
Bayesian Analysis (2016) 11, Number 1, pp. 191–213

Computational Enhancements to Bayesian
Design of Experiments Using Gaussian

Processes
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Abstract. Bayesian design of experiments is a methodology for incorporating
prior information into the design phase of an experiment. Unfortunately, the typ-
ical Bayesian approach to designing experiments is both numerically and analyti-
cally intractable without additional assumptions or approximations. In this paper,
we discuss how Gaussian processes can be used to help alleviate the numerical is-
sues associated with Bayesian design of experiments. We provide an example based
on accelerated life tests and compare our results with large-sample methods.
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1 Introduction

Bayesian design of experiments is a framework developed to incorporate some form
of available prior information in the designing stage of an experiment. Such prior in-
formation could come from either a previous data analysis of the same items or from
experimentation on similar items. Typically, before performing the experiment, practi-
tioners have in mind some utility function that they wish to maximize. For example,
in accelerated life tests (ALT), the engineers may want to estimate a quantile of the
failure-time distribution as precisely as possible and their criterion function could be
the posterior variance of the quantile, denoted as U(η) = var(tp|t, η) where η is a given
design, tp is the p-quantile of the failure-time distribution, and t is a vector of observed
data (failure times) collected according to η. Notice that improving the precision of
the estimator of tp means minimizing its posterior variance, i.e., minimizing U(η) with
respect to η. Because selecting the design must come before observing the data, in most
cases the utility function cannot be calculated directly since it depends on the unob-
served data. Instead, a preposterior expectation of the criterion function with respect
to the unobserved data is performed. A desired experiment design would be one that
minimizes the preposterior expectation of the criterion function:

Λ(η) =

∫
var(tp|t, η)dFt =

∫
U(η)dFt, (1)

where Ft is the joint marginal distribution of the failure times. It is at this point that
the difficulty arises in typical Bayesian design of experiments; how does one, in general,
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find a design that minimizes (or maximizes) a computationally difficult quantity (both
numerically and analytically)?

Traditionally, normal approximations to the posterior distribution have been used to
help alleviate the computational difficulties (Chaloner and Larntz, 1992). For example,
the posterior variance of the failure-time quantile can be approximated by a function of
the unknown model parameters θ and the Fisher information matrix (possibly through
the delta method), denoted as Iθ (notice that we have θ in the subscript to highlight
its dependence on unknown parameter values),

Λ(η) ≈
∫

c(θ)′I−1
θ (η)c(θ) dp(θ), (2)

where p(θ) is the assigned prior distribution for θ and c is a vector of partial derivatives
of tp with respect to the model parameters. A consequence of this approximation is that
the integration in (2) is performed over the parameter space instead of both the sample
space and the parameter space. A problem with this approach is that, in general, this
may not be a good approximation to the true quantity the designers are interested in,
and perhaps the quality of the approximation is not easily quantified.

An alternative solution to optimizing (1) is to use simulation to estimate Λ(η).
Then the surface of Λ(η) can be adequately populated throughout the η space and the
optimum (i.e., minimum) can be found, similar to the methods presented in Clyde et al.
(1995). This approach, however, assumes that the computing time needed to calculate
the integrand in (1) is small. In general, this may not be the case. For example, Picard
and Williams (2013) present applications where researchers are interested in estimating
rare event probabilities using computer experiments where a single code run requires
a significant amount of time. In such situations it is not practical to run the computer
code at enough η locations to adequately populate Λ(η) due to the massive amount of
time needed for the computations.

For physical or computer experiments that are restricted to smaller sample sizes
(i.e., where large-sample approximations are not plausible) or where computation time
is significant, a sequential approach to experiment design is preferred because it allows
designers to be more efficient in optimizing the design and to leverage learning from
early runs. The methods proposed in this paper are sequential in nature and are relevant
to small-sample and large compute-time applications.

This sequential approach to designed experiments relates to the broader problem
of resource allocation, where the experimenter must decide what new data to collect
conditional on current understanding of the problem. Anderson-Cook et al. (2008) and
Anderson-Cook et al. (2009) provide an overview of how balancing different propor-
tions of data types can be considered as part of sequential optimization with flexible
objectives.

The purpose of this paper is to propose an emulation approach for Bayesian design
of experiments. In particular, we illustrate how a Gaussian spatial process (GP) can
be used to mimic (1). The benefits of a GP are that it is quicker to calculate than (1)
and requires fewer assumptions than the normal approximations to the posterior in (2).
Additionally, this approach allows us to incorporate uncertainty from both the Monte
Carlo estimates of the integrals in (1) and from the GP itself.
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This paper and those cited below follow the framework developed by Raiffa and
Schlaifer (1961), Lindley (1972), and Chaloner and Verdinelli (1995). Zhang and Meeker
(2006) employ the methods from Chaloner and Verdinelli (1995) and replace the poste-
rior variance by the variance of a normal approximation to the posterior distribution.
For cases where the design space (i.e., the space that contains all possible experiments) is
finite, Drovandi et al. (2013) and Drovandi et al. (2014) present efficient methods using
sequential Monte Carlo and particle filters for selecting an optimum design in low-
dimensional input spaces. Hamada et al. (2001) illustrates how genetic algorithms can
be used to identify promising candidates for Bayesian design of experiments. Response
surface methods for Bayesian design of experiments have been previously considered.
For example, Clyde et al. (1995) and Müller (1999) use response surface representations
of the criterion function for Bayesian design of experiments. In these papers, random
designs were selected and Monte Carlo methods were used to estimate (1) for each
design. A density estimate was then fit to these points (i.e., on U(η) and η space) for
each randomly generated design. The design yielding the maximum value of this surface
was selected as optimum. In addition, Müller (1999) presents a Metropolis–Hastings ap-
proach for calculating (1). Recently, Huan and Marzouk (2013) showed how an emulator
using polynomial chaos can be used to mimic (1), whereas in this paper we focus on
building emulators of stochastic design criterion functions using GPs, taking advantage
of readily available optimization software developed specifically for GPs (see Jones et al.
(1998) and Picheny et al. (2013), for example).

The methods proposed in this paper can be used in two different design scenarios.
The first problem, which our example represents, involves using the approach to deter-
mine the conditions for which a new physical experiment or test is to be performed.
The second problem involves sequential design, such as iterative criterion-based design
of computer experiments. In particular, these methods can be used to identify the next
run of a computer code in a computer experiment. When this calculation is complete,
the methods can be used again with the new information from the just completed run
to determine the next run of the computer code.

The rest of this paper is organized as follows. Section 2 discusses the motivating
application for this work and sets up the design problem. Section 3 introduces GPs and
describes the algorithm that we use for finding an optimal ALT. Section 4 illustrates how
to use a GP for finding the optimal design. Section 5 presents a simulation study used to
illustrate the performance of our method. Lastly, Section 6 provides some conclusions.

2 Illustrative Example: Planning for Accelerated Life
Tests

2.1 The Device-A Data

We consider the Device-A data in Table C.10 of the Appendix of Meeker and Escobar
(1998) as our illustrative application. In this example, 165 units were tested at vari-
ous levels of temperature, and their time of failure was recorded if the unit failed or
alternatively the time the test ended if the observation was censored.
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2.2 Accelerated Life Test Model

In Chapter 19 of Meeker and Escobar (1998), a lognormal distribution was fit to these
data using maximum likelihood methods where the log-location parameter was modeled
as a linear regression with the Arrhenius transformation of temperature, i.e.,

μ = γ0 + γ1x

where

x =
11605

Temp◦C+ 273.15
.

For the device-A data, we follow the model of Meeker and Escobar (1998) and continue
to use a lognormal distribution for the failure-times.

The lognormal distribution is a member of the log-location–scale family of distribu-
tions and is commonly used in reliability applications. A random variable T > 0 is a
lognormal random variable if for t > 0

Pr(T ≤ t) = F (t) = ΦNorm

(
log(t)− μ

σ

)
,

where ΦNorm is the cumulative distribution function (cdf) of a standard normal distri-
bution, μ ∈ R is the log-location parameter, and σ > 0 is the log-scale parameter. We
assume that σ is constant across temperatures.

The proposed accelerated model that describes the underlying failure mechanisms is
only valid for a range of x, namely [xL, xH ]. Testing at or below xL does not produce any
failures and testing above xH tends to induce a new failure mechanism that is not seen
in the field. Common practice is to standardize x to a new variable ξ so that ξ ∈ [0, 1].
One such standardization is ξ(x) = (x− xL)/(xH − xL). Adopting this standardization
reparameterizes our accelerated model to μ = β0 + β1ξ where β0 = γ0 + γ1xL and
β1 = γ1(xH − xL). For the lognormal distribution, the p quantile is

tp = exp(μ+Φ−1
Norm(p)σ) = exp(β0 + β1ξ +Φ−1

Norm(p)σ). (3)

In particular, we are interested in the p quantile at use conditions, which is specified
when ξ = 0.

Lastly, for purposes of improving the convergence of our Markov chain Monte Carlo
(MCMC) algorithm, we center ξ about 0.5 (its midpoint). This further reparameterizes
our model to

μ = β∗
0 + β1(ξ − 0.5), (4)

where β∗
0 = β0 + β10.5.

2.3 Accelerated Life Test Specification

We use the variable η to denote a given accelerated life test (design, for short). A design
η tells us the factor-level combinations, ξ, to be tested, the number of levels for testing,
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k, and the number of units or proportion of units to be tested at those levels, πi,
i = 1, . . . , k where

∑k
i=1 πi = 1. In general, ξ is a vector with length equal to the

number of factors varying in the experiment (in our example, we only have 1 factor,
temperature). Here,

η =

⎡
⎢⎣
ξ1, π1

...
...

ξk, πk

⎤
⎥⎦ .

In general, there is some ambiguity to this notation. For example, consider the two
designs

η1 =

[
ξ1, π1

ξ2, π2

]
, (5)

η2 =

[
ξ2, π2

ξ1, π1

]
.

Notice that η1 = η2. To avoid such ambiguities, we recommend sorting the design by
increasing πi so that if π1 < π2, then both η1 and η2 can be represented by η1 as defined
in (5). In general, we define a design η as

η =

⎡
⎢⎣
ξ1, π1

...
...

ξk, πk

⎤
⎥⎦ ,

where π1 ≤ π2 ≤ · · · ≤ πk.

2.4 Prior Distribution

Our accelerated model has three unknown parameters, θ = (β0, σ, β1). The available
information about θ is quantified in a prior distribution denoted as p(θ). For the device-
A example, our prior information p(θ) is based on the posterior distribution from an
initial Bayesian model fit to the original device-A data, where diffuse priors were selected
for θ. Specifically, a joint lognormal distribution p(θ) for the parameters was selected
that matched the summary statistics from the initial Bayesian fit. The parameters for
our prior distribution are given in Table 1. Note that this prior is given in terms of the
centered parameterization used for the MCMC. Additionally, the posterior distribution
obtained from analyzing the original device-A data assigned essentially all its probability
to negative values of β1. Therefore, we assigned a lognormal distribution to −β1.

Model Parameter
Prior Log-location
parameter

Prior Log-scale
parameter

Prior Mean Prior SD

β∗
0 2.282 0.027 9.80 0.265
σ 0.033 0.140 1.044 0.147
–β1 1.667 0.135 5.345 0.725

Table 1: Lognormal hyperparameters for the prior distribution of θ.
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2.5 Bayesian Planning Criterion

Suppose that we are in a situation where we either have a new sample of the device-
A units or we have new devices that have similar properties to the device-A units
such that the prior distribution given in Section 2.4 is applicable. The engineers are
interested in planning an ALT that provides the best estimation precision for tp at
the nominal usage conditions. More specifically, the engineers want to know to which
accelerated temperatures should the units be allocated in order to provide the most
information for tp at some nominal temperature. This is similar to the example in
Zhang and Meeker (2006) where they designed plans to minimize the posterior variance
of the log 0.10 quantile of the failure-time distribution at nominal conditions. The range
of temperatures that the engineers are willing to test are [10◦C, 80◦C], where 10◦C is
the nominal-use temperature and 80◦C is the maximum temperature that can be used
before an additional unwanted failure mechanism is induced. Note this range will be
standardized to [0, 1] where 0 is the nominal-use condition.

In our example, we wish to find the design η that minimizes the posterior variance
of tp (or equivalently, maximize the negative of the variance) at Temp◦C = 10◦C, i.e.,

var(tp|t, η) =
∫

[tp − E(tp|t, η)]2f(tp|t, η)dtp, (6)

where f(tp|t, η) =
∫
f(tp|t, θ, η)p(θ|t, η)dθ =

∫
f(tp|θ)p(θ|t, η)dθ is the posterior dis-

tribution of tp with expected value E(tp|t, η) and f(tp|θ) is a Dirac delta function. In
general, f(tp|t, η) is analytically intractable and we must therefore use simulation to
estimate var(tp|t, η). Because we are in the design phase of the ALT, the vector of item
failure times t have not been observed. Instead, a preposterior expectation over the
marginal distribution of the data will be used:

Λ(η) =

∫
var(tp|t, η)f(t|η)dt, (7)

where f(t|η) =
∫
f(t|θ, η)p(θ)dθ and η gives the test temperatures and their corre-

sponding proportions. Our simulation algorithm for estimating (7) is provided in Ap-
pendix A.1.

Equation (7) represents our test plan criterion. The goal at this stage is to find the
test plan η∗ such that

η∗ = argminη∈HΛ(η)

where H is the class of suitable design measures.

Following the results of Zhang and Meeker (2006), we suppose for this application
that the optimal design is a two-point plan, so we restrict our search to the class of
plans structured as:

η =

[
ξ1, π1

ξ2, π2

]
(8)

with ξ1, ξ2 ∈ [0, 1] × [0, 1], π1 + π2 = 1, and π1 ∈ (0, 1). Notice that we require an
open interval for π1 to prevent the designs from collapsing to singular designs (designs
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that do not allow estimability of all the parameters). These assumptions reduce design
optimization to just a three-dimensional search over (ξ1, ξ2, π1) because π2 = 1− π1.

We assume we know how many items (or code runs if designing a computer ex-
periment) will be used in the accelerated test (i.e., we know the length of t). For
our example, we select the sample size of 165 used in the original motivating exper-
iment. In a general setting, this sample size may be dictated by the available budget
for the physical experiment or the amount of processing time available on a supercom-
puter.

3 GP Based Search for the Optimal Design

3.1 Introduction of GPs

Criterion functions that are computationally intensive to compute, like Λ(η), are prime
candidates for statistical surrogate modeling. The criterion function Λ(η) is evaluated
directly on a limited set of candidate designs and a statistical surrogate is developed
from the results that allows prediction of Λ(η) with uncertainty quantification for ar-
bitrary design η. This surrogate is chosen to be orders of magnitude faster to evaluate
than the criterion function itself. We utilize a general approach to surrogate construc-
tion based on Gaussian spatial process models, which allow substantial flexibility in
fitting smooth functions to available observations and lend themselves to automation
in iterative algorithms such as optimization, which is essential to our primary goal of
efficiently identifying an optimal design η∗.

Let X be a fixed subset of R
d. We say that the random function Y (x) is a GP

for x ∈ X if for any fixed L, and x1, . . . ,xL ∈ X , the vector (Y (x1), . . . , Y (xL)) is
jointly Gaussian distributed (Cramér and Leadbetter, 1967; Adler, 1981; Santner et al.,
2003). A GP is defined in terms of its mean function μ(x) = E[Y (x)] and covariance
function C(x,x′) = Cov[Y (x), Y (x′)]. In the following, we assume further that the GP
is second-order stationary, so that (i) its mean is constant, μ(x) = μ for all x ∈ X ,
and (ii) covariances of responses evaluated at two inputs x and x′ only depend on their
difference in X , C(x,x′) = c(x−x′) for an appropriate function c. Note this restriction
implies that the process variance is constant, σ2 = C(x,x) = c(0) for all x ∈ X .

Often, c(·) is chosen from a parametric family of covariance (symmetric and positive
semidefinite) functions to obtain a desired level of smoothness in process realizations. In
our application, a product of one-dimensional Matérn covariance functions each having
smoothness 5/2 (Matérn (1986)) is selected,

c(h) = σ2
d∏

i=1

ci(hi) for ci(h) =

(
1 +

√
5
|h|
αi

+
5

3

(
h

αi

)2
)
exp

(
−
√
5
|h|
αi

)
,

where the range parameters αi are to be estimated along with the constant mean μ and
variance σ2 as explained in the next paragraph. The resulting GP admits functional
realizations that are twice continuously differentiable throughout X .
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In the following, we identify the isomorphism between the design η = (ξ1, ξ2, π1, π2 =
1 − π1) and the equivalent three parameters x = (ξ1, ξ2, π1), noting that Λ(η) = Λ(x),
x ∈ X with input space X having bounds as previously specified. To minimize Λ(η) in
a computationally efficient manner, we first model the random function Λ(x) as a GP.
This process is evaluated at r selected initial designs η1, . . . , ηr as described in the next
section. Because evaluation of Λ(η) is stochastic rather than deterministic, we include
a nugget effect (see Chapter 4 of Santner et al. (2003) for more on the nugget effect) in
the GP covariance function,

cε(h) = c(h) + σ2
ε I(h = 0) ,

where I(A) is the indicator function of the event A. The log-likelihood function of
Λr = (Λ(η1), . . . ,Λ(ηr)), up to a constant, is given by

−1

2

[
log det

(
C+ σ2

εIr
)
+ (Λr − μ1r)

T
(
C+ σ2

εIr
)−1

(Λr − μ1r)
]

where 1r and Ir are the r-vector of ones and the r× r identity matrix, respectively, and
the (i, j)-entry of C is given by c(xi − xj). In the development to follow, the statistical
model parameters (μ, σ2, σ2

ε , α1, α2, α3) are estimated by maximum likelihood using the
km function distributed with the R package DiceOptim (Roustant et al., 2012).

3.2 GP Search for Optimal ALT

As mentioned in the introduction, our Bayesian design criterion presented in (7) is
difficult to calculate because of the two imbedded integrals; the outer integral is with
respect to the marginal distribution of the data and the inner integral is with respect
to the posterior distribution of tp. In general, these different integrals are analytically
intractable and numerically intensive. Because (7) involves complicated integration, the
inner integral is estimated using MCMC, in particular a Metropolis algorithm, and the
outer integral is estimated using Monte Carlo integration.

Therefore, we minimize how often we perform the MCMC and Monte Carlo inte-
gration and instead use the GP to search the design space. This introduces the com-
plication that as a random process, the GP can only predict the criterion value for
any given design η up to a level of uncertainty determined by the available design
evaluations. For deterministic criteria, the efficient global optimization (EGO) algo-
rithm of Jones et al. (1998) introduces the notion of expected improvement criteria
for optimization of computationally intensive computer experiments. EGO provides a
criterion that balances local optimization (small predicted Λ(η) and low prediction un-
certainty) with uncertainty reduction (large predicted uncertainty in Λ(η)). Designs in
the latter category are potentially promising and thus are investigated if the level of
uncertainty in Λ(η) could make them competitive with designs in the former category.
These investigations reduce the prediction uncertainty in Λ(η), allowing a more pre-
cise determination of the quality of the associated designs. Since this seminal work,
the expected improvement concept has formed the basis of a wide variety of sequen-
tial experiment design criteria. Unfortunately, we cannot use EGO directly to opti-
mize Λ(η), as this criterion function is not deterministic upon evaluation at design η
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because of the simulation approach used in its calculation. Huang et al. (2006) pro-
posed heuristic modifications to the EGO framework for optimizing a uniformly noisy
response. Gramacy and Lee (2010) point out that the EGO expected improvement
criterion can be tweaked to satisfy a monotonicity constraint for use with nondetermin-
istic output. Instead, we utilize the expected quantile improvement (EQI) framework
recently developed by Picheny et al. (2013) to optimize our stochastic design criterion.
EQI provides an expected improvement criterion consistent with the figure of merit
adopted for selecting design candidates while facilitating user influence over the global
vs. local nature of sequential iterates through specification of a future variance param-
eter.

We suppose that Λ(η) has been evaluated for r initial designs x1, . . . ,xr and a
GP fit to the results Λr = (Λ(x1), . . . ,Λ(xr)), where x = (ξ1, ξ2, π1) denotes the in-
puts defining designs η. With the GP parameters (μ, σ2, σ2

ε , α1, α2, α3) fixed at their
maximum-likelihood values, we denote the mean and variance of the predictive GP (i.e.,
the process for predicting Λ(x) with uncertainty quantification at arbitrary x based on
the available data Λr) by μr(x) and s2r(x) respectively. The β-quantile of this predictive
GP is given by qr(x) = μr(x) + Φ−1

Norm(β)sr(x). The minimum β-quantile value from
the evaluated designs is denoted qmin

r = min{qr(x1), . . . , qr(xr)}. We replace q by Q
to designate random versions of these quantities, necessary when the data vector Λr is
viewed as random rather than fixed.

With these preliminaries, we define the quantile improvement by

QIr(x) = max{0, Qmin
r −Qr+1(x)} ,

where Qr+1(x) refers to the (random) β-quantile based on Λr and the unobserved value
Λ(x). This quantity represents the random amount by which the β-quantile would be
reduced if the design criterion were evaluated at new input x in addition to x1, . . . ,xr,
which can never be known precisely. Instead, we compute the expected quantile improve-
ment, which is the expected value of QIr(x) given the available data Λr,

EQIr(x) =
(
qmin
r − μQr+1

)
ΦNorm

(
qmin
r − μQr+1

sQr+1

)
+ sQr+1φNorm

(
qmin
r − μQr+1

sQr+1

)
,

where φNorm is the density function for the standard Gaussian distribution. Here, μQr+1

is the conditional expected value and s2Qr+1
the conditional variance of Qr+1(x) given

Λr, which can be computed in closed form. We choose to then evaluate the design cri-
terion at the value xr+1 that maximizes EQIr(x) for x ∈ X . This process continues
iteratively by augmenting the sets of available designs and evaluated design criterion
values by xr+1 and Λ(xr+1), respectively, and updating the maximum likelihood val-
ues of the GP parameters until a budget of R allowable design criterion evaluations
is expended. The EQI criterion is optimized using the max EQI function distributed
with the R package DiceOptim (Roustant et al., 2012), which utilizes an evolutionary
search algorithm with a derivative-based (i.e., Newton or quasi-Newton) optimization
method.
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As with EGO, we note that the first term of EQIr(x) emphasizes local search
(μQr+1 � qmin

r favored) while the second term emphasizes global search (sQr+1 large).
In EQI we are minimizing a specified upper bound (β ≥ 0.5) of a stochastic process
to account for noise in evaluation of the design criterion. If each such evaluation pro-
duced a deterministic result, EQI collapses to EGO. In order to compute EQIr(x), the
degree of stochastic variability in Λ(·) associated with the new observation at x must
be specified. We use a suggestion of Picheny et al. (2013) to set this future variance at
σ2
ε/(R − j) where j is the number of runs in the current design. This allows EQI to

globally explore the space of designs at the outset while transitioning to a more local
search as the evaluation budget is expended.

We examine two approaches for generating the starting designs η1, . . . , ηr. In the
first, the initial designs are chosen to be a random sample from the input space X ,
while in the second, the initial designs are selected as a space-filling Latin hypercube
sample (McKay et al., 1979) from X . For budget R, we set r = R/2 and iterate EQI
until the budget is expended as explained in the next section. The choice of r balances
having adequate initial information to approximate the surface with reserving sufficient
runs to take advantage of the understanding gained to optimize the solution.

4 Finding an Appropriate Design for the ALT Example

In this section, we find an optimal design based on the EQI algorithm and the Monte
Carlo algorithms given in Appendix A.1. Figure 1 displays

√
Λ as a function of η (i.e.,

each point in this space corresponds to a single η). The x and y axes give the temper-
atures (ξ1 and ξ2) for the test and the area of the point corresponds to π1 (i.e., the
proportion of units allocated to temperature 1). The gray points correspond to the ini-
tial surface generated for the EQI algorithm. In this case, these designs were generated
using a Latin hypercube of size 30. The black points correspond to the next 30 (for a
total budget of 60) candidate points selected by the EQI algorithm.

Notice that the EQI algorithm concentrated on two regions in the design space which
are indicated by the large open ovals on the plot. These two regions yielded designs
with the lowest values of Λ. These regions can be considered equivalent in the following
sense: Recall the discussion in Section 2.3 where we describe how a given design has an
equivalent counterpart by simply rearranging the rows of the design. This symmetry in
the design space occurs because we did not impose any additional constraints on the
optimization (for example, requiring π2 > π1), meaning that a design in region one, η(1),
has an equivalent counterpart in region two, η(2), which is found by interchanging rows
in its representation (8). The third row in Table 2 gives the accelerated test selected
from this example. This test was selected by taking the design corresponding to the
minimum estimated criterion value observed on the final design.

Figure 2 displays the expected-quantile improvement (Figure 2A) and the log of the
nugget-effect estimate (Figure 2B), both as a function of the iteration. Figure 2C shows
where the design was selected in the Temperature 1–Temperature 2 space where the
symbol denotes the iteration. Notice that initially the nugget effect has not been dis-
covered and the GP-inferred prediction uncertainty is low, so the greatest improvement
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Figure 1: Plot of
√
Λ as a function of the designs. The size of the dots is proportional

to π1 and the ovals are promising regions for locating the optimal design.

comes by selecting points in the regions where the GP predicts low criterion values.
After iteration 50, the EQI algorithm has discovered the nugget effect and begins to
select points that are at the boundaries of the experimental regions (iterations 55–60)
where kriging models tend to have the most uncertainty. Note that although iteration
59 is not located at a boundary region in the Temperature 1–Temperature 2 space, it
is on the boundary of the π1 space (for this iteration, π1 = 0). Eventually EQI would
return to myopic searches near the optima with a larger budget of additional runs, as
seen for example in Section 5.

In the next section, we compare how the GP method selects accelerated tests relative
to other approaches currently in the literature.

4.1 Comparison with Traditional Methods

We now compare the results given in Section 3 with methods already present in the
statistical literature. We use an approximation to (7) similar to (8) in Zhang and Meeker
(2006), namely

Λ(η) ≈
∫

c(θ)′(Iθ(η) + S−1)−1c(θ)p(θ)dθ (9)
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Figure 2: EQI (Figure 2A) and the log of the nugget-effect estimate (Figure 2B) as a
function of the iteration after the initial design. Figure 2C shows where each design
was selected in the Temperature 1–Temperature 2 space where the symbol denotes the
iteration.

where again p(θ) is the prior of θ, c is the gradient vector of tp with respect to θ (which
is given in Appendix A.2), and Iθ(η) is the Fisher information matrix evaluated at the
design η and parameter values θ. The form of Iθ(η) is

Iθ(η) =
n

σ2

∑
πiFi

where n is the total sample size for the test, πi are the proportion of units allocated to
the level ξi,
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Fi =

⎡
⎣ f11(ζi) f12(ζi) f11(ζi)ξi

f12(ζi) f22(ζi) f12(ζi)ξi
f11(ζi)ξi f12(ζi)ξi f11(ζi)ξ

2
i

⎤
⎦ (10)

is the scaled Fisher information matrix for a single unit at ξi, and ζi is the standardized
log-censoring time which for type I censoring is

ζi =
log(tc)− μi

σ
=

log(tc)− β0 − β1ξi
σ

.

The basic elements f11, f12, f22 are calculated using the algorithm provided in Escobar
and Meeker (1994) at the standardized log-censoring times. In their paper, Zhang and
Meeker (2006) automatically set the upper-standardized temperature to be 1 in their
two-point plan and so the optimization is over the lower-standardized temperature, ξL,
and the lower allocation proportion, πL.

Zhang and Meeker (2006) require specification of a prior precision matrix S−1. Based
on their discussion, this matrix represents the prior information for θ associated with
estimation of these parameters, i.e., the prior information specifically used for estimating
θ. This can be different than the prior information used for designing the test, p(θ),
because, in general, those who design the test may have different goals than those who
will perform the parameter estimation. For more on this distinction, see Tsutakawa
(1972) and Etzioni and Kadane (1993). In our example, we choose a diffuse prior as
no specific information is available to us from the Device-A study, which amounts to
setting S−1 = 0 in (9). Note that because we are setting S−1 = 0, we are also able to
factor n out of Iθ(η) in estimation of (9).

4.2 Prior Information

We consider two prior distributions for the following calculations. As before, we use
the prior distributions given in Section 2.4, which we denote as p1(θ). In addition to
these priors, we also assign a point-mass prior to θ (i.e., a prior that assigns all mass
to a single point), denoted as p2(θ). Note that this is equivalent to the frequentist
methods given in Chapter 20 of Meeker and Escobar (1998) (for which the authors call
p2(θ) planning information). For p2(θ), we use the maximum likelihood estimates (mle)
given in Chapter 19 of Meeker and Escobar (1998) which are then converted to our
parameterization of the model. p2(θ) is given as

p2(θ) =

{
1 if θ = (β0, σ, β1) = (12.321, 0.98,−5.118),

0 otherwise.

Table 2 gives the design using the methods in Zhang and Meeker (2006) and using
priors p1 and p2. For our approach, we used a Latin hypercube design for generating
the initial 30 design points and used a total budget of 60 runs. Notice that the three
different approaches yield optimal designs that are quite similar and that the approach
using the GP found the best design of the three.
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Approach ξL πL

√
Λ(η)

Frequentist p2(θ) 44 0.69 24886.4
Zhang and Meeker (2006) p1(θ) 46.026 0.685 24939.6
GP p1(θ) 41 0.65 24484.0

Table 2: Comparison of alternative methods for finding designs with the GP based
method.

5 Examination of Different Starting Designs and
Budgets

Recall in Section 3.2 that the EQI algorithm requires an initial collection of designs
x1, . . . ,xr with corresponding results Λr = (Λ(x1), . . . ,Λ(xr)) where x = (ξ1, ξ2, π1). In
this section, we consider two different ways of generating the set x1, . . . ,xr, by either
randomly selecting this set or by using a Latin hypercube design. Furthermore, we
consider different sizes of budgets R that we can commit to finding the Bayesian design
and set the initial set size as r = R/2. For our study, we use R = 30, 60, 90.

The randomly-selected designs are generated by drawing three numbers from a
uniform(0, 1) distribution, two numbers for the accelerating variable (recall in Sec-
tion 2.2 we standardized the accelerating variable to the unit interval [0, 1]) and one
variable for the proportion allocated. We generate Latin hypercube designs by applying
the algorithm described in Chapter 5 of Santner et al. (2003). First we divide each
axis of the unit cube [0, 1]3 into equally spaced intervals defined by the cut points
[0, 1/r, . . . , [(r − 1)/r, 1]. Then for each input we sort these intervals according to a
random permutation of the integers 1, . . . , r. Cartesian products of the sorted intervals
across inputs identify r cells in the input domain. Points are then sampled from uniform
distributions on each cell, resulting in a Latin hypercube design of size r.

We generated 10 designs for each design type and budget (e.g., 10 randomly gen-
erated initial designs of size r = 15 and total budget R = 30, etc.). Then for a given
generated design, we apply the algorithm given in Picheny et al. (2013) and search for
the optimal design. These results are given in Figures 3–5. In each of these figures, the
panels corresponding to A are for a budget of 30, the panels corresponding to B are for
a budget of 60, and C has a budget of 90.

Figure 3 illustrates the EQI for both design types and for R = 30, 60, 90. Across
these three plots, it is not obvious which of the two starting-design type is preferred.
Notice that when R = 30 (Figure 3A), the initial random designs seem to have captured
the important points relative to the EQI, which is not the case for the Latin hypercube
design. This is not the case, however, for R = 60 (Figure 3B) and R = 90 (Figure 3C),
where it appears both initial-design types perform equally well; both design types add a
few important points early on and then the EQI gradually approaches zero, after about
15 iterations.

Figure 4 displays the (log) nugget effect for both design types and for R = 30, 60, 90.
Again, as in Figure 3, there is no clear initial-design type that is preferred as both have
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Figure 3: EQI as a function of steps after initial design and for R = 30 (A), 60 (B), and
90 runs (C).
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Figure 4: Log-nugget effect as a function of steps after initial design and for R = 30
(A), 60 (B), and 90 runs (C). The black lines show the path of one of the simulation
cases.
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similar behaviors across R. Notice though that the nugget effect is discovered quite early
in all the subpanels within Figure 4. Indeed, for the black paths highlighted for R = 30
(Figure 4A), the algorithm discovered the nugget effect after the eighth iteration for
the Latin hypercube design and after about 6 iterations for the random design. These
paths then appear to be converging to the same nugget level as represented in the plots
for R = 60 (Figure 4B) and R = 90 (Figure 4C).

Lastly, Figure 5 shows the steps chosen by the EQI algorithm after the initial design
within the Temperature 1–Temperature 2 space. The gray points in this plot display all
points chosen in the simulations and the numbers correspond to a single realization from
the simulation study. Notice that across all plots the points follow a similar pattern:
they either focus on the two clusters of points corresponding to the region containing the
minimum or they explore the boundaries of the space to reduce the uncertainty in the
kriging estimator. The points that are roughly in the center of the plot have π1 values
at either 1 or 0, though this is not obvious from the figures. The sequence numbers
illustrate that if less of the budget is allocated to the initial design, the algorithm will
spend more of the earlier runs on globally searching the response surface to improve the
fit of the GP. Once the response surface has been adequately resolved, the algorithm then
focuses on identifying the minimum value of the response surface. If the initial design is
large enough, resulting in the GP providing a good fit, then the algorithm immediately
focuses on finding the minimum of the response surface. Finally, the triangle in the plot
corresponds to the frequentist solution to this design problem. Notice that across all
plots, the triangle is within the regions of the space where the EQI algorithm identified
the minimum value.

To conclude this section, we note that for our situation, there is minimal difference
between results depending on which initial design is used. For the budget size, a value of
R = 30 performed almost as well as the larger values of R. Of course, this is conditional
on having half the budget dedicated to the initial design. More work is needed to
understand the effects of different proportions of the entire budget used for the initial
design size.

6 Conclusion

This paper provides an approach to reduce the computational burden of traditional
Bayesian design of experiments by utilizing a Gaussian process as a surrogate for the
design criterion to be optimized. For our accelerated testing application, this approach
performed as well as some of the more established methods for solving this design prob-
lem. However, we emphasize that these methods apply more generally to settings in
which existing methods are more likely to fail. For example, as mentioned in the intro-
duction, these methods can be used in small sample applications and in situations involv-
ing computer codes that require extensive processor time. In particular, the Bayesian
approach will work effectively when the joint posterior distribution is non-Gaussian,
a scenario in which frequentist approaches that assume a Gaussian approximation to
this distribution may fail.
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Figure 5: Points selected by a single realization of the EQI in the temperature 1 and
temperature 2 space for R = 30 (A), 60 (B), and 90 runs (C). The light gray points are
all points chosen across simulations and the triangle denotes the region of the optimum.
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Our initial designs did not contain any replicates, leading the EQI algorithm to
proceed several iterations before discovering a stable estimate of the nugget effect. An
alternate approach would design some replicates into the initial design, allowing the
nugget effect to be better estimated going into EQI iterations at the expense of initial
design space coverage.

Though not discussed in this paper, these methods are also applicable in uncertainty
quantification applications. Bayesian design of experiments allows designers to incorpo-
rate parameter uncertainty in the form of a prior distribution. Using our proposed
methods, experiments can then be designed to provide the most information about a
flexibly defined metric, including selected quantiles of the predictive distribution for the
quantity of interest.

Appendix

A.1 Simulation Algorithm for Estimating Equation (7)

For a given t assume that a collection of samples (θ1, . . . , θB) of p(θ|t, η) can be obtained
(for example, we used a Metropolis algorithm as in Chib and Greenberg (1995)) for B
being a large integer. Then for each i,

(a) Sample θi from p(θ|t, η).

(b) Calculate tip = exp(βi
0 +Φ−1

Norm(p)σ
i).

The var(tp|t, η) is then approximated using Monte Carlo integration (see Chapter 3 of
Robert and Casella (2004)),

var(tp|t, η) ≈
∑B

i=1(t
i
p − t̄p)

2

B − 1
where t̄p =

∑B
i=1 t

i
p

B
. (11)

We use the following steps to simulate a vector t needed for the outer integral of (7):

(i) Sample θ from p(θ).

(ii) Sample t from f(t|θ, η).

Iterating between these steps (i) and (ii) a large number of times yields a sampling of t
vectors.

We collect the above components into the following algorithm to estimate Λ(η) for
a given design η,

1. Sample θ from p(θ)

2. Sample t from f(t|θ, η).
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(a) Using t obtain θi from p(θ|t, η), the posterior distribution.

(b) Calculate tip = exp(βi
0 +Φ−1

Norm(p)σ
i).

3. Estimate var(tp|t, η) using the chain for tip, i = 1, . . . , B.

4. Repeat steps (1)–(3) A times where A is a large integer, giving a sample of vari-
ances var(tp|t, η)i, i = 1, . . . , A.

5. Estimate Λ(η) using Monte Carlo integration

Λ(η) ≈
∑A

i=1 var(tp|t, η)i
A

.

A.2 Derivation of c, the Gradient Vector of tp

When ξ = 0, (3) reduces to

tp = exp(β0 +Φ−1
Norm(p)σ). (12)

The gradient vector c is found by taking the partial derivatives of (12) with respect
to θ. Here,

∂tp
∂β0

= tp,

∂tp
∂β1

= 0,

∂tp
∂σ

= tpΦ
−1
Norm(p).

And therefore, c = (tp, 0, tpΦ
−1
Norm(p)).
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