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Rejoinder∗

James O. Berger†, Jose M. Bernardo‡, and Dongchu Sun§

Our thanks to all the discussants for their insightful observations and comments. We
respond to their discussions in turn.

1 Response to Datta and Liseo

We agree that Method 3 is preferable to Method 2, in that it is not dependent on the
specification of a collection of quantities of interest and, hence, need only be determined
once (and not separately for each potential user of a model). It is because a hierarchical
embedding is not always available that we introduce the other methods as possible
solutions.

We found the discussion of the multinomial example interesting, with numerous
additional insights being provided. Likewise the additional material on the geometric
averaging approach was enlightening, especially the nice lemma showing that, if a col-
lection of priors all yield proper posteriors, then their geometric average also yields a
proper posterior. This certainly strengthens the argument that geometric averaging is
superior to arithmetic averaging in the search for an overall prior.

The moral of the amusing anecdote is indeed sound, and can be attempted to be im-
plemented even when there is no hierarchical embedding available. For instance, Berger
and Sun (2008) considered 21 different derived parameters for the five-parameter bivari-
ate normal distribution, seeking a prior that was good ‘on average’ for the 21 parameters.

2 Response to Mendoza and Gutiérrez-Peña

The discussants highlight the importance of cataloguing those situations in which there
is a common reference prior for all the parameters of a model and give useful references
that could be a starting point for identifying additional such situations. But they then,
interestingly, question whether this is sufficient, especially when the number, m, of
quantities of interest exceeds the number, k, of parameters in the model.

Section 3.1 highlights one such situation: there is a common reference prior for μ
and σ from the normal model but this cannot necessarily be claimed to be the overall
objective prior because the reference prior for μ/σ is different. This simple example
suggests that one can probably never have an overall objective prior that is optimal for
everything and that just having it be reasonable for everything (of interest) might be the
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best we can hope for. It is interesting, in this regard, that Section 3.2.4 shows that the
common reference prior for μ and σ is also nearly optimal when μ/σ is also considered,
although the discussants are correct that this result was probably inevitable once we
restricted the candidate priors to be only of the form σ−a. Utilizing the alternative and
more general class that they suggest might well have given a different result (but the
computation would have been much more formidable).

It would be nice if one could show, in general, that, if there is a common reference
prior for all of original parameters, then that prior will be reasonable for other derived
parameters or quantities. Our experience strongly supports this claim, but it is difficult
to see how to formally approach verification of the claim especially, as the discussants
note, because of the disquieting result in Section 2.2.2.

We agree that it would be nice if the family of candidate priors considered in both the
reference distance method and the hierarchical method could somehow be intrinsically
identified from the model itself; this would make the label ‘objective’ more compelling.
We have not tried to do so ourselves, but the discussants give several potentially useful
starting points for such an endeavor. Computational considerations are central here so,
as the discussants note, we always chose the candidate class of priors to be a conjugate
class (or as close to conjugate as possible).

Thanks for pointing out the possible relationship of the reference distance method
with the mean field approach to variational inference. The approximation tools being
used in each case are clearly related, but it is not clear to us that this can be usefully
exploited.

We agree with the discussants concerning Section 4.2. It is hard to know how to
deal with the hypergeometric parameters directly, so we used the common technique of
‘transferring’ them into uncertain multinomial parameters that we can deal with. But
this is, indeed, a somewhat ad hoc addition to the proposed methodology. In this light,
the suggested reformulation of the discussants (which ends up in the same place) will
be a more appealing justification to many.

3 Response to Rousseau

Rousseau makes the important observation that we are considering the ‘simple’ para-
metric case, where there is some hope of having an overall objective prior that is at
least reasonable for likely quantities of interest. This hope could well be impossible
in nonparametric situations, where it can be a challenge to even find a prior that is
satisfactory for a single given quantity of interest.

Rousseau observes that maybe the search for an overall prior should be considered
together with choice of the model. This is an intriguing idea, but we have no idea how
to approach the issue.

Rousseau observes that, for the reference distance method, the solution depends
on the sample size. It is not appealing, in general, to have objective priors depend on
the sample size, but there are situations (hierarchical models) where it seems correct
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and inevitable. Here, however, the numerical evidence in the examples indicates that
there is only a very slight dependence on the sample size, so Rousseau observes that
one can simply try to implement the approach asymptotically, avoiding the sample size
dependence and – more importantly – perhaps considerably simplifying the derivation
of the overall prior. This is an idea definitely worth pursuing!

In her final comments, Rousseau addresses scenarios considerably more complex
than any we consider, and outlines issues in finding good (objective) priors for those
scenarios. In our own statistical practice, we encounter these problems all the time.
There is little or no theory to guide us, so it is perhaps most useful to simply say what
we do. A complex model is usually made up of simpler subcomponents, and we may well
know a good overall objective prior for a subcomponent. We will use it, even though
there is no assurance that it is a good overall objective prior in the context of the full
model; the alternative of using a prior that we know is suboptimal for the component
does not appeal.

This is the but the tip of an iceberg, however, in that many complex models are hier-
archical in nature, and it is well known that standard objective priors for a model can be
terrible if that model appears at a higher level in a hierarchy. See Berger, Strawderman,
and Tang (2005) for discussion of this.

4 Response to Sivaganesan

We enjoyed Sivaganesan’s comment that “How . . . [reference priors]. . . work seems to
be a mystery . . . ,” because it is also a mystery to us. But their consistently astonishing
properties explains why the approaches we suggest for developing an overall prior all
center around some application of reference prior theory.

Sivaganesan points out that the choice of the candidate priors will surely affect the
answers, and asks if we have tried alternative classes of candidate priors. He is certainly
right that the class will likely have some effect, but our experience with Bayesian ro-
bustness in other contexts suggests that the class may not be that important when, as
here, we are optimizing over the class. But this an important topic for future study.

We appreciated Sivaganesan’s comment that “It is surprising that the reference prior
for a in the hierarchical approach to the multinomial example turns out to be a proper
prior, making up for the behavior of the marginal [likelihood] being bounded away from 0
at infinity.” The history was that we first – and to our surprise – discovered that the
reference prior for a was proper; we then went back to look at the likelihood, and discov-
ered that, indeed, it was not integrable at infinity, ‘explaining’ why the reference prior
decided to be proper. (This is part of the mystery of reference priors referred to above.)

5 Closing comments

Mendoza and Gutiérrez-Peña comment about the paper “. . . it offers more of a brain-
storming than a systematic treatment and a general solution to the problem [of obtaining
an overall objective prior].” We couldn’t agree more. We have been working on this for
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more years than we care to reveal and finally admitted to ourselves that we were not
going to find the general solution to the problem. So the paper is simply a reflection of
what we encountered in attempting to find a general solution.

Sivaganesan asks us to comment on which of the three approaches to an overall
objective prior we would recommend. Details are given in the final section of the paper,
but it is useful to highlight the main points (with the caveat of the comment above):

• If all (natural) parameters of the model have the same reference prior, use it as
the overall objective prior.

• If one can find a natural and computationally feasible hierarchical structure for
the model parameters, use that, along with finding the reference prior for the
parameters in the hierarchical structure.

• If the above are not implementable,

– Try the reference distance approach; the suggestion of Rousseau to do so
asymptotically is perhaps the first thing to try here.

– Try the geometric average of parameter reference priors, supported by the
results of Liseo and Datta.
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