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ESTIMATION IN EXPONENTIAL FAMILIES ON PERMUTATIONS

BY SUMIT MUKHERJEE

Columbia University

Asymptotics of the normalizing constant are computed for a class of
one parameter exponential families on permutations which include Mal-
lows models with Spearmans’s Footrule and Spearman’s Rank Correlation
Statistic. The MLE and a computable approximation of the MLE are shown
to be consistent. The pseudo-likelihood estimator of Besag is shown to be√

n-consistent. An iterative algorithm (IPFP) is proved to converge to the
limiting normalizing constant. The Mallows model with Kendall’s tau is also
analyzed to demonstrate the flexibility of the tools of this paper.

1. Introduction. Analysis of permutation data has a long history in statistics.
An early paper is the work of Mallows [34] in 1957, where the author proposed an
exponential family of the form

e−θd(π,σ )−Zn(θ,σ ),

henceforth referred to as Mallows models, to study nonuniform distributions on
permutations. In this model, σ is a fixed permutation which is a location parame-
ter, θ is a real valued parameter and d(·, ·) : Sn × Sn �→ R is a “distance” function
on the space of permutations. Here, Zn(θ, σ ) denotes the (unknown) log normaliz-
ing constant of this family. Mallows mainly considered two distances, namely the
Kendall’s tau, and the Spearman’s rank correlation. Using this modeling approach,
Feigin and Cohen [16] analyzed the nature of agreement between several judges in
a contest. Critchlow [9] gave some examples where Mallows model gives a good
fit to ranking data. Fligner and Verducci [18, 19] generalized the Mallows model
with Kendall’s tau and Cayley’s distance to an n parameter exponential family
over permutations, where each parameter inductively determines a permutation in
Sk starting from a partition in Sk−1. The extra parameters allow more flexibility,
and the structure of the model allows one to retain tractability. See also [10] which
deal with various aspects of permutation models, Chapters 5 and 6 of [13] which
sketch out numerous possible applications and the book length treatment in [35],
which covers both theoretical and applied aspects of permutation modeling.

Permutation modeling has also received some recent attention in machine learn-
ing literature. The generalized version of the Mallows model with Kendall’s tau
was considered in [8, 30]. Estimation of the location and scale parameters in this
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model was carried out in [40]. An infinite version of the generalized Mallows
model was proposed in [38, 39], where the authors show existence of sufficient
statistics, and compute conjugate priors for this model. If the data has multiple
modes, the authors propose to use clustering techniques to separate permutations
coming from different modes before applying their estimation scheme. In another
direction, [28] propose the use of Fourier analysis on representation theory of fi-
nite groups to study probability models on permutations. Representing a probabil-
ity distribution via its Fourier coefficients, they are able to formulate the update
rule in a Bayesian model tracking problem in terms of Fourier coefficients. This
representation, along with fast computation of Fourier coefficients allow study of
permutation models of moderate size (n = 30). For a more detailed exposition
on this technique, refer to [23]. Modeling of partially ranked data under the Mal-
lows model with Kendall’s tau was studied in [31]. Efficient sampling schemes
for learning Mallows models with Cayley distance, Ulam distance and Hamming
distance has been studied recently in [24–26] utilizing the structure of the model
under consideration. See also the recent work of [3] where the authors study esti-
mation of location and scale mixtures of Mallows model with Kendall’s tau in an
algorithmic framework.

This paper analyzes a class of exponential families on the space of permuta-
tions using the recently developed concept of permutation limits. The notion of
permutation limits has been first introduced in [22], and is motivated by dense
graph limit theory (see [32] and the references therein). The main idea is that a
permutation can be thought of as a probability measure on the unit square with
uniform marginals. Multivariate distributions with uniform marginals have been
studied widely in probability and statistics (see [20, 27, 33, 37, 45, 46, 48, 51] and
references therein) and finance (see [1, 7, 36, 41, 43] and references therein) under
the name copula. One of the reasons for their popularity is that copulas are able to
capture any dependence structure, as shown in Sklar’s theorem [48].

1.1. Main contributions. This paper gives a framework for analyzing proba-
bility distributions on large permutations. It computes asymptotics of normalizing
constants in a class of exponential families on permutations, and explores identi-
fiability of such models. It derives the limit in probability of statistics under such
models, and shows the consistency of two estimates including the MLE. It also
shows the existence of consistent tests for such models. It gives an Iterative Pro-
portional Fitting Procedure (IPFP) to numerically compute the normalizing con-
stant. It also shows

√
n consistency of the pseudo-likelihood estimator of Besag.

It demonstrates the flexibility of this approach by analyzing the Mallows model
with Kendall’s tau. For the Mallows model with Kendall’s tau, it again shows con-
sistency of two estimates including the MLE. Finally, using results from [6] it
computes joint limiting distribution of whole permutation for a class of permuta-
tion models which include the Mallows model with Spearman’s rank correlation
and Kendall’s tau.



ESTIMATION IN EXPONENTIAL FAMILIES ON PERMUTATIONS 855

Even though Mallows models for a class of distance functions have been con-
sidered in the literature, not much is available in terms of weak limits, limit distri-
butions, rate of errors in estimation and testing of hypothesis, outside the Mallows
model with Kendall’s tau. One of the advantages of the proposed framework of this
paper is that it allows analysis of permutation models both from a rigorous and a
visual point of view. From a rigorous perspective, this approach allows one to study
limiting properties of permutation models outside Mallows models with Kendall’s
tau and its generalizations, which seemingly have no independence structure built
in to exploit. In particular, this approach covers the Mallows model with Spear-
man’s correlation, for which not much theory is available in the literature. From
a visual and diagnostic perspective, it gives a way to compare permutations, and
thus test goodness of fit for permutation models. Another advantage of this ap-
proach is that it provides a limiting distribution for the whole permutation viewed
as a process for a wide class of models on permutations, which to the best of my
knowledge was not known before even for the usual Mallows model with Kendall’s
tau. This allows for the possibility of studying partially observed rankings as well,
by studying finite-dimensional marginals of this permutation process.

The main tool for proving the results is a large deviation principle for a uni-
formly random permutation. This was first proved in [50], but the supplementary
file [42] contains a new proof of this large deviation using permutation limits.

1.2. The 1970 draft lottery. To see how permutation data can arise naturally,
consider the following example of historical importance. On December 1, 1969,
during the Vietnam War the US Government used a random permutation of size
366 to decide the relative dates of when the people (among the citizens of the USA
born between the years 1944–1950) will be inducted into the army in the year
1970, based on their birthdays. 366 cylindrical capsules were put in a large box,
one for each day of the year. The people who were born on the first chosen date
had to join the war first, those born on the second chosen date had to join next,
and so on. There were widespread allegations that the chosen permutation was not
uniformly random. In [17], Fienberg computed the Spearman’s rank correlation
between the birthdays and lottery numbers to be −0.226, which is significantly
negative at 0.001 level of significance. This suggests that people born in the latter
part of the year were more likely to be inducted earlier in the army.

If a permutation is not chosen uniformly at random, then the question arises
whether a particular nonuniform model gives a better fit. It might be the case that
there is a specific permutation σ toward which the sampling mechanism has a
bias, and permutations close to σ have a higher probability of being selected. For
example, in the draft lottery example σ is the permutation

(366,365,364, . . . ,3,2,1).

The Mallows models defined above are able to capture such behavior. The hy-
pothesis of uniformity in this setting is equivalent to the hypothesis that θ = 0.
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Possibly the most famous and widely used model on permutations is the Mal-
lows model with Kendall’s tau as the divergence function. One of the reasons for
this is that for this model the normalizing constant is known explicitly (see, e.g.,
[15], (2.9)), and so analyzing this model becomes a lot simpler. However, when
one moves away from the Mallows model with Kendall’s tau and its generaliza-
tions, not much theory is available in the literature. One reason for this is that
normalizing constant is not available in closed form, and there is no straightfor-
ward independence assumptions in the model which one can exploit to analyze
such models. Even basic properties for such models such as identifiability and
consistency of estimates are not well understood in general.

1.3. Choice of the function d . Even though the literature on Mallows models
mostly mention d(·, ·) to be a metric, for the purposes of this paper this is not
necessary. As such, the function d will henceforth be referred to as a divergence
function. One restriction on the divergence d(·, ·) which seems reasonable is that
d(·, ·) is right invariant, that is,

d(π,σ ) = d(π ◦ τ, σ ◦ τ) for all π,σ, τ ∈ Sn.

The justification for this last requirement is as follows: suppose the students in a
class are labeled {1,2, . . . , n}, and let π(i) and σ(i) denote the rank of student i

based on math and physics scores, respectively (assume no tied scores). The diver-
gence d(π,σ ) can be thought of as a measure of the strength of the relationship
between math and physics rankings. If students are now labeled differently us-
ing a permutation τ , so that student i now becomes student τ(i), then the math
and physics rankings become π ◦ τ and σ ◦ τ , respectively. But this relabeling
of students in principle should not change the relation between math and physics
rankings, which requires the right invariance of d(·, ·).

Some of the common choices of right invariant divergence d(·, ·) in the literature
are the following ([13], Chapters 5 and 6):

(a) Spearman’s foot rule:
∑n

i=1 |π(i) − σ(i)|.
(b) Spearman’s rank correlation:

∑n
i=1(π(i) − σ(i))2.

(c) Hamming distance:
∑n

i=1 1{π(i) �= σ(i)}.
(d) Kendall’s tau: Minimum number of pairwise adjacent transpositions which

converts π−1 into σ−1.
(e) Cayley’s distance: Minimum number of adjacent transpositions which con-

verts π into σ = n-number of cycles in πσ−1.
(f) Ulam’s distance: Number of deletion–insertion operations to convert π into

σ = n-length of the longest increasing subsequence in σπ−1.

See [13], Chapters 5 and 6, for more details on these divergences. It should be
noted here that barring Spearman’s rank correlation, all the other divergences in



ESTIMATION IN EXPONENTIAL FAMILIES ON PERMUTATIONS 857

this list are metrics on the space of permutations. If d(·, ·) is right invariant, then
the normalizing constant is free of σ , as∑

π∈Sn

e−θd(π,σ ) = ∑
π∈Sn

e−θd(π◦σ−1,e) = ∑
π∈Sn

e−θd(π,e),

where e is the identity permutation. Also, if π is a sample from the probability
mass function e−θd(π,σ )−Zn(θ), then π ◦σ−1 is a sample from the probability mass
function e−θd(π,e)−Zn(θ). This paper focuses on the case where σ is known, and
carries out inference on θ when one sample π is observed from this model. If
the location parameter σ is unknown, estimating it from one permutation π seems
impossible, unless the model puts very small mass on permutations which are away
from σ , in which case π itself is a reasonable estimate for σ . In case σ is known,
without loss of generality by a relabeling it can be assumed that σ is the identity
permutation.

In an attempt to cover the first two divergences in the above list, consider an
exponential family of the form

Qn,f,θ (π) = eθ
∑n

i=1 f (i/n,π(i)/n)−Zn(f,θ),(1.1)

where f is a continuous function on the unit square. In particular, if f (x, y) =
−|x − y| then

n∑
i=1

f
(
i/n,π(i)/n

) = −1

n

n∑
i=1

∣∣i − π(i)
∣∣,

which is a scaled version of the Foot rule [see (a) in list above]. For the choice
f (x, y) = −(x − y)2,

n∑
i=1

f
(
i/n,π(i)/n

) = − 1

n2

n∑
i=1

(
i − π(i)

)2

is a scaled version of Spearman’s rank correlation statistic [see (b) in the list
above]. A simple calculation shows that the right-hand side above is same as

(n + 1)(2n + 1)

3n
+ 2

n2

n∑
i=1

iπ(i),

and so the same model would have been obtained by setting f (x, y) = xy. Note
that the Hamming distance (third in the list of divergences) is also of this form for
the choice f (x, y) = 1x �=y which is a discontinuous function.

REMARK 1.1. It should be noted here that the model Qn,f,θ covers a wide
class of models, some of which are not unimodal, for example, if one sets
f (x, y) = x(1 − x)y then for n = 7

7∑
i=1

f (i/7, j/7) = 1

73

7∑
i=1

i(7 − i)π(i),
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which is maximized when

π(7) = 1,
{
π(1),π(6)

} = {2,3},{
π(2),π(5)

} = {4,5}, {
π(3),π(4)

} = {6,7}.
Thus, for θ > 0 this model has 23 = 8 modes. In general, for θ > 0 this model has
2(n−1)/2 modes for n odd, and 2(n−2)/2 modes for n even.

If one assumes that for every fixed y the function y �→ f (x, y) has a unique
global maximum at y = x, then the model Qn,f,θ is unimodal. Indeed, in this case
the mode is the identity permutation (1,2, . . . , n) for θ > 0 and the reverse identity
permutation (n,n − 1, . . . ,1) for θ < 0. Note that both the functions f (x, y) =
−(x−y)2 and f (x, y) = −|x−y| satisfy this condition. In general, if y �→ f (x, y)

is maximized uniquely at y = φ(x) for some function φ : [0,1] �→ [0,1], then at a
heuristic level the mode of the distribution is the permutation πφ given by πφ(i) =
φ(ni). If the specific problem at hand demands unimodality, one can restrict to
functions f (x, y) which are maximized on the diagonal, though nothing changes
as this information is not exploited anywhere.

One important comment about the model Qn,f,θ is that different choices of the
function f may give the same model. Indeed as already remarked above, the func-
tion f (x, y) = −(x − y)2/2 and f (x, y) = xy gives rise to the same model. In
general, whenever f (x, y) − g(x, y) can be written as φ(x) + ψ(y) for any two
functions φ,ψ : [0,1] �→ R the two models are the same. In particular, the func-
tion f (x, y) = x + y and g(x, y) ≡ 0 gives rise to the same model, which is the
uniform distribution on Sn. The following definition restricts the class of functions
f to ensure identifiability.

DEFINITION 1.2. Let C be the set of all continuous functions f on [0,1]2

which satisfy ∫ 1

0
f (x, z) dz = 0 ∀x ∈ [0,1];

(1.2) ∫ 1

0
f (z, y) dz = 0 ∀y ∈ [0,1],

and f is not identically 0.

PROPOSITION 1.3. If f1, f2 ∈ C and Qn,f1,θ (π) = Qn,f2,θ (π) for all π ∈ Sn

for all large n for some θ �= 0, then f1 ≡ f2.

PROOF. Setting g(x, y) = θ [f1(x, y) − f2(x, y)] the given assumption im-
plies

∑n
i=1 g(i/n,π(i)/n) = Cn for all π ∈ Sn, where Cn := Zn(f, θ1)−Zn(f, θ2)

is free of π . Thus, for any 1 ≤ i, j ≤ n − 1 setting σ1, σ2 ∈ Sn by

σ1(i) = j, σ1(n) = n, σ1(i) = i otherwise,

σ2(i) = n, σ2(n) = j, σ2(i) = i otherwise,
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by choosing π = σ1 and σ2 in succession one has
n∑

i=1

g
(
i/n, σ1(i)/n

) =
n∑

i=1

g
(
i/n, σ2(i)/n

) = Cn,

giving

g(i/n, j/n) + g(1,1) = g(i/n,1) + g(1, j/n).

Clearly, this holds for i = n or j = n as well by direct substitution. Thus, fixing
x, y ∈ (0,1] and choosing i = �nx�, j = �ny� and letting n → ∞, on invoking
continuity of g one gets

g(x, y) + g(1,1) = g(x,1) + g(1, y).

On integrating w.r.t. y and using the condition g = θ [f1 − f2] ∈ C this gives
g(x,1) = g(1,1). By symmetry, one has g(1, y) = g(1,1), and so g(x, y) =
g(1,1) as well, which forces g(x, y) ≡ 0 again invoking the condition g ∈ C. This
completes the proof of the proposition. �

Another set of constraints which would have served the same purpose is
f (x,0) = 0, ∀x ∈ [0,1];f (0, y) = 0, ∀y ∈ [0,1]. For the sake of definiteness,
this paper uses (1.2). This mimics the condition in the discrete setting that the row
and column sums of a square matrix are all 0. It should be noted here that the func-
tion f (x, y) = xy does not belong to C, and it should be replaced by the function
f (x, y) = (x − 1/2)(y − 1/2). However, this is not done in Sections 2 and 3 to
simplify notation, on observing that all the proofs and conclusions of this paper
go through as long as f (x, y) cannot be written as φ(x) + ψ(y), which is true for
f (x, y) = xy.

1.4. Statement of main results. The first main result of this paper is the follow-
ing theorem which computes the limiting value of the log normalizing constant of
models of the form (1.1) for a general continuous function f in terms of an opti-
mization problem over copulas.

DEFINITION 1.4. Let M denote the space of all probability distributions on
the unit square with uniform marginals.

THEOREM 1.5. For any function f ∈ C and θ ∈ R, consider the probability
model Qn,f,θ (π) as defined in (1.1). Then the following conclusions hold:

(a)

lim
n→∞

Zn(f, θ) − Zn(0)

n
= Z(f, θ) := sup

μ∈M
{
θμ[f ] − D(μ‖u)

}
,

where u is the uniform distribution on the unit square, μ[f ] := ∫
f dμ is the ex-

pectation of f with respect to the measure μ and D(·‖·) is the Kullback–Leibler
divergence.
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(b) If π ∈ Sn is a random permutation from the model Qn,f,θ , then the random
probability measure

νπ := 1

n

n∑
i=1

δ(i/n,π(i)/n)

on the unit square converge weakly in probability to the probability measure μf,θ ∈
M, where μf,θ the unique maximizer of part (a).

(c) The measure μf,θ of part (b) has density

gf,θ (x, y) := eθf (x,y)+af,θ (x)+bf,θ (y)

with respect to Lebesgue measure on [0,1]2, with the functions af,θ (·) and
bf,θ (·) ∈ L1[0,1] which are unique almost surely. Consequently, one has

sup
μ∈M

{
θμ[f ] − D(μ‖u)

} = −
∫ 1

x=0

[
af,θ (x) + bf,θ (x)

]
dx.

(d) The function Z(f, θ) of part (b) is a differentiable convex function with a
continuous and strictly increasing derivative Z′(f, θ) which satisfies

Z′(f, θ) = lim
n→∞

1

n
Z′

n(f, θ) = μf,θ [f ].

REMARK 1.6. Part (b) of the above theorem gives one way to visualize a
permutation π as a measure νπ on the unit square. A somewhat similar way to
view a permutation π as a measure is presented in the supplementary file [42]. It
also demonstrates how the measure νπ looks like, when π is a large permutation
from Qn,f,θ . As an example, setting θ = 0 one gets the uniform distribution on Sn,
when the limiting measure μf,θ becomes u the uniform distribution on [0,1]2.
Note that the theorem statement uses Zn(0) instead of Zn(f,0). This is because
Zn(f,0) = logn! for all choices of the function f , and so the use of the notation
Zn(0) is without loss of generality.

Focusing on inference about θ when an observation π is obtained from the
model Qn,f,θ , then the following corollary of Theorem 1.5 shows consistency of
the Maximum Likelihood Estimate (MLE). In this model, MLE for θ is the solu-
tion to the equation{

1

n

n∑
i=1

f
(
i/n,π(i)/n

) − 1

n
Z′

n(f, θ)

}
= 0.

Since Zn(f, θ) and Z′
n(f, θ) are hard to compute numerically, as an approximation

one can replace the quantity 1
n
Z′

n(f, θ) above by its limiting value Z′(f, θ) and
then solve for θ . The following corollary shows that this estimate is consistent for
θ as well.
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COROLLARY 1.7. For f ∈ C, consider the model Qn,f,θ as in (1.1), and let π

be an observation from this model.

(a) In this case, one has

1

n

n∑
i=1

f
(
i/n,π(i)/n

) P→ Z′(f, θ) = μf,θ [f ]

for every θ ∈ R.
(b) Both the expressions

MLn(π, θ) := 1

n

n∑
i=1

f
(
i/n,π(i)/n

) − Z′
n(f, θ),

LDn(π, θ) := 1

n

n∑
i=1

f
(
i/n,π(i)/n

) − Z′(f, θ)

have unique roots θ̂ML and θ̂LD with probability tending to 1 which are consistent
for θ .

(c) Consider the testing problem of θ = θ0 versus θ = θ1 with θ1 > θ0. Then the
test φn := 1{θ̂LD > (θ0 + θ1)/2} is consistent, that is,

lim
n→∞EQn,f,θ0

φn = 0, lim
n→∞EQn,f,θ1

φn = 1.

The above corollary shows that it is possible to estimate the parameter θ consis-
tently with just one observation from the model Qn,f,θ . No error rates have been
obtained for the estimates {θ̂ML, θ̂LD} in this paper, as part (a) of Theorem 1.5 does
not have any error rates. Thus, a good approximation of the limiting log normaliz-
ing constant will lead to an efficient estimator for θ , in the sense that the estimator
will be close to the MLE. The definition of Z(f, θ) is in terms of an optimization
problem over M, which is an infinite-dimensional space. In general, such opti-
mization can be hard to carry out. The next theorem gives an iterative algorithm
for computing the density of the optimizing measure μf,θ with respect to Lebesgue
measure. Intuitively, the algorithm starts with the function eθf (x,y) and alternately
scales it along x and y marginals to produce uniform marginals in the limit.

DEFINITION 1.8. For any integer k ≥ 1, let Mk denote the set of all k × k

matrices with nonnegative entries with both row and column sums equal to 1/k.

THEOREM 1.9. (a) Define a sequence of k × k matrices by setting B0(r, s) :=
ef (r/k,s/k) for 1 ≤ r, s ≤ k, and

B2m+1(r, s) := B2m(r, s)

k
∑m

l=1 B2m(r, l)
, B2m+2(r, s) := B2m+1(r, s)

k
∑m

l=1 B2m+1(l, s)
.
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Then there exists a matrix Ak,θ ∈ Mk such that limm→∞ Bm = Ak .
(b) Ak,θ ∈Mk is the unique maximizer of the optimization problem

sup
A∈Mk

{
θ

k∑
r,s=1

f (r/k, s/k)A(r, s) − 2 logk −
k∑

r,s=1

A(r, s) logA(r, s)

}
.

(c) The function

Wk(f, θ) := sup
A∈Mk

{
θ

k∑
r,s=1

f (r/k, s/k)A(r, s) − 2 logk

−
k∑

r,s=1

A(r, s) logA(r, s)

}

is a convex differentiable function in θ for fixed f with

W ′
k(f, θ) =

k∑
r,s=1

Ak,θ (r, s)f (r/k, s/k).

(d) Finally, for any continuous function φ : [0,1]2 �→R one has

lim
k→∞

k∑
r,s=1

Ak,θ (r, s)φ(r/k, s/k) =
∫
[0,1]2

φ(x, y)gf,θ (x, y) dx dy.

In particular, this implies

Z(f, θ) = lim
k→∞Wk(f, θ) = lim

k→∞ lim
m→∞

{
θ

k∑
i,j=1

f (i/k, j/k)Bm(i, j)

− 2 log k −
k∑

i,j=1

Bm(i, j) logBm(i, j)

}
.

REMARK 1.10. Since gf,θ (x, y) has uniform marginals, the functions af,θ (·)
and bf,θ (·) are the solutions to the joint integral equations∫ 1

0
eθf (x,z)+af,θ (x)+bf,θ (z) dz = 1,∫ 1

0
eθf (z,y)+af,θ (z)+bf,θ (y) dz = 1 ∀x, y ∈ [0,1].

By Theorem 1.9, it follows that

lim
n→∞

Zn(f, θ) − Zn(0)

n
= −

∫ 1

x=0

[
af,θ (x) + bf,θ (x)

]
dx.
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For the limiting normalizing constant in the Mallows model with the Foot-rule
or the Spearman’s rank correlation, one needs to take f (x, y) = −|x − y| and
f (x, y) = −(x−y)2 [or f (x, y) = xy], respectively. Even though analytic compu-
tation for af,θ (·), bf,θ (·) might be difficult, the algorithm of Theorem 1.9 (known
as IPFP) can be used for a numerical evaluation of these functions. Iterative Pro-
portional Fitting Procedure (IPFP) originated in the works of Deming and Stephan
[12] in 1940. For more background on IPFP, see [11, 29, 44, 47] and the refer-
ences therein. Theorem 1.9 gives a way to approximate numerically the limiting
log partition function by fixing k large and running the IPFP for m iterations with
a suitably large m.

Another approach for estimation in such models can be to estimate the param-
eter θ without estimating the normalizing constant. The following theorem con-
structs an explicit

√
n consistent estimator for θ , for the class of models consid-

ered in Theorem 1.5. This estimate is similar in spirit to Besag’s pseudo-likelihood
estimator [4, 5]. The pseudo-likelihood is defined to be the product of all one-
dimensional conditional distributions, one for each random variable. Since in a
permutation the conditional distribution of π(i) given {π(j), j �= i} determines
the value of π(i), it does not make sense to look at the conditional distribution
(π(i)|π(j), j �= i). In this case, a meaningful thing to consider is the distribution
of (π(i),π(j)|π(k), k �= i, j), which gives the pseudo-likelihood as∏

1≤i<j≤n

Qn,f,θ

(
π(i),π(j)|π(k), k �= i, j

)
.

The pseudo-likelihood estimate θ̂PL is obtained by maximizing the above expres-
sion. Taking the log of the pseudo-likelihood and differentiating with respect to θ

gives

∑
1≤i<j≤n

yπ(i, j)
1

1 + eθyπ (i,j)
,

where

yπ(i, j) := f
(
i/n,π(i)/n

) + f
(
j/n,π(j)/n

) − f
(
i/n,π(j)/n

)
− f

(
j/n,π(i)/n

)
.

The pseudo-likelihood estimate can then be obtained by equating this to 0 and
solving for θ . One way of computing this estimate is a binary search or other
gradient based search methods, and does not require the computation of Zn(f, θ).
Thus, this gives a fast and practical way for parameter estimation in such models.
The next theorem gives error rates for the pseudo-likelihood estimator.
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THEOREM 1.11. For f ∈ C, consider the model Qn,f,θ of (1.1), and let π be
a sample from Qn,f,θ . Setting

yπ(i, j) := f
(
i/n,π(i)/n

) + f
(
j/n,π(j)/n

) − f
(
i/n,π(j)/n

)
− f

(
j/n,π(i)/n

)
the expression

PLn(π, θ) := ∑
1≤i<j≤n

yπ(i, j)
1

1 + eθyπ (i,j)

has a unique root in θ with probability tending to 1. Further, denoting this root by
θ̂n one has

√
n(θ̂ − θ) is OP (1).

The estimating equations LDn(π, θ) and MLn(π, θ) of Corollary 1.7 and
PLn(π, θ) of Theorem 1.11 are stated when a single permutation π is observed
from Qn,f,θ . If i.i.d. samples π(1), . . . , π(m) are observed from Qn,f,θ, one should
use the equations

m∑
l=1

LDn

(
π(l), θ

)
,

m∑
l=1

MLn

(
π(l), θ

)
,

m∑
l=1

PLn

(
π(l), θ

)
instead.

So far all results relate to the model Qn,f,θ as defined in (1.1). To demonstrate
that the tools used to prove these results are quite robust, the next proposition
analyzes the Mallows model with Kendall’s tau [item (d) in the original list of
divergences].

PROPOSITION 1.12. Consider the Mallows model on Sn with Kendall’s tau,
defined by

Mn,θ (π) := e(θ/n) Inv(π)−Cn(θ), Inv(π) := ∑
i<j

1π(i)>π(j),

where Cn(θ) is the normalizing constant. Also, let h : [0,1]4 �→R denote the func-
tion

h
(
(x1, y1), (x2, y2)

) := 1(x1−x2)(y1−y2)<0.

(a) In this case, one has

lim
n→∞

Cn(θ) − Cn(0)

n
= C(θ) := sup

μ∈M

{
θ

2
(μ × μ)(h) − D(μ‖u)

}
.



ESTIMATION IN EXPONENTIAL FAMILIES ON PERMUTATIONS 865

Further, the supremum above is attained at a unique measure on the unit square
given by the density

ρθ(x, y) := (θ/2) sinh(θ/2)

[e−θ/4 cosh(θ(x − y)/2) + eθ/4 cosh(θ(x + y − 1)/2)]2 ,

and consequently C(θ) = ∫ 1
0

eθx−1
θx

dx.
(b) If π is a sample from Mn,θ , then both the expressions

M̃Ln(π, θ) := 1

n2 Inv(π) − C′
n(θ),

L̃Dn(π, θ) := 1

n2 Inv(π) − C′(θ)

have unique roots θ̃ML and θ̃LD with probability tending to 1 which are consistent
for θ .

REMARK 1.13. The connection between the Mallows model with Kendall’s
tau and the density ρθ (·, ·) was first demonstrated in [49]. Since for this model
the log normalizing constant Cn(θ) is explicitly known, the formula for C(θ) can
be computed easily. In this case by a direct argument one can show that θ̃LD, θ̃ML
are

√
n consistent. The theorem shows that the general tools developed in this

paper can also be used to show consistency, even though establishing optimal rates
requires finer results.

As mentioned before, the techniques of this paper can also be used to com-
ment on the joint limiting distribution of {π(1), . . . , π(n)}. This is demonstrated
in Proposition 2.2 contained in the supplementary file [42] for academic interest,
and is not used in the rest of the paper.

1.5. Scope of future research. Even though the Mallows model with Kendall’s
tau is not in the setting of Theorem 1.5, estimation of the log normalization con-
stant is still possible using results of this paper. This is because the function

μ �→
∫
[0,1]4

1(x1−x2)(y1−y2)<0 dμ(x1, y1) dμ(x2, y2)

is continuous on M with respect to weak convergence, and is a natural extension
for the number of inversions of a permutation to a general probability measure
in M. Thus, to explore other nonuniform models on permutations, one needs to
understand the continuous real valued functionals on M. For an example of a
natural function on permutations which is not continuous, let N(π) denote the
number of fixed points of π . Then the function π �→ N(π)/n is not continuous
on M. Indeed, its natural analogue on M is the function

μ �→
∫
[0,1]2

1x=y dμ(x, y),
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which is not continuous with respect to weak topology on M. Extending the
framework to cover examples of such noncontinuous functions is under consid-
eration by the author.

For the Mallows model with Kendall’s tau, the limiting normalizing constant is
available in closed form, which is not the case for the Mallows model with Spear-
man’s correlation. To make the answer explicit, one needs to solve the optimiza-
tion problem of Theorem 1.5. An explicit answer will not only give the limiting
log normalizing constant, but also provide a more explicit description for the joint
limiting distribution of π via Proposition 2.2 in [42].

Another interesting problem is to compute the limiting distribution of∑n
i=1 f (i/n,π(i)/n) under the model Qn,f,θ . Under uniform distribution on Sn,

this statistic has a limiting normal distribution if f ∈ C, by Hoeffding’s com-
binatorial central limit theorem ([21], Theorem 3). Theorem 1.5 shows that
1
n

∑n
i=1 f (i/n,π(i)/n) converges to a constant, and gives a characterization of

this constant in terms of permutation limits. It, however, fails to find nondegen-
erate limit distribution for this statistic. If one is interested in the testing problem
of θ = θ0 versus θ = θ1 as in Corollary 1.7, then this distribution will be useful
in determination of exact cut-offs under null hypothesis, and evaluation of power
under the alternative. Also, using such distribution results, it should be possible to
find out limit distributions of the estimators considered in this paper.

Finally, this paper explores the asymptotics of parametric models on permuta-
tions. Viewing a permutation as a measure, one can study nonparametric models on
permutations as well, and in fact one class of models was introduced and studied in
[22]. Such models can be used to fit permutations. This technique can also be used
for comparing permutations in a nonparametric manner, such as in a classification
problems on permutations. Section 3 gives a visual comparison, but comparisons
can also be carried out in a more precise manner using a “suitable” metric for
bivariate probability measures.

1.6. Outline. Section 2 explores the Mallows model with Spearman’s rank
correlation as sufficient statistic, using the results of this paper. Section 3 analyzes
the draft lottery data of 1971. The supplemental article [42] describes in brief the
concept of permutation limits introduced in [22], and proves a large deviation prin-
ciple for permutations in Theorem 1.1 in [42]. It also carries out the proofs of the
main results of this paper using this large deviation.

2. An example: Spearman’s rank correlation divergence. This section il-
lustrates the conclusions of Theorem 1.5 and Theorem 1.9 with a concrete ex-
ample, the Spearman’s rank correlation model. This is number (b) in the list of
divergences in the Introduction. The Spearman’s rank correlation statistic is given
by

‖π − σ‖2
2 =

n∑
i=1

(
π(i) − σ(i)

)2
.
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This divergence function is right invariant, and has received attention in Statistics
literature (see [9, 13, 16, 34] and references therein). The reason for its nomencla-
ture is that if π and σ are two permutations of size n, then the simple correlation
coefficient of the points {π(i), σ (i)}ni=1 has the formula

r(π,σ ) = 1 − 6‖π − σ‖2
2

n(n2 − 1)
,

which is a one–one function of ‖π − σ‖2
2.

Even for this simple divergence the normalizing constant for the corresponding
Mallows model is not available in closed form. As observed in the Introduction,
the Spearman’s rank correlation model is obtained by setting f (x, y) = −(x − y)2

or f (x, y) = xy in the model of Theorem 1.5.
This section will work with the choice f (x, y) = xy. To be precise, the p.m.f.

of this model is

Qn,f,θ = e(θ/n2)
∑n

i=1 iπ(i)−Zn(f,θ),

where Zn(f, θ) is the appropriate log normalizing constant as before. By the
discussion after equation (1.2), it follows that Theorem 1.5 is applicable for
f (x, y) = xy. Thus, if π is a random permutation from Qn,f,θ for this f , then
the empirical measure νπ = 1

n

∑n
i=1 δ(i/n,π(i)/n) converges weakly to a measure

in M with density of the form

gf,θ (x, y) = eθxy+af,θ (x)+af,θ (y),

where the symmetry of f has been used to deduce bf,θ (·) = af,θ (·). However,
analytic solution of gf,θ (·) seems intractable and is not attempted here. Instead,
Figure 1(a) plots the density gf,θ (x, y) = eθxy+af,θ (x)+af,θ (y) on a discrete grid of
size k×k with k = 1000. The values of the function are computed by the algorithm

(a) (b)

FIG. 1. (a) Density of limiting measure μf,θ for f (x, y) = xy, θ = 20, (b) Histogram of νπ with
n = 10,000 with 10 × 10 bins.
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of Theorem 1.9 starting with the k × k matrix B0(i, j) = e(θ/k2)ij , where θ = 20.
Part (d) of Theorem 1.9 implies that k2Bm(i, j) can be taken as an approximation
of the limiting density gf,θ (i/k, j/k).

From Figure 1, it is easy to see that gf,θ has higher values on the diagonal
x = y, which also follows from the fact that for θ > 0 the identity permutation has
the largest probability under this model. The function gf,θ (·, ·) is symmetric about
the diagonal x = y, which follows from the fact that f (·, ·) is symmetric. Another
way to see this is by noting that if π converges to a probability measure on [0,1]2

with limiting density gf,θ (x, y), then π−1 converges to a measure on [0,1]2 with
limiting density gf,θ (y, x). But since

n∑
i=1

iπ(i) =
n∑

i=1

iπ−1(i),

the law of π and π−1 are same under Qn,f,θ , and so π−1 has the limiting density
gθ (x, y) as well, thus giving gf,θ (x, y) = gf,θ (y, x).

The function is also symmetric about the other diagonal x + y = 1. A similar
reasoning as above justifies this:

Define σ ∈ Sn by σ(i) := n+1−π−1(n+1−π(i)) and note that if π converges
to a probability on [0,1]2 with density gf,θ (x, y), then σ converges to a probability
on [0,1]2 with density gf,θ (1 − y,1 − x). But since

n∑
i=1

iπ(i) =
n∑

i=1

(n + 1 − i)
(
n + 1 − π(i)

) =
n∑

i=1

iσ (i),

it follows that under Qn,f,θ the distribution of π is same as the distribution
of σ . Thus, σ has limiting density gf,θ (x, y) as well, which implies gf,θ (x, y) =
gf,θ (1 − y,1 − x), and so gf,θ is symmetric about the line x + y = 1.

To compare how close the empirical measure νπ is to the limit, a random per-
mutation π of size n = 10,000 is drawn from Qn,f,θ via MCMC. The algorithm
used to simulate from this model is adopted from [2], and is explained below:

1. Start with π chosen uniformly at random from Sn.
2. Given π , simulate {Ui}ni=1 mutually independent with Ui uniform on

[0, e(θ/n2)iπ(i)].
3. Given U , let bj := max{(n2/θj) logUj ,1}. Then 1 ≤ bj ≤ n. Choose an

index i1 uniformly at random from set {j : bj ≤ 1}, and set π(i1) = 1. Remove
this index from [n] and choose an index i2 uniformly from {j : bj ≤ 2} − {i1}, and
set σ(i2) = 2. In general, having defined {i1, . . . , il−1}, remove them from [n], and
choose il uniformly from {j : bj ≤ l}− {i1, i2 · · · il−1}, and set π(il) = l. (That this
step can be always carried out completely was proved in [14].)

4. Iterate between the steps 2 and 3 until convergence.
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FIG. 2. Plot of θ versus Z(f, θ) for rank correlation model.

The above iteration is run 10 times to obtain a single permutation π , and then the
frequency histogram of the points {i/n,π(i)/n}ni=1 are computed with k × k bins,
where k = 10. The mesh plot of the frequency histogram is given in Figure 1(b).

The pattern of the histogram in Figure 1(b) is very similar to the function plotted
in Figure 1(a), showing that the probability assigned by the random permutation π

has a similar pattern as that of the limiting density gf,θ (x, y). The histogram has
been drawn with k2 squares, each of size 0.1 as k = 10.

Using Theorem 1.9 gives an approximation to 1
n
[Zn(f, θ) − Zn(0)] as

θ

k2

k∑
r,s=1

ijBm(r, s) − 2 log k −
k∑

r,s=1

Bm(r, s) logBm(r, s).

Figure 2 gives a plot of θ versus limn→∞ 1
n
[Zn(f, θ) − Zn(0)], where the limiting

value is estimated using the above approximation. For this plot, k has been chosen
to be 100, and the range of θ has been taken to be [−500,500]. The number of
iterations for the convergence of the iterative algorithm for each θ has been taken
as 20. The curve passes through (0,0), and goes to ±∞ as θ goes to ±∞, as
expected.

The above method can be used to approximate the limiting log normalizing
constant for any model of permutations described in the setting Theorem 1.5.

3. Analysis of the 1970 draft lottery data. This section analyses the 1970
draft lottery data using the methods developed in this paper. The data for this lot-
tery is taken from http://www.sss.gov/LOTTER8.HTM. This lottery was used to
determine the relative order in which male US citizens born between 1944–1950
will join the army, based on their birthdays. As an example, September 14th was
the first chosen day, which means that people born on this date had to join first.

http://www.sss.gov/LOTTER8.HTM
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Assume that the 366 days of the year are chronologically numbered, that is, Jan-
uary 1 is day 1, and December 31 is day 366. Then the data can be represented in
the form of a permutation of size 366, where π(i) represents the ith day chosen in
the lottery. The lottery was carried out in a somewhat flawed manner as follows:

366 capsules were made, one for each day of the year. The January capsules
were put in a box first, and then mixed among themselves. The February capsules
were then put in the box, and the capsules for the first two months were mixed.
This was carried on until the December capsules were put in the box, and all the
capsules were mixed. As a result of this mixing, the January capsules were mixed
12 times, the February capsules were mixed 11 times, and the December capsules
were mixed just once. As a result, most of the capsules for the latter months stayed
near the top, and ended up being drawn early in the lottery. The resulting permu-
tation π thus seems to have a bias toward the permutation

(366,365, . . . ,1),

and so the permutation τ = 367 − π should be biased toward the identity.
Thus, the question of interest is to test whether the permutation τ is chosen

uniformly at random from S366, and the alternative hypothesis is that τ has a bias
toward the identity permutation. For τ ∈ Sn with n = 366, one can construct the
histogram of the points {(

i

n
,
τ (i)

n

)
,1 ≤ i ≤ n

}
.

If τ is indeed drawn from the uniform distribution on Sn, then this histogram
should be close to the uniform distribution on the unit square. The bivariate his-
togram is drawn with 10×10 bins in Figure 3(a). To compare this with the uniform
distribution on Sn, a uniformly random permutation σ is chosen from Sn, and the

(a) (b)

FIG. 3. Bivariate histogram of the points 1
366 {(i, τ (i)),1 ≤ i ≤ 366} with 10 × 10 bins where τ is

(a) reverse permutation of draft lottery, (b) a random permutation chosen uniformly.
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corresponding histogram is drawn in Figure 3(b) with the same the number of bins
as above. From Figure 3, it seems that the heights of the bins in the second picture
are a bit more uniform than the first.

If τ is indeed uniform, then the statistic 1
n3

∑n
i=1 iτ (i) has a limiting normal

distribution with mean 1
4(1 + 1

n
)2 ≈ 0.25 and variance 1

144n
(1 − 1

n
)(1 + 1

n
)2 ≈

1
144n

≈ 1.89×10−5 ([13], page 116). The observed value of this statistic is 0.2702,
which clearly falls outside a 99% acceptance region under the null hypothesis.
Even if the normal approximation is not believed, by Chebyshev’s inequality one
has

Pθ=0

(
1

3663

366∑
i=1

iτ (i) ≥ 0.2702

)
≤ 1.89 × 10−5

0.05022 ≈ 0.0075,

which suggests very strong evidence against the null hypothesis.
If τ is assumed to be generated from the model

Qn,f,θ (τ ) = e(θ/n2)
∑n

i=1 iτ (i)−Zn(f,θ),

where f (x, y) = xy, the test used above is the most powerful test (in the sense
of NP lemma) for testing θ = 0 versus θ > 0. Since the null is rejected, it might
be of interest to see if there is another value of θ for which the model better fits
the data. To investigate this, the value of θ is estimated using the estimators θ̂LD
of Corollary 1.7 and θ̂PL of Theorem 1.11. By a direct computation, it turns out
that θ̂PL = 2.92. To compute θ̂LD requires estimating the limiting log normalizing
constant, for which one needs to carry out the IPFP algorithm of Theorem 1.9.
The grid size chosen for computing θ̂LD is 1000 × 1000. It follows from the proof
of Theorem 1.9 that the error in approximating the limiting log partition function
Z(f, θ) by a k step approximation Wk(f, θ) is bounded by |θ |εk , where

εk = sup
|x1−x2|≤1/k,|y1−y2|≤1/k

∣∣f (x1, y1) − f (x2, y2)
∣∣ ≤ 2

k
.

Thus, a choice of k = 1000 should ensure that the limiting log partition function
is correct up to the first two decimal places, assuming the run time m is large.
Larger values of k will increase accuracy of the estimate, at the cost of speed
of computation. For each value of θ , the IPFP algorithm is run m = 200 times.
The estimate θ̂LD turns out to be 2.96, which is close to the pseudo-likelihood
estimate. To compare the relative performance of the two estimators θ̂PL and θ̂LD,
a sample of 1000 values is drawn from this model for θ = 2.92 and θ = 2.96, and
the histogram of the statistic n−3 ∑n

i=1 iτ (i) is plotted side by side in Figure 4 with
25 bins. The observed value from the draft lottery data is 0.2702, represented by
the green line. From Figure 4, it is clear that both estimates give a good fit to the
observed data.

Finally, to test whether these values of θ gives a good fit to the given data, an
independent random permutation τ̂ is drawn from this model with θ = 2.92. The
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FIG. 4. Histogram of the statistic 366−3 ∑366
i=1 iτ (i) with 1000 independent draws grouped into 25

bins, where τ is a random permutation from Spearman’s rank correlation model with (a) θ = 2.92 in
blue (pseudo-likelihood), (b) θ = 2.96 in red (LD-MLE). The green line at 0.2702 is obtained when
τ is the reverse permutation of draft lottery data.

same auxiliary variable algorithm of Andersen–Diaconis from the previous section
is used to draw the sample. The histogram of τ̂ is given in Figure 5(b) with 10×10
bins, along side the histogram for the observed permutation τ in 5(a).

The bivariate histogram of the points (i/n, τ (i)/n)ni=1 for the observed permu-
tation τ and the points (i/n, τ̂ (i)/n)ni=1 for the simulated permutation τ̂ is drawn
in Figure 5. This seems to be a better match than the histograms for τ and σ in Fig-
ure 5, where σ was a permutation drawn uniformly at random. This agrees with the
observation made in [17] that the observed permutation does not seem uniformly
random.

(a) (b)

FIG. 5. Bivariate histogram of the points 1
366 {(i, τ (i)),1 ≤ i ≤ 366} with 10 × 10 bins where τ is

(a) reverse permutation of draft lottery, (b) a random permutation chosen from Spearman’s model
with θ = 2.92.
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SUPPLEMENTARY MATERIAL

Supplement to “Estimation in exponential families on permutations”
(DOI: 10.1214/15-AOS1389SUPP; .pdf). The supplementary material contain
the proofs of all theorems, corollaries, propositions and supporting lemmas. It
also states Proposition 2.2, which deals with the joint limiting distribution of
{π(1), . . . , π(n)} for π from either the model Qn,f,θ of (1.1) or from the Mallows
model with Kendall’s tau of Proposition 1.12. A short proof of this proposition is
included using the more recent results of [6].
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