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1. Introduction. In this paper, we consider a parametric nonlinear regression
model defined by

Yt = g(Xt , θ01, θ02, . . . , θ0d) + et
(1.1)

=: g(Xt , θ0) + et , t = 1,2, . . . , n,

where θ0 is the true value of the d-dimensional parameter vector such that

θ0 = (θ01, θ02, . . . , θ0d)τ ∈ � ⊂R
d

and g(·, ·) : Rd+1 → R is assumed to be known. Throughout this paper, we as-
sume that � is a compact set and θ0 lies in the interior of �, which is a standard
assumption in the literature. How to construct a consistent estimator for the pa-
rameter vector θ0 and derive an asymptotic theory are important issues in mod-
ern statistics and econometrics. When the observations (Yt ,Xt) satisfy stationarity
and weak dependence conditions, there is an extensive literature on the theoretical
analysis and empirical application of the above parametric nonlinear model and its
extension; see, for example, Jennrich (1969), Malinvaud (1970) and Wu (1981) for
some early references, and Severini and Wong (1992), Lai (1994), Skouras (2000)
and Li and Nie (2008) for recent relevant works.

As pointed out in the literature, assuming stationarity is too restrictive and un-
realistic in many practical applications. When tackling economic and financial is-
sues from a time perspective, we often deal with nonstationary components. For
instance, neither the consumer price index nor the share price index, nor the ex-
change rates constitute a stationary process. A traditional method to handle such
data is to take the first-order difference to eliminate possible stochastic or deter-
ministic trends involved in the data, and then do the estimation for a stationary
model. However, such differencing may lead to loss of useful information. Thus,
the development of a modeling technique that takes both nonstationary and non-
linear phenomena into account in time series analysis is crucial. Without taking
differences, Park and Phillips (2001) (hereafter PP) study the nonlinear regres-
sion (1.1) with the regressor {Xt } satisfying a unit root [or I (1)] structure, and
prove that the rates of convergence of the nonlinear least squares (NLS) estima-
tor of θ0 depend on the properties of g(·, ·). For an integrable g(·, ·), the rate of
convergence is as slow as n1/4, and for an asymptotically homogeneous g(·, ·), the
rate of convergence can achieve the

√
n-rate and even n-rate of convergence. More

recently, Chan and Wang (2012) consider the same model structure as proposed in
the PP paper and then establish some corresponding results under certain technical
conditions which are weaker than those used in the PP paper.

As also pointed out in a recent paper by Myklebust, Karlsen and Tjøstheim
(2012), the null recurrent Markov process is a nonlinear generalization of the lin-
ear unit root process, and thus provides a more flexible framework in data anal-
ysis. For example, Gao, Tjøstheim and Yin (2013) show that the exchange rates
between British pound and US dollar over the time period between January 1988
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and February 2011 are nonstationary but do not necessarily follow a linear unit
root process [see also Bec, Rahbek and Shephard (2008) for a similar discussion
of the exchange rates between French franc and German mark over the time period
between December 1972 and April 1988]. Hence, Gao, Tjøstheim and Yin (2013)
suggest using the nonlinear threshold autoregressive (TAR) with stationary and
unit root regimes, which can be proved as a 1/2-null recurrent Markov process;
see, for example, Example 2.1 in Section 2.2 and Example 6.1 in the empirical
application (Section 6).

Under the framework of null recurrent Markov chains, there has been an exten-
sive literature on nonparametric and semiparametric estimation [Karlsen and Tjøs-
theim (2001), Karlsen, Myklebust and Tjøstheim (2007, 2010), Lin, Li and Chen
(2009), Schienle (2011), Chen, Gao and Li (2012), Gao et al. (2015)], by using
the technique of the split chain [Nummelin (1984), Meyn and Tweedie (2009)],
and the generalized ergodic theorem and functional limit theorem developed in
Karlsen and Tjøstheim (2001). As far as we know, however, there is virtually no
work on the parametric estimation of the nonlinear regression model (1.1) when
the regressor {Xt } is generated by a class of Harris recurrent Markov processes that
includes both stationary and nonstationary cases. This paper aims to fill this gap. If
the function g(·, ·) is integrable, we can directly use some existing results for func-
tions of Harris recurrent Markov processes to develop an asymptotic theory for the
estimator of θ0. The case that g(·, ·) belongs to a class of asymptotically homo-
geneous functions is much more challenging, as in this case the function g(·, ·)
is no longer bounded. In nonparametric or semiparametric estimation theory, we
do not have such problems because the kernel function is usually assumed to be
bounded and has a compact support. Unfortunately, most of the existing results for
the asymptotic theory of the null recurrent Markov process focus on the case where
g(·, ·) is bounded and integrable [c.f., Chen (1999, 2000)]. Hence, in this paper, we
first modify the conventional NLS estimator for the asymptotically homogeneous
g(·, ·), and then use a novel method to establish asymptotic distribution as well as
rates of convergence for the modified parametric estimator. Our results show that
the rates of convergence for the parameter vector in nonlinear cointegrating mod-
els rely not only on the properties of the function g(·, ·), but also on the magnitude
of the regeneration number for the null recurrent Markov chain.

In addition, we also study two important issues, which are closely related to
nonlinear mean regression with Harris recurrent Markov chains. The first one is to
study the estimation of the parameter vector in a conditional volatility function and
its asymptotic theory. As the estimation method is based on the log-transformation,
the rates of convergence for the proposed estimator would depend on the property
of the log-transformed volatility function and its derivatives. Meanwhile, we also
discuss the nonlinear regression with I (1) processes when g(·, ·) is asymptotically
homogeneous. By using Theorem 3.2 in Section 3, we obtain asymptotic normality
for the parametric estimator with a stochastic normalized rate, which is comparable
to Theorem 5.2 in PP. However, our derivation is done under Markov perspective,
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which carries with it the potential of extending the theory to nonlinear and nonsta-
tionary autoregressive processes, which seems to be hard to do with the approach
of PP.

The rest of this paper is organized as follows. Some preliminary results about
Markov theory (especially Harris recurrent Markov chain) and function classes
are introduced in Section 2. The main results of this paper and their extensions are
given in Sections 3 and 4, respectively. Some simulation studies are carried out in
Section 5 and the empirical application is given in Section 6. Section 7 concludes
the paper. The outline of the proofs of the main results is given in an Appendix. The
supplemental document [Li, Tjøstheim and Gao (2015)] includes some additional
simulated examples, the detailed proofs of the main results and the proofs of some
auxiliary results.

2. Preliminary results. To make the paper self-contained, in this section, we
first provide some basic definitions and preliminary results for a Harris recurrent
Markov process {Xt }, and then define function classes in a way similar to those
introduced in PP.

2.1. Markov theory. Let {Xt, t ≥ 0} be a φ-irreducible Markov chain on the
state space (E,E) with transition probability P. This means that for any set A ∈ E
with φ(A) > 0, we have

∑∞
t=1 Pt (x,A) > 0 for x ∈ E. We further assume that the

φ-irreducible Markov chain {Xt } is Harris recurrent.

DEFINITION 2.1. A Markov chain {Xt } is Harris recurrent if, for any set
B ∈ ε+ and given X0 = x for all x ∈ E, {Xt } returns to B infinitely often with
probability one, where ε+ is defined as in Karlsen and Tjøstheim (2001).

The Harris recurrence allows one to construct a split chain, which decomposes
the partial sum of functions of {Xt } into blocks of independent and identically
distributed (i.i.d.) parts and two asymptotically negligible remaining parts. Let τk

be the regeneration times, n the number of observations and N(n) the number
of regenerations as in Karlsen and Tjøstheim (2001), where they use the notation
T (n) instead of N(n). For the process {G(Xt) : t ≥ 0}, defining

Zk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ0∑
t=0

G(Xt), k = 0,

τk∑
t=τk−1+1

G(Xt), 1 ≤ k ≤ N(n),

n∑
t=τN(n)+1

G(Xt), k = N(n) + 1,
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where G(·) is a real function defined on R, then we have

Sn(G) =
n∑

t=0

G(Xt) = Z0 +
N(n)∑
k=1

Zk + ZN(n)+1.(2.1)

From Nummelin (1984), we know that {Zk, k ≥ 1} is a sequence of i.i.d. random
variables, and Z0 and ZN(n)+1 converge to zero almost surely (a.s.) when they are
divided by the number of regenerations N(n) [using Lemma 3.2 in Karlsen and
Tjøstheim (2001)].

The general Harris recurrence only yields stochastic rates of convergence in
asymptotic theory of the parametric and nonparametric estimators (see, e.g., The-
orems 3.1 and 3.2 below), where distribution and size of the number of regener-
ations N(n) have no a priori known structure but fully depend on the underlying
process {Xt }. To obtain a specific rate of N(n) in our asymptotic theory for the
null recurrent process, we next impose some restrictions on the tail behavior of the
distribution of the recurrence times of the Markov chain.

DEFINITION 2.2. A Markov chain {Xt } is β-null recurrent if there exist
a small nonnegative function f , an initial measure λ, a constant β ∈ (0,1), and
a slowly varying function Lf (·) such that

Eλ

(
n∑

t=1

f (Xt)

)
∼ 1

	(1 + β)
nβLf (n),(2.2)

where Eλ stands for the expectation with initial distribution λ and 	(1 + β) is the
Gamma function with parameter 1 + β .

The definition of a small function f in the above definition can be found in
some existing literature [c.f., page 15 in Nummelin (1984)]. Assuming β-null re-
currence restricts the tail behavior of the recurrence time of the process to be a
regularly varying function. In fact, for all small functions f , by Lemma 3.1 in
Karlsen and Tjøstheim (2001), we can find an Ls(·) such that (2.2) holds for the β-
null recurrent Markov chain with Lf (·) = πs(f )Ls(·), where πs(·) is an invariant
measure of the Markov chain {Xt }, πs(f ) = ∫

f (x)πs(dx) and s is the small func-
tion in the minorization inequality (3.4) of Karlsen and Tjøstheim (2001). Letting
Ls(n) = Lf (n)/(πs(f )) and following the argument in Karlsen and Tjøstheim
(2001), we may show that the regeneration number N(n) of the β-null recurrent
Markov chain {Xt } has the following asymptotic distribution:

N(n)

nβLs(n)

d−→ Mβ(1),(2.3)

where Mβ(t), t ≥ 0 is the Mittag–Leffler process with parameter β [c.f., Kasahara
(1984)]. Since N(n) < n a.s. for the null recurrent case by (2.3), the rates of con-
vergence for the nonparametric kernel estimators are slower than those for the sta-
tionary time series case [c.f., Karlsen, Myklebust and Tjøstheim (2007), Gao et al.
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(2015)]. However, this is not necessarily the case for the parametric estimator in
our model (1.1). In Section 3 below, we will show that our rate of convergence
in the null recurrent case is slower than that for the stationary time series for in-
tegrable g(·, ·) and may be faster than that for the stationary time series case for
asymptotically homogeneous g(·, ·). In addition, our rates of convergence also de-
pend on the magnitude of β , which measures the recurrence times of the Markov
chain {Xt }.

2.2. Examples of β-null recurrent Markov chains. For a stationary or posi-
tive recurrent process, β = 1. We next give several examples of β-null recurrent
Markov chains with 0 < β < 1.

EXAMPLE 2.1 (1/2-null recurrent Markov chain). (i) Let a random walk pro-
cess be defined as

Xt = Xt−1 + xt , t = 1,2, . . . ,X0 = 0,(2.4)

where {xt } is a sequence of i.i.d. random variables with E[x1] = 0, 0 < E[x2
1 ] < ∞

and E[|x1|4] < ∞, and the distribution of xt is absolutely continuous (with
respect to the Lebesgue measure) with the density function f0(·) satisfying
infx∈C0 f0(x) > 0 for all compact sets C0. Some existing papers including
Kallianpur and Robbins (1954) have shown that {Xt } defined by (2.4) is a 1/2-
null recurrent Markov chain.

(ii) Consider a parametric TAR model of the form:

Xt = α1Xt−1I (Xt−1 ∈ S) + α2Xt−1I
(
Xt−1 ∈ S

c) + xt , X0 = 0,(2.5)

where S is a compact subset of R, Sc is the complement of S, α2 = 1, −∞ < α1 <

∞, {xt } satisfies the corresponding conditions in Example 2.1(i) above. Recently,
Gao, Tjøstheim and Yin (2013) have shown that such a TAR process {Xt } is a 1/2-
null recurrent Markov chain. Furthermore, we may generalize the TAR model (2.5)
to

Xt = H(Xt−1, ζ )I (Xt−1 ∈ S) + Xt−1I
(
Xt−1 ∈ S

c) + xt ,

where X0 = 0, supx∈S |H(x, ζ )| < ∞ and ζ is a parameter vector. According to
Teräsvirta, Tjøstheim and Granger (2010), the above autoregressive process is also
a 1/2-null recurrent Markov chain.

EXAMPLE 2.2 (β-null recurrent Markov chain with β 
= 1/2). Let {xt } be a
sequence of i.i.d. random variables taking positive values, and {Xt } be defined as

Xt =
{

Xt−1 − 1, Xt−1 > 1,

xt , Xt−1 ∈ [0,1],



NONLINEAR AND NONSTATIONARY REGRESSION 1963

for t ≥ 1, and X0 = C0 for some positive constant C0. Myklebust, Karlsen and
Tjøstheim (2012) prove that {Xt } is β-null recurrent if and only if

P
([x1] > n

) ∼ n−βl−1(n), 0 < β < 1,

where [·] is the integer function and l(·) is a slowly varying positive function.

From the above examples, the β-null recurrent Markov chain framework is not
restricted to linear processes [see Example 2.1(ii)]. Furthermore, such a null re-
current class has the invariance property that if {Xt } is β-null recurrent, then for a
one-to-one transformation T (·), {T (Xt)} is also β-null recurrent [c.f., Teräsvirta,
Tjøstheim and Granger (2010)]. Such invariance property does not hold for the
I (1) processes. For other examples of the β-null recurrent Markov chain, we re-
fer to Example 1 in Schienle (2011). For some general conditions on diffusion
processes to ensure the Harris recurrence is satisfied, we refer to Höpfner and
Löcherbach (2003) and Bandi and Phillips (2009).

2.3. Function classes. Similar to Park and Phillips (1999, 2001), we consider
two classes of parametric nonlinear functions: integrable functions and asymptot-
ically homogeneous functions, which include many commonly-used functions in

nonlinear regression. Let ‖A‖ =
√∑q

i=1
∑q

j=1 a2
ij for A = (aij )q×q , and ‖a‖ be

the Euclidean norm of vector a. A function h(x) :R →R
d is πs -integrable if∫

R

∥∥h(x)
∥∥πs(dx) < ∞,

where πs(·) is the invariant measure of the Harris recurrent Markov chain {Xt }.
When πs(·) is differentiable such that πs(dx) = ps(x) dx, h(x) is πs -integrable if
and only if h(x)ps(x) is integrable, where ps(·) is the invariant density function for
{Xt }. For the random walk case as in Example 2.1(i), the πs -integrability reduces
to the conventional integrability as πs(dx) = dx.

DEFINITION 2.3. A d-dimensional vector function h(x, θ) is said to be in-
tegrable on � if for each θ ∈ �, h(x, θ) is πs -integrable and there exist a
neighborhood Bθ of θ and M : R → R bounded and πs -integrable such that
‖h(x, θ ′) − h(x, θ)‖ ≤ ‖θ ′ − θ‖M(x) for any θ ′ ∈ Bθ .

The above definition is comparable to Definition 3.3 in PP. However, in our
definition, we do not need condition (b) in Definition 3.3 of their paper, which
makes the integrable function family in this paper slightly more general. We next
introduce a class of asymptotically homogeneous functions.

DEFINITION 2.4. For a d-dimensional vector function h(x, θ), let h(λx, θ) =
κ(λ, θ)H(x, θ) + R(x,λ, θ), where κ(·, ·) is nonzero. h(λx, θ) is said to be
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asymptotically homogeneous on � if the following two conditions are satisfied:
(i) H(·, θ) is locally bounded uniformly for any θ ∈ � and continuous with respect
to θ ; (ii) the remainder term R(x,λ, θ) is of order smaller than κ(λ, θ) as λ → ∞
for any θ ∈ �. As in PP, κ(·, ·) is the asymptotic order of h(·, ·) and H(·, ·) is the
limit homogeneous function.

The above definition is quite similar to that of an H -regular function in PP
except that the regularity condition (a) in Definition 3.5 of PP is replaced by the
local boundness condition (i) in Definition 2.4. Following Definition 3.4 in PP, as
R(x,λ, θ) is of order smaller than κ(·, ·), we have either

R(x,λ, θ) = a(λ, θ)AR(x, θ)(2.6)

or

R(x,λ, θ) = b(λ, θ)AR(x, θ)BR(λx, θ),(2.7)

where a(λ, θ) = o(κ(λ, θ)), b(λ, θ) = O(κ(λ, θ)) as λ → ∞, supθ∈� AR(·, θ) is
locally bounded, and supθ∈� BR(·, θ) is bounded and vanishes at infinity.

Note that the above two definitions can be similarly generalized to the case
that h(·, ·) is a d × d matrix of functions. Details are omitted here to save space.
Furthermore, when the process {Xt } is positive recurrent, an asymptotically ho-
mogeneous function h(x, θ) might be also integrable on � as long as the density
function of the process ps(x) is integrable and decreases to zero sufficiently fast
when x diverges to infinity.

3. Main results. In this section, we establish some asymptotic results for the
parametric estimators of θ0 when g(·, ·) and its derivatives belong to the two
classes of functions introduced in Section 2.3.

3.1. Integrable function on �. We first consider estimating model (1.1) by the
NLS approach, which is also used by PP in the unit root framework. Define the
loss function by

Ln,g(θ) =
n∑

t=1

(
Yt − g(Xt , θ)

)2
.(3.1)

We can obtain the resulting estimator θ̂n by minimizing Ln,g(θ) over θ ∈ �, that
is,

θ̂n = arg min
θ∈�

Ln,g(θ).(3.2)

For θ = (θ1, . . . , θd)τ , let

ġ(x, θ) =
(

∂g(x, θ)

∂θj

)
d×1

, g̈(x, θ) =
(

∂2g(x, θ)

∂θi∂θj

)
d×d

.

Before deriving the asymptotic properties of θ̂n when g(·, ·) and its derivatives are
integrable on �, we give some regularity conditions.
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ASSUMPTION 3.1. (i) {Xt } is a Harris recurrent Markov chain with invariant
measure πs(·).

(ii) {et } is a sequence of i.i.d. random variables with mean zero and finite vari-
ance σ 2, and is independent of {Xt }.

ASSUMPTION 3.2. (i) g(x, θ) is integrable on �, and for all θ 
= θ0,∫ [g(x, θ) − g(x, θ0)]2πs(dx) > 0.
(ii) Both ġ(x, θ) and g̈(x, θ) are integrable on �, and the matrix

L̈(θ) :=
∫

ġ(x, θ)ġτ (x, θ)πs(dx)

is positive definite when θ is in a neighborhood of θ0.

REMARK 3.1. In Assumption 3.1(i), {Xt } is assumed to be Harris recurrent,
which includes both the positive and null recurrent Markov chains. The i.i.d. re-
striction on {et } in Assumption 3.1(ii) may be replaced by the condition that {et }
is an irreducible, ergodic and strongly mixing process with mean zero and certain
restriction on the mixing coefficient and moment conditions [c.f., Theorem 3.4 in
Karlsen, Myklebust and Tjøstheim (2007)]. Hence, under some mild conditions,
{et } can include the well-known AR and ARCH processes as special examples.
However, for this case, the techniques used in the proofs of Theorems 3.1 and 3.2
below need to be modified by noting that the compound process {Xt, et } is Harris
recurrent. Furthermore, the homoskedasticity on the error term can also be re-
laxed, and we may allow the existence of certain heteroskedasticity structure, that
is, et = σ(Xt)ηt , where σ 2(·) is the conditional variance function and {ηt } satis-
fies Assumption 3.1(ii) with a unit variance. However, the property of the function
σ 2(·) would affect the convergence rates given in the following asymptotic results.
For example, to ensure the validity of Theorem 3.1, we need to further assume that
σ 2(·) is πs -integrable, which indicates that ‖ġ(x, θ)‖2σ 2(x) is integrable on �.
As in the literature [c.f., Karlsen, Myklebust and Tjøstheim (2007)], we need to
assume the independence between {Xt } and {ηt }.

Assumption 3.2 is quite standard and similar to the corresponding conditions in
PP. In particular, Assumption 3.2(i) is a key condition to derive the global consis-
tency of the NLS estimator θ̂n.

We next give the asymptotic properties of θ̂n. The following theorem is applica-
ble for both stationary (positive recurrent) and nonstationary (null recurrent) time
series.

THEOREM 3.1. Let Assumptions 3.1 and 3.2 hold.

(a) The solution θ̂n which minimizes the loss function Ln,g(θ) over � is con-
sistent, that is,

θ̂n − θ0 = oP (1).(3.3)
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(b) The estimator θ̂n has an asymptotically normal distribution of the form:√
N(n)(̂θn − θ0)

d−→ N
(
0d, σ 2L̈−1(θ0)

)
,(3.4)

where 0d is a d-dimensional null vector.

REMARK 3.2. Theorem 3.1 shows that θ̂n is asymptotically normal with a
stochastic convergence rate

√
N(n) for both the stationary and nonstationary cases.

However, N(n) is usually unobservable and its specific rate depends on β and
Ls(·) if {Xt } is β-null recurrent (see Corollary 3.2 below). We next discuss how
to link N(n) with a directly observable hitting time. Indeed, if C ∈ E and IC has
a φ-positive support, the number of times that the process visits C up to the time
n is defined by NC(n) = ∑n

t=1 IC(Xt). By Lemma 3.2 in Karlsen and Tjøstheim
(2001), we have

NC(n)

N(n)
−→ πs(C) a.s.,(3.5)

if πs(C) = πsIC = ∫
C

πs(dx) < ∞. A possible estimator of β is

β̂ = lnNC(n)

lnn
,(3.6)

which is strongly consistent as shown by Karlsen and Tjøstheim (2001). How-
ever, it is usually of somewhat limited practical use due to the slow convergence
rate [c.f., Remark 3.7 of Karlsen and Tjøstheim (2001)]. A simulated example is
given in Appendix B of the supplemental document to discuss the finite sample
performance of the estimation method in (3.6).

By (3.5) and Theorem 3.1, we can obtain the following corollary directly.

COROLLARY 3.1. Suppose that the conditions of Theorem 3.1 are satisfied,
and let C ∈ E such that IC has a φ-positive support and πs(C) < ∞. Then the
estimator θ̂n has an asymptotically normal distribution of the form:√

NC(n)(̂θn − θ0)
d−→ N

(
0d, σ 2L̈−1

C
(θ0)

)
,(3.7)

where L̈C(θ0) = π−1
s (C)L̈(θ0).

REMARK 3.3. In practice, we may choose C as a compact set such that
φ(C) > 0 and πs(C) < ∞. In the additional simulation study (Example B.1) given
in the supplemental document, for two types of 1/2-null recurrent Markov pro-
cesses, we choose C = [−A,A] with the positive constant A carefully chosen,
which works well in our setting. If πs(·) has a continuous derivative function ps(·),
we can show that

L̈C(θ0) =
∫

ġ(x, θ0)ġ
τ (x, θ0)pC(x) dx with pC(x) = ps(x)/πs(C).



NONLINEAR AND NONSTATIONARY REGRESSION 1967

The density function pC(x) can be estimated by the kernel method. Then, replac-
ing θ0 by the NLS estimated value, we can obtain a consistent estimate for L̈C(θ0).
Note that NC(n) is observable and σ 2 can be estimated by calculating the variance
of the residuals êt = Yt − g(Xt , θ̂n). Hence, for inference purposes, one may not
need to estimate β and Ls(·) when {Xt } is β-null recurrent, as L̈C(θ0), σ 2 and
NC(n) in (3.7) can be explicitly computed without knowing any information about
β and Ls(·).

From (3.4) in Theorem 3.1 and (2.3) in Section 2.1 above, we have the following
corollary.

COROLLARY 3.2. Suppose that the conditions of Theorem 3.1 are satisfied.
Furthermore, {Xt } is a β-null recurrent Markov chain with 0 < β < 1. Then we
have

θ̂n − θ0 = OP

(
1√

nβLs(n)

)
,(3.8)

where Ls(n) is defined in Section 2.1.

REMARK 3.4. As β < 1 and Ls(n) is a slowly varying positive function, for
the integrable case, the rate of convergence of θ̂n is slower than

√
n, the rate of

convergence of the parametric NLS estimator in the stationary time series case.
Combining (2.3) and Theorem 3.1, the result (3.8) can be strengthened to√

nβLs(n)(̂θn − θ0)
d−→ [

M−1
β (1)σ 2L̈−1(θ0)

]1/2 · Nd,(3.9)

where Nd is a d-dimensional normal distribution with mean zero and covariance
matrix being the identity matrix, which is independent of Mβ(1). A similar result
is also obtained by Chan and Wang (2012). Corollary 3.2 and (3.9) complement the
existing results on the rates of convergence of nonparametric estimators in β-null
recurrent Markov processes [c.f., Karlsen, Myklebust and Tjøstheim (2007), Gao
et al. (2015)]. For the random walk case, which corresponds to 1/2-null recurrent
Markov chain, the rate of convergence is n1/4, which is similar to a result obtained
by PP for the processes that are of I (1) type.

3.2. Asymptotically homogeneous function on �. We next establish an asymp-
totic theory for a parametric estimator of θ0 when g(·, ·) and its derivatives belong
to a class of asymptotically homogeneous functions. For a unit root process {Xt },
PP establish the consistency and limit distribution of the NLS estimator θ̂n by us-
ing the local time technique. Their method relies on the linear framework of the
unit root process, the functional limit theorem of the partial sum process and the
continuous mapping theorem. The Harris recurrent Markov chain is a general pro-
cess and allows for a possibly nonlinear framework, however. In particular, the null
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recurrent Markov chain can be seen as a nonlinear generalization of the linear unit
root process. Hence, the techniques used by PP for establishing the asymptotic the-
ory is not applicable in such a possibly nonlinear Markov chain framework. Mean-
while, as mentioned in Section 1, the methods used to prove Theorem 3.1 cannot
be applied here directly because the asymptotically homogeneous functions usu-
ally are not bounded and integrable. This leads to the violation of the conditions in
the ergodic theorem when the process is null recurrent. In fact, most of the exist-
ing limit theorems for the null recurrent Markov process h(Xt) [c.f., Chen (1999,
2000)] only consider the case where h(·) is bounded and integrable. Hence, it is
quite challenging to extend Theorem 3.3 in PP to the case of general null recurrent
Markov chains and establish an asymptotic theory for the NLS estimator for the
case of asymptotically homogeneous functions.

To address the above concerns, we have to modify the NLS estimator θ̂n. Let
Mn be a positive and increasing sequence satisfying Mn → ∞ as n → ∞, but is
dominated by a certain polynomial rate. We define the modified loss function by

Qn,g(θ) =
n∑

t=1

[
Yt − g(Xt , θ)

]2
I
(|Xt | ≤ Mn

)
.(3.10)

The modified NLS (MNLS) estimator θn can be obtained by minimizing Qn,g(θ)

over θ ∈ �,

θn = arg min
θ∈�

Qn,g(θ).(3.11)

The above truncation technique enables us to develop the limit theorems for
the parametric estimate θn even when the function g(·, ·) or its derivatives are un-
bounded. A similar truncation idea is also used by Ling (2007) to estimate the
ARMA-GARCH model when the second moment may not exist [it is called as the
self-weighted method by Ling (2007)]. However, Assumption 2.1 in Ling (2007)
indicates the stationarity for the model. The Harris recurrence considered in the
paper is more general and includes both the stationary and nonstationary cases.
As Mn → ∞, for the integrable case discussed in Section 3.1, we can easily show
that θn has the same asymptotic distribution as θ̂n under some regularity condi-
tions. In Example 5.1 below, we compare the finite sample performance of these
two estimators, and find that they are quite similar. Furthermore, when {Xt } is
positive recurrent, as mentioned in the last paragraph of Section 2.3, although the
asymptotically homogeneous g(x, θ) and its derivatives are unbounded and not in-
tegrable on �, it may be reasonable to assume that g(x, θ)ps(x) and its derivatives
(with respect to θ ) are integrable on �. In this case, Theorem 3.1 and Corollary 3.1
in Section 3.1 still hold for the estimation θn and the role of N(n) [or NC(n)] is
the same as that of the sample size, which implies that the root-n consistency in
the stationary time series case can be derived. Hence, we only consider the null
recurrent {Xt } in the remaining subsection.



NONLINEAR AND NONSTATIONARY REGRESSION 1969

Let

Bi(1) = [i − 1, i), i = 1,2, . . . , [Mn], B[Mn]+1(1) = [[Mn],Mn

]
,

Bi(2) = [−i,−i + 1), i = 1,2, . . . , [Mn], B[Mn]+1(2) = [−Mn,−[Mn]].
It is easy to check that Bi(k), i = 1,2, . . . , [Mn] + 1, k = 1,2, are disjoint, and

[−Mn,Mn] = ⋃2
k=1

⋃[Mn]+1
i=1 Bi(k). Define

ζ0(Mn) =
[Mn]∑
i=0

[
πs

(
Bi+1(1)

) + πs

(
Bi+1(2)

)]
,

and

�n(θ) =
[Mn]∑
i=0

ḣg

(
i

Mn

, θ

)
ḣτ

g

(
i

Mn

, θ

)
πs

(
Bi+1(1)

)

+
[Mn]∑
i=0

ḣg

( −i

Mn

, θ

)
ḣτ

g

( −i

Mn

, θ

)
πs

(
Bi+1(2)

)
,

�̃n(θ, θ0) =
[Mn]∑
i=0

[
hg

(
i

Mn

, θ

)
− hg

(
i

Mn

, θ0

)]2

πs

(
Bi+1(1)

)

+
[Mn]∑
i=0

[
hg

( −i

Mn

, θ

)
− hg

( −i

Mn

, θ0

)]2

πs

(
Bi+1(2)

)
,

where hg(·, ·) and ḣg(·, ·) will be defined in Assumption 3.3(i) below.
Some additional assumptions are introduced below to establish asymptotic

properties for θn.

ASSUMPTION 3.3. (i) g(x, θ), ġ(x, θ) and g̈(x, θ) are asymptotically homo-
geneous on � with asymptotic orders κg(·), κ̇g(·) and κ̈g(·), and limit homoge-
neous functions hg(·, ·), ḣg(·, ·) and ḧg(·, ·), respectively. Furthermore, the asymp-
totic orders κg(·), κ̇g(·) and κ̈g(·) are independent of θ .

(ii) The function hg(·, θ) is continuous on the interval [−1,1] for all θ ∈ �. For
all θ 
= θ0, there exist a continuous �̃(·, θ0) which achieves unique minimum at
θ = θ0 and a sequence of positive numbers {ζ̃ (Mn)} such that

lim
n→∞

1

ζ̃ (Mn)
�̃n(θ , θ0) = �̃(θ , θ0).(3.12)

For θ in a neighborhood of θ0, both ḣg(·, θ) and ḧg(·, θ) are continuous on the
interval [−1,1] and there exist a continuous and positive definite matrix �(θ) and
a sequence of positive numbers {ζ(Mn)} such that

lim
n→∞

1

ζ(Mn)
�n(θ) = �(θ).(3.13)
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Furthermore, both ζ0(Mn)/ζ̃ (Mn) and ζ0(Mn)/ζ(Mn) are bounded, and ζ0(ln)/

ζ0(Mn) = o(1) for ln → ∞ but ln = o(Mn).
(iii) The asymptotic orders κg(·), κ̇g(·) and κ̈g(·) are positive and nondecreasing

such that κg(n) + κ̈g(n) = O(κ̇g(n)) as n → ∞.
(iv) For each x ∈ [−Mn,Mn], Nx(1) := {y : x − 1 < y < x + 1} is a small set

and the invariant density function ps(x) is bounded away from zero and infinity.

REMARK 3.5. Assumption 3.3(i) is quite standard; see, for example, condi-
tion (b) in Theorem 5.2 in PP. The restriction that the asymptotic orders are inde-
pendent of θ can be relaxed at the cost of more complicated assumptions and more
lengthy proofs. For example, to ensure the global consistency of θn, we need to
assume that there exist ε∗ > 0 and a neighborhood Bθ1 of θ1 for any θ1 
= θ0 such
that

inf|p−p̄|<ε∗,|q−q̄|<ε∗
inf

θ∈Bθ1

∣∣pκg(n, θ) − qκg(n, θ0)
∣∣ → ∞

for p̄, q̄ > 0. And to establish the asymptotic normality of θn, we need to impose
additional technical conditions on the asymptotic orders and limit homogeneous
functions, similar to condition (b) in Theorem 5.3 of PP. The explicit forms of
�(θ), ζ(Mn), �̃(θ , θ0) and ζ̃ (Mn) in Assumption 3.3(ii) can be derived for some
special cases. For example, when {Xt } is generated by a random walk process, we
have πs(dx) = dx and

�n(θ) = (
1 + o(1)

) [Mn]∑
i=−[Mn]

ḣg

(
i

Mn

, θ

)
ḣτ

g

(
i

Mn

, θ

)

= (
1 + o(1)

)
Mn

∫ 1

−1
ḣg(x, θ)ḣτ

g(x, θ) dx,

which implies that ζ(Mn) = Mn and �(θ) = ∫ 1
−1 ḣg(x, θ)ḣτ

g(x, θ) dx in (3.13).
The explicit forms of �̃(θ , θ0) and ζ̃ (Mn) can be derived similarly for the above
two cases and details are thus omitted.

Define Jg(n, θ0) = κ̇2
g(Mn)ζ(Mn)�(θ0). We next establish an asymptotic the-

ory for θn when {Xt } is null recurrent.

THEOREM 3.2. Let {Xt } be a null recurrent Markov process, Assump-
tions 3.1(ii) and 3.3 hold.

(a) The solution θn which minimizes the loss function Qn,g(θ) over � is con-
sistent, that is,

θn − θ0 = oP (1).(3.14)
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(b) The estimator θn has the asymptotically normal distribution,

N1/2(n)J1/2
g (n, θ0)(θn − θ0)

d−→ N
(
0d, σ 2Id

)
,(3.15)

where Id is a d × d identity matrix.

REMARK 3.6. From Theorem 3.2, the asymptotic distribution of θn for the
asymptotically homogeneous regression function is quite different from that of
θ̂n for the integrable regression function when the process is null recurrent. Such
finding is comparable to those in PP. The choice of Mn in the estimation method
and asymptotic theory will be discussed in Corollaries 3.3 and 3.4 below.

REMARK 3.7. As in Corollary 3.1, we can modify (3.15) for inference pur-
poses. Define Jg,C(n, θ0) = κ̇2

g(Mn)�n,C(θ0), where

�n,C(θ) =
[Mn]∑
i=0

ḣg

(
i

Mn

, θ

)
ḣτ

g

(
i

Mn

, θ

)
πs(Bi+1(1))

πs(C)

+
[Mn]∑
i=0

ḣg

( −i

Mn

, θ

)
ḣτ

g

( −i

Mn

, θ

)
πs(Bi+1(2))

πs(C)
,

where C satisfies the conditions in Corollary 3.1. Then, by (3.5) and (3.15), we
can show that

N
1/2
C

(n)J1/2
g,C(n, θ0)(θn − θ0)

d−→ N
(
0d, σ 2Id

)
.(3.16)

When {Xt } is β-null recurrent, we can use the asymptotically normal distribution
theory (3.16) to conduct statistical inference without knowing any information of
β as NC(n) is observable and Jg,C(n, θ0) can be explicitly computed through re-
placing �n,C(θ0) by the plug-in estimated value.

From (3.15) in Theorem 3.2 and (2.3) in Section 2 above, we have the following
two corollaries. The rate of convergence in (3.17) below is quite general for β-null
recurrent Markov processes. When β = 1/2, it is the same as the convergence rate
in Theorem 5.2 of PP.

COROLLARY 3.3. Suppose that the conditions of Theorem 3.2 are satisfied.
Furthermore, let {Xt } be a β-null recurrent Markov chain with 0 < β < 1. Taking
Mn = M0n

1−βL−1
s (n) for some positive constant M0, we have

θn − θ0 = OP

((
nκ̇2

g(Mn)
)−1/2)

.(3.17)

COROLLARY 3.4. Suppose that the conditions of Theorem 3.2 are satisfied.
Let g(x, θ0) = xθ0, {Xt } be a random walk process and Mn = M0n

1/2 for some
positive constant M0. Then we have

θn − θ0 = OP

(
n−1),(3.18)
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where θn is the MNLS estimator of θ0. Furthermore,√
M3

0N(n)n3/2(θn − θ0)
d−→ N

(
0,3σ 2/2

)
.(3.19)

REMARK 3.8. For the simple linear regression model with regressors gen-
erated by a random walk process, (3.18) and (3.19) imply the existence of super
consistency. Corollaries 3.3 and 3.4 show that the rates of convergence for the para-
metric estimator in nonlinear cointegrating models rely not only on the properties
of the function g(·, ·), but also on the magnitude of β .

In the above two corollaries, we give the choice of Mn for some special cases. In
fact, for the random walk process {Xt } defined as in Example 2.1(i) with E[x2

1 ] = 1,
we have

1√
n
X[nr] = 1√

n

[nr]∑
i=1

xi ⇒ B(r),

where B(r) is a standard Brownian motion and “⇒” denotes the weak conver-
gence. Furthermore, by the continuous mapping theorem [c.f., Billingsley (1968)],

sup
0≤r≤1

1√
n
X[nr] ⇒ sup

0≤r≤1
B(r),

which implies that it is reasonable to let Mn = Cαn1/2, where Cα may be chosen
such that

α = P
(

sup
0≤r≤1

B(r) ≥ Cα

)
= P

(∣∣B(1)
∣∣ ≥ Cα

) = 2
(
1 − �(Cα)

)
,(3.20)

where the second equality is due to the reflection principle and �(x) =∫ x
−∞(e−u2/2/

√
2π)du. This implies that Cα can be obtained when α is given,

such as α = 0.05. For the general β-null recurrent Markov process, the choice of
the optimal Mn remains as an open problem. We conjecture that it may be an op-
tion to take Mn = M̃n1−β̂ with β̂ defined in (3.6) and M̃ chosen by a data-driven
method, and will further study this issue in future research.

4. Discussions and extensions. In this section, we discuss the applications of
our asymptotic results in estimating the nonlinear heteroskedastic regression and
nonlinear regression with I (1) processes. Furthermore, we also discuss possible
extensions of our model to the cases of multivariate regressors and nonlinear au-
toregression.

4.1. Nonlinear heteroskedastic regression. We introduce an estimation method
for a parameter vector involved in the conditional variance function. For simplicity,
we consider the model defined by

Yt = σ(Xt ,γ 0)et∗ for γ 0 ∈ ϒ ⊂ R
p,(4.1)
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where {et∗} satisfies Assumption 3.1(ii) with a unit variance, σ 2(·, ·) : Rp+1 → R

is positive, and γ 0 is the true value of the p-dimensional parameter vector in-
volved in the conditional variance function. Estimation of the parametric nonlinear
variance function defined in (4.1) is important in empirical applications as many
scientific studies depend on understanding the variability of the data. When the
covariates are integrated, Han and Park (2012) study the maximum likelihood es-
timation of the parameters in the ARCH and GARCH models. A recent paper by
Han and Kristensen (2014) further considers the quasi maximum likelihood esti-
mation in the GARCH-X models with stationary and nonstationary covariates. We
next consider the general Harris recurrent Markov process {Xt } and use a robust
estimation method for model (4.1).

Letting �0 be a positive number such that E[log(e2
t∗)] = log(�0), we have

log
(
Y 2

t

) = log
(
σ 2(Xt ,γ 0)

) + log
(
e2
t∗
)

= log
(
σ 2(Xt ,γ 0)

) + log(�0) + log
(
e2
t∗
) − log(�0)(4.2)

=: log
(
�0σ

2(Xt ,γ 0)
) + ζt ,

where E(ζt ) = 0. Since our main interest lies in the discussion of the asymptotic
theory for the estimator of γ 0, we first assume that �0 is known to simplify our
discussion. Model (4.2) can be seen as another nonlinear mean regression model
with parameter vector γ 0 to be estimated. The log-transformation would make
data less skewed, and thus the resulting volatility estimator may be more robust in
terms of dealing with heavy-tailed {et∗}. Such transformation has been commonly
used to estimate the variability of the data in the stationary time series case [c.f.,
Peng and Yao (2003), Gao (2007), Chen, Cheng and Peng (2009)]. However, any
extension to Harris recurrent Markov chains which may be nonstationary has not
been done in the literature.

Our estimation method will be constructed based on (4.2). Noting that �0 is
assumed to be known, define

σ 2∗ (Xt ,γ 0) = �0σ
2(Xt ,γ 0) and g∗(Xt ,γ 0) = log

(
σ 2∗ (Xt ,γ 0)

)
.(4.3)

Case (I). If g∗(Xt ,γ ) and its derivatives are integrable on ϒ , the log-
transformed nonlinear least squares (LNLS) estimator γ̂ n can be obtained by min-
imizing Ln,σ (γ ) over γ ∈ ϒ , where

Ln,σ (γ ) =
n∑

t=1

[
log

(
Y 2

t

) − g∗(Xt ,γ )
]2

.(4.4)

Letting Assumptions 3.1 and 3.2 be satisfied with et and g(·, ·) replaced by ζt and
g∗(·, ·), respectively, then the asymptotic results developed in Section 3.1 still hold
for γ̂ n.
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Case (II). If g∗(Xt ,γ ) and its derivatives are asymptotically homogeneous
on ϒ , the log-transformed modified nonlinear least squares (LMNLS) estimator
γ n can be obtained by minimizing Qn,σ (γ ) over γ ∈ ϒ , where

Qn,σ (γ ) =
n∑

t=1

[
log

(
Y 2

t

) − g∗(Xt ,γ )
]2

I
(|Xt | ≤ Mn

)
,(4.5)

where Mn is defined as in Section 3.2. Then the asymptotic results developed in
Section 3.2 still hold for γ n under some regularity conditions such as a slightly
modified version of Assumptions 3.1 and 3.3. Hence, it is possible to achieve the
super-consistency result for γ n when {Xt } is null recurrent.

In practice, however, �0 is usually unknown and needs to be estimated. We next
briefly discuss this issue for case (ii). We may define the loss function by

Qn(γ ,�) =
n∑

t=1

[
log

(
Y 2

t

) − log
(
�σ 2(Xt ,γ )

)]2
I
(|Xt | ≤ Mn

)
.

Then the estimators γ n and �n can be obtained by minimizing Qn(γ ,�) over
γ ∈ ϒ and � ∈ R

+. A simulated example (Example B.2) is given in Appendix B
of the supplemental document to examine the finite sample performance of the
LNLS and LMNLS estimations considered in cases (i) and (ii), respectively.

4.2. Nonlinear regression with I (1) processes. As mentioned before, PP con-
sider the nonlinear regression (1.1) with the regressors {Xt } generated by

Xt = Xt−1 + xt , xt =
∞∑

j=0

φjεt−j ,(4.6)

where {εj } is a sequence of i.i.d. random variables and {φj } satisfies some summa-
bility conditions. For simplicity, we assume that X0 = 0 throughout this subsec-
tion. PP establish a suite of asymptotic results for the NLS estimator of the param-
eter θ0 involved in (1.1) when {Xt } is defined by (4.6). An open problem is how to
establish such results by using the β-null recurrent Markov chain framework. This
is quite challenging as {Xt } defined by (4.6) is no longer a Markov process except
for some special cases (for example, φj = 0 for j ≥ 1).

We next consider solving this open problem for the case where g(·, ·) is asymp-
totically homogeneous on � and derive an asymptotic theory for θn by using The-
orem 3.2 (the discussion for the integrable case is more complicated, and will be
considered in a future study). Our main idea is to approximate Xt by X∗

t which is
defined by

X∗
t = φ

t∑
s=1

εs, φ :=
∞∑

j=0

φj 
= 0,
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and then show that the asymptotically homogeneous function of Xt is asymptot-
ically equivalent to the same function of X∗

t . As {X∗
t } is a random walk process

under the Assumption E.1 (see Appendix E of the supplemental document), we
can then make use of Theorem 3.2. Define

Jg∗(n, θ0) = κ̇2
g(Mn)Mn

(∫ 1

−1
ḣg(x, θ0)ḣ

τ
g(x, θ0) dx

)
.(4.7)

We next give some asymptotic results for θn for the case where {Xt } is a unit
root process (4.6), and the proof is provided in Appendix E of the supplemental
document.

THEOREM 4.1. Let Assumptions E.1 and E.2 in Appendix E of the supple-
mental document hold, and n−1/(2(2+δ))Mn → ∞, where δ > 0 is defined in As-
sumption E.1(i).

(a) The solution θn which minimizes the loss function Qn,g(θ) over � is con-
sistent, that is,

θn − θ0 = oP (1).(4.8)

(b) The estimator θn has the asymptotically normal distribution,

N1/2
ε (n)J1/2

g∗ (n, θ0)(θn − θ0)
d−→ N

(
0d, σ 2Id

)
,(4.9)

where Nε(n) is the number of regenerations for the random walk {X∗
t }.

REMARK 4.1. Theorem 4.1 establishes an asymptotic theory for θn when
{Xt } is a unit root process (4.6). Our results are comparable with Theorems 5.2
and 5.3 in PP. However, we establish asymptotic normality in (4.9) with stochastic
rate N

1/2
ε (n)J1/2

g∗ (n, θ0), and PP establish their asymptotic mixed normal distribu-

tion theory with a deterministic rate. As N
1/2
ε (n)J1/2

g∗ (n, θ0) ∝ n1/4J1/2
g∗ (n, θ0) in

probability, if we take Mn = M0
√

n as in Corollary 3.4, we will find that our rate
of convergence of θn is the same as that derived by PP.

4.3. Extensions to multivariate regression and nonlinear autoregression. The
theoretical results developed in Section 3 are limited to nonlinear regression with
a univariate Markov process. A natural question is whether it is possible to extend
them to the more general case with multivariate covariates. In the unit root frame-
work, it is well known that it is difficult to derive the limit theory for the case of
multivariate unit root processes, as the vector Brownian motion is transient when
the dimension is larger than (or equal to) 3. In contrast, under the framework of the
Harris recurrent Markov chains, it is possible for us to generalize the theoretical
theory to the multivariate case (with certain restrictions). For example, it is pos-
sible to extend the theoretical results to the case with one nonstationary regressor
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and several other stationary regressors. We next give an example of vector autore-
gressive (VAR) process which may be included in our framework under certain
conditions.

EXAMPLE 4.1. Consider a q-dimensional VAR(1) process {Xt } which is de-
fined by

Xt = AXt−1 + b + xt , t = 1,2, . . . ,(4.10)

where X0 = 0q , A is a q × q matrix, b is a q-dimensional vector and {xt } is a se-
quence of i.i.d. q-dimensional random vectors with mean zero. If all the eigenval-
ues of the matrix A are inside the unit circle, under some mild conditions on {xt },
Theorem 3 in Myklebust, Karlsen and Tjøstheim (2012) shows that the VAR(1)
process {Xt } in (4.10) is geometric ergodic, which belongs to the category of pos-
itive recurrence. On the other hand, if the matrix A has exactly one eigenvalue on
the unit circle, under some mild conditions on {xt } and b, Theorem 4 in Myklebust,
Karlsen and Tjøstheim (2012) shows that the VAR(1) process {Xt } in (4.10) is β-
null recurrent with β = 1/2. For this case, the asymptotic theory developed in
Section 3 is applicable. However, when A has two eigenvalues on the unit circle,
under different restrictions, {Xt } might be null recurrent (but not β-null recurrent)
or transient. If A has three or more eigenvalues on the unit circle, the VAR(1) pro-
cess {Xt } would be transient, which indicates that the limit theory developed in
this paper would be not applicable.

We next briefly discuss a nonlinear autoregressive model of the form:

Xt+1 = g(Xt , θ0) + et+1, t = 1,2, . . . , n.(4.11)

For this autoregression case, {et } is not independent of {Xt }, and thus the proof
strategy developed in this paper needs to be modified. Following the argument in
Karlsen and Tjøstheim (2001), in order to develop an asymptotic theory for the
parameter estimation in the nonlinear autoregression (4.11), we may need that the
process {Xt } is Harris recurrent but not that the compound process {(Xt , et+1)}
is also Harris recurrent. This is because we essentially have to consider sums of
products like ġ(Xt , θ0)et+1 = ġ(Xt , θ0)(Xt+1 − g(Xt , θ0)), which are of the gen-
eral form treated in Karlsen and Tjøstheim (2001). The verification of the Harris
recurrence of {Xt } has been discussed by Lu (1998) and Example 2.1 given in Sec-
tion 2.2 above. How to establish an asymptotic theory for the parameter estimation
of θ0 in model (4.11) will be studied in our future research.

5. Simulated examples. In this section, we provide some simulation studies
to compare the finite sample performance of the proposed parametric estimation
methods and to illustrate the developed asymptotic theory.
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TABLE 1
Means and standard errors for the estimators in Example 5.1

Sample size 500 1000 2000

The regressor Xt is generated in case (i)
NLS 1.0036 (0.0481) 1.0002 (0.0339) 1.0000 (0.0245)
MNLS 1.0036 (0.0481) 1.0002 (0.0339) 1.0000 (0.0245)

The regressor Xt is generated in case (ii)
NLS 0.9881 (0.1783) 0.9987 (0.1495) 0.9926 (0.1393)
MNLS 0.9881 (0.1783) 0.9987 (0.1495) 0.9926 (0.1393)

The regressor Xt is generated in case (iii)
NLS 0.9975 (0.1692) 1.0028 (0.1463) 0.9940 (0.1301)
MNLS 0.9975 (0.1692) 1.0028 (0.1463) 0.9940 (0.1301)

EXAMPLE 5.1. Consider the generalized linear model defined by

Yt = exp
{−θ0X

2
t

} + et , θ0 = 1, t = 1,2, . . . , n,(5.1)

where {Xt } is generated by one of the three Markov processes:

(i) AR(1) process: Xt = 0.5Xt−1 + xt ,
(ii) Random walk process: Xt = Xt−1 + xt ,

(iii) TAR(1) process: Xt = 0.5Xt−1I (|Xt−1| ≤ 1) + Xt−1I (|Xt−1| > 1) + xt ,
X0 = 0 and {xt } is a sequence of i.i.d. standard normal random variables for the
above three processes. The error process {et } is a sequence of i.i.d. N(0,0.52) ran-
dom variables and independent of {xt }. In this simulation study, we compare the
finite sample behavior of the NLS estimator θ̂n with that of the MNLS estimator θn,
and the sample size n is chosen to be 500, 1000 and 2000. The aim of this exam-
ple is to illustrate the asymptotic theory developed in Section 3.1 as the regression
function in (5.1) is integrable when θ0 > 0. Following the discussion in Section 2.2,
the AR(1) process defined in (i) is positive recurrent, and the random process de-
fined in (ii) and the TAR(1) process defined in (iii) are 1/2-null recurrent.

We generate 500 replicated samples for this simulation study, and calculate the
means and standard errors for both of the parametric estimators in 500 simulations.
In the MNLS estimation procedure, we choose Mn = Cαn1−β with α = 0.01,
where Cα is defined in (3.20), β = 1 for case (i), and β = 1/2 for cases (ii) and
(iii). It is easy to find that C0.01 = 2.58.

The simulation results are reported in Table 1, where the numbers in the paren-
theses are the standard errors of the NLS (or MNLS) estimator in the 500 replica-
tions. From Table 1, we have the following interesting findings. (a) The parametric
estimators perform better in the stationary case (i) than in the nonstationary cases
(ii) and (iii). This is consistent with the asymptotic results obtained in Section 3.1
such as Theorem 3.1 and Corollaries 3.1 and 3.2, which indicate that the conver-
gence rates of the parametric estimators can achieve OP (n−1/2) in the stationary
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case, but only OP (n−1/4) in the 1/2-null recurrent case. (b) The finite sample be-
havior of the MNLS estimator is the same as that of NLS estimator since α = 0.01
means little sample information is lost. (c) Both of the two parametric estima-
tors improve as the sample size increases. (d) In addition, for case (i), the ratio of
the standard errors between 500 and 2000 is 1.9633 (close to the theoretical ratio√

4 = 2); for case (iii), the ratio of the standard errors between 500 and 2000 is
1.3005 (close to the theoretical ratio 41/4 = 1.4142). Hence, this again confirms
that our asymptotic theory is valid.

EXAMPLE 5.2. Consider the quadratic regression model defined by

Yt = θ0X
2
t + et , θ0 = 0.5, t = 1,2, . . . , n,(5.2)

where {Xt } is generated either by one of the three Markov processes introduced in
Example 5.1, or by (iv) the unit root process:

Xt = Xt−1 + xt , xt = 0.2xt−1 + vt ,

in which X0 = x0 = 0, {vt } is a sequence of i.i.d. N(0,0.75) random variables,
and the error process {et } is defined as in Example 5.1. In this simulation study,
we are interested in the finite sample behavior of the MNLS estimator to illustrate
the asymptotic theory developed in Section 3.2 as the regression function in (5.2)
is asymptotically homogeneous. For the comparison purpose, we also investigate
the finite sample behavior of the NLS estimation, although we do not establish the
related asymptotic theory under the framework of null recurrent Markov chains.
The sample size n is chosen to be 500, 1000 and 2000 as in Example 5.1 and
the replication number is R = 500. In the MNLS estimation procedure, as in the
previous example, we choose Mn = 2.58n1−β , where β = 1 for case (i), and β =
1/2 for cases (ii)–(iv).

The simulation results are reported in Table 2, from which, we have the follow-
ing conclusions. (a) For the regression model with asymptotically homogeneous
regression function, the parametric estimators perform better in the nonstationary
cases (ii)–(iv) than in the stationary case (i). This finding is consistent with the
asymptotic results obtained in Sections 3.2 and 4.2. (b) The MNLS estimator per-
forms as well as the NLS estimator (in particular for the nonstationary cases). Both
the NLS and MNLS estimations improve as the sample size increases.

6. Empirical application. In this section, we give an empirical application of
the proposed parametric model and estimation methodology.

EXAMPLE 6.1. Consider the logarithm of the UK to US export and import
data (in £). These data come from the website: https://www.uktradeinfo.com/,
spanning from January 1996 to August 2013 monthly and with the sample size

https://www.uktradeinfo.com/
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TABLE 2
Means and standard errors for the estimators in Example 5.2

Sample size 500 1000 2000

The regressor Xt is generated in case (i)
NLS 0.5002 (0.0095) 0.4997 (0.0068) 0.4998 (0.0050)
MNLS 0.5003 (0.0126) 0.4998 (0.0092) 0.4997 (0.0064)

The regressor Xt is generated in case (ii)
NLS 0.5000 (2.4523 × 10−4) 0.5000 (6.7110 × 10−5) 0.5000 (2.7250 × 10−5)
MNLS 0.5000 (2.4523 × 10−4) 0.5000 (6.7112 × 10−5) 0.5000 (2.7251 × 10−5)

The regressor Xt is generated in case (iii)
NLS 0.5000 (2.6095 × 10−4) 0.5000 (8.4571 × 10−5) 0.5000 (3.1268 × 10−5)
MNLS 0.5000 (2.6095 × 10−4) 0.5000 (8.4572 × 10−5) 0.5000 (3.1268 × 10−5)

The regressor Xt is generated in case (iv)
NLS 0.5000 (2.1698 × 10−4) 0.5000 (7.1500 × 10−5) 0.5000 (2.6017 × 10−5)
MNLS 0.5000 (2.1699 × 10−4) 0.5000 (7.1504 × 10−5) 0.5000 (2.6017 × 10−5)

n = 212. Let Xt be defined as log(Et ) + log(pUK
t ) − log(pUS

t ), where {Et } is the
monthly average of the nominal exchange rate, and {pi

t } denotes the consumption
price index of country i. In this example, we let {Yt } denote the logarithm of either
the export or the import value.

The data Xt and Yt are plotted in Figures 1 and 2, respectively. Meanwhile, the
real data application considered by Gao, Tjøstheim and Yin (2013) suggests that
{Xt } may follow the threshold autoregressive model proposed in that paper, which
is shown to be a 1/2-null recurrent Markov process. Furthermore, an application
of the estimation method by (3.6) gives β0 = 0.5044. This further supports that
{Xt } roughly follows a β-null recurrent Markov chain with β = 1/2.

To avoid possible confusion, let Yex,t and Yim,t be the export and import data,
respectively. We are interested in estimating the parametric relationship between
Yex,t (or Yim,t ) and Xt . In order to find a suitable parametric relationship, we first
estimate the relationship nonparametrically based on Yex,t = mex(Xt) + et1 and
Yim,t = mim(Xt) + et2 [c.f., Karlsen, Myklebust and Tjøstheim (2007)], where
mex(·) and mim(·) are estimated by

m̂ex(x) =
∑n

t=1 K((Xt − x)/h)Yex,t∑n
t=1 K((Xt − x)/h)

and

(6.1)

m̂im(x) =
∑n

t=1 K((Xt − x)/h)Yim,t∑n
t=1 K((Xt − x)/h)

,

where K(·) is the probability density function of the standard normal distribution
and the bandwidth h is chosen by the conventional leave-one-out cross-validation
method. Then a parametric calibration procedure (based on the preliminary non-
parametric estimation) suggests using a third-order polynomial relationship of the
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FIG. 1. Plot of the real exchange rate Xt .

form

Yex,t = θex,0 + θex,1Xt + θex,2X
2
t + θex,3X

3
t + eex,t(6.2)

for the export data, where the estimated values (by using the method in Section 3.2)
of θex,0, θex,1, θex,2 and θex,3 are 21.666, 5.9788, 60.231 and 139.36, respectively,

FIG. 2. Plot of the logarithm of the export and import data Yt .
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and

Yim,t = θim,0 + θim,1Xt + θim,2X
2
t + θim,3X

3
t + eim,t(6.3)

for the import data, where the estimated values of θim,0, θim,1, θim,2 and θim,3 are
21.614, 3.5304, 37.789 and 87.172, respectively. Their plots are given in Figures 3
and 4, respectively.

While Figures 3 and 4 suggest some relationship between the exchange rate and
either the export or the import variable, the true relationship may also depend on
some other macroeconomic variables, such as, the real interest rate in the UK dur-
ing the period. As discussed in Section 4.3, we would like to extend the proposed
models from the univariate case to the multivariate case. As a future application,
we should be able to find a more accurate relationship among the export or the
import variable with the exchange rate and some other macroeconomic variables.

7. Conclusions. In this paper, we have systematically studied the nonlinear
regression under the general Harris recurrent Markov chain framework, which in-
cludes both the stationary and nonstationary cases. Note that the nonstationary null
recurrent process considered in this paper is under Markov perspective, which, un-
like PP, indicates that our methodology has the potential of being extended to the
nonlinear autoregressive case. In this paper, we not only develop an asymptotic
theory for the NLS estimator of θ0 when g(·, ·) is integrable, but also propose us-
ing a modified version of the conventional NLS estimator for the asymptotically
homogeneous g(·, ·) and adopt a novel method to establish an asymptotic theory
for the proposed modified parametric estimator. Furthermore, by using the log-
transformation, we discuss the estimation of the parameter vector in a conditional

FIG. 3. Plot of the polynomial model fitting (6.2).
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FIG. 4. Plot of the polynomial model fitting (6.3).

volatility function. We also apply our results to the nonlinear regression with I (1)

processes which may be non-Markovian, and establish an asymptotic distribution
theory, which is comparable to that obtained by PP. The simulation studies and
empirical applications have been provided to illustrate our approaches and results.

APPENDIX A: OUTLINE OF THE MAIN PROOFS

In this Appendix, we outline the proofs of the main results in Section 3. The
detailed proofs of these results are given in Appendix C of the supplemental doc-
ument. The major difference between our proof strategy and that based on the unit
root framework [c.f., PP and Kristensen and Rahbek (2013)] is that our proofs rely
on the limit theorems for functions of the Harris recurrent Markov process (c.f.,
Lemmas A.1 and A.2 below) whereas PP and Kristensen and Rahbek (2013)’s
proofs use the limit theorems for integrated time series. We start with two techni-
cal lemmas which are crucial for the proofs of Theorems 3.1 and 3.2. The proofs
for these two lemmas are given in Appendix D of the supplemental document by
Li, Tjøstheim and Gao (2015).

LEMMA A.1. Let hI (x, θ) be a d-dimensional integrable function on � and
suppose that Assumption 3.1(i) is satisfied for {Xt }.

(a) Uniformly for θ ∈ �, we have

1

N(n)

n∑
t=1

hI (Xt , θ) =
∫

hI (x, θ)πs(dx) + oP (1).(A.1)
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(b) If {et } satisfies Assumption 3.1(ii), we have, uniformly for θ ∈ �,
n∑

t=1

hI (Xt , θ)et = OP

(√
N(n)

)
.(A.2)

Furthermore, if
∫

hI (x, θ0)h
τ
I (x, θ0)πs(dx) is positive definite, we have

1√
N(n)

n∑
t=1

hI (Xt , θ0)et
d−→ N

(
0d, σ 2

∫
hI (x, θ0)h

τ
I (x, θ0)πs(dx)

)
.(A.3)

LEMMA A.2. Let hAH(x, θ) be a d-dimensional asymptotically homogeneous
function on � with asymptotic order κ(·) (independent of θ ) and limit homoge-
neous function hAH(·, ·). Suppose that {Xt } is a null recurrent Markov process with
the invariant measure πs(·) and Assumption 3.3(iv) are satisfied, and hAH(·, θ) is
continuous on the interval [−1,1] for all θ ∈ �. Furthermore, letting

�AH(n, θ) =
[Mn]∑
i=0

hAH

(
i

Mn

, θ

)
h

τ

AH

(
i

Mn

, θ

)
πs

(
Bi+1(1)

)

+
[Mn]∑
i=0

hAH

( −i

Mn

, θ

)
h

τ

AH

( −i

Mn

, θ

)
πs

(
Bi+1(2)

)
with Bi(1) and Bi(2) defined in Section 3.2, there exist a continuous and positive
definite matrix �AH(θ) and a sequence of positive numbers {ζAH(Mn)} such that
ζ0(Mn)/ζAH(Mn) is bounded, ζ0(ln)/ζ0(Mn) = o(1) for ln → ∞ but ln = o(Mn),
and

lim
n→∞

1

ζAH(Mn)
�AH(n, θ) = �AH(θ),

where ζ0(·) is defined in Section 3.2.

(a) Uniformly for θ ∈ �, we have[
N(n)JAH(n, θ)

]−1
n∑

t=1

hAH(Xt , θ)hτ
AH(Xt , θ)I

(|Xt | ≤ Mn

)
(A.4)

= Id + oP (1),

where JAH(n, θ) = κ2(Mn)ζAH(Mn)�AH(θ).
(b) If {et } satisfies Assumption 3.1(ii), we have, uniformly for θ ∈ �,

J−1/2
AH (n, θ)

n∑
t=1

hAH(Xt , θ)I
(|Xt | ≤ Mn

)
et = OP

(√
N(n)

)
,(A.5)

and furthermore,

N−1/2(n)J−1/2
AH (n, θ0)

n∑
t=1

hAH(Xt , θ0)I
(|Xt | ≤ Mn

)
et

d−→ N
(
0d, σ 2Id

)
.(A.6)
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PROOF OF THEOREM 3.1. For Theorem 3.1(a), we only need to verify the
following sufficient condition for the weak consistency [Jennrich (1969)]: for a se-
quence of positive numbers {λn},

1

λn

[
Ln,g(θ) − Ln,g(θ0)

] = L∗(θ , θ0) + oP (1)(A.7)

uniformly for θ ∈ �, where L∗(·, θ0) is continuous and achieves a unique mini-
mum at θ0. This sufficient condition can be proved by using (A.1) and (A.2) in
Lemma A.1, and (3.3) in Theorem 3.1(a) is thus proved. Combining the so-called
Cramér–Wold device in Billingsley (1968) and (A.3) in Lemma A.1(b), we can
complete the proof of the asymptotically normal distribution in (3.4). Details can
be found in Appendix C of the supplementary material. �

PROOF OF COROLLARY 3.1. The asymptotic distribution (3.7) can be proved
by using (3.5) and Theorem 3.1(b). �

PROOF OF COROLLARY 3.2. The convergence result (3.8) can be proved by
using (2.3) and (3.4), and following the proof of Lemma A.2 in Gao et al. (2015).
A detailed proof is given in Appendix C of the supplementary material. �

PROOF OF THEOREM 3.2. The proof is similar to the proof of Theorem 3.1
above. To prove the weak consistency, similar to (A.7), we need to verify the suf-
ficient condition: for a sequence of positive numbers {λ∗

n},
1

λ∗
n

[
Qn,g(θ) − Qn,g(θ0)

] = Q∗(θ , θ0) + oP (1)(A.8)

uniformly for θ ∈ �, where Q∗(·, θ0) is continuous and achieves a unique mini-
mum at θ0. Using Assumption 3.3(ii) and following the proofs of (A.4) and (A.5)
in Lemma A.2 (see Appendix D in the supplementary material), we may prove
(A.8) and thus the weak consistency result (3.14). Combining the Cramér–Wold
device and (A.6) in Lemma A.2(b), we can complete the proof of the asymptoti-
cally normal distribution for θn in (3.15). More details are given in Appendix C of
the supplementary material. �

PROOF OF COROLLARY 3.3. By using Theorem 3.2(b) and (2.3), and follow-
ing the proof of Lemma A.2 in Gao et al. (2015), we can directly prove (3.17).

�

PROOF OF COROLLARY 3.4. The convergence result (3.18) follows from
(3.17) in Corollary 3.3 and (3.19) can be proved by using (3.15) in Theorem 3.2(b).

�
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