ1(ei) �= 0. Continuing in this fashion, we can build
three additional features similarly, “Big→Micro,” “Micro→Big,” and “Micro→Micro.”

Next, we can use another mapping to get additional features. For example, we con-
sider the map polarity : X → {Non-polar,Basic Polar,Polar,Acidic Polar} in Table 1,
which encodes a combination of polarity and charge properties. The names of these fea-
tures follow the same convention, yielding features such as “Acidic→Basic.” Following
a convention from the machine learning literature, we use the terminology feature tem-
plate for a recipe that yields several features. For example, the function size corresponds
to a feature template we denote by Size, and polarity, to a feature template we denote
by Polarity. Feature templates can be combined to form bigger models. For example,
PolaritySize denotes a sufficient statistic vector that contains the concatenation of
the features in Polarity with those in Size.
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3.2 Prior distributions

Next, we place a prior onw, with density denoted by fw(w). A default choice is a Normal
prior with mean zero and precision κ, denoted by fnor(w). As an alternative, taking fw
to be the density of a product of independent log-gamma distributions, denoted flga(w)
has the interesting property that the corresponding GLM-CTMC models then become
a superset of the Bayesian GNR model reviewed in Section 2.4, in the following sense:
if we set P = |X |(|X | − 1), order the elements of X distinct as e1, e2, . . . , eP , and set
(ϕ(x, x′))m = 1[(x, x′) = em], then the GLM rate matrix model and the specific GNR
model introduced in Section 2.4 induce the same marginal distribution over paths.

Following the terminology of Berg-Kirkpatrick et al. (2010), we call each feature
used in the reduction described above a fine feature. With fine features, |ϕ−1

m (R\{0})| =
1, which means there is exactly one pair of states (x, x′) associated with feature m;
otherwise, when |ϕ−1

m (R\{0})| > 1, we call feature m a coarse feature, which means
that there is more than one pair of states (x, x′) that share the same feature.

Asymptotically, only fine features are needed. However, for a finite sample size,
a Bayesian GLM-CTMC model containing both coarse and fine features can dominate
a model containing only fine features. We show an example in Section 7.3, using the
reversible equivalent of the Bayesian GNR model.

4 Scalable approximate posterior simulation

This section addresses the problem of approximation of the density of the posterior
distribution given by

fw|y(w|y) ∝ fw(w)fy|Q(y|Q(nr)(w)). (9)

In principle, approximating such posterior could be approached using the existing
Metropolis–Hastings-based methods described in Section 2.5. However, the rich parame-
terization of the GLM-CTMC model can create strong correlations among components
of w under the posterior distribution, which is problematic since naive Metropolis–
Hastings methods tend to struggle in the face of high-dimensional correlated random
vectors (Gilks and Roberts, 1996). We show an example of this poor behaviour in Sec-
tion 7.4.

These correlations are especially severe in overcomplete representations, i.e. when
there are (x0, x

′
0) ∈ X distinct, w0 ∈ R

P , w0 �= 0, such that 〈w0,ϕ(x0, x
′
0)〉 = 0. When

there is a large number of features under consideration (for example, the combination
of coarse and fine features described in the previous section) or when there is a rich
covariate structure, it becomes increasingly impractical to automatically simplify over-
complete feature sets. In the remainder of this section, we describe our new posterior
simulation approach that addresses this issue. Sections 4.1 and 4.2 specialize existing
methods to our problem, and Section 4.3 introduces an algorithm based on auxiliary
variables which improves the scalability of our method.
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4.1 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987) offers a remedy to the compu-
tational statistics problem described above. HMC is widely-known as a powerful and
efficient sampling algorithm, having been demonstrated to outperform many existing
MCMC algorithms, especially in problems with high-dimensional, continuous, and cor-
related distributions (Chen et al., 2001; Neal, 2010).

HMC requires as input the specification of: (i) a potential energy function U , which
is the negative logarithm of the target density we wish to sample from (up to an additive
constant), in our case,

U(w) := − log fw|y(w|Q(nr)(w)) (10)

= − log fw(w)− log fy|Q(y|Q(nr)(w)) + constant, (11)

and (ii) a kinetic energy function, most typicallyK(m) = 1
2m

TM−1m, with momentum
vector m and a positive definite mass matrix M . For standard HMC, the mass matrix
is set to the identity matrix I. We review the algorithm in Supplement 1 (Zhao et al.,
2015) and defer the technical details of HMC to existing work (Neal, 2010). Note that
the HMC algorithm uses the gradient of the joint log-density to guide the exploration
of the parameter space. In addition, HMC requires the selection of two free parameters:
a step-size ε > 0 and a number of leapfrog steps L ∈ {1, 2, . . . }. The accepted guidance
is to choose the step-size so as to ensure that the sampler’s rejection rate is moderate.
It is also preferable to have a large L, since this reduces the random walk behaviour of
the sampler (Neal, 2010), but too large an L results in unnecessary computation.

HMC has not been widely adopted in practice, due principally to the sensitivity
and difficulty of tuning its hyper-parameters ε and L. In fact, tuning HMC has been
reported by many experts to be more difficult than tuning other MCMC methods (Ish-
waran, 1999; Neal, 2010). Fortunately, a few recent methods address the automated
tuning of HMC. Two notable approaches are: No U-Turn Sampler (NUTS) by Hoffman
and Gelman (2014), which aims to find the best parameter settings by tracking the
sample path and preventing HMC from retracing its steps in this path; and Riemann
Manifold Hamiltonian Monte Carlo (RMHMC) by Girolami and Calderhead (2011),
which exploits the Riemannian geometry of the problem. In this paper, we follow the
approach of adapting Markov chains using Bayesian optimization (Mahendran et al.,
2012; Hamze et al., 2013; Wang et al., 2013) to improve the convergence rate of HMC. In
Wang et al. (2013), the authors demonstrate that this approach outperforms NUTS, and
that RMHMC is more accurate, but significantly more expensive. RMHMC also makes
additional assumptions, namely that higher moments can be efficiently computed.

As in Neal (2010), we consider a slight variation of the HMC algorithm: instead
of performing L leapfrog steps at each iteration i, we perform a random number of
leapfrog steps, chosen from the discrete uniform distribution over {1, . . . , L}, i.e. L(i) ∼
Uni({1, . . . , L}) steps. This approach amounts to using a mixture of L different HMC
transition kernels, thus preserving detailed balance (Andrieu et al., 2003).
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We denote the distribution induced by sampling one HMC iteration (Lines 3 to 15
in Algorithm 1 in Supplement 1) by

W (i+1)|W (i) ∼ HMC( · |W (i);U,L, ε). (12)

Since we resample an independent momentum m at each step, the momentum can be
omitted from the above notation.

4.2 Adaptive Hamiltonian Monte Carlo

In order to adapt the MCMC parameters L and ε for HMC, we need to (i) define an
objective function and (ii) choose a suitable optimization method.

As pointed out by Pasarica and Gelman (2010), a natural objective function for
adaptation is the asymptotic efficiency of the MCMC sampler, (1+2

∑∞
k=1 ρk)

−1, where
ρk is the auto-correlation of the sampler with lag k. Despite its appeal, this measure is
problematic because the higher order auto-correlations are hard to estimate. To circum-
vent this problem, they introduced an objective measure called the Expected Squared
Jumping Distance (ESJD), ESJD(γ) := Eγ‖W (i+1)−W (i)‖2, where γ = (ε, L) denotes
the set of parameters for HMC. In practice, the above intractable expectation with re-
spect to the Markov chain is approximated by an empirical estimator, as outlined in
Pasarica and Gelman (2010).

The ESJD measure is efficient in situations where the higher order auto-correlations
decrease monotonically with respect to ρ1. However, it is not suitable for tuning HMC
samplers since by increasing the number of leapfrog steps one can almost always gen-
erate better samples. What we need is a measure that also takes computing time into
consideration. With this goal in mind, Wang et al. (2013) introduced the following ob-
jective function: f(γ) := ESJD(γ)/

√
L. This function simply normalizes the ESJD by

the number of leapfrog steps L, thus taking both statistical efficiency and computation
into consideration.

Now that we are armed with an objective function, we need to address the issue
of optimization. Bayesian optimization is an efficient gradient-free optimization tool
well suited for this expensive black-box function problem. Normalized ESJD involves
an intractable expectation that can be approximated by sample averages, where the
samples are produced by running HMC for a few iterations. Each set of HMC samples for
a specific set of hyper-parameters γ ∈ Γ results in a noisy evaluation of the normalized
ESJD, r(γ) = f(γ) + ε, where we assume that the measurement noise is Gaussian
ε ∼ N (0, σ2

η).

We approach this problem using standard Bayesian optimization methods based on
Gaussian processes. To ensure that the adaptation does not alter HMC’s invariant dis-
tribution, we stop the adaptation process after a fixed number of steps Nadapt = 3000.
After this horizon, we fix the maximizers ε� and L� estimated by the Bayesian optimiza-
tion algorithm. See Algorithm 1 and Supplement 1 for details. In particular, we discuss
the additional computational cost when tuning HMC in Section 1.2 of Supplement 1.
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Algorithm 1: AHMC

1: Given: Γ, m, k, α, and γ1.
2: for i = 1, 2, . . . , do
3: Run HMC for m iterations with γi = (εi, Li) (Algorithm 1 in Supplement 1).
4: Obtain the objective function value ri using the drawn samples.
5: Augment the data Di = {Di−1, (γi, ri)}.
6: if ri > supj∈{1,...,i−1} rj then
7: s = α

ri
8: end if
9: Draw u ∼ U([0, 1])

10: let pi = (max{i− k + 1, 1})−0.5, with k ∈ N
+.

11: if u < pi then
12: γi+1 := argmaxγ∈Γ u(γ, s|Di).
13: else
14: γi+1 := γi
15: end if
16: end for

4.3 HMC for GLM-CTMC models

The remaining ingredient required by HMC is the gradient of the logarithm of the joint
density,

∇wU(w) = −∇w log fw(w)−∇w log fy|Q(y|Q(nr)(w)).

The first term is generally trivial, for example, when fw = fnor, the first term
simplifies to κw. The second term, which involves the gradient of matrix exponentials,
is more challenging, but can still be computed numerically. In previous work, this has
been done using a spectral decomposition (Jennrich and Bright, 1976), as automatic
differentiation does not apply readily to this problem.4

However, computing L leapfrog steps using the method described in Jennrich and
Bright (1976) is computationally prohibitive for the models we consider in this paper.
More precisely, the method of Jennrich and Bright (1976) has a term of the form |X |3PL
in its asymptotic running time. Since much of the previous work has been motivated by
frequentist estimators, the number of parameters P has generally been assumed not to
be dominant. In contrast, we expect a typical use case of our model to include Θ(|X |2)
parameters, since our experimental results show that including all fine features is bene-
ficial in practice (Figure 2). This means that for large state spaces, one MCMC iteration
has a running time of Θ(L|X |5), if we were to use existing methods for computing the
gradient. This is true even after taking into account the savings coming from reusing

4For example, the developers of Stan (Stan Development Team, 2014), a popular package for au-
tomatic differentiation of statistical applications, do not plan to support automatic differentiation of
matrix exponentials in the near future.
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spectral decompositions, and careful ordering of vector–matrix product operations—see
details in Supplement 2.

In the remaining of this section, we introduce a methodology allowing us to use HMC
while avoiding the computational difficulties described above. The key advantage of our
method is that it can take advantage of the sparsity in the feature vectors ϕ(x, x′). In
contrast, previous work has focussed on sparsity of the rate matrix (although we discuss
in Section 8 some extensions that can take advantage of both types of sparsity). If we
let T0 denote the running time of the sum–product algorithm (reviewed in Section 2.3),

and s :=
∑

(x,x′)∈Xdistinct

∑P
m=1 1[ϕm(x, x′) �= 0], the total number of non-zero entries

across all possible features, then performing L leapfrog steps takes time O(Ls + T0)
using our method. See Supplement 4 for justification of our running-time analysis. In
all the examples we consider in Section 7, s ∈ O(|X |2).

Assume that w(i−1) denotes the state of the MCMC algorithm at the previous
iteration. Our method computes the next state w(i) as follows.

Precomputation. The most expensive parts of the calculations do not need to be
recomputed at each leapfrog step within the current MCMC iteration.

1. Construct the HMM described in Section 2.3, and using standard graphical
model inference algorithms (Kschischang et al., 2006), compute the forward
recursions on the HMM from the previous step, followed by a backward
sampling step to impute the values of the latent time series at the discrete
set of observation times

D(i)
∣∣∣Y , Q(nr)

(
W (i)

)
∼ pd|y,Q

(
·
∣∣∣Y , Q(nr)

(
W (i)

))
. (13)

2. For each pair of consecutive imputed latent states, d
(i)
v , d

(i)
v+1, simulate a path

X(i)
e of length Δe given the two end points e = (v, v + 1):

X(i)
e

∣∣∣ (Xt
(obs)
v

= d(i)v , X
t
(obs)
v+1

= d
(i)
v+1

)
∝∼ fx|Q,Δ

(
·
∣∣∣Q(nr)

(
W (i)

)
,Δe

)
.

(14)

Because of the conditioning on the end-point d
(i)
v+1, the density on the right-

hand side of (14) is only specified up to a normalization constant. We address
this issue using techniques from the substitution mapping literature (Nielsen,
2002; Minin and Suchard, 2008; Rodrigue et al., 2008; Hobolth and Stone,
2009; Tataru and Hobolth, 2011; Rao and Teh, 2013; Irvahn and Minin, 2014),
in which a range of methods for end-point simulation have been developed.
The method we use is based on uniformization and caching of intermediate
quantities. We provide a detailed description of the cached uniformization
method in Supplement 3. It is worth noting that cached uniformization can be
combined with the work of Tataru and Hobolth (2011) to speed up evaluation
of the transition probabilities (a method which additionally is not limited to
the reversible case).
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3. Compute the sum of the sufficient statistics produced in the previous step,
Z(i) :=

∑
e z(X

(i)
e ).

HMC sampling. Perform an HMC step,

W (i+1)|W (i),Z(i) ∼ HMC( · |W (i);UZ(i) , L�, ε�). (15)

with parameters ε� and L� tuned using AHMC, and a function evaluation and
gradient (assuming a normal prior on the weights) given by:

Uz(i) (w) =
1

2
κ‖w‖22 −

∑
x∈X

h(i)
x q(nr)x,x (w)

−
∑

(x,x′)∈Xdistinct

c
(i)
x,x′ log

(
q
(nr)
x,x′ (w)

)
+ cnst, (16)

∇wUz(i) (w) = κw +
∑

(x,x′)∈Xdistinct

ϕ(x, x′)
(
h(i)
x q

(nr)
x,x′(w)− c

(i)
x,x′

)
. (17)

Crucially, note that the inner loop, namely computation of (17), does not involve
re-computation of the forward recursions and matrix exponentials (see Supplement 4).
This sampling method converges to the desired stationary distribution, namely the dis-
tribution with density fw|y(w|y) given in (9). The proof, which is based on an auxiliary
variable construction, can be found in Appendix A.

5 Reversible models

The priors we have discussed so far have a support over rate matrices that are not
necessarily reversible. In practice, it can be useful to also have priors that only assign
positive probability to reversible rate matrices. For example, it is often the case in
phylogenetics that non-reversibility is only weakly identifiable (Huelsenbeck et al., 2002),
so reversibility is widely assumed in mainstream models.

Another advantages of reversible models is that they allow us to tie the initial dis-
tribution pini shown in (1) to the stationary distribution of the CTMC. When there are
several time series available, this allows more information coming from the initial values
of the time series to be pooled. This also relaxes the assumption made in Section 2.3
that t0 = 0.

In the remainder of this section, we show how to accommodate reversibility con-
straints within our GLM-CTMC framework.

5.1 Bayesian reversible matrix GLMs

Recall first that a rate matrix is reversible if and only if the off-diagonal entries of the
rate matrix can be parameterized as qx,x′ = θ{x,x′}πx′ , with πx = pini(x) coinciding with
the stationary distribution, and θ{x,x′} denoting some non-negative parameters indexed
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by unordered pairs of distinct states (Tavaré, 1986). We denote the set of unordered
distinct pairs of states by X unordered,dist. := {{x, x′} ⊂ X : x �= x′}.

To build priors over reversible rate matrices, we consider two collections of exponen-
tial families, one for each local decision involved in the generative process (i.e. sampling
initial points, exponentially distributed waiting times, and jumps), defined as follows:

θ{x,x′}(w) := exp
{
〈w,φ({x, x′})〉

}
θ
¯
({x, x′}), (18)

πx(w) := exp
{
〈w,ψ(x)〉 −A(w)

}
π
¯
(x), (19)

A(w) := log
∑
x∈X

exp
{
〈w,ψ(x)〉

}
, (20)

q
(rev)
x,x′ (w) := θ{x,x′}(w)πx′(w), (21)

which in turn depends on the following quantities:

Natural parameters (weights), w ∈ R
P , for some fixed integer P , which are shared

by the θ-exponential family (see (18)), and the π-exponential family (see (19)).

Sufficient statistics, coming in two flavours: bivariate features φ : X unordered,dist. →
R

P for the θ-exponential family, taking unordered pairs of states as input; and
univariate features ψ : X → R

P for the π-exponential family, taking a single state
as input. Both types map these contexts into R

P .

Log-normalization, A : RP → (0,∞), for the π-exponential family. This is just a sum
over |X | elements. Note that the θ-exponential family is a family of measures rather
than a probability distribution, therefore there is no need for log-normalization in
this case.

Base measures, θ
¯
and π

¯
, which are known probability mass functions. As in the non-

reversible case, these could come from a simpler model. For simplicity, we assume
they are identically equal to one to simplify the notation.

5.2 Posterior simulation for reversible models

We follow essentially the same strategy described in Section 4 to approximate the pos-
terior distribution in the reversible case, with the following two modifications. First, we
augment the sufficient statistic to include the number of series Nx that are initialized at
state x: Z(rev) := (N ,C,H), where N := (N1, . . . , N|X |). Second, we need to modify
the expression involved in the calculation of the gradient. We show the derivation of the
gradient in Supplement 5.

6 Extension to phylogenetic trees

In this section, we extend our methodology to phylogenetic trees within our GLM-
CTMC framework and outline the posterior simulations for phylogenetic models.
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6.1 Notation and background on Bayesian phylogenetic inference

Phylogenetics is an important area of application of CTMCs, as the core of many modern
phylogenetic models is a CTMC encoding evolution of discrete structures over time—in
particular, characters or groups of characters from biological sequences.

Assume that a certain biological sequence has related homologs in a set of organisms,
and that these sequences have been aligned (i.e. that for each character in the sequence,
we know which characters in the other sequences share a common ancestral character).
This sequence can be subsampled so that the evolution of one group of aligned nu-
cleotides or amino acids is approximately independent (or assumed to be independent)
to the evolution of any other group included in the dataset. Each such group is called
a site. The continuous time aspect of the CTMC is used as a continuum approximation
of overlapping generations. The states of the CTMC can be nucleotides, amino acids,
or more complex structures such as groups of adjacent or interacting sites evolving in a
non-independent fashion.

In order to incorporate the phylogenetic tree into our model, we generalize T , which
was until now a real segment, into a branching process where line segments are organized
into a tree. The phylogenetic tree is based on a discrete directed tree (V,E) called the
topology, and a collection of real numbers Δ := (Δe : e ∈ E) associated to each edge
e ∈ E, called the branch lengths. Formally, we define T := {r}�Tr, where r is the root, �
denotes a disjoint union, and for all v ∈ V , we set Tv := �v′:(v,v′)∈E((0,Δe)�{v′}�Tv′).
The vertices V ⊂ T consists in the speciation points and leaves of the tree. Note that
we use the same notation as the chain graphical model in Section 2, this highlights the
fact that the tree graphical model and the chain graphical model play similar roles.
A sample path X := (X(t) : t ∈ T ) on a phylogenetic tree can be simulated recursively
as follows:

1. Generate the value X(r) at the root r of the tree (V,E) according to an initial
distribution pini.

2. Given the root of any subtree v ∈ V and the state X(v) at that node, indepen-
dently generate the value at each child v′ of v as follows:

(a) Simulate a CTMC on one edge, (X(t) : t ∈ (0,Δe]) for a time given by Δe,
where e = (v → v′);

(b) Set X(v′) to the final point of this process, and recurse at v′.

There is one such process Xk for each site k ∈ {1, . . . ,K}, and all of these processes
share the same tree T . We view the topology and branch lengths as random variables,
τ := (Δ, V, E) and assume that a prior is defined on those variables, for example
uniform over the topologies and independent exponential for each of the branch lengths.
The processes X1,X2, . . . ,XK are conditionally independent given the tree and the
evolutionary parameters.

We assume for simplicity that the observations take the form of the value of the
process for each leaf Vleaves ⊂ V and each site, Y := (Y1, . . . , Y|Vleaves|). Previous work



T.Zhao, Z.Wang,A.Cumberworth, J.Gsponer, N. de Freitas, A.Bouchard-Côté 1219

typically uses reversible evolutionary models based on a parameterization of the form
qx,x′ = πx′θ{x,x′}. A popular model consists of using a Dirichlet prior on π, and in-
dependent gamma priors on θ. This parameterization is known as the General Time
Reversible model (GTR).

6.2 Phylogenetic GLM-CTMC model

Since we want a reversible process, we base our evolutionary parameter model on the
construction introduced in Section 5. Reversibility in a phylogenetic context means that
the location of the root is unidentifiable. We therefore view the topology as undirected,
but root the tree arbitrarily when required by computations.

Another source of unidentifiability is that multiplying all the branch lengths Δe by a
constant while dividing all parameters θ{x,x′}s by the same constant keeps the likelihood
constant (this can be easily seen in (4)). It is therefore common to add a normalization
constraint to the rate matrices in the phylogenetic setup, for examples enforcing that
the expected number of changes per site is one on a branch of unit length. We follow
this convention, making the following amendment to the model of Section 5: first, we
define a normalization coefficient β,

β(w) = −
(∑

x∈X
πx(w)q(rev)x,x (w)

)−1

, (22)

from which we construct a normalized rate matrix, q
(norm)
x,x′ (w) := β(w)q

(rev)
x,x′ (w).

6.3 Posterior simulation for phylogenetic models

We now discuss how to generalize the techniques of Section 5 to the phylogenetic setup.
Since the tree τ is unknown, we need to augment our MCMC sampler, so that a state
in the MCMC chain now has the form (W (i), τ (i)).

The MCMC moves for this sampler alternate between (i) resampling the weights W
while keeping the tree τ fixed; and (ii) resampling the tree τ while keeping the weights
fixed. Weight resampling, Step (i), is performed using the method described in Section 4,
with two minor differences. First, the gradient of the normalized reversible rate matrix
is modified as described in Section 6.2. Second, the graphical model (V,E) is now a
tree instead of a chain. The posterior inference methods for chains can be extended to
trees in a straightforward fashion (see Felsenstein (1981) for a description tailored to
phylogenetic inference).

Tree resampling, Step (ii), can be performed by first forming Q = Q(norm)(w) from
the weights w we condition on, and then using standard tree resampling methods. These
tree resampling methods are based on Metropolis–Hastings local operators on topology
and branch lengths. See a comparison of these methods in Lakner et al. (2008). Our
package implements stochastic neighbour interchange and multiplicative branch length
perturbations. We use a spectral decomposition method to calculate the transition prob-
abilities ptrans.
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7 Numerical examples

As an illustration of how a typical modeller would interact with our framework, we
develop in this section three novel rate matrix models for amino acid data by incor-
porating various biochemical properties of amino acids. We investigate the behaviour
of these models on synthetic and real data. We also perform experiments to assess the
computational efficiency of the method, as well as the effectiveness of the automated
HMC adaptation method. All the datasets used in the experiments are available at
https://github.com/zhaottcrystal/CTMC-via-HMC.

7.1 Construction of amino acid evolutionary models

Modelling amino acid evolution is more complex than modelling single nucleotides for
the simple reason that the rate matrix is of size 20-by-20 rather than 4-by-4. While the
GTR model is popular for modelling nucleotide sequences, there is often not enough
data in one protein family to naively rely on the GTR model for amino acid evolutionary
modelling.

Several approaches have been proposed to sidestep this issue. The most common
strategy is to pool data from several families. This can be done either inside or outside
of a CTMC framework (in the latter case, only closely related sequence pairs are used
to reduce the probability of multiple replacements) (Dayhoff et al., 1978; Jones et al.,
1992; Adachi and Hasegawa, 1996; Yang et al., 1998; Adachi et al., 2000; Müller and
Vingron, 2000; Whelan and Goldman, 2001; Dimmic et al., 2002; Kosiol et al., 2007; Le
and Gascuel, 2008; Dang et al., 2010). More recent work has introduced non-parametric
methods (Dimmic et al., 2000; Lartillot and Philippe, 2004; Huelsenbeck et al., 2008;
Murrell et al., 2011; Le et al., 2012) building on previous work based on mixture models
(Goldman et al., 1996; Lio and Goldman, 1999).

We take a different approach, and explore in this section how physicochemical prop-
erties can be used to design structured priors over substitution rate matrices. This
approach is in many ways complementary to existing work on protein evolution mod-
elling. For example, our model could be used as a base measure for the Dirichlet process
mixture model of Huelsenbeck et al. (2008). Conversely, several existing models from
the literature, for example, the work on mechanistic codon models (Doron-Faigenboim
and Pupko, 2007; Miyazawa, 2011a,b, 2013) could be translated into features useable in
our framework, and easily combined with the physicochemical features described here.
We relied on a large literature studying the physicochemical similarities between amino
acids to design a set of potentially useful features. Sneath (1966) and Grantham (1974)
created models that incorporate polarity, molecular volume, and chemical composi-
tion, and allow distances to be calculated, although these were not based on a CTMC.
Dan Graur (2000) pointed out that hydrophobicity and polarity were well preserved
during the evolutionary process.

The features we use are similar to those described in Section 3.1, with a few modi-
fication required to make the model reversible. First, if {x, x′} ∈ X unordered,dist. is a set
of two distinct states, we define size({x, x′}) to be the set obtained by applying the map

https://github.com/zhaottcrystal/CTMC-via-HMC
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Size
Micro A, G, S, P, C, T, N, D
Big R, E, Q, H, I, L, K, M, F, W, Y, V

Polarity/charge
Non-polar A, C, G, I, L, M, F, P, W, V
Basic Polar R, H, K
Polar N, Q, S, T, Y
Acidic Polar D, E

Table 1: Size and polarity/charge properties of amino acids.

to the individual elements in {x, x′}. For example, for the amino acids Phenylalanine
(F) and Serine (S), size({S,F}) = {Big,Micro}. Using this definition, an example of a
reversible bivariate feature is given by

φ1({x, x′}) := 1{Big,Big}(size({x, x′})).

Note that we do not take the directionality into account. We call this first feature
“BigBig” for short. Continuing in this fashion, we can build two additional features
similarly, “BigMicro,” and “MicroMicro.” This defines the reversible feature template
Size. We construct the reversible feature template Polarity similarly.

Another feature template that we consider is the Gtr template, obtained with the
same recipe as above applied to the identity map. This is a special case of the fine
features described in Section 3. The feature template PolaritySizeGtr consists in
the concatenation of Gtr with PolaritySize. The features we have defined so far are
all bivariate. For the univariate features (those concerning the stationary distribution
rather than the dynamics), we always use fine features in this section. The reason is that
the stationary distribution over the 20 amino acids is relatively easy to estimate from
the typical dataset size. We implemented our framework in Java, with open source code
available at https://github.com/zhaottcrystal/conifer. We first tested our imple-
mentation using several strategies, including numerical checks of the gradient against the
pointwise value of the objective function, as well as the prior/prior–posterior simulator
test of Geweke (2004).

7.2 Setup for synthetic data experiments

We use a weight configuration of the PolaritySizeGtr model described in the previ-
ous section to get a rate matrix, which is in turn used to generate synthetic amino acid
sequences evolving along a phylogenetic tree. We want to show that our method can
estimate the held-out rate matrix used to generate the data accurately. We also use this
controlled dataset to demonstrate the computational efficiency of our HMC algorithm
relative to the classic MCMC techniques.

Using the package from Paradis et al. (2004), we simulate an unrooted bifurcating
tree with 10 tips. We use a uniform distribution on [0, 1] on the branch lengths. The

https://github.com/zhaottcrystal/conifer
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tree topology is generated according to Aldous’ Markov branching model (Aldous, 1996).
The weights for the Gtr features are generated from a uniform distribution ranging
from −1 to 1. The values of the weights for the other bivariate polarity/charge, and
size features (the coarse features) are listed in Supplement 10. The magnitude and
sign of these weights are selected by looking at the posterior weight distributions on
real data. We do this since the magnitudes on the coarse features affect the maximum
possible benefit that can be gained from using coarse features. The values we use are
consistent with the posterior weights values obtained from real data in Figure 5. For
example, we show in Figure 5 that both the lower and upper quantiles for the weights
of features corresponding to changes between polar amino acids like “AcidicPolar” are
supported within the positive real line so that we choose positive weights for them in
our experiments. Similarly, the lower and upper quantile are negative for the weights
corresponding to the feature “BigMicro” related to the change between different size
categories. This motivates us to select negative values for them. As for the univariate
feature weights, we use a uniform distribution over −0.2 and 0.2.

We evaluate the accuracy of the rate matrix reconstructions using three error mea-
sures. The first one looks at the stationary distribution of the estimated rate matrix,
and compares it to the stationary distribution of the held-out rate matrix (that is, the
one used to generate the dataset). To compare the two stationary distributions, we com-
pute the Kullback–Leibler (KL) divergence. The second measure is based on relative
biases in entries of the marginal transition probability matrices, pt(x, x

′) = exp(Qt)x,x′ .
The relative bias is defined as r̂(x, x′) := (p̂t(x, x

′)− pt(x, x
′))/pt(x, x

′), where pt(x, x
′)

and p̂t(x, x
′) are the held-out (respectively, estimated) transition probabilities between

states x and x′ at the end points of a branch of length t. We show results for t = 1 in
the main paper, and other values in Supplement 9. Finally, we also measure error using
a more direct, but less interpretable metric, the Root-Mean-Square Error (RMSE) on
individual rates. We take into account all entries in Q except the diagonal entries, which
are redundant because of the constraint that each diagonal entry Q(x, x) is equal to the
negative sum of off-diagonal entries of row x.

7.3 Accuracy of rate matrix reconstruction on synthetic data

In this section, we assess the accuracy of our inferred parameters on a synthetic dataset
generated under PolaritySizeGtr model. We select the same number of sites (415)
and sequences (641) as in our real data experiments (Section 7.5). We summarize the
posterior distribution into a single reconstructed rate matrix via the mean of the rate
matrix posterior samples.

First, we observed that the stationary distribution reconstruction is very accurate
(as measured by the KL divergence). Using 100,000 MCMC iterations with 10,000 as
the burn-in period, we obtain a KL divergence of 0.0003. See Supplement 9 for a visual-
ization interpreting this result, showing the high quality of the reconstruction in terms
of the induced stationary distribution. This confirms our intuition that the stationary
distribution is not the challenging part of the problem.

To get a more complete picture of accuracy, we look at the reconstruction error in
terms of the relative biases of individual transition probabilities. The 20×20−20 = 380
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Figure 1: Histogram of the relative bi-
ases (described in Section 7.2) of the 380
off-diagonal transition probability matrix
(t = 1). The two dotted lines label −0.2
and 0.2.

Figure 2: Mean RMSE of estimated rate
matrices are shown for the four mod-
els described in Section 7.1. The confi-
dence bands are obtained from the Loess
smoothing method using a quadratic poly-
nomial regression.

off-diagonal transition probabilities each have a different relative bias, so we summarize
them using a histogram, shown in Figure 1. Values higher than zero correspond to an
over-estimation of the transition probability, and values lower than zero correspond to
an under-estimation. The 5%, 15%, 25%, 50%, 75%, 85% and 95% quantiles of the
relative bias without the diagonal elements in the transition probability matrix under
t = 1 are –0.211, –0.112, –0.062, 0.000, 0.082, 0.176 and 0.423, indicating that 80% of
the estimated values range from 21.1% smaller to 17.6% larger than the true values. We
find the true transition probability for the elements with relative biases greater than one
are 0.0029 and 0.0021 and the estimates are 0.0061 and 0.0053 corresponding to amino
acids with low stationary distribution in the synthetic dataset. This validates that large
relative biases come from the small transition probabilities. We provide the histograms
of the relative bias under t = 2, 3 and 5 in Supplement 9. When t = 5, we find almost
all elements of the relative bias are within 20% difference from the true one.

Next, we investigate the dependency of the estimates on the number and type of
features used in the model, and on the size of the dataset. We create 60 synthetic
datasets, each based on 10 synthetic sequences related by a shared phylogenetic tree
under a PolaritySizeGtr model. The tree topology is the same as the remaining
synthetic data experiments in our paper. We generate four independent datasets with
1500 sites. We let the number of sites in each sequence increase from 100 to 1400 with
a step size 100 by subsampling from the four independent datasets with 1500 sites. We
apply four different models to each of these 60 datasets: Gtr, Polarity, Polarity-
Size, and PolaritySizeGtr (see Section 7.1). The number of MCMC iterations with
the HMC move is 100,000 and we choose a burn-in period of 10,000. Each iteration
contains several leapfrog steps. We perform a Geweke diagnostic test (Geweke, 1992) to
assess MCMC mixing; the results of this test are in Supplement 10. The averaged wall
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times (in minutes) of the four independent datasets using the 10 synthetic sequences
with 1500 sites under Gtr, Polarity, PolaritySize, PolaritySizeGtr are 2021.9,
1944.5, 1424.5, and 2071.2, respectively. These experiments are run on a cluster of Intel
Xeon E5430 quad-core processors, running at 2.66 GHz.

To summarize the performance of each model on each dataset by a single number, we
use the RMSE metric, described in Section 7.2. We plot the mean accuracies in Figure 2
as a function of the number of sites. We also show 95% confidence bands computed us-
ing the smoothing method Local Polynomial Regression Fitting (Loess) (Chambers and
Hastie, 1991) based on four repeated measures for each site. The smoothed value ob-
tained from the Loess fit is determined by its neighbouring data points using a quadratic
polynomial in the regression.

Under a naive asymptotic analysis, one might expect the Gtr model to be unchal-
lengeable. The results show that for a wide range of finite, realistic dataset sizes, it is
advantageous to add coarse features to the model. Of course, this is true only when
the values of the coarse feature weights are non-zero. Fortunately, our experiments in
Section 7.5 show that our model has high confidence that the magnitudes of the weights
of several of our physicochemical coarse features are indeed large in a dataset of proteins
in the protein kinase domain family. Reassuringly, we also see from Figure 2 that the
performance of all models improve as more data becomes available. As expected, for the
Polarity and PolaritySize models, this performance increase tapers off since these
two models are misspecified in this setup. However, PolaritySize is very effective for
small datasets.

We also compare our implementation to MrBayes, a widely-used Bayesian phyloge-
netics package (Huelsenbeck and Ronquist, 2001; Ronquist et al., 2012). We select a
specific set of features, described in Supplement 8, that match the degrees of freedom
in MrBayes’ GTR configuration. We show in the same Supplement that even in this
specific configuration, our model yields a different rate matrix prior compared to Mr-
Bayes’. Our experiments therefore focus on measuring the effect that the difference in
priors has on the posterior distributions. To do so, we simulate a tree with 10 leaves and
5000 sites using the same strategy as described in Section 7.2. We fix the tree topology
and branch lengths to the correct values for both MrBayes and our method. The results
are in Supplement 9, Figures 5 and 6, and validate that the posterior does not appear
to be sensitive to the form of the distribution fw on the individual weights.

7.4 Evaluation of computational efficiency

Next, we seek to assess the computational gains brought by our sampling algorithm.
To do so, we simulate a tree with 10 leaves and 2000 sites, using the same strategy as
described in Section 7.2. We focus on a single model, PolaritySizeGtr, and com-
pare several samplers. As a baseline, we first perform experiments using a Metropolis-
Hastings algorithm with a Normally distributed proposal distribution. Since we ob-
served the performance of this baseline to be highly sensitive to the bandwidth of the
proposal, we repeat the experiment with a wide range of bandwidths. We also run
an adaptive MCMC algorithm from Roberts and Rosenthal (2009), namely a Normal
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Proposal Metropolis-Hastings (NMH) algorithm based on a joint Normal proposal dis-
tribution with an empirical covariance estimated from the MCMC run. The proposal
distribution is given at iteration n by

Qn(x, ·) =
{
N(x, (0.1)2Id/d) for n � 2d,

(1− β)N(x, (2.38)2Σn/d) + βN(x, (0.1)2Id/d) for n > 2d,

where x is the estimate in the previous iteration, d is the dimension of the parameters,
Id is an identity matrix of dimension d and Σn is the current empirical estimate of
the covariance matrix based on the run so far and β is a small positive constant (we
take β=0.05, as suggested in Roberts and Rosenthal (2009)). It is known from Roberts
et al. (1997) and Roberts et al. (2001) that the proposal N(x, (2.38)2Σ/d) is optimal
in a particular large-dimensional context. We compared these baseline samplers to our
tuning-free sampling method, which combines auxiliary variables and AHMC (see Sec-
tion 4).

We show a trace plot in Figure 8 of Supplement 9 of the weights related to a randomly
chosen feature “AD” which represents the Gtr bivariate feature for amino acid “A”
and “D” using the NMH kernels with bandwidth 0.01 denoted as NMH 0.01. The trace
plot exhibits clear signs of poor mixing. Then we show the trace obtained from the
HMC running in the same amount of time (2267 minutes) in the same plot. Within
each MCMC iteration, the number of leapfrog steps L is 18 with a step-size ε of 0.0085.
However, it is clear from the trace plot that the NMH is severely autocorrelated, whereas
HMC efficiently explores the space.

We quantitatively evaluate the computational efficiency by monitoring the Effective
Sample Size (ESS) per second. This measure provides an estimate of the number of
independent samples that the chain generates; such a measure is needed as MCMC pro-
duces correlated samples, and a higher number of steps per second does not necessarily
mean a higher efficiency, as the samples could be more correlated. We use the package
from Plummer et al. (2006) to compute the ESS. We calculate the ESS per second for
each feature weight and report the extrema and quantile ESS per second across the
different feature weights.

We repeat each experiment four times and average the results. We show the results in
Figure 3. We scale all results by 104 seconds for ease of presentation. See Supplement 10
for results on a wider range of different bandwidth. Our method achieves a higher
efficiency compared to classical NMH kernels with all the bandwidth tested, as well
as compared to the adaptive NMH algorithm. Even when comparing our sampler to
the “oracle” NMH baseline, the minimum ESS per second is superior by an order of
magnitude, and the quantiles, by a factor of at least two. Our sampler outperforms
adaptive NMH by a factor of four in terms of the minimum ESS per second.

Next, we investigate the effectiveness of our Bayesian optimization adaptation scheme
from Section 4.2. We simulate a tree with 10 leaves and amino acid sequences with 500
sites. We adapt the parameters L and ε for HMC using the techniques of AHMC de-
scribed in Section 4.2. We obtain L = 31 and ε = 0.02473 after adaptation. To assess
the quality of these values, we repeat the same experiment several times without adap-
tation, on a grid of parameters centered at L = 31 and ε = 0.02473; see Figure 4.
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Figure 3: Effective sample size per 104 seconds in the log-scale using AHMC, an adap-
tive NMH with a joint proposal guided by an estimated covariance matrix and NMH
with bandwidths of 0.01, 0.02, 0.05, 0.10, where NMH x stands for a Normal proposal
Metropolis–Hastings algorithm with proposal bandwidth x.

Each cell in the plot reflects the average over ESS per second across all feature weights,
displayed in the log-scale. The results show that the performance of the combination of
tuning parameters identified by our adaptation scheme is close to optimal. Moreover,
we found that the cost of the adaptive Bayesian optimization is negligible in all cases
we encountered. While the cost depends on the total number of optimization steps, we
found that a small number of steps was sufficient in practice (Figure 4), with a cost
on the order of 2–3 minutes. By comparison the wall-clock time for running 100,000
MCMC iterations was 2,262 minutes.

We also include a comparison of the computational efficiency of the HMC sam-
pling scheme with and without the auxiliary variables described in Section 4.3 and
Appendix A. In both setups, we set ε = 5 × 10−7 and L = 30. The results, shown
in Supplement 10, show that the HMC sampling scheme with auxiliary variable out-
performs an HMC algorithm without auxiliary variables by more than one order of
magnitude. As before, performance is measured by ESS per second.

7.5 Kinase domain data

We apply our methods to the protein kinase domain family, which is found in many
different proteins. To create an alignment, we use the jackhmmer program, part of the
HMMER 3.0 software suite (Eddy, 1998), to search the non-redundant protein sequence
database for homologs. The starting sequence is selected to be the kinase domain present
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Figure 4: ESS per second (displayed in log-scale) across all features obtained by running
HMC with tuning parameters coming from a grid centred at the values ε and L coming
from AHMC.

in the mouse Titin protein, taken from the PDB file 1TKI, which also includes some
of the flanking sequence. The final alignment contains 641 sequences and 415 sites. To
initialize the phylogenetic tree used in our MCMC algorithm, we ran MrBayes (Ronquist
et al., 2012), which has a more complete and efficient set of tree resampling moves, until
the average standard deviation of split frequencies was under 0.1.

We first estimate the rate matrix using a model containing the PolaritySize set of
features. In this situation, only 33 parameters need to be estimated, including 13 weights
corresponding to bivariate features and 20 related to the univariate features. We run the
MCMC chain for 100, 000 iterations, including a burn-in period of 10, 000 iterations. We
use the Heidelberg and Welch Diagnostic (Heidelberger and Welch, 1981, 1983) to test
if the sampled values come from a stationary distribution. The test is passed for the 33
parameters which indicates the number of MCMC iterations is sufficient. In Figure 5,
we show the approximation of the posterior distribution of the weights for each bivariate
feature obtained from the post burn-in iterations. Recall that when a weight is positive,
its feature has an accelerating effect on the substitution rate, and when the weight is
negative, the feature has a decelerating effect.

We expect that substitutions among amino acids with similar properties would be
favoured. From Figure 5, we see that the 95% Highest Posterior Density (HPD) in-
terval are supported within the positive real line for two weights corresponding to the
“AcidicPolar” and “BasicBasic” features, and the 95% HPD interval are supported
within the negative real line for weights corresponding to the “AcidicNonPolar” and
“BasicNonPolar” features. We performed the same experiment with the Polarity-

SizeGtr model, and obtained similar results. See Supplement 9.

We also estimated the exchangeable coefficients θ{x,x′} between each pair of amino
acids. The exchangeable coefficients represent the rate of substitution between two
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Figure 5: Approximation of the posterior distribution of the weights corresponding to
coarse features under the PolaritySize model. The naming convention on the abscissa
is described in Section 7.1.

amino acids after factoring out the effect of their stationary distribution. Our results
shown in Figure 6 are qualitatively consistent with the substitution patterns found by
previous work. For example, comparing with Barnes et al. (2003), the exchangeable
coefficients between tryptophan (W) and other amino acids are relatively small com-
pared with other states, which is expected based on tryptophan’s unique properties.
Moreover, arginine (R) and lysine (K) have a high exchangeable coefficient, which is
expected because of their similar charge properties.

8 Discussion

Our work shows promise for estimating large rate matrices for which prior knowledge is
known. One well-suited application would be the modelling of the co-evolution of groups
of interacting amino acid residues. Features could be used to model both the evolution
of each individual amino acid (driven by mechanistic codon constraints and physico-
chemical considerations), as well as structural constraints acting on several amino acids
simultaneously.

An important challenge with such models, which we have not addressed here, is the
computation of matrix exponentials over large matrices. Fortunately, recent advances in
the field could be combined with our method (Sidje and Stewart, 1999; Higham, 2009;
Hajiaghayi et al., 2014), in particular, methods that can exploit sparsity in the rate
matrix (Didier et al., 2009; Zhang et al., 2010; Rao and Teh, 2013; Irvahn and Minin,
2014)—note that the base measures in our GLM-CTMC model can be used to create
sparsity.
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Figure 6: Bubble plot of exchangeable coefficients. A bigger bubble indicates a large
exchangeable coefficient value.

A second challenge in estimating large models is data scarcity. One strategy to ad-
dress this is the use of several datasets simultaneously. Again, this can be handled
easily in our framework, including the modelling of hierarchical and non-hierarchical
structures across datasets. One could use distinct covariates where the underlying rate
matrix model is allowed to vary while sharing statistical strengths across different fam-
ilies and/or different subtrees of the tree of life.

We expect the performance improvements brought by our AHMC methods over
(adaptive) NMHmethods to increase in these higher dimensional models. In Neal (2010),
an asymptotic analysis supports that the computational requirements for HMC scale
as O(d5/4), compared to O(d2) for an optimally tuned NMH method. Moreover, using
the Riemann manifold HMC approach of Girolami and Calderhead (2011), it may be
possible to combine the advantages of our method with some of the gains over naive
NMH brought by the covariance adaptation baseline of Section 7.4. More generally, our
method can benefit from various classical methods and recent advances from the HMC
literature, for example, methods to decrease rejection rates via non-constant trajectory
lengths (Hoffman and Gelman, 2014; Sohl-Dickstein et al., 2014), partial refreshment
methods (Horowitz, 1991), splitting methods to exploit tractable Hamiltonian subcom-
ponents (Sexton and Weingarten, 1992) and several other techniques reviewed in Neal
(2010).

Our framework could also be applied to continuous time Bayesian network models
(Nodelman et al., 2002), where a graph specifies a sparsity structure in the rate matrix.
Rao and Teh (2013) has constructed an auxiliary variable Gibbs sampling algorithm for
such models based on the uniformization method. This method could be combined with
the GLM representation of the structured rate matrices to perform Bayesian inference
on the parameters of continuous time Bayesian network models.
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Appendix A: Correctness of the sampling scheme

We show that the sampling algorithm described in Section 4.3 converges to the desired
stationary distribution, namely the distribution with density fw|y(w|y) (see (9)). The
key step consists in defining the appropriate auxiliary variable Z. In general, auxiliary
variables can be used in an MCMC framework in two ways: either by directly augmenting
the state space of the Markov chain, or as a transient variable used to define a kernel,
but discarded right after its instantiation. As we show here, our situation falls in the
second case, a fact that becomes crucial in Section 6.5

Consider the joint distribution

fw,x,y,z(w,x,y, z) := fw(w)fx|Q(x|Q(w))fy|d(y|d(x))1[z = z(x)], (23)

fy|d(y|d) :=
∏
v∈V

femi(yv|dv). (24)

It is easy to check that we recover the target model of Section 3 after marginalization
of x and z. The conditional densities fz|w,y and fw|z,y are defined in the obvious way
from the above joint density. Moreover, since z is sufficient to compute fx|Q(x|Q(w)),
then the following is well defined when z ∈ z(S(|T |)): fx|Q(z|Q(w)) := fx|Q(xz|Q(w)),
where xz is such that z(xz) = z.

Next, we define a Markov chain W (1),W (2), . . . on the state space RP . We construct
a Markov transition kernel T using a sequence of sub-steps: first, augmentation of the
state space to accommodate auxiliary variables, second, transition in the augmented
space, and third, projection back to the target space R

P . We show that each of these
sub-steps keeps fw|y(w|y) invariant.

We denote the sub-steps as follows: w
T1�−→ (w, z)

T2�−→ (w′, z)
T3�−→ w′. Each ker-

nel in this decomposition is defined as follows: T1 samples the auxiliary variable Z
given the data Y and current parameters W . It has density T1(w

′, z′|w) := 1[w =
w′]fz|w,y(z|w,y). Sampling from this density is outlined in Section 4.3, with additional
details provided in Supplement 3. T2 performs one (or several) Metropolis-within-Gibbs
step(s) on w, keeping z fixed. More precisely, this Metropolis-within-Gibbs step uses
the HMC algorithm of Section 4. We show below that it is invariant with respect to
the conditional distribution fw|z,y. T3 deterministically projects the pair back to the
original space, retaining only the weights w.

It remains to show that the formulae for Uz(i) and ∇wUz(i) in Section 4.3 correspond
to the negative logarithm of the conditional density fw|z,y:

6

log fw|z,y(w|z,y) = log

∫
x:z(x)=z

fw,x,y,z(w,x,y, z(x)) dx+ cnst (25)

5More precisely, if Z were part of the MCMC state space, we would have to develop new topology
resampling operators that condition on both W and Z. This is not the case here: we only need to
condition on W , which allows us to reuse existing phylogenetic MCMC operators.

6In (25), the densities and integrals are defined with respect to a reference measure on CTMC
sample paths containing finite numbers of jumps.
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= log

∫
x:z(x)=z

fw(w)fx|Q(x|Q(w))fy|d(y|d(x)) dx+ cnst (26)

= log fw(w)fx|Q(z|Q(w))

+ log

∫
x:z(x)=z

fy|d(y|d(x)) dx

︸ ︷︷ ︸
constant with respect to w

+cnst. (27)

Now, plugging in (1) into the above expression, we obtain (16). For the gradient,

∇wUz (w) = ∇w

[
1

2
κ‖w‖22 −

∑
x∈X

hxq
(nr)
x,x (w)

−
∑

(x,x′)∈Xdistinct

cx,x′ log
(
q
(nr)
x,x′ (w)

)]
(28)

= κw −
∑
x∈X

hx∇w

⎡
⎣ ∑
x′∈X :x �=x′

q
(nr)
x,x′(w)

⎤
⎦

−
∑

(x,x′)∈Xdistinct

cx,x′ϕ(x, x′) (29)

= κw +
∑

(x,x′)∈Xdistinct

ϕ(x, x′)
(
hxq

(nr)
x,x′(w)− cx,x′

)
. (30)

This coincides with (17).

Supplementary Material

Supplemental Materials: Bayesian Analysis of Continuous Time Markov Chains with
Application to Phylogenetic Modelling (DOI: 10.1214/15-BA982SUPP; .pdf).
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