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Serial correlation in the residuals of time series models can cause bias
in both model estimation and prediction. However, models with such serially
correlated residuals are difficult to estimate, especially when the regression
function is nonlinear. Existing estimation methods require strong assump-
tion for the relation between the residuals and the regressors, which excludes
the commonly used autoregressive models in time series analysis. By ex-
tending the Whittle likelihood estimation, this paper investigates in details
a semi-parametric autoregressive model with ARMA sequence of residuals.
Asymptotic normality of the estimators is established, and a model selection
procedure is proposed. Numerical examples are employed to illustrate the
performance of the proposed estimation method and the necessity of incor-
porating the serial correlation in the residuals.

1. Introduction. Serial correlation in the residuals of nonparametric regres-
sion has been noticed for many years and its impact has been investigated inten-
sively; see, for example, Hall and Van Keilegom (2003), Hart (1991), Opsomer,
Wang and Yang (2001), Ray and Tsay (1997) and Cai (2007). For illustration,
consider the simple nonparametric regression

Yt = g(Xt) + ξt , t = 1,2, . . . .

It is known from the aforementioned work that there is big difference between
the estimation for the case with i.i.d. residuals ξt and that with serial correlated
residuals. However, in those works, it is usually assumed that {Xt } and {ξt } are
independent, or at least E(ξt |Xt) = 0, which is an exception for the autoregressive
models where Xt is a lagged variable of Yt , for example, Xt = Yt−1. On the other
hand, most of the existing nonparametric or semi-parametric autoregressive time
series models do not allow the residuals to be serially correlated, because otherwise
the consistency of estimation is not easy to obtain; see, for example, Cai, Fan
and Yao (2000), Tjøstheim and Auestad (1994), Xue and Yang (2006) and Gao
(2007).
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To accommodate such serial correlation, linear autoregressive models were
commonly used in the literature. For example, Xiao et al. (2003) proposed an ef-
ficient approach to nonparametric regression with residuals being a general linear
process that can be approximated by a truncated AR process. Chen, Li and Li
(2015) considered a varying coefficient model that has AR residuals. More gen-
erally, Opsomer, Wang and Yang (2001) and Liu, Chen and Yao (2010) used a
stationary ARMA process to model the residuals, that is,

ξt = θa(B)−1θm(B)εt ,(1.1)

where θa(B) = 1 + θa1B + · · · + θaq1B
q1 and θm(B) = 1 + θm1B + · · · + θmq2B

q2

are irreducible, and B is the back-shift operator. They found that the estimation
efficiency improves substantially by considering the autocorrelated errors when
serial correlation exists. More complicated structure for the errors was also con-
sidered in the literature. Su and Ullah (2006) considered the residual process with-
out assuming any explicit parametric form, which however may lead to slow con-
vergence of estimation, and hence affects model’s prediction. Again, most of the
existing autoregressive models still assume

E(ξt |Xt) = 0 almost surely,(1.2)

in order to obtain their theoretical properties. As we discussed, (1.2) is not typical
for autoregressive model.

In the conventional linear ARMA model, one way to cope with the problem
of (1.2) being violated is using higher order AR(m) to approximate the ARMA
model. However, this is not so efficient as m must tend to infinity with sample size;
see, for example, Pierce (1971). As a consequence, the higher order AR model is
less efficient than the original ARMA model in the estimation. For nonlinear time
series models, to use a higher order nonlinear AR model to approximate a non-
linear ARMA model is even more intractable because the resultant model might
have a very complicated functional structure. Therefore, investigating the estima-
tion of AR models with serial correlated residuals is very important in time series
modeling. However, estimation of the resultant model with serial correlated resid-
uals is difficult, even for the simple AR model with serial correlated errors (1.1).
First, the least squares estimator (LSE) might not be consistent when (1.2) is not
satisfied. Second, though iterative estimation between the regressive or autoregres-
sive part and the error part (1.1) can be used in calculation, its theory can only be
justified in some special case; see, for example, Liu, Chen and Yao (2010). Third,
the maximum likelihood estimation (MLE) is also not easily tractable because
the likelihood function contains the inverse of covariance matrix of (ξ1, . . . , ξN)�,
where dimension of the matrix goes to infinity with sample size N ; see Yao and
Brockwell (2006). To overcome these problems, Whittle (1953) used several in-
genious matrix calculus and approximated the maximum likelihood function by
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a summation of the ratios between the periodogram of the observations and the
corresponding spectral density function (SDF), called Whittle likelihood estima-
tion (WLE). Hannan (1973) proved the asymptotic normality of Whittle likelihood
estimator and its equivalence in estimation efficiency to the maximum likelihood
estimator. However, WLE essentially requires that the time series has a closed form
for its spectral density function (SDF), while nonlinear time series models do not
meet this requirement, and thus cannot be estimated directly by WLE.

In this paper, a new estimation method is proposed for a general varying co-
efficient model with ARMA errors. The method can be analogously extended to
other semi-parametric models. The estimation is based on (i) an extension of the
traditional Whittle likelihood estimation (WLE), and (ii) B-spline approximation
of functions in the model. Compared with Liu, Chen and Yao (2010) and Ma and
Yang (2011), iteration is not needed for our method, and our settings are more
general and do not require (1.2). The general ARMA process of the residuals and
nonparametric setting for the model considered in this paper differentiates it from
Wang and Xia (2014) in both modeling and mathematical techniques. First, ex-
tending AR residuals to ARMA residuals encounters the identification problem;
second, our Whittle likelihood has a different formulation of loss function, the
existing techniques for splines approximation cannot be used directly, and thus
new theories must be developed. On the other hand, as discussed above semi-
parametric dynamical models with serial correlation in the residuals have received
great attention, but as Xiao et al. (2003) openly discussed, there exists difficulty in
the modeling and estimation. This paper will address these problems under more
realistic model assumptions, and provide an approach to a general collection of
nonlinear dynamical models.

The rest of this paper is organized as follows. Section 2 proposes the model
to be estimated and its identifiability. An extension of the Whittle likelihood esti-
mation (WLE) is proposed for the model estimation, while a spline-based method
is used to approximate the varying coefficients. Section 3 studies consistency of
the estimators; Section 4 elaborates a model selection procedure, provides some
implementation details for selection of variables, identification of varying coeffi-
cient variables and linear variables and determination of the threshold variable and
placement of knots; Section 5 reports some examples to show the simulation per-
formance of the method, and demonstrate the applicability of the proposed method
for real data analyses.

2. Estimation method. We have discussed in Section 1 the prevalence of
serial correlation in the residuals of regression models, and the lack of estima-
tion methods for autoregressive models with correlated residuals. In this section,
we propose an estimation method for such purpose. We illustrate the estimation
details by using a popular time series model with ARMA process as its residu-
als, called semi-varying coefficient model with ARMA errors (SVCARMA). The
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model takes the following form:

Xt = g0(Xt−d) + g1(Xt−d)Xt−1 + · · · + gr(Xt−d)Xt−r

+ β1Xt−r−1 + · · · + βpXt−r−p + ξt ,(2.1)

ξt = θa(B)−1θm(B)εt ,

where ξt is a general ARMA(q1, q2) process with θa(B) and θm(B) defined be-
low (1.1). This model not only allows the random errors to be autocorrelated,
but also relaxes the restriction E(ξt |Ft−1) = 0, where Ft−1 = σ {Xt−1,Xt−2, . . .}
is the σ -field containing information on and before t − 1. Without losing gen-
erality, we assume lagged variables {Xt−1, . . . ,Xt−r} with varying coefficients,
g1(Xt−d), . . . , gr(Xt−d), and others with constant coefficients, and that Xt−d is
the threshold variable. We also assume g0(Xt−d) is a varying intercept which could
also be downgraded to constant intercept β0. Determination of the two types of co-
efficients will be discussed later. It should be noted that the results obtained below
can be easily extended to the case that part or all of {Xt−j , j = 1, . . . , (r + p)} are
exogenous variables. It can be seen that (2.1) originates from the varying (or func-
tional) coefficient models; see, for example, Cai, Fan and Yao (2000), Chen and
Tsay (1993), Hastie and Tibshirani (1993), Zhang, Lee and Song (2002) and Li
et al. (2002). These types of models were widely used in practice, and were stud-
ied under (1.2). Other models with ARMA residuals can be estimated using the
same idea; other patterns of residuals can also be studied similarly providing that
its SDF exists, such as residuals of the ARCH process. See, for example, Giraitis
and Robinson (2001).

Model (2.1) may not be identifiable generally. For example, when all the varying
intercept and varying coefficient functions, g0, g1, . . . , gr , are constant, the model
will be a linear autoregressive model AR(p) with ARMA(q1, q2) errors,

β(B)Xt = ξt , ξt = θa(B)−1θm(B)εt ,

where β(B) = 1 +β1B +· · ·+βpBp is the polynomial of B for the AR part. This
model is not identifiable, because it could also be represented by

θa(B)Xt = ξt , ξt = β(B)−1θm(B)εt .

However, this identification problem can be fixed by imposing the following as-
sumptions.

(A1) The innovation errors εt , t = 1, . . . ,N in model (2.1) are white noise, and
0 < σ 2

0 = Var(εt ) < ∞.
(A2) Let

g(Xt−Sg
) = g0(Xt−d) + g1(Xt−d)Xt−1 + · · ·

+ gr(Xt−d)Xt−r + β1Xt−r−1 + · · · + βpXt−r−p,
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where Sg is the set of all lagged variables. Similarly, g(Xt−1−Sg
) represents the

same structure at time point t − 1. We assume G(Xt−Sg
) = Xt − g(Xt−Sg

) could
never be factorized as (

1 +
∞∑

j=1

φjB
j

)
H(Xt−Sg

)

for any set of nonzero {φj , j = 1, . . . ,∞}, that is,
∑∞

j=1 φ2
j �= 0, and any

H(Xt−Sg
) of semi-parametric or parametric structure, where the backshift op-

erator B to H(Xt−Sg
) is defined as BjH(Xt−Sg

) = H(Xt−j−Sg
).

LEMMA 2.1. Suppose assumptions (A1) and (A2) hold for model (2.1). If
model (2.1) could be written as

Xt = g(Xt−Sg
) + ξt , where ξt = θa(B)−1θm(B)εt ,(2.2)

then both polynomial θ−1
a (B)θm(B) and nonlinear function g(Xt−Sg

) are unique.

For model (2.1), the first part to be estimated is the varying coefficients and
the second part is the constant coefficients including linear variables’ coeffi-
cients and those in random errors ξt . Determination of the corresponding vary-
ing coefficient variables and linear variables will be studied in Section 4. De-
note the parameters of linear part by β = (β1, . . . , βp)� and that of ξt by θ =
(θa1, . . . , θaq1, θm1, . . . , θmq2)

�.
Write model (2.1) in matrix form as

Y = g0(Xt−d) + D(X1)g1(Xt−d) + · · · + D(Xr )gr(Xt−d) + XNpβ + ξ ,(2.3)

where

Y = (X1,X2, . . . ,XN)�, Xj = (X1−j , . . . ,XN−j )
�,

j = 1,2, . . . , r + p,

gj (Xt−d) = (
gj (X1−d), . . . , gj (XN−d)

)�
, j = 0,1,2, . . . , r,

XNp = (Xr+1, . . . ,Xr+p), 1 = (1,1, . . . ,1)�, and

ξ = (ξ1, . . . , ξN)�,

where D(Xj ) is a diagonal matrix of Xj , and Y is a column vector of time series,
Xj is a column vector of j th lagged variable, and gj (Xt−d) is a column vector
of varying coefficient at all Xt−d , ξ is a column vector of the random errors. Let
g(u) = (g1(u), . . . , gr(u))� and α� = (β�, θ�).

We first introduce the Whittle likelihood function for errors ξt in model (2.1),
ξt = θa(B)−1θm(B)εt . Define a set of frequencies as

ωn ∈ WN =
{
ωn : ωn = −2π

N

[
N − 1

2

]
, . . . ,0, . . . ,

2π

N

[
N

2

]}
.
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The periodogram of {ξt , t = 1, . . . ,N} at frequency ωn, denoted by I (ωn), has the
following two explicit summation forms:

I (ωn, ξ) = 1

2πN

∣∣∣∣∣
N∑

t=1

ξte
−itωn

∣∣∣∣∣
2

, where i = √−1,(2.4)

and

I (ωn, ξ) = 1

2π

N−1∑
κ=−N+1

c(κ)e−iκωn, where c(κ) =
∑N−|κ|

t=1 ξt ξt+|κ|
N

,

here c(κ) is similar to the sample auto-covariance function (ACVF) for ξt except
that there is no substraction of ξ̄ = 1/N

∑N
t=1 ξt . Note that the theoretical SDF

f∗(ω, θ) of {ξt } takes the following parametric formula:

f∗(ωn, θ) = σ 2f (ωn, θ) = σ 2

2π

|1 + ∑q1
j=1 θaj e

−ijωn |2
|1 + ∑q2

j=1 θmje−ijωn |2 ,(2.5)

where f (ω, θ) is the standardized SDF when Var(εt ) = 1 in ξt = θa(B)−1θm(B)εt :

QN(θ) = 1

N

∑
ωn∈WN

I (ωn, ξ)

f (ωn, θ)
.(2.6)

Let θ̂ = arg minθ QN(θ). Then σ 2 can be estimated by replacing the θ in (2.6)
with θ̂ ,

σ̂ 2 = QN(θ̂) = 1

N

∑
ωn∈WN

I (ωn, ξ)

f (ωn, θ̂)
.

Note that the above estimation is practicable for linear ARMA(q1, q2) model
when each ξt is observable. For the prime model (2.1), however, ξt is not observ-
able. A natural way is to replace it with

ξ∗ = {
Y− (

g0(Xt−d)+D(Xt−y1)g1(Xt−d)+· · ·+D(Xt−yr)gr(Xt−d)+XNpβ
)}

,

which could be regarded as an estimator of ξ if varying coefficients g(u) and co-
efficients β were known. Therefore, we propose to estimate varying coefficients
g(u) and constant coefficients α� = (β�, θ�) together by minimizing the follow-
ing formula:

Q∗
N(θ) = 1

N

∑
ωn∈WN

I (ωn, ξ
∗)

f (ωn, θ)
.(2.7)

To estimate g(u), we use B-spline approach. Replace those g(u) in ξ∗ with B-
spline bases multiplying their coefficients γ � = (γ �

1 , . . . , γ �
r ), where {γj , j =

1, . . . , r} are the coefficients of B-spline bases for approximating each {gj (u), j =
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1, . . . , r}. Then, ξ∗ could be written as a function of γ and β , and thus (2.7) be-
comes

QN(γ ,α) = 1

N

∑
ωn∈WN

I (ωn,γ ,β)

f (ωn, θ)
.(2.8)

This formulation is an extension of the Whittle likelihood, which is also applicable
to any other model that has theoretical SDF for its residuals.

Next, we discuss in details on using B-spline approach to estimate the varying
coefficients g(u) = (g1(u), . . . , gr(u))�. Let Cm[a, b] be a collection of functions
defined on [a, b] such that their mth order derivative exists and is continuous. The
following assumptions will be used in deriving the asymptotic properties.

(A3) Function gj (u) ∈ Cm[a, b], for all j = 1, . . . , r . The number of inter knots
k0 ≥ C0N

1/(2m+1), where m ≥ 2 and C0 > 0 is a constant.
(A4) Let c = {a = c0 < c1 < · · · < ck0 < ck0+1 = b} be the knots sequence

for u. Assume the distance hj = cj − cj−1 between adjacent knots and k0 satisfy

max
1≤j≤k0

|hj+1 − hj | = o
(
k−1

0

)
and h

/
min

1≤j≤k0
hj ≤ M0,

where h = max1≤j≤k0 hj , and M0 > 0 is independent of N and {gj (u), j =
1, . . . , r}.

These two assumptions ensure that h = O(1/k0) = O(N−1/(2m+1)). Let
{Bj,m(·)}kj=1 be the collection of B-spline bases of order m built on knots se-
quence c. Define the function space built on the bases as

S(m, c) = {
B(u)γ : γ ∈ Rk}

= {
s(x) ∈ Cm−2[a, b] : s(x) is a polynomial of degree (m − 1)

on each subinterval [cj−1, cj ]},
where B(u) = {B1,m(u), . . . ,Bk,m(u)}. Hereafter for fixed m, Bj,m(·) is abbre-
viated as Bj(·) for convenience. We outline the three main steps in constructing
estimators for α and g(u) as follows.

Step 1. Estimate γ = (γ �
1 , . . . , γ �

r )� by assuming α is known. First, let

BNk(Xt−d) =

⎛⎜⎜⎜⎜⎝
B1(u1) B2(u1) . . . Bk(u1)

B1(u2) . . . . . . Bk(u2)

...
. . .

. . .
...

B1(uN) . . . . . . Bk(uN)

⎞⎟⎟⎟⎟⎠
and sj (Xt−d) = BNk(Xt−d)γj , j = 1, . . . , r . Then

XNpβ + D(X1)s1(Xt−d) + · · · + D(Xr )sr (Xt−d) = XNpβ +Dγ ,
(2.9)

where D = {
D(X1)BNk(Xt−d), . . . ,D(Xr )BNk(Xt−d)

}
(N×rk).
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Corresponding to (2.4), the periodogram in (2.8) is

I (ωn,γ ,β)
(2.10)

= 1

2πN
(Y − XNpβ −Dγ )�eN(ωn)eN(ωn)

�(Y − XNpβ −Dγ ),

where eN(ωn) = {e−iωn, . . . , e−Niωn}�, and eN(ωn) is the conjugate of eN(ωn).
Let

EN = 1

2πN

∑
ωn∈WN

eN(ωn)eN(ωn)
�

f (ωn, θ)
.

Then (2.8) could be written as

QN(γ,α) = 1

N
(Y − XNpβ −Dγ )�EN(Y − XNpβ −Dγ ).(2.11)

When α is fixed, the estimator of B-spline coefficients that minimize (2.11) is

γ̂ (α) = (
D�END

)−1
D�EN(Y − XNpβ).(2.12)

For convenience, we also write γ̂ (α) as γ̂ .
Step 2. Estimate g(u) by the B-splines approximation using γ̂ (α), but still as-

suming α is known.
Note that γ̂ is still a function of α. Thus, the estimator of g(u) at Xt−d = u is

also a function of α, that is,

ĝ(u,α) = D
(
B(u)

)
γ̂ = D

(
B(u)

)(
D�END

)−1
D�EN(Y − Xβ),

where ĝ(u,α) = (ĝ1(u,α), . . . , ĝr (u,α))�, B(u) = {B1(u), . . . ,Bk(u)}1×k is the
B-spline bases at Xt−d = u. Let D(B(u)) = diag(B(u), . . . ,B(u))r×rk be the
block diagonal matrix of B(u),

D
(
B(u)

) =

⎛⎜⎜⎜⎜⎜⎝
B(u) 0 . . . 0

0 B(u)
. . . 0

...
...

. . .
...

0 . . . 0 B(u)

⎞⎟⎟⎟⎟⎟⎠ .

Step 3. Estimate α by minimizing (2.11) with γ being substituted by γ̂ (α):

QN(α)
def= QN(γ̂ ,α)

(2.13)

= 1

N

(
Y − XNpβ −Dγ̂ (α)

)�
EN(θ)

(
Y − XNpβ −Dγ̂ (α)

)
which is only related to α� = {β�, θ�}, that is, the linear coefficients of (2.1) and
coefficients in ξt . As the above procedure is similar to profile likelihood estimation
of Severini and Wong (1992) and Carroll et al. (1997), we call (2.13) the Profile
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Based Whittle Likelihood Estimation (PBWLE). Finally, we can estimate α by
minimizing (2.13),

α̂ = arg min
α

QN(α),(2.14)

and g(u) by

ĝ(u, α̂) = D
(
B(u)

)(
D�EN(θ̂)D

)−1
D�EN(θ̂)(Y − Xβ̂).(2.15)

3. Asymptotic properties of estimators. We first consider the asymptotic
properties of estimators for the varying coefficients by assuming constant coef-
ficients to be known, and we shall come back to the case when they are unknown
later. The following assumptions will be used to derive the theoretical results.

(A5) Let 
 be a compact subset of θ = {θa1, . . . , θaq1, θm1, . . . , θmq2}, such that
ξt , denoted as ARMA(q1, q2, θ), is stationary and invertible for all θ ∈ 
. More
specifically, there exists a δ > 0, such that all roots of θa(z)θm(z) = 0 are outside
the circle {z ∈ C : |z| = 1 + δ}. This leads to the existence of uniform values Cf 1

and Cf 2 such that

0 < Cf 1 < f (ω, θ) < Cf 2 < ∞.(3.1)

Furthermore, assume that for any α ∈ A, limN→∞QN(α) ≥ limN→∞QN(α0),
which means that the Whittle Likelihood achieves minimum value at the true pa-
rameters α0 ∈ A.

By Brockwell and Davis (1991), page 391, (A5) guarantees that f (ω, θ) and its
first derivative ∂f (ω, θ)/∂θ are Lipschitz class �a with a > 1/2, that is, for any
θ ∈ 
,

sup
ω

∣∣f (ω, θ) − f (ω + �, θ)
∣∣ = O

(
�a),

sup
ω

∣∣∣∣∂f (ω, θ)

∂θj

− ∂f (ω + �, θ)

∂θj

∣∣∣∣ = O
(
�a),

and that

inf
θ∈


1

2π

∫ π

−π

f (ω, θ0)

f (ω, θ)
dw = 1, f (ω, θ) �≡ f (ω, θ0) if ‖θ − θ0‖ > 0.

Here, θ0 is the true values of the parameters; see Lemma 2 of Hannan (1973).

(A6) Let F(u) and FN(u) be respectively the theoretical and empirical cumu-
lative distribution function (CDF) of Xt−d , and AN = maxa≤u≤b |FN(u) − F(u)|.
Let Fj (u, x) and FN,j (u, x), j = 1, . . . , r , be the theoretical and empirical joint
CDF of (Xt−d,Xt−j ) ∈ 
j when j �= d , and BN = max(u,x)∈
j

|FN,j (u, x) −
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Fj (u, x)|. The number of knots, k0, satisfies k0/N
1/2 → 0. For any square-

integrable function s(u), that is,
∫ b
a s2(u) dF (u) < ∞, there exists constant 0 <

CUj
< ∞ such that∫ ∫


j

s2(u)x2 dFj (u, x) = CUj

∫ b

a
s2(u) dF (u),

(3.2)
AN = op

(
k−1

0

)
, BN = op

(
k−1

0

)
.

(A7) Sequence {Xt, ξt } be a strictly stationary and α-mixing process, with mix-
ing rate α(j) satisfying

∑
j≥1 α(j)1−2/τ < ∞ for some constant τ > 2, E|Xt |2τ <

∞,E|ξt |2τ < ∞.

Assumption (A6) was commonly used in the literature; see, for example, Zhou,
Shen and Wolfe (1998). Actually, Yu (1994) proved that if the mixing rate defined
in (A7) is O(n−α), then

sup
u

∣∣F̂N(u) − F(u)
∣∣ = Op

(
n−s/(1+s)),(3.3)

where s < max(α,1). Thus, when k0/N
1/2 → 0, (3.3) guarantees assumption (A6)

hold. If {Xt−d,Xt−j } are independent, then CUj
will be equal to E|Xt−j |2, which

is not related to U = Xt−d , but in model (2.1) {Xt−d,Xt−j} are dependent, thus
CUj

is indexed by U . In (A7), the ergodicity of Xt can be ensured by Proposi-
tion 2.8 of Fan and Yao (2003), it stems from the fact that an α-mixing process is
mixing in the sense of ergodic theorem.

THEOREM 3.1. Suppose assumptions (A1) to (A7) hold, for any fixed u ∈
[a, b]. Then

√
N{α̂ − α0} d→ N

(
0,�−1AI�βθA

�
I �−1),(3.4)

here

AI =
(
Ip 0 0

0 Iq Iq

)
, �βθ =

⎛⎜⎝
�β �βθ I �βθ II

��
βθ I �θ I �θI,II

��
βθ II ��

θI,II �θII

⎞⎟⎠ ,

� = 1

2π

∫ π

−π

∂2(fz(ω,α0)f
−1(ω, θ0))

∂α∂α� dω,

Ip and Iq are identity matrices, p is the number of linear lagged variables, that
is, the length of β , and q = q1 + q2 is the length of θ . Blocks of �βθ are defined
respectively by (A.42), (A.44), (A.46), (A.48), (A.50) and (A.52) in the proof.
ĝ(u, α̂) = (ĝ1(u, α̂), . . . , ĝr (u, α̂))� is asymptotically normal, that is,

√
Nh

{
ĝ(u, α̂) − (

g(u) + b(u) + μ∗
ν

)} d→ N
(
0,�v(u)

)
,(3.5)

where b(u),μ∗
ν and �v(u) are defined in Lemma A.2.
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Because � and �βθ are functions of α and the coefficient functions, they can
also be estimated according to the definitions of � above and of �βθ in (A.42),
(A.44), (A.46), (A.48), (A.50) and (A.52) based on the estimated α and the coeffi-
cient functions. Similarly, we can estimate �v(u) in (3.5).

4. Model selection. This section includes the selection of lagged variables,
the order of the ARMA for the residuals, the number of knots and their positions.
We first modify the BIC criterion in order to select significant lagged variables
and to distinguish the varying and constant coefficients. For these two types of
coefficients, the corresponding variables are called varying-coefficient variables
and linear variables, respectively. As the varying coefficients are approximated
by B-spline bases, Huang and Yang (2004) suggested using BIC to select them.
Recall that the original BIC is defined as

BIC = log(MSE) + P

N
logN,

where P is the number of parameters used in the model, and MSE is an estimator
for σ 2

0 . Because for QN(α̂) in (2.13), Lemma A.3 shows its consistency QN(α̂)
a.s.→

σ 2
0 , thus we can use QN(α̂) to replace MSE.

As our selection also needs to distinguish varying coefficients from constant
coefficients. We thus define BICw as

BICw = log(QN) + Pvc

N
log(N),(4.1)

where QN is defined in (2.6), Pvc = Pv + Pc is the total number of parameters,
Pv is the number of parameters for the B-spines approximation of the varying
coefficients, Pc is the number of parameters for the constant coefficients and those
in ξt . For model (2.1), we also have Pv = ∑r

j Pvj , j = 1, . . . , r , Pvj = k + m − 2,
here k is number of knots and m is the smooth degree in (A3), r is the number of
varying coefficients. Then it is easily seen that (4.1) should be written as

BICw = log(QN) + log(N)
r(k + m − 2) + p + q

N
,(4.2)

here p is the number of linear variables, q = q1 + q2 is the number of coefficients
for ARMA(q1, q2) of ξt . For varying coefficient variables, log(N)(k + m − 2)/N

is the penalty of adding one variable. In contrast, for linear variable, the penalty is
log(N)/N .

Finally, we write the procedure of model selection as follows. Let Smax de-
note the number of candidate variables to be considered. In our calculation, we fix
Smax = log(N). Assume the best model is S0c ∪ S0v = S0 ⊂ {1,2, . . . , Smax}, S0c

contains linear variables, S0v contains varying-coefficient variables. For any num-
ber of knots k and threshold variable’s lag d ≤ Smax, the knots are equally placed
between the 0.5 and 99.5 percentiles of the threshold variable. Generally, there are
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two ways to choose the knots, one is equally spaced, the other one is sample quan-
tiles of the threshold variable. For our SVCARMA models, the threshold variable
is usually a lagged variable which does not spread evenly and are very sparse near
the boundaries, sample quantiles will choose too many knots in the middle of the
data range, thus we use equally spaced knots in our calculation. The following
four steps are summarized for our model selection procedure:

Step 1. Begin with two empty sets Sc and Sv , add one lagged variable at a time,
and decide whether it is varying coefficient or linear by comparing BICw . Thus,
there will be a total of 2Smax different BICw to be compared in the first step. If
j ∈ {1,2, . . . , Smax} as varying coefficient leads to the smallest BICw , then put j

into set Sv = {j}; otherwise put j into set Sc = {j}.
Step 2. Begin with the updated Sc and Sv , repeat step 1 by comparing the rest

candidate variables, and update Sc and Sv .
Step 3. Repeat steps 1 and 2 until the BICw could not be smaller.
Step 4. After step 3, we have Sc and Sv . As the final selection result might be

affected by the order of entrance, it is necessary to check whether some variables
in Sv could be moved into Sc using similar procedure as steps 1 and 2. Finally,
a model with Sw = Sc ∪ Sv is generated.

Denote the selected set of variables as Sw(d) = Sc(d) ∪ Sv(d) when Xt−d is
used as threshold variable. Denote the corresponding BICw by BICw(d). Then
the d∗ = arg mind BICw(d) is the lag selected for the threshold variable. For the
number of knots, we use k � kcN

1/5 where kc is a tuning constant whose default
value is 2 as Huang and Yang (2004) suggested. In our calculation, similar to d∗,
we apply BICw to select the number of knots around kcN

1/5 to control model
complexity and model fitting. The selected number of knots k̂ will still satisfy As-
sumption (A4). Consequently, Theorem 3.1 remains true when the selected number
of knots and order are used.

5. Numerical studies. In this section, three numerical examples will be stud-
ied. Example 1 is a simulation study to check the performance of our estimation
method and model selection procedure. Examples 2 and 3 demonstrate the use-
fulness of our modeling in practical application. We first use BICw to choose an
appropriate model, including the number of knots, and then use the method in Sec-
tion 2 to estimate the selected model, and finally out-of-sample prediction is made
and compared with those prediction by other existing models.

EXAMPLE 1 (Simulation study of estimation consistency and model selection
consistency). Consider the following five semi-varying coefficient models:

M.1: Xt = 0.5Xt−2 + εt + θεt−1,

M.2: Xt = 0.5Xt−1 − 0.5Xt−2 + εt + θεt−1,
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M.3: Xt = 0.6 cos(Xt−3)Xt−1 − 0.4Xt−2 + 0.2Xt−4 + εt + θεt−1,

M.4: Xt = (
0.8e−X2

t−2 − 0.5
)
Xt−1 + (−0.6e−0.5X2

t−2+0.3)Xt−3 + εt + θεt−1,

M.5: Xt = 0.5 cos(Xt−2)Xt−2 − 0.3Xt−3 + εt + θεt−1,

where εt are i.i.d. N(0,1) and θ = 0.3. For each model, samples of size N =
200,400,600 are generated. For each sample of size N , we use B-spline with
degree of m = 3 to approximate varying coefficient functions and to estimate the
model, estimators of varying and constant coefficients are denoted by ĝt (u), β̂t

and θ̂t , respectively, t = 1, . . . , T , with T = 1000 replications. We define

mse(β̂) = T −1
T∑

t=1

‖β̂ t − β‖2/p, mse(θ̂) = T −1
T∑

t=1

(θ̂t − θ)2,

mse
(
ĝ(u)

) = T −1
T∑

t=1

∑
u∈uc

∥∥ĝt (u) − g(u)
∥∥2

/Lu, bias2(β̂) = ‖β̄ − β‖2/p,

bias2(θ̂) = ‖θ̄ − θ‖2/p, bias2(ĝ(u)
) = ∑

u∈uc

∥∥ḡt (u) − g(u)
∥∥2

/Lu,

where uc = (u0.025, u0.025 + 0.05, . . . , u0.975), and u0.025 and u0.975 are sample
quantiles of threshold variable Xt−d , Lu is the length of uc. Note that ignorance
of the serial correlation will cause estimation bias, thus we also define the square
of bias as bias2 in the above equations, where β̄ is the mean of {β̂ t , t = 1, . . . , T },
and similarly for θ̄ and ḡ(u).

For comparison, we estimate the model without considering the serial correla-
tion in the residuals, treating them as i.i.d. residuals. Now the corresponding mse
and bias2 defined above for the estimators are denoted as mse0 and bias2

0, respec-
tively. Table 1 summarizes the results for all models. It can be seen that for M.2,
M.3 and M.4 models, both mse and bias2 become smaller as N increases. How-
ever, mse0 and bias2

0 remain big as N grows. Because for models M.1 and M.5,
(1.2) can be fulfilled, the difference between mse and mse0, and that between bias2

and bias2
0 are smaller than those of models M.2, M.3 and M.4, but mse and bias2

are still smaller than mse0 and bias2
0.

Let V0 be the percentage of Sv ⊃ S0v , where S0v represents the actual collec-
tion of varying coefficient variables for each model, Sv is the selected collection
of varying coefficient variables. Let V1 be the percentage of S0v = Sv . Thus, V0

depicts the probability that Sv covers S0v , and V1 means Sv is exactly the same
as S0v . For the constant coefficients, the percentages C0 and C1 are similarly de-
fined as V0 and V1. Define PER to be the percentage of {S0c = Sc}&{S0v = Sv},
which describes the probability that both varying coefficient variables and linear
variables are accurately selected out. In this study, we first assume the threshold
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TABLE 1
Estimation results of Example 1

Criteria
(10−3)

N = 200 N = 400 N = 600

Models β θ g(u) β θ g(u) β θ g(u)

M.1 mse 4.6 5.2 – 2.1 2.5 – 1.6 1.6 –
bias2 0.3 0.2 – 0.1 0.1 – 0.0 0.0 –
mse0 5.1 – – 2.4 – – 1.8 – –
bias2

0 0.4 – – 0.0 – – 0.0 – –

M.2 mse 8.2 14.4 – 4.1 6.5 – 2.3 3.9 –
bias2 0.0 0.2 – 0.0 0.0 – 0.0 0.0 –
mse0 23.8 – – 22.3 – – 22.4 – –
bias2

0 20.5 – – 20.8 – – 21.5 – –

M.3 mse 5.1 16.8 45.6 2.1 5.5 7.4 1.4 4.0 5.5
bias2 0.1 0.3 23.7 0.0 0.0 0.1 0.0 0.0 0.1
mse0 5.5 – 71.1 3.8 – 34.3 3.4 – 31.6
bias2

0 1.8 – 56.1 2.2 – 28.6 2.2 – 27.6

M.4 mse – 20.0 43.0 – 6.7 10.5 – 4.2 5.9
bias2 – 1.5 30.0 – 0.1 3.3 – 0.0 0.2
mse0 – – 66.4 – – 27.4 – – 21.3
bias2

0 – – 56.5 – – 20.9 – – 15.8

M.5 mse 4.1 5.2 50.0 2.2 2.7 10.9 1.4 1.7 6.2
bias2 0.0 0.2 32.8 0.0 0.0 1.0 0.0 0.0 0.4
mse0 4.3 – 50.1 2.3 – 12.1 1.4 – 6.6
bias2

0 0.0 – 33.2 0.0 – 1.0 0.0 – 0.4

variable Xt−d to be known in calculating {C0,C1,V0,V1}, then assume Xt−d to
be unknown and select it by comparing BICw . Let Rd denotes the percentage of
accurately detecting threshold variable Xt−d . Because M.1 and M.2 have no vary-
ing coefficients, Rd means the percentage of selecting linear models. With 200
replications, the percentages of accurate model selection are calculated and sum-
marized in Table 2. It shows that when sample size N grows to 600, the percentage
of correctly detecting varying-coefficient variable is almost 100% for all models,
and the percentage of correctly choosing linear variables is also greater than 95%.
The fifth columns of each sub-table display the percentages of accurately select-
ing out both varying coefficient variables and linear variables, which is also quite
satisfactory.

EXAMPLE 2 (The sunspots data). Tong (1990) modeled the square root trans-
formed series yt = 2 × (

√
1 + xt − 1) of annual number of sunspots, xt , for the

period 1700–1979, by the threshold autoregressive (TAR) model with 11 lagged



1632 H. LEI, Y. XIA AND X. QIN

TABLE 2
Model selection results of Example 1

N = 200 N = 400 N = 600

Models: % V0 V1 C0 C1 PER Rd V0 V1 C0 C1 PER Rd V0 V1 C0 C1 PER Rd

M.1 – 99.5 99.0 94.0 94.0 98.0 – 100 99.5 97.0 97.0 100 – 100 100 97.5 97.5 100
M.2 – 97.5 90.0 86.0 86.0 97.0 – 100 97.0 94.0 94.0 100 – 100 98.0 95.5 95.5 100
M.3 95.0 92.0 67.5 66.5 65.0 92.5 99.5 99.0 98.5 95.0 94.0 99.5 100 100 99.0 98.0 98.0 100
M.4 58.0 57.5 – 67.0 49.0 89.5 96.5 96.5 – 92.0 91.5 97.5 100 100 – 97.0 97.0 100
M.5 87.0 87.0 98.0 89.5 79.5 91.5 99.5 99.5 99.5 98.0 98.0 98.5 100 100 100 99.0 98.5 100

variables, that is, TAR(11),

yt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β0 + β1yt−1 + β2yt−2 + β3yt−3 + β4yt−4 + β5yt−5 + β6yt−6

+ β7yt−7 + β8yt−8 + β9yt−9 + β10yt−10 + β11yt−11 + ε1
t ,

yt−8 ≤ r,

β∗0 + β∗1yt−1 + β∗2yt−2 + β∗3yt−3 + ε2
t , yt−8 > r.

Chen and Tsay (1993) proposed a functional-coefficient autoregressive (FAR)
model to fit the data, that is, FAR(8),

yt = g0(yt−3) + g1(yt−3)yt−1 + g2(yt−3)yt−2 + g8(yt−3)yt−8 + εt .

We speculate the phenomenon that TAR needs 11 lagged variables may be caused
by ignoring the autocorrelation of random errors, adding high order lagged vari-
ables is just like using truncated AR(p) process with large p to approximate
an ARMA process. The FAR(8) model indirectly shows that the high lag in the
TAR(11) is redundant. The functional coefficients might also be biased due to
ignorance of the autocorrelation of random errors, as shown in Example 1. There-
fore, a SVCARMA model should be applied to the sunspot data, to test whether
a model with lower order lagged variables is sufficient if ARMA process for the
residuals is used, and thus to improve the out-of-sample prediction.

We consider candidates of different smooth degrees m = {2,3,4}, and different
number of knots k = {2,3,4,5,6,7,8}. For each pair of (m, k), the model selec-
tion procedure is executed and the BICw is calculated. Moreover, threshold vari-
ables, yt−8 and yt−3, are also compared as they were used in the above TAR(11)
and FAR(8).

Table 3 summaries all the results for comparison. Obviously, {m = 2, k = 4, d =
3} leads to the minimum BICw . Thus, the most appropriate model in terms of BICw

is the one taking yt−3 as threshold variable, and yt−1, yt−2, yt−8 as varying coef-
ficient variable and yt−5 as linear variable. Our final selected SVCARMA model
with residuals being MA(1) takes the following form:

yt = β0 + g1(yt−3)yt−1 + g2(yt−3)yt−2 + g8(yt−3)yt−8 + β5yt−5 + ξt ,

where ξt = εt + θεt−1.
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TABLE 3
BICw of different m, k and d

m \ k 2 3 4 5 6 7 8

BICw d = 3
2 1.5324 1.5464 1.5247 1.5501 1.5744 1.5600 1.5640
3 1.5507 1.5321 1.5600 1.5600 1.5485 1.5485 1.5485
4 1.5510 1.5600 1.5600 1.5485 1.5485 1.5485 1.5485

BICw d = 8
2 1.5425 1.5600 1.5600 1.5600 1.5600 1.5600 1.5600
3 1.5600 1.5600 1.5485 1.5600 1.5600 1.5600 1.5600
4 1.5600 1.5485 1.5600 1.5600 1.5600 1.5600 1.5600

This model has the same lagged variables as FAR(8). However, we will show later
that by assuming the random errors to be MA(1), the out-of-sample prediction
could be improved.

Figure 1 shows the estimated varying coefficient functions for lagged variables
yt−1, yt−2 and yt−8. We also carry out model diagnostics for the proposed model.
Applying the Ljung–Box Q-test [see, Ljung and Box (1978) and McLeod and Li
(1983)] to {ξt , t = 1,2, . . . ,N}, we reject (with the p-value < 0.0001) the hypoth-
esis that ξt is white-noise. However, using the estimated θ̂ = −0.377, we calculate
the innovations {εt , t = 1,2, . . . ,N}. The Ljung–Box Q-test accepts with p-value
0.2217 that εt , t = 1,2, . . . ,N is white-noise. We also carry out the Generalized
Variance Portmanteau Test [see Mahdi and McLeod (2012)], the corresponding p-

FIG. 1. Estimated varying coefficient functions.
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FIG. 2. Out of sample RMSPE for Sun spots data.

values for ξt is smaller than 0.0001, while that for εt is = 0.1413, suggesting the
same conclusion for ξt and εt as the Ljung–Box Q-test does.

Finally, prediction ability is compared for the above three models. The 1-step
ahead prediction is defined as E(yt+1|Ft ). For h (≥2) steps ahead prediction, it
can be calculated recursively. In this example, we set the largest h = 13 as Chen
and Tsay (1993) did. After calculating all h = 1, . . . ,13 step ahead prediction for
period 1700–1979, we shift forward the training data set by one unit of time, and
calculate the 13 steps ahead predictions again, until no more data available. For
each h = {1,2, . . . ,13}, if we make K predictions, and the root mean squared
prediction error (RMSPE) is calculated by

RMSPE(h) =
√

1

K

∑
(ŷt+h − yt+h)2.

Figure 2 displays the out-of-sample RMSPE of the three competitive models.
We can see that the FAR(8) is not better than TAR(11) when h ≤ 6. However, our
model can almost give better predictions for all h < 11 steps. This phenomenon
shows that by adding a MA(1) structure to the random errors, the model can im-
prove the accuracy of prediction of the data.

EXAMPLE 3 (Sea surface temperature data analysis). The El Niño Southern
Oscillation (ENSO) and its economic effects have been analyzed by a lot of stud-
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ies; see Adams et al. (1999), Glantz (2001) and Ubilava and Helmers (2013). The
ENSO is represented by an abnormal increase (El Niño) or decrease (El Naño)
of the Sea Surface Temperatures (SST). The SST for ESNO anomaly, marked as
Niño 3.4, is defined by the Climate Prediction Center at the National Oceanic and
Atmospheric Administration. This index measures the difference of SST in the
area of the Pacific Ocean between 5◦N–5◦S and 170◦W–120◦W; see Trenberth
and Stepaniak (2001). Consequently, SST anomaly is the deviation of the Niño 3.4
monthly measure from the average historic measure of that particular month from
1971–2000. For the SST anomaly, Ubilava and Helmers (2013) proposed a smooth
transition autoregressive model to fit the data as follows:

yt = β0 + β1yt−1 + · · · + β6yt−6 + δ�
1 Mt

(5.1)
+ (

β∗0 + β∗1yt−1 + · · · + β∗6yt−6 + δ�
2 Mt

)
Gt + εt ,

where Gt = (1 + exp(−1.196/0.835(yt−1 + 0.447)))−1 and Mt = (Mt,1, . . . ,

Mt,11)
T is a vector of dummy variables for different months of the year.

In this study, we consider SST anomaly data from January 1950 to December
2013. Our conjecture is that by using an ARMA(1,1) process for serial correlation
of the random errors, the complexity of their model could be reduced and predic-
tion ability can be improved. In the modeling, we have 6 lagged variables and 11
dummy variables to select. As is well known, when prediction is concerned, AIC
usually performs better than BIC. Thus, we change the BIC penalty log(n) into
AIC penalty 2 in (4.2). Because varying coefficient function Gt in model (5.1)
has high order of smoothness, we use m = 3 for B-spline with threshold variable
yt−1. It is suggested by the AIC criterion of (4.2) that k = 3 is the most appropri-
ate.

Thus, we set {m = 3, k = 3, d = 1} in the modeling. The corresponding selected
varying coefficient variables are {yt−6,Mt,1,Mt,2,Mt,7,M10}, and the linear vari-
ables {yt−1, yt−2, yt−3, yt−5,Mt,6,Mt,8}. The speculated SVCARMA model is
thus

yt = β0 + g(yt−1)yt−6 + gm1(yt−1)Mt,1 + gm2(yt−1)Mt,2

+ gm7(yt−1)Mt,7 + gm10(yt−1)Mt,10
(5.2)

+ β1yt−1 + β2yt−2 + β3yt−3 + β5yt−5 + βm6Mt,6 + βm8Mt,8 + ξt ,

where ξt = θaξt−1 + εt + θmεt−1.

The estimated varying coefficient functions are shown in Figure 3. Because m = 3
and k = 3, there are 4 B-splines coefficients for each varying coefficient function,
thus model (5.2) has total number of parameters 4 × 5 + 7 + 2 = 29, that is, 5
varying coefficient functions, 7 constant coefficients and two ARMA(1,1) coef-
ficients. In comparison, model (5.1) has (7 + 11) × 2 + 2 = 38 parameters. This
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FIG. 3. Estimated varying-coefficient functions.

means model (5.2) is more concise than (5.1) in terms of the number of param-
eters. In other words, after considering the serial correlation in the residuals, the
model can be simplified.

We estimate θ̂a = 0.238, θ̂m = −0.842 in (5.2). For model diagnostics, the
Ljung–Box Q-test gives a p-value smaller than 0.0001 under the hypothesis that
{ξt , t = 1, . . . ,N} is white noise; while the corresponding p-value for {εt , t =
1, . . . ,N} is 0.8462. The Generalized Variance Portmanteau Test gives p-values
<0.0001 and 0.9386, respectively, for the two sequences. These p-values give
strong support to our modeling that the serial correlation in the residuals exist and
can be modeled by an ARMA(1,1) process.

Finally, the out-of-sample prediction for model (5.1), denoted by LSTAR, and
model (5.2), denoted by SVCARMA, is carried out. We also calculate the pre-
diction of model (5.2) assuming i.i.d. errors, denoted by SVC, and the modified
model of (5.1) in Wang and Xia (2014), denoted by LSTAR-MA. For this purpose,
we split the whole data into two parts. The first part is from January 1950 to De-
cember 2006, used as the training data; the second part is from January 2007 to
December 2013, used for the out-of-sample prediction. Figure 4 shows the RM-
SPE versus h-steps for all the four models. It can be easily seen that by adding an
ARMA(1,1) structure into the residuals, the out-of-sample prediction performs
better, which is in consistency with Wang and Xia (2014). By allowing lagged
variables and the dummy variables to have different varying coefficient functions,
rather than taking all of them to be Gt in (5.1), the out-of-sample prediction is
further improved.
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FIG. 4. Out of sample RMSPE for SST anomaly.

6. Conclusion. Serial correlation in regression residuals have long and com-
monly been noticed in the literature. However, for dynamical nonlinear models, the
serial correlated residuals causes many problems in both model identification and
estimation, and thus were not well addressed before. In this paper, a profile based
Whittle Likelihood estimation is proposed and studied in detail for a SVCARMA
model. Asymptotical properties have been built and a model selection procedure
has been proposed, which can be easily applied to other semiparametric models;
numerical studies also demonstrated some merits of our model and method in non-
linear time series analysis. However, some issues such as the consistency of the
BICw criterion need further investigation.

APPENDIX: PROOFS OF THEOREMS

PROOF OF LEMMA 2.1. We first consider the special case when ξt = θ(B)εt

with θ(B) = 1 + θB , that is, ξt is MA(1). As εt = Xt − g(Xt−Sg
) − θεt−1, thus

εt−1 = Xt−1 − g(Xt−1−Sg
) − θεt−2, after infinite iterations, we have

Xt = g(Xt−Sg
) + εt +

∞∑
j=1

(−θ)j
{
g(Xt−j−Sg

) − Xt−j

} + lim
n→∞(−θ)nεt−n.
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Under assumption (A1), (−θ)nεt−n
a.s.→ 0, thus by the dominated convergence the-

orem,

E(Xt |Ft−1) = g(Xt−Sg
) +

∞∑
j=1

(−θ)j
{
g(Xt−j−Sg

) − Xt−j

}
.(A.1)

As ξt = Xt − g(Xt−Sg
), (A.1) is equivalent to

E

(
ξt +

∞∑
j=1

(−θ)j ξt−j

∣∣∣Ft−1

)
= 0

and in back-shift polynomial,

E
(
θ(B)−1ξt |Ft−1

) = E(εt |Ft−1) = 0.(A.2)

When ξt = εt + θ1εt−1 + · · · + θqεt−q , that is, θ(B) = 1 + θ1B + · · · + θqB
q , we

can extend (A.2) in the same way. Suppose the uniqueness is not true, that is, there
exist g(Xt−Sg

), g′(Xt−Sg
), θ(B) and θ ′(B) in model (2.2) such that

Xt = g(Xt−Sg
) + ξt where ξt = θ(B)εt(A.3)

and

Xt = g′(Xt−Sg
) + ξ ′

t where ξ ′
t = θ ′(B)ε′

t .(A.4)

According to (A.1) and (A.2), we have

μ = E(Xt |Ft−1) = g(Xt−Sg
) −

∞∑
j=1

ϕjξt−j ,(A.5)

and

μ = E(Xt |Ft−1) = g′(Xt−Sg
) −

∞∑
j=1

ϕ′
j ξ

′
t−j ,(A.6)

from (A.3) and (A.4), respectively, where ϕj is the corresponding coefficient of
polynomial θ(B)−1 = (1 + θ1B + · · · + θqB

q)−1 = 1 + ∑∞
j=1 ϕjB

j , and ϕ′
j is

similarly defined. By (A.5) and (A.6), calculate their difference

0 = g(Xt−Sg
) − g′(Xt−Sg

) −
∞∑

j=1

ϕjξt−j +
∞∑

j=1

ϕ′
j ξ

′
t−j

= g(Xt−Sg
) − g′(Xt−Sg

) +
∞∑

j=1

ϕj

{
g(Xt−j−Sg

) − Xt−j

}

−
∞∑

j=1

ϕ′
j

{
g′(Xt−j−Sg

) − Xt−j

}
(A.7)
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= g(Xt−Sg
) − g′(Xt−Sg

) +
∞∑

j=1

ϕj

{
g(Xt−j−Sg

) − g′(Xt−j−Sg
)
}

+
∞∑

j=1

ϕj

{
g′(Xt−j−Sg

) − Xt−j

} −
∞∑

j=1

ϕ′
j

{
g′(Xt−j−Sg

) − Xt−j

}
.

Let ηt−1 = g(Xt−Sg
) − g′(Xt−Sg

), and thus Bηt−1 = ηt−2 = g(Xt−1−Sg
) −

g′(Xt−1−Sg
). Together with (A.3), the above equations can be written as

θ(B)−1ηt−1 = θ(B)−1ξ ′
t − θ ′(B)−1ξ ′

t = θ ′(B) − θ(B)

θ(B)θ ′(B)
ξ ′
t .

Because θ ′(B)−1ξ ′
t = ε′

t , the above equations lead to

ηt−1 = (
θ ′(B) − θ(B)

)
ε′
t .(A.8)

Similarly, equation (A.7) with a different way of transformation leads to

ηt−1 = (
θ ′(B) − θ(B)

)
εt .(A.9)

Equations (A.8) and (A.9) with assumption (A1) conclude that εt = ε′
t , because

otherwise θ(B) = θ ′(B) will be deduced and proof of this lemma will be com-
pleted. When εt = ε′

t , model (A.3) and (A.4) can be written as

Xt = g(Xt−Sg
) + θ(B)εt ,(A.10)

and

Xt = g′(Xt−Sg
) + θ ′(B)εt .(A.11)

Let Xt −g(Xt−Sg
) = G(Xt−Sg

) and Xt −g′(Xt−Sg
) = G′(Xt−Sg

). Under assump-
tion (A1) and (A2), we have

θ ′(B)G(Xt−Sg
) = θ(B)G′(Xt−Sg

).

Therefore,

G(Xt−Sg
) = θ ′(B)−1θ(B)G′(Xt−Sg

)

which contradicts with the assumption (A2). Thus, θa(B) and G(Xt−Sg
) are both

unique.
Now for general ARMA(q1, q2) errors, that is, ξt = θa(B)−1θm(B), (2.2) can

be written as

θa(B)G(Xt−Sg
) = θm(B)εt .

The above argument has proved that θm(B) and θa(B)G(Xt−Sg
) are unique. Sup-

pose there exists θ∗
a (B)G∗(Xt−Sg

) = θa(B)G(Xt−Sg
), then

G(Xt−Sg
) = θa(B)−1θ∗

a (B)G∗(Xt−Sg
)

which contradicts to assumption (A2). Therefore, θa(B) and G(Xt−Sg
) are both

unique. �
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LEMMA A.1. Let GNk = D�END/N where D is defined in (2.9). Let λ
GNk

rk

and λ
GNk

1 be the minimum and maximum eigenvalues of GNk . Under assumptions
(A5) and (A6), the eigenvalues are bounded in probability by(

C11 + op(1)
)
h ≤ λ

GNk

rk ≤ λ
GNk

1 ≤ (
C12 + op(1)

)
h,(A.12)

where 0 < C11 ≤ C22 < ∞, h is the maximum distance between two adjacent knots
in (A4).

PROOF. Let a� = {a�
1 , . . . , a�

r } with aj = {aj1, . . . , ajk}�, j = 1, . . . , r be

column vectors such that
∑r

j=1
∑k

�=1 a2
j� = 1. By the definition of eigenvalues,

the minimum eigenvalue should be

λ
GNk

rk = min∑∑
a2
j�=1

{
1

N
a�D�ENDa

}
= min∑∑

a2
j�=1

Tr
{

1

N
(Da)�ENDa

}
.

Lemma 6.5 of Zhou, Shen and Wolfe (1998) shows that, for positive semidefinite
matrices A and B , λA

min Tr(B) ≤ Tr(AB) ≤ λA
max Tr(B). It is easy to see that EN

and Da(Da)� are both positive semidefinite matrices. Thus, the following inequal-
ity follows:

λ
GNk

rk = min∑∑
a2
j�=1

Tr
{

1

N
ENDa(Da)�

}
≥ min∑∑

a2
j�=1

λ
EN

min Tr
{

1

N
Da(Da)�

}
.

By (2.9), Da = {D(Xt−1)BNk(Xt−d)a1, . . . ,D(Xt−r )BNk(Xt−d)ar}, hence

λ
GNk

rk ≥ λ
EN

min min∑∑
a2
j�=1

r∑
j=1

Tr
{

1

N
D(Xt−j )BNk(Xt−d)

× aj

(
D(Xt−j )BNk(Xt−d)aj

)�}

= λ
EN

min min∑∑
a2
j�=1

r∑
j=1

{∫ ∫

j

s2
j (u)x2 dFNj (u, x)

}
,

where sj (u) = ∑k
�=1 aj�B�(u) ∈ S(m, c). Under (A6), directly applying

Lemma 6.1 of Zhou, Shen and Wolfe (1998), we have

λ
GNk

rk ≥ λ
EN

min min∑
a2
j�=1

r∑
j=1

CUj

∫ b

a
s2
j (u) dF (u) by (3.2)

≥ λ
EN

min min∑
a2
j�=1

r∑
j=1

CUj

(
C∗

j + op(1)
)
h

k∑
�=1

a2
j�

≥ λ
EN

min

(
Cmin + op(1)

)
h

r∑
j=1

k∑
�=1

a2
j� = (

C11 + op(1)
)
h,
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where Cmin = min1≤j≤r CUj ×C∗
j > 0 and C11 = λ

EN

minCmin. By Lemma 1 of Xiao
and Wu (2012), it can be derived that any eigenvalue of EN is bounded between
minω f −1(ω, θ) and maxω f −1(ω, θ). Then (A5) with inequations (3.1) leads to
that λEN is positive and bounded away from zero. Therefore, C11 > 0. Further-
more, the other side of (A.12) can be shown with the same process. �

LEMMA A.2. Suppose assumptions (A3)–(A7) hold. Then for any fixed u ∈
[a, b], estimator ĝ(u,α0) = {ĝ1(u,α0), . . . , ĝr (u,α0)}� is asymptotically normal

√
Nh

{
ĝ(u,α0) − (

g(u) + b(u) + μ∗
ν

)} d→ N(0,�u),(A.13)

where μ∗
ν = O(hm) and b(u) = {b1(u), . . . , br(u)}� are biases due to B-spline

approximation:

bj (u) = −g
(m)
j (u)hm

i

m! Pm

(
u − ci

hi

)
,

here Pm(·) is the mth Bernoulli polynomial which is recursively defined as

P0(u) = 1, Pm(u) =
∫ u

a
mPm−1(v) dv + bm,

where u ∈ [a, b], bm = −m
∫ b
a

∫ u
a Pm−1(v) dv du is the mth Bernoulli number de-

fined in Barrow and Smith (1978/79).

PROOF. By the result of Barrow and Smith (1978/79), there exists sj (u) ∈
S(m, c) for each j = 1, . . . , r , such that

inf
sj (u)∈S(m,c)

∥∥gj (u) + b∗
j (u) − sj (u)

∥∥
L∞ = o

(
hm)

,

b∗
j (u) = −g

(m)
j (ci)h

m
i

m! Pm

(
u − ci

hi

)
,

where ‖ · ‖L∞ is the maximum norm. Under (A3), there exist bj (u) = b∗
j (u) +

o(hm) and sgj (u) ∈ S(m, c) such that

gj (u) + bj (u) − sgj (u) = o
(
hm)

.(A.14)

Note that

D
(
B(u)

)
G−1

Nk

1

N
D�EN

{
D(Xt−1)sg1(Xt−d) + · · · + D(Xt−r )sgr(Xt−d)

}
= D

(
B(u)

)
G−1

Nk

1

N
D�ENDγ = D

(
B(u)

)
γ = sg(u).
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We have the following decomposition:

ĝ(u,α0) − (
g(u) + b(u)

)
=

{
ĝ(u,α0) − D

(
B(u)

)
G−1

Nk

1

N
D�EN

{
D(Xt−1)g1(Xt−d) + · · ·

+ D(Xt−r )gr(Xt−d)
}}

+
{
D

(
B(u)

)
G−1

Nk

1

N
D�EN

{
D(Xt−1)(g1 − sg1) + · · ·(A.15)

+ D(Xt−r )(g1 − sgr)
}}

+ {
sg(u) − (

g(u) + b(u)
)}

def= part (i) + part (ii) + part (iii),

where sg(u) = {sg1(u), . . . , sgr(u)}�. Next, we investigate the above three parts
separately. First, by equation (A.14), part (iii) is equal to

sg(u) − (
g(u) + b(u)

) = o
(
hm)

.

For part (ii), write

D
(
B(u)

)
G−1

Nk

1

N
D�EN

{
D(Xt−1)(g1 − sg1) + · · · + D(Xt−r )(g1 − sgr)

}
= D

(
B(u)

)
G−1

Nkτ ,

where τ = (τji, j = 1, . . . , r, i = 1, . . . , k)�rk×1 and

τji = 1

N
Bi(Xt−d)D(Xt−j )EN

{
D(Xt−1)(g1 − sg1) + · · · + D(Xt−r )(g1 − sgr)

}
.

Under (A3), bj (u) = O(hm) according to its formula. Besides, under (A7), each
D(Xt−j )(gj − sgj ) is Op(hm), thus each τji = Op(hm/

√
N) = op(hm). By

Lemma A.1, GNk’s eigenvalues are within interval [C11h,C22h], and 0 ≤ Bj(u) ≤
1. Thus, part (ii) is converging to 0 in probability with order op(hm). Lastly, by
model assumption (2.3) and estimator (2.15), part (i) turns out to be

part (i) = D
(
B(u)

)
G−1

Nk

1

N
D�EN

{
Y − XNpβ0

− {
D(Xt−1)g1(Xt−d) + · · · + D(Xt−r )gr(Xt−d)

}}
(A.16)

= D
(
B(u)

)
G−1

Nk

1

N
D�ENξ0.
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Therefore, it follows from (A.15) that

ĝ(u,α0) − (
g(u) + b(u)

)
(A.17)

= D
(
B(u)

)
G−1

NkD
� 1

N
EN(ξ0) + o

(
hm) + op

(
hm)

,

where ξ0 = {ξ01, . . . , ξ0N }� is the ARMA process with the true parameters. Mul-
tiplying

√
Nh to both sides of (A.17), we have

√
Nh

{
ĝ(u,α0) − (

g(u) + b(u)
)}

= √
NhD

(
B(u)

)
G−1

NkD
� 1

N
ENξ0 + √

Nhop

(
hm)

.

Under (A3) and (A4), h = O(N−1/(2m+1)), then
√

Nho(hm) = √
No(hm+1/2) =

o(1). Similarly, we have
√

Nhop(hm) = op(1). Therefore, applying Slutsky’s the-
orem, the rest of the proof is to show that

√
Nh(φ1, . . . , φr)

� = √
NhD

(
B(u)

)
G−1

NkD
� 1

N
ENξ0(A.18)

converge to normal distribution, where each φj = Vec(Bj )G
−1
NkD

� 1
N

ENξ0, here
Vec(Bj ) = {0, . . . ,0j−1,B(u),0j+1, . . . ,0}, and 0 = {0, . . . ,0}1×k . Write

√
Nhφ1 = √

NhVec(B1)G
−1
NkD

� 1

N
ENξ0

(A.19)

= 1√
N

η�
1 ζ ,

where η�
1 = √

hVec(B1)G
−1
NkD

�, and ζ = ENξ0. Similarly, with Lemma A.1,
Var(

√
Nhφ1) = hVec(B1)G

−1
NkD

� 1
N

EN�0ENDG−1
NkVec(B1)

�. First, consider the
covariance of ζ ,

Cov(ζ , ζ ) = EN�0EN,

where �0 is the covariance matrix of ξt ,

�0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

2πN

∑ 1

f −1(ωn, θ)

1

2πN

∑ cos(ωn)

f −1(ωn, θ)
. . .

1

2πN

∑ cos((N − 1)ωn)

f −1(ωn, θ)

... . . . . . .
...

...
. . .

. . .
...

1

2πN

∑ cos((N − 1)ωn)

f −1(ωn, θ)
. . . . . .

1

2πN

∑ 1

f −1(ωn, θ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

As {1, cos(ω), . . . , cos((N − 1)ω)} is orthogonal, that is,
∫

cos(j2ω) ×
cos(j1ω)dω = 0 if j1 �= j2, it is easy to check �0EN = I, an identity ma-
trix. Thus, Cov(ζ , ζ ) = EN . Under assumption (A5), 1/f (ω, θ) could be con-
sidered as a theoretical SDF of an ARMA(q2, q1, θ

∗) process, with reversed
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θ∗ = {θm1, . . . , θmq2, θa1, . . . , θaq1}. The process is also a stationary and invert-
ible process with θa(B) and θm(B) interchanged when compared to (2.1). Thus,

E(ζt ) = 0.(A.20)

This also means that {ζ1, . . . , ζN } is α-mixing. For each k, let Gk
def= limN→∞ GNk .

Following Lemma 6.4 of Zhou, Shen and Wolfe (1998), it can be derived that

max
i,j

∣∣G−1
Nk(i, j) − G−1

k (i, j)
∣∣ = op

(
h−1).

Therefore,
√

Nhφ1 = √
NhVec(B1)G

−1
NkD

� 1

N
ENξ0

= Vec(B1)G
−1
k

√
h√
N
D�ENξ0 + Vec(B1)

(
G−1

Nk − G−1
k

) √
h√
N
D�ENξ0

(A.21)

= Vec(B1)G
−1
k

√
h√
N
D�Enξ0 + op(1)

= η�
1 ζ√
N

+ op(1)
def= 1√

N

N∑
t=1

ν1t + op(1),

where, ν1t = η1t ζt ,

η�
1

def= {η11, . . . , η1N }� = Vec(B1)G
−1
k

√
hD�, η1t = Vec(B1)G

−1
k

√
hD(t, :)�,

and

D(t, :) = {
Xt−1B1(Xt−d), . . . ,Xt−1Bk(Xt−d), . . . ,

Xt−rB1(Xt−d), . . . ,Xt−rBk(Xt−d)
}
.

Under (A7) that {Xt, t = 1, . . . ,N} is α-mixing, thus {η1t , t = 1, . . . ,N} which
can be considered as a measurable function of {Xt−d,Xt−1, . . . ,Xt−r} with fi-
nite r , is also α-mixing, and ν1t , t = 1, . . . ,N is also α-mixing. It can be checked
that ∣∣E(ν1t )

∣∣ = ∣∣E(η1t ζt )
∣∣ ≤ {

E
(
η2

1t

)}1/2{
E

(
ζ 2
t

)}1/2

≤ C0
{
E

(√
hVec(B1)G

−1
k D(t, :)�D(t, :)G−1

k Vec(B1)
′√h

)}1/2

= C0
{√

hVec(B1)G
−1
k E

(
D(t, :)�D(t, :))G−1

k Vec(B1)
′√h

}1/2
.

Under condition (A6), similar to Lemma A.1, entries of matrix E(D(t,

:)�D(t, :)) def= �D should be Cjh, j = 1, . . . , rk with Cj > 0. Therefore, eigenval-
ues of �D is O(h), which implies that eigenvalues of G−1

k �DG−1
k are O(h−1).

Consequently,

|μ1ν | =
∣∣E(ν1t )

∣∣ ≤ C0hVec(B1)
{
G−1

k �DG−1
k

}
Vec(B1)

′ < MB < ∞,
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where MB is a finite constant, which means |μ1ν | is uniformly bounded over u by
MB because entries of Vec(B1) are all positive and their summation is 1 due to the
definition of B-spline. By Theorem 2.21 of Fan and Yao (2003), 1/

√
N

∑
ν1t con-

verges to normal distribution N(μ1ν,�1). Convergence of
√

Nhφ2, . . . ,
√

Nhφr

can be similarly proved. As any linear combination of
√

Nhφ1, . . . ,
√

Nhφr could
be considered as a linear combination of α-mixing process whose asymptotic dis-
tribution can be built in the same way as for

√
Nhφ1, we finally have

√
Nh(φ1, . . . , φr)

� d→ N(μν,�u),

where

μν = E(νt )
def= E{ν1t , . . . , νrt }�, �u =

∞∑
j=−∞

E
(
νtν

�
t+j

)
,

where �u exists and is finite under (A7). Finally, we have
√

Nh
{
ĝ(u,α0) − (

g(u) + b(u) + μ∗
ν

)} d→ N(0,�u),

where μ∗
ν

def= μν/
√

Nh = O(hm) is bias caused by autocorrelation of regressors
and random errors in model (2.1). Lemma A.2 is thus verified. �

LEMMA A.3. Under assumptions (A1) to (A7), the estimator α̂ → α0 and
σ̂ 2 = QN(α̂) → σ 2

0 almost surely.

PROOF. We first study the limit of QN(α). Let ξt (θ0) = θ−1
0a (B)θ0m(B)εt be

ARMA(q1, q2) errors under the true parameters θ0. It has been shown by Lemma 2
of Hannan (1973) under (A5), that

1

2π

∫ π

−π

f∗(ω, θ0)

f (ω, θ)
dω > σ 2

0 , if θ �= θ0,(A.22)

where f∗(ω, θ0) and f (ω, θ) are respectively the theoretical SDF and standardized
SDF defined in (2.5). Let Z(α) = {Zt(α), t = 1, . . . ,N}� = Y − XNpβ −Dγ̂ (α),
which approximates ξt (θ0) at α. Write

Zt(α0) = ξt (θ0) + biast ,

where biast = {1,Xt−1, . . . ,Xt−r}(b(u) + μ∗
ν), as shown in Lemma A.2 b(u) +

μ∗
ν is uniformly O(hm). Under assumption (A7) the second moment of biast is

bounded. Thus,

E
(|biast |2) < Cbh

2m, where Cb < ∞.

By the definition of ACVF,

λξ0(κ) = E
(
ξt (θ0)ξt+κ(θ0)

)
.
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Comparing the ACVF of Zt(α0) and ξt (θ0), we have

λZ0(s) = Cov
(
Zt(α0),Zt+κ(α0)

)
= E

({
Zt(α0) − E

(
Zt(α0)

)}{
Zt+κ(α0) − E

(
Zt+κ(α0)

)})
= E

({
ξt (θ0) + biast − E(biast )

}{
ξt+κ(θ0) + biast+κ − E(biast )

})
= E

(
ξt (θ0)ξt+κ(θ0)

) + E
(
ξt+κ

(
biast − E(biast )

))
+ E

(
ξt

(
biast+κ − E(biast+κ)

))
+ E

({
biast − E(biast )

}{
biast+κ − E(biast+κ)

})
.

By Hölder inequality, we have

λZ0(κ) = λξ0(κ) + C0h
m.

Note here Zt(α0) is a process related to sample size N , the above calculation
shows that as N gets larger, Zt(α0) approximates ξt (θ0) better. Because ξt (θ0) is
a stationary and invertible process, for any ε > 0 there exists M > 0 such that∣∣∣∣∣ 1

2π

∫ π

−π

f∗(ω, θ0)

f (ω, θ)
dω − 1

2π

∫ π

−π

∑M
κ=−M λξ0(κ)e−iκω

f (ω, θ)
dω

∣∣∣∣∣ < ε

3
.(A.23)

As λZ0(κ) = λξ0(κ)+ C0h
m and h → 0 as N → ∞, there exists N1 > 0, such that

when N > N1, ∣∣∣∣∣ 1

2π

∫ π

−π

∑M
κ=−M λZ0(κ)e−iκω

f (ω, θ)
dω

(A.24)

− 1

2π

∫ π

−π

∑M
κ=−M λξ0(κ)e−iκω

f (ω, θ)
dω

∣∣∣∣∣ < ε

3
.

Since λξ0(κ) → 0 exponentially as κ → ∞, thus there exists N2 such that for any
N > N2, ∣∣∣∣∣ 1

2π

∫ π

−π

∑
|κ|>M λZ0(κ)e−iκω

f (ω, θ)
dω

∣∣∣∣∣ < ε

3
.(A.25)

Combining (A.22), (A.23), (A.24) and (A.25), we get

lim
N→∞QN(α0) = 1

2π

∫ π

−π

fz(ω,α0)

f (ω, θ0)
dω = σ 2

0 .(A.26)

Moreover, when α �= α0, that is, ‖α − α0‖ > 0,

Zt(α) = ξt (θ0) + biast + Xtp(β0 − β) +Dt

(
γ̂ (α0) − γ̂ (α)

)
def= ξt (θ0) + Biast ,
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where Xtp and Dt are corresponding t th rows of XNp and D, and Biast is a linear
combination of {biast ,Xt−1, . . . ,Xt−r−p,Xt−d}. Thus, fz(ω,α)/f (ω, θ) can be
regarded as the SDF of following process:

Zt(α) − ϕ
(
Zt−1(α),Zt−2(α), . . .

) = e∗
t ,(A.27)

where ϕ is set of constant coefficients related to θ . By Theorem 2.12 in Fan and
Yao (2003),

Zt(α) − ϕ
(
Zt−1(α),Zt−2(α), . . .

) =
( ∞∑

j=0

φjB
j

)
Zt(α) = θ−1

m (B)θa(B)Zt(α).

As 1 = e−0iω, the following integration is equal to its ACVF λ(0) = Var(e∗
t ):

1

2π

∫ π

−π

fz(ω,α)

f (ω, θ)
dω = Var

(
e∗
t

) = σ 2∗ .

Note that α �= α0 means Case one θ �= θ0, or Case two θ = θ0 and β �= β0. For
Case one, under (A5), we have

lim
N→∞QN(α) = 1

2π

∫ π

−π

fz(ω,α)

f (ω, θ)
dω = σ 2∗ ≥ σ 2

0 .(A.28)

If the equality above satisfied, by (A5), fz(ω,α) = σ 2
0 f (ω, θ), which means that

there exist another model for Xt ,

Xt = g′(Xt−Sg
) + ξ ′

t , where ξ ′
t = θ ′

a(B)−1θ ′
m(B)ε′

t .

This is a contradiction to Lemma 2.1, thus σ 2∗ > σ 2
0 . For Case two, if the equality

of (A.28) is satisfied, similar to the proof of (A.26), we have

Zt(α) = ξt (θ0) + op(1),

which will lead to Xtp(β0 − β) = op(1), and this is impossible when β �= β0.
Therefore, we have shown that for any α �= α0,

lim
N→∞QN(α) > σ 2

0 .(A.29)

If α̂ does not converge to α0, then there exists a subsequence α̂l converging to
α∗ ∈ A as l → ∞, and α∗ �= α0. By equation (A.29) with α∗ �= α0, we have

lim
l→∞

Ql(α̂l) = lim
l→∞

Ql(α∗) = 1

2π

∫ π

−π

fz(ω,α∗)
f (ω, θ∗)

dω > σ 2
0 .(A.30)

On the other hand, because α̂ minimizes QN , for any α ∈ A, we have Ql(α̂) ≤
Ql(α) and

lim
l→∞Ql(α̂l) ≤ lim

l→∞Ql(α) = 1

2π

∫ π

−π

fz(ω,α)

f (ω, θ)
dω.
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Therefore, by (A.26),

lim
l→∞Ql(α̂l) ≤ inf

α∈A
1

2π

∫ π

−π

fz(ω,α)

f (ω, θ)
dω

(A.31)

= 1

2π

∫ π

−π

fz(ω,α0)

f (ω, θ0)
dω = σ 2

0 .

Equation (A.31) contradicts with (A.30). Therefore, we must have α∗ = α0, and
thus α̂ → α0 almost surely. The above arguments also lead to

lim
l→∞

Ql(α̂) ≥ σ 2
0 ≥ lim

l→∞Ql(α̂),

and thus QN(α̂) → σ 2
0 almost surely. �

PROOF OF THEOREM 3.1. We apply Taylor expansion to each derivative of
QN(α) with respect to α at α0. There exists α

j∗, j = 1, . . . , J such that

√
N

(
∂QN(α̂)

∂α
− ∂QN(α0)

∂α

)
(A.32)

= √
N

(
∂2QN(α1∗)
∂α1∂α� , . . . ,

∂2QN(αJ∗ )

∂αJ ∂α�
)
(α̂ − α0),

where J = p + q1 + q2 is length of α, and each α
j∗ is closer to α0 than α̂0 in terms

of Euclidean distance, ∥∥αj∗ − α0
∥∥ ≤ ‖α̂ − α0‖.

When N → ∞, by Lemma A.3, α̂
a.s.→ α0, thus α

j∗
a.s.→ α0, j = 1, . . . , J . Therefore,

α
j∗, j = 1, . . . , J could be represented by a single α∗

a.s.→ α0 for convenience when
N → ∞, where ‖α∗ − α0‖ ≤ ‖α̂ − α0‖. Equation (A.32) becomes

√
N

(
∂QN(α̂)

∂α
− ∂QN(α0)

∂α

)
= √

N
∂2QN(α0)

∂α∂α�
(
1 + op(1)

)
(α̂ − α0).(A.33)

Because ∂QN(α̂)/∂α = 0, it suffices to prove

√
N

∂QN(α0)

∂α

d→ N(0,�) and
∂2QN(α0)

∂α∂α�
p→ �.

Write

√
N

∂QN(α0)

∂α
= √

N

(
∂QN(α0)

∂β� ,
∂QN(α0)

∂θ�
)�

def= (
Q�√

Nβ
,Q�√

Nθ

)�
.
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We first study Q√
Nβ . Under assumption (A5), the difference between summa-

tion and integration could be controlled by O(N1/2−a),

Q√
Nβ = √

N
∂QN(α0)

∂β
= 1√

N

∑
ωn

∂I(ωn,Z(α0))/∂β

f (ωn, θ0)

= √
N

1

2π

∫ π

−π

∂I(ω,Z(α0))/∂β

f (ω, θ0)
dω + O

(
N1/2−a).

By Lemma A.3, as the integration reaches the minimum at α0, thus

1

2π

∫ π

−π

∂fz(ω,α0)/∂β

f (ω, θ0)
= 0

and because a > 1/2 as assumed in (A5), we have O(N1/2−a) = o(1). Thus,

Q√
Nβ = √

N
1

2π

∫ π

−π

(
∂I(ω,Z(α0))/∂β

f (ω, θ0)
− ∂fz(ω,α0)/∂β

f (ω, θ0)

)
dω + o(1),(A.34)

where the periodogram and SDF in the above equation have the following formulas
by their definition:

I
(
ω,Z(α0)

) = 1

2π

N−1∑
−N+1

cz(κ)e−iκω, cz(κ) = 1

N

N−|κ|∑
t=1

Zt(α0)Zt+|κ|(α0),

fz(ω,α0) = 1

2π

∞∑
−∞

λ(κ)e−iκω, λ(κ) = 1

N − |κ|
N−|κ|∑
t=1

E
{
Zt(α0)Zt+|κ|(α0)

}
.

Let f ′
Nz(ω,α0) be the Cesàro summation of ∂fz(ω,α0)/∂β up to N terms, so

f ′
Nz(ω,α0) =

N−1∑
−N+1

(
1 − |κ|

N

)
∂λ(κ)

∂β
e−iκω.

By assumption (A5), the difference between the Cesàro summation and the origi-
nal function is bounded by O(N−a), that is,

sup
ω

∣∣∣∣f ′
Nz(ω,α0) − ∂fz(ω,α0)

∂β

∣∣∣∣ = O
(
N−a).

See, for example, page 91 of Zygmund (1959). Thus, equation (A.34) reduces to

Q√
Nβ = √

N
1

2π

∫ π

−π

(
∂I(ω,Z(α0))/∂β

f (ω, θ0)
− f ′

Nz(ω,α0)

f (ω, θ0)

)
dω + op(1)

= √
N

1

2π

∫ π

−π

(
1

2π

N−1∑
−N+1

(
∂cz(κ)

∂β0
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−
(

1 − |κ|
N

)
∂λz(κ)

∂β0

)
e−iκωf −1(ω, θ0)

)
dω + op(1)

= √
N

N−1∑
−N+1

(
∂cz(κ)

∂β0
−

(
1 − |κ|

N

)
∂λz(κ)

∂β0

)
ρ0(κ, θ0) + op(1),

where

ρ0(κ, θ0) = 1/(2π)2
∫ π

−π
f −1(ω, θ0)e

−iκω dω.(A.35)

It is easy to see that ρ0(κ, θ0) is the ACVF of ARMA(q2, q1, θ
∗) multiplied by

1/(2π), where θ∗ is the AR coefficients and MA coefficients being interchanged.
For convenience, as op(1) is negligible according to Slutsky’s theorem, we remove
it symbolically afterward. Consequently,

Q√
Nβ = 1√

N

N−1∑
−N+1

(N−|κ|∑
t=1

∂(ZtZt+|κ|)
∂β

−
N−|κ|∑
t=1

∂(E{ZtZt+|κ|})
∂β

)
ρ0(κ, θ0)

=
N−1∑

−N+1

Z′
�(κ)ρ0(κ, θ0),

where Z′
�(κ) stands for the following formula:

Z′
�(κ) = 1√

N

N−|κ|∑
t=1

(
∂(ZtZt+|κ|)

∂β
− ∂(E{ZtZt+|κ|})

∂β

)
,

where κ = −N + 1, . . . ,N − 1. In Q√
Nβ , Z′

�(κ) is a function of Zt , while
ρ0(κ, θ0) does not depend on Zt . Because for any κ1 and κ2 ∈ [−N + 1,N − 1],

E
(
Z′

�(κ1)
) = E

(
Z′

�(κ2)
) = 0,

we have

Cov
(
Z′

�(κ1),Z
′
�(κ2)

)
= E

(
Z′

�(κ1)Z
′
�(κ2)

)
= 1

N

∑
t1∈T1

∑
t2∈T2

E

((
∂(Zt1Zt1+|κ1|)

∂β
− ∂E(Zt1Zt1+|κ1|)

∂β

)

×
(

∂(Zt2Zt2+|κ2|)
∂β� − ∂E(Zt2Zt2+|κ2|)

∂β�
))

= 1

N

∑
t1∈T1

∑
t2∈T2

(
E

{
∂(Zt1Zt1+|κ1|)

∂β

∂(Zt2Zt2+|κ2|)
∂β�

}
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− ∂E(Zt1Zt1+|κ1|)
∂β

∂E(Zt2Zt2+|κ2|)
∂β�

)

= 1

N

∑
t1∈T1

∑
t2∈T2

(
E

{(
∂Zt1

∂β
Zt1+|κ1| +

∂Zt1+|κ1|
∂β

Zt1

)

×
(

∂Zt2

∂β� Zt2+|κ2| +
∂Zt2+|κ2|

∂β� Zt2

)}
(A.36)

−
{
E

(
∂Zt1

∂β
Zt1+|κ1|

)
+ E

(
∂Zt1+|κ1|

∂β
Zt1

)}

×
{
E

(
∂Zt2

∂β� Zt2+|κ2|
)

+ E

(
∂Zt2+|κ2|

∂β� Zt2

)})

= 1

N

∑
t1∈T1

∑
t2∈T2

(
E

(
∂Zt1

∂β
Zt1+|κ1|

∂Zt2

∂β� Zt2+|κ2|
)

− E

(
∂Zt1

∂β
Zt1+|κ1|

)
E

(
∂Zt2

∂β� Zt2+|κ2|
)

+ E

(
∂Zt1

∂β
Zt1+|κ1|

∂Zt2+|κ2|
∂β� Zt2

)
− E

(
∂Zt1

∂β
Zt1+|κ1|

)
E

(
∂Zt2+|κ2|

∂β� Zt2

)

+ E

(
∂Zt1+|κ1|

∂β
Zt1

∂Zt2

∂β� Zt2+|κ2|
)

− E

(
∂Zt1+|κ1|

∂β
Zt1

)
E

(
∂Zt2

∂β� Zt2+|κ2|
)

+ E

(
∂Zt1+|κ1|

∂β
Zt1

∂Zt2+|κ2|
∂β� Zt2

)
− E

(
∂Zt1+|κ1|

∂β
Zt1

)
E

(
∂Zt2+|κ2|

∂β� Zt2

))

= 1

N

∑
t1∈T1

∑
t2∈T2

(PartI + PartII + PartIII + PartIV),

where T1 = {1, . . . ,N − |κ1|} and T2 = {1, . . . ,N − |κ2|}. Applying Proposi-
tion 2.5 of Fan and Yao (2003) which gives the bound of the covariance, we have∣∣∣∣ 1

N

∑
t1∈T1

∑
t2∈T2

PartI

∣∣∣∣
≤ N − |κ1|

N
max
t1∈T1

∑
T2

|PartI|
(A.37)

= N − |κ1|
N

max
t1∈T1

∑
T2

∣∣∣∣Cov
(

∂Zt1

∂β
Zt1+|κ1|,

∂Zt2

∂β� Zt2+|κ2|
)∣∣∣∣

≤ N − |κ1|
N

max
t1∈T1

∑
T2

8α
1−2/τ
d12

{
E

∣∣∣∣∂Zt1

∂β
Zt1+|κ1|

∣∣∣∣τE∣∣∣∣∂Zt2

∂β� Zt2+|κ2|
∣∣∣∣τ}1/τ

,
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where d12 = min(|t1 − t2|, |t1 − t2 − |κ2||, |t1 + |κ1| − t2|, |t1 + |κ1| − t2 − |κ2||).
Under (A7), there exists RI < ∞ such that 1/N

∑
t1∈T1

∑
t2∈T2

PartI < RI. Similar
results hold for parts PartII,PartIII and PartIV. As a consequence, there exists R0

such that ∣∣Cov
(
Z′

�(κ1),Z
′
�(κ2)

)∣∣ ≤ R0.(A.38)

As ρ0(κ, θ0) is proportional to ACVF of invertible and stationary time series
ARMA(q2, q1, θ

∗), ρ0(κ, θ0) decreases to zero exponentially when κ → ∞.
Therefore, there exists M > 0, such that

∑
κ∈SN/M

|ρ0(κ, θ0)| < ε for any small
ε > 0; here SN/M = {κ : N − 1 ≥ |κ| ≥ M}. We further have

E

∣∣∣∣ ∑
κ∈SN/M

Z′
�(κ)ρ0(κ, θ0)

∣∣∣∣
≤

[
E

( ∑
κ∈SN/M

Z′
�(κ)ρ0(κ, θ0)

)2]1/2

≤
[
E

∑
κ1∈SN/M

∑
κ2∈SN/M

Z′
�(κ1)Z

′
�(κ2)ρ0(κ1, θ0)ρ0(κ2, θ0)

]1/2

≤
[ ∑
κ1∈SN/M

∑
κ2∈SN/M

∣∣E(
Z′

�(κ1)Z
′
�(κ2)

)∣∣∣∣ρ0(κ1, θ0)ρ0(κ2, θ0)
∣∣]1/2

(A.39)

≤
[
R0

∑
κ1∈SN/M

∑
κ2∈SN/M

∣∣ρ0(κ1, θ0)ρ0(κ2, θ0)
∣∣]1/2

=
[
R0

( ∑
κ1∈SN/M

∣∣ρ0(κ1, θ0)
∣∣)( ∑

κ2∈SN/M

∣∣ρ0(κ2, θ0)
∣∣)]1/2

≤ [
R0ε

2]1/2 ≤ √
R0ε.

In the above and following calculations, operators such as | |,√ ,≤, ( )2 and
∑

are
applied to matrices and vectors elementwise. By (A.39), Q√

Bβ could be reduced

to Q̃√
Bβ with M terms, that is,

Q̃√
Nβ =

M∑
−M

Z′
�(κ)ρ0(κ, θ0)

= 1√
N

M∑
−M

N−|κ|∑
t=1

(
∂(ZtZt+|κ|)

∂β
− ∂(E{ZtZt+|κ|})

∂β

)
ρ0(κ, θ0)
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= 1√
N

M∑
−M

N−|κ|∑
t=1

(
∂Zt

∂β
Zt+|κ| + ∂Zt+|κ|

∂β
Zt − E

(
∂Zt

∂β
Zt+|κ|

)

− E

(
∂Zt+|κ|

∂β
Zt

))
ρ0(κ, θ0).

Because the derivative of Zt(α0) takes the following forms:

∂Zt(α0)

∂β
= X�

t,p −
(

1

N
D(t, :)G−1

NkD
�ENXNp

)�
= X�

t,p + op(1),

and

Zt(α0) = Yt − Xt,pβ0 −D(t, :)γ̂0(α0) = ξ0,t + op(1),

where Xt,p and D(t, :) are corresponding row vectors of XNp and D, respectively,
by changing the subscripts, it follows that

Q̃√
Nβ = 1√

N

M∑
−M

N−|κ|∑
t=1

(
X�

t,pξ0,t+|κ| + X�
t+|κ|,pξ0,t

− E
(
X�

t,pξ0,t+|κ|
) − E

(
X�

t+|κ|,pξ0,t

))
ρ0(κ, θ0)

(A.40)

= 1√
N

M∑
κ=−M

N−|κ|∑
t=1

K(κ, t)ρ0(κ, θ0)

= 1√
N

N∑
t=1

min{M,N−t}∑
κ=−min{M,N−t}

K(κ, t)ρ0(κ, θ0)
def= 1√

N

N∑
t=1

V(t,M).

Let

�#
β(κ1, κ2) = Cov

(
Z′

�(κ1),Z
′
�(κ2)

)
= 1

N
Cov

(
N−|κ1|∑

t=1

X�
t,pξ0,t+|κ1| + X�

t+|κ1|,pξ0,t ,(A.41)

N−|κ2|∑
t=1

Xt,pξ0,t+|κ2| + Xt+|κ2|,pξ0,t

)
.

Inequality (A.38) ensures that �#
β(κ1, κ2) converges and exists. Let

�β =
∞∑

κ1,κ2=−∞
ρ0(κ1, θ0)ρ0(κ2, θ0)�

#
β(κ1, κ2).(A.42)

Since ρ0(κ, θ0) → 0 exponentially when κ → ∞, thus �β also converges and
exists. From equation (A.40) and (A7), it is easy to verify that V(t,M) satisfies
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the conditions of Theorem 2.21 of Fan and Yao (2003), and that E(V(t,M)) = 0.
Thus,

Q√
Nβ

d� Q̃√
Nβ

d→ N(0,�β),(A.43)

where
d� means the same asymptotic distribution. Next, consider Q√

Nθ ,

Q√
Nθ = √

N
∂QN(α0)

∂θ

= 1√
N

∑
ωn

I
(
ωn,Z(α0)

)∂f −1(ωn, θ0)

∂θ
+ 1√

N

∑
ωn

∂I(ωn,Z(α0))/∂θ

f (ωn, θ0)

= √
N

1

2π

∫ π

−π

(
I
(
ω,Z(α0)

)∂f −1(ω, θ0)

∂θ
+ ∂I(ω,Z(α0))/∂θ

f (ω, θ0)

)
dω

+ O
(
N1/2−a).

From Lemma A.3, we have

1/(2π)

∫ π

−π

(
fz(ω,α0)

∂f −1(ω, θ0)

∂θ
+ ∂fz(ω, (α0))/∂θ

f (ω, θ0)

)
dω = 0.

Thus,

Q√
Nθ = √

N
1

2π

∫ π

−π

([
I
(
ω,Z(α0)

) − fz(ω,α0)
]∂f −1(ω, θ0)

∂θ

+
[
∂I(ω,Z(α0))/∂θ

f (ω, θ0)
− ∂fz(ω, (α0))/∂θ

f (ω, θ0)

])
dω + O

(
N1/2−a)

= Q√
Nθ I + Q√

Nθ II + O
(
N1/2−a).

It follows from Theorem 2 of Hannan (1973) that

Q√
Nθ I

d� 1√
N

∑
ωn

I(ωn, ξ0)
∂f −1(ωn, θ0)

∂θ
→ N(0,�θI),(A.44)

where

�θ I = σ 4
0

π

∫ π

−π

{
∂ logf (ω, θ0)

∂θ

}{
∂ logf (ω, θ0)

∂θ

}�
dω.

Now, consider Q√
Nθ II. It is easy to check

∂Z(α0)

∂θ� = 1

N
DG−1

NkD
� ∂EN

∂θ� {Y − XNpβ0}

+ 1

N2DG−1
NkD

∂EN

∂θ� D�G−1
NkD

�EN {Y − XNpβ0}
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= 1

N
DG−1

NkD
� ∂EN

∂θ� (Gxu + ξ0) + op(1)

def= [
G′

ξ

]�
,

where Gxu = D(Xt−1)g1(Xt−d) + · · · + D(Xt−r )gr(Xt−d). Because ∂f −1(ω,

θ0)/∂θ is continuous, thus G′
ξ = {[G′

ξ (1)]�, . . . , [G′
ξ (N)]�} is a measurable func-

tion of {Xt−1, . . . ,Xt−r ,Xt−d}, t = 1, . . . ,N , and each G′
ξ (t) is a row vector.

Similar to (A.41), define

�#
θII(κ1, κ2) = 1

N
Cov

(
N−|κ1|∑

t=1

G′
ξ (t)

�ξ0,t+|κ1| + G′
ξ

(
t + |κ1|)�ξ0,t ,

(A.45)
N−|κ2|∑

t=1

G′
ξ (t)ξ0,t+|κ2| + G′

ξ

(
t + |κ2|)ξ0,t

)
.

Following the same procedure of proving Q√
Bβ , we have

Q√
Nθ II

d→ N(0,�θII),(A.46)

where

�θII =
∞∑

κ1,κ2=−∞
ρ0(κ1, θ0)ρ0(κ2, θ0)�

#
θII(κ1, κ2)

and

�#
βθ II(κ1, κ2) = 1

N
Cov

(N−|κ1|∑
t=1

X�
t,pξ0,t+|κ1| + X�

t+|κ1|,pξ0,t ,

(A.47)
N−|κ2|∑

t=1

G′
ξ (t)ξ0,t+|κ2| + G′

ξ

(
t + |κ2|)ξ0,t

)
and the covariance matrix is

�βθ II =
∞∑

κ1,κ2=−∞
ρ0(κ1, θ0)ρ0(κ2, θ0)�

#
βθ II(κ1, κ2).(A.48)

Similarly, we have

�#
βθ I(κ1, κ2)

(A.49)

= 1

N
Cov

(N−|κ1|∑
t=1

X�
t,pξ0,t+|κ1| + X�

t+|κ1|,pξ0,t ,

N−|κ2|∑
t=1

ξ0,t ξ0,t+|κ2|
)
,

and

�βθI =
∞∑

κ1,κ2=−∞
ρ0(κ1, θ0)�

#
βθ I(κ1, κ2)ρ

′
0(κ2, θ0)

�,(A.50)
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where

ρ′
0(κ2, θ0) = 1

(2π)2

∫ π

−π

∂f −1(ω, θ0)

∂θ
e−iκ2ω dω

and ρ′
0(κ2, θ0) is similarly calculated as ρ0(κ2, θ0) in (A.35) except that it is a

column vector. For covariance matrix between Q√
Nθ I and Q√

Nθ II, let

�#
θ I,II(κ1, κ2)

(A.51)

= 1

N
Cov

(N−|κ1|∑
t=1

ξ0,t ξ0,t+|κ1|
N−|κ2|∑

t=1

G′
ξ (t)ξ0,t+|κ2| + G′

ξ

(
t + |κ2|)ξ0,t

)

and

�θ I,II =
∞∑

κ1,κ2=−∞
ρ′

0(κ1, θ0)�
#
θI,II(κ1, κ2)ρ0(κ2, θ0)

�.(A.52)

Construct matrix

AI =
(
Ip 0 0

0 Iq Iq

)
, �βθ =

⎛⎜⎝
�β �βθ I �βθ II

��
βθ I �θ I �θI,II

��
βθ II ��

θI,II �θII

⎞⎟⎠ ,

where Ip and Iq are identity matrices, and p is the number of linear lagged vari-
ables, q = q1 + q2 is the length of θ = {θa1, . . . , θaq1, θm1, . . . , θmq2}�. By these
notation, we can write

√
N

∂QN(α0)

∂α
= AI × (

Q�√
Nβ

,Q�√
NθI

,Q�√
NθII

)�
.

All the entries of the �βθ are defined by (A.42), (A.44), (A.46), (A.48), (A.50)
and (A.52). Recall that we have proved(

Q�√
Nβ

,Q�√
NθI

,Q�√
NθII

)� d→ N(0,�βθ ).

Combining all the results above, we have

√
N

∂QN(α0)

∂α

d→ N
(
0,AI�βθA

�
I

)
.(A.53)

Next, we need to show ∂2QN(α0)/∂α∂α� p→ � for some finite matrix �. Accord-
ing to (A.34),

∂2QN(α0)

∂β∂β� − 1

2π

∫ π

−π

∂2fz(ω,α0)

∂β∂β� f −1(ω, θ0) dω

= 1

N

∑
ωn

∂2I(ωn,Z(α0))

∂β∂β� f −1(ω, θ0)(A.54)
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− 1

2π

∫ π

−π

∂2fz(ω,α0)

∂β∂β� f −1(ω, θ0) dω

=
√

N√
N

1

2π

∫ π

−π

(
∂2I(ω,Z(α0))

∂β∂β� − ∂2fz(ω,α0)

∂β∂β�
)
f −1(ω, θ0) dω

+ op(1).

Following the same steps as for Q√
Nβ in (A.43), for each entry above it can be

proved that

√
N

1

2π

∫ π

−π

(
∂2I(ω,Z(α0))

∂βj1∂βj2
− ∂2fz(ω,α0)

∂βj1∂βj2

)
f −1(ω, θ0) dω

d→ N(0,�ij ).

Thus,

1

2π

∫ π

−π

(
∂2I(ω,Z(α0))

∂βj1∂βj2
− ∂2fz(ω,α0)

∂βj1∂βj2

)
f −1(ω, θ0) dω

p→ 0.

Therefore,

�β
def= ∂2QN(α0)

∂β∂β�
p→ 1

2π

∫ π

−π

∂2fz(ω,α0)

∂β∂β� f −1(ω, θ0) dω(A.55)

and

∂2QN(α0)

∂β∂θ� = 1

N

∑
ωn

∂I(ω,Z(α0))

∂β

∂f −1(ω, θ0)

∂θ�

+ 1

N

∑
ωn

∂2I(ω,Z(α0))

∂β∂θ� f −1(ω, θ0).

In a similar manner, we can show that

1

N

∑
ωn

∂I(ω,Z(α0))

∂β

∂f −1(ω, θ0)

∂θ� + 1

N

∑
ωn

∂2I(ω,Z(α0))

∂β∂θ� f −1(ω, θ0)

− 1

2π

∫ π

−π

∂2fz(ω,α0)

∂β∂θ� f −1(ω, θ0) dω

− 1

2π

∫ π

−π

∂fz(ω,α0)

∂β

∂f −1(ω, θ0)

∂θ
dω

p→ 0

and

1

2π

∫ π

−π

∂2fz(ω,α0)

∂β∂θ� f −1(ω, θ0) dω + 1

2π

∫ π

−π

∂fz(ω,α0)

∂β

∂f −1(ω, θ0)

∂θ
dω

= 1

2π

∫ π

−π

∂2(fz(ω,α0)f
−1(ω, θ0))

∂β∂θ� dω.
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Thus,

∂2QN(α0)

∂β∂θ�
p→ 1

2π

∫ π

−π

∂2(fz(ω,α0)f
−1(ω, θ0))

∂β∂θ� dω.(A.56)

Similarly,

∂2QN(α0)

∂θ∂θ�
p→ 1

2π

∫ π

−π

∂2(fz(ω,α0)f
−1(ω, θ0))

∂θ∂θ� dω.(A.57)

Based (A.55), (A.56) and (A.57), it follows that

∂2QN(α0)

∂α∂α�
p→ � = 1

2π

∫ π

−π

∂2(fz(ω,α0)f
−1(ω, θ0))

∂α∂α� dω.(A.58)

Based on (A.53) and (A.58), we immediately have
√

N(α̂ − α0)
d→ N

(
0,�−1AI�βθA

�
I �−1).(A.59)

This completes the proof of (3.4). Note that

√
Nh

(
ĝ(u, α̂) − ĝ(u,α0)

) = √
h

∂ ĝ(u,α∗)
∂α

√
N(α̂ − α0),

where α̂
a.s.→ α0 leads to α∗

a.s.→ α0, where ‖α∗ − α0‖ ≤ ‖α̂ − α0‖. (3.4) im-
plies that

√
N(α̂ − α0) = Op(1). In the proof of (3.4), it has been shown that

∂ ĝ(u,α0)/∂α = Op(1), thus the above difference is of order op(1) as h → 0 when
N → ∞. (3.5) follows from Lemma A.2. �
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