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A GOODNESS-OF-FIT TEST FOR STOCHASTIC BLOCK MODELS

BY JING LEI

Carnegie Mellon University

The stochastic block model is a popular tool for studying community
structures in network data. We develop a goodness-of-fit test for the stochas-
tic block model. The test statistic is based on the largest singular value of
a residual matrix obtained by subtracting the estimated block mean effect
from the adjacency matrix. Asymptotic null distribution is obtained using re-
cent advances in random matrix theory. The test is proved to have full power
against alternative models with finer structures. These results naturally lead
to a consistent sequential testing estimate of the number of communities.

1. Introduction. Large-scale network data with community structures have
been the focus of much research efforts in the past decade [see, e.g., Newman
(2006), Newman and Girvan (2004)]. In the statistics and machine learning litera-
ture, the stochastic block model [Holland, Laskey and Leinhardt (1983)] is a very
popular model for community structures in network data. In a stochastic block
model, the observed network is often recorded in the form of an n × n adjacency
matrix A, representing the presence/absence of pairwise interactions among n in-
dividuals in a population of interest. The model assumes that (i) the individuals
are partitioned into K disjoint communities, and (ii) given the memberships, the
upper diagonal entries of A are independent Bernoulli random variables, where
the parameter E(Aij ) depends only on the memberships of nodes i and j . Such
a model naturally captures the community structures commonly observed in com-
plex networks, and has close connection to nonparametric exchangeable random
graphs [Bickel and Chen (2009)]. The stochastic block model can be made more
realistic by incorporating additional parameters to better approximate real world
network data. For example, Karrer and Newman (2011) incorporated individual
node activeness into the stochastic block model to allow for arbitrary degree dis-
tributions. In the mixed membership model [Airoldi et al. (2008)], each individual
may belong to more than one community.

In this paper, we develop a goodness-of-fit test for stochastic block models.
Given an adjacency matrix A and a positive integer K0, we test whether A can
be adequately fitted by a stochastic block model with K0 communities. Our test
statistic is the largest singular value of a residual matrix obtained by removing the
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estimated block mean effect from the observed adjacency matrix. Intuitively, if A

is generated by a stochastic block model and the block mean effect is estimated
appropriately, the residual matrix will approximate a generalized Wigner matrix:
a symmetric random matrix with independent mean zero upper diagonal entries.
Our first contribution is the asymptotic null distribution of the test statistic (The-
orem 3.1). The proof uses some recent advances in random matrix theory, such
as the local semicircle law of generalized Wigner matrices and its consequences
[Bloemendal et al. (2014), Erdős, Yau and Yin (2012), Erdős et al. (2013a)]. Our
second contribution is asymptotic power guarantee of the test against models with
finer structures (Theorems 3.3 and 3.5). In particular, we establish the growth rate
of the test statistic under alternatives that correspond to stochastic block models
with more communities or with individual node degree variations. It is of partic-
ular interest to consider alternative stochastic block models with more communi-
ties because any exchangeable random graph can be approximated by a stochastic
block model [Bickel and Chen (2009)]. In our simulation study, we observe that
the proposed test is powerful against not only stochastic block models with more
communities, but also other network models with finer structures such as the de-
gree corrected block model and the mixed membership block model.

A related test statistic using the largest eigenvalue of the centered and scaled ad-
jacency matrix has been studied in Bickel and Sarkar (2013). They derive asymp-
totic null distribution for Erdős–Rényi models, which corresponds to a stochas-
tic block model with one community. We generalize their argument to prove the
asymptotic null distribution result for stochastic block models with more than one
community. The key step is to bound the fluctuation in the leading eigenvalue of
a random matrix under perturbation of a block-wise constant noise matrix. More-
over, their asymptotic power analysis requires the alternative model to be diagonal
dominant. Our test statistic uses the largest singular value of the residual matrix,
so we are able to capture signals affecting either the largest or the smallest eigen-
values, and our asymptotic power guarantee holds for a much wider class of alter-
native models.

Our goodness-of-fit test can also serve as a main building block to estimate the
number of communities. As a key inference problem in stochastic block models
and its variants, the community recovery problem concerns estimating the hid-
den communities from a single observed adjacency matrix [see Abbe, Bandeira
and Hall (2014), Anandkumar et al. (2014), Bickel and Chen (2009), Chaudhuri,
Chung and Tsiatas (2012), Chen, Sanghavi and Xu (2012), Decelle et al. (2011),
Fishkind et al. (2013), Jin (2012), Krzakala et al. (2013), Lei and Rinaldo (2013),
Massoulie (2013), McSherry (2001), Mossel, Neeman and Sly (2013), Zhao, Lev-
ina and Zhu (2012), e.g.]. A common assumption made in all these methods is that
K , the total number of communities, is known. Therefore, estimating the num-
ber of communities in a stochastic block model is of great practical and theoretical
importance. Some methods have been proposed to estimate the number of commu-
nities in stochastic block models [Bickel and Sarkar (2013), Chen and Lei (2014),
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Saldana, Yi and Feng (2014), Zhao, Levina and Zhu (2011)], but without consis-
tency guarantee.

To estimate the number of communities, we consider hypothesis test

H0,K0 : K = K0, against Ha,K0 : K > K0(1)

sequentially for each K0 ≥ 1 until the null hypothesis is not rejected. We prove
the consistency of this sequential testing estimator in Corollary 3.4 of Section 3.
Throughout this paper, we use K to denote the true number of communities in a
stochastic block model and use K0 to denote a hypothetical number of communi-
ties.

Recently, Chatterjee (2015) studied a general method for matrix denoising using
singular value thresholding, which covers the stochastic block model as a special
case. Following the ideas developed there, one may use the number of significant
singular values, for example, those greater than

√
n, of the adjacency matrix as an

estimate of K . But this method only works when the community-wise connectivity
matrix has full rank. Empirically, we also find that the sequential testing estimator
developed in this paper performs better than singular value thresholding for sparse
networks.

Glossary. For a square matrix M , diag(M) denotes the diagonal matrix in-
duced by M . For any n × n symmetric matrix M , λj (M) denotes its j th largest
eigenvalue value, ordered as λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M), and σ1(M) is the
largest singular value. Denote BK the set of all K × K symmetric matrices with
entries in (0,1) and all rows being distinct.

2. Stochastic block models and a goodness-of-fit test. A stochastic block
model on n nodes with K communities is parameterized by a membership vec-
tor g ∈ {1, . . . ,K}n and a symmetric community-wise edge probability matrix
B ∈ [0,1]K×K . The observed adjacency matrix A is a symmetric binary matrix
with diagonal entries being 0. Given (g,B), the probability mass function for the
adjacency matrix A is

Pg,B(A) = ∏
1≤i<j≤n

B
Aij
gigj (1 − Bgigj

)(1−Aij ).(2)

In other words, given (g,B), the edges are independent Bernoulli random variables
with parameters determined by the node memberships.

To avoid triviality, we say that a stochastic block model parameterized by (g,B)

has K communities if (i) g contains all K distinct values in {1, . . . ,K}, and (ii) any
two rows of B are distinct. A stochastic block model is identifiable up to a label
permutation on g and a corresponding row/column permutation on B .

Given an observed adjacency matrix A, and a positive integer K0, we would like
to know if A can be well fitted by a stochastic block model with K0 communities. If
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we assume that A is generated by a stochastic block model with K communities,
this leads to a goodness-of-fit test for stochastic block models with a composite
null hypothesis

H0,K0 : K = K0.(3)

To derive a goodness-of-fit test for stochastic block models, a natural idea is to
estimate the model parameters and remove the signal from the observed adjacency
matrix, and test whether the residual matrix looks like a noise matrix. To this end,
consider the n × n matrix P given by

Pij = Bgigj
,

so that E(A) = P − diag(P ). Let Ã∗ be

Ã∗
ij = Aij − Pij√

(n − 1)Pij (1 − Pij )
, i �= j and Ã∗

ii = 0,∀i.(4)

Then Ã∗ is a generalized Wigner matrix, satisfying E(Ã∗
ij ) = 0 for all (i, j) and∑

j var(Ã∗
ij ) = 1 for all i. The asymptotic distribution of the extreme eigenvalues

of Ã∗ has been well studied in random matrix theory. In particular, combining
results in Erdős, Yau and Yin (2012) and Lee and Yin (2014) we have

n2/3[
λ1

(
Ã∗) − 2

]
� T W1 and n2/3[−λn

(
Ã∗) − 2

]
� T W1,(5)

where T W1 denotes the Tracy–Widom distribution with index 1 and “�” denotes
convergence in distribution. We remark that (5) cannot be obtained using results
for standard Wigner matrices as the diagonal entries of Ã∗ are fixed to be 0. We
formally state and prove this result as Lemma A.1 in Section A.1.

The matrix Ã∗ involves unknown model parameters and cannot be used as a test
statistic. Now we describe a natural estimate of Ã∗ by plugging in an estimated
stochastic block model.

Let ĝ be an estimated community membership vector with target number of
communities being K0. Define N̂k = {i : 1 ≤ i ≤ n, ĝi = k}, and n̂k = |N̂k| for all
1 ≤ k ≤ K0. We consider the plug-in estimator of B:

B̂kl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i∈N̂k,j∈N̂l

Aij

n̂kn̂l

, k �= l,∑
i,j∈N̂k,i<j

Aij

n̂k(n̂k − 1)/2
, k = l.

(6)

The estimates (ĝ, B̂) leads to the empirically centered and re-scaled adjacency
matrix Ã:

Ãij =

⎧⎪⎪⎨
⎪⎪⎩

Aij − P̂ij√
(n − 1)P̂ij (1 − P̂ij )

, i �= j ,

0, i = j ,

(7)
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where

P̂ij = B̂ĝi ĝj
.(8)

It is natural to conjecture that under the null hypothesis K = K0 and when the
estimates (ĝ, B̂) are accurate enough, the convergence in (5) will carry over to the
corresponding eigenvalues of Ã. Therefore, we can use the largest singular value
of Ã, after centering and scaling, as our test statistic:

Tn,K0 = n2/3[
σ1(Ã) − 2

]
.(9)

The corresponding level α rejection rule for testing problem (3) is

Reject H0,K0, if Tn,K0 ≥ t (α/2),(10)

where t (α/2) is the α/2 upper quantile of the T W1 distribution for α ∈ (0,1). We
use t (α/2) instead of t (α) for Bonferroni correction because

σ1(Ã) = max
(
λ1(Ã),−λn(Ã)

)
,

and hence

Tn,K0 = max
[
n2/3(

λ1(Ã) − 2
)
, n2/3(−λn(Ã) − 2

)]
.

A similar result concerning the largest eigenvalue of Ã in the simple case
K0 = 1 has been obtained in Bickel and Sarkar (2013). In Section 3 below, we
formally state and prove the validity of our test statistic Tn,K0 in Theorem 3.1
by establishing the asymptotic null distributions of both the largest and smallest
eigenvalues and for general values of K0.

The use of σ1(Ã) instead of λ1(Ã) as our test statistic in (9) is crucial for power
guarantee. Under some alternative hypotheses, the signal may be carried solely
by λn(Ã). For example, consider a model with two equal-sized communities and
B11 = B22 = 1/4, B12 = B21 = 1/2. Suppose we would like to test H0 : K =
K0 = 1. In this case, A − P̂ has block-wise mean(−1/8 1/8

1/8 −1/8

)
,

which has no positive eigenvalues. Therefore, the test using only λ1(Ã) has no
power.

Given the rejection rule (10) for testing problem (3), we have the following
sequential testing estimator of K :

K̂ = inf{K0 ≥ 1 : Tn,K0 < tn}.(11)

In other words, we perform the goodness-of-fit test for K0 = 1,2, . . . , until failing
to reject H0,K0 . We prove consistency of K̂ for appropriate choices of tn in Corol-
lary 3.4 below, as a consequence of (i) a large deviation inequality of the extreme
eigenvalues of Ã under the null hypothesis K = K0, and (ii) the growth rate of
Tn,K0 under the alternative hypothesis K > K0.
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3. Asymptotic null distribution and power. The asymptotic distribution of
the test statistic Tn,K0 under the null hypothesis depends on the accuracy of the
estimated community membership ĝ. In order to consider the asymptotic behav-
ior of community recovery, we consider a sequence of stochastic block models
{(g(n),B(n)) : n ≥ 1} where g(n) ∈ {1, . . . ,K(n)}n for each n, and B(n) ∈ BK(n) .
Here, the number of communities K = K(n) and the community-wise edge proba-
bility matrix B = B(n) are allowed to change with n.

We will focus on relatively balanced communities.

(A1) There exists c0 > 0 such that min1≤k≤K(n) |{i : g
(n)
i = k}| ≥ c0n/K(n) for

all n.

Assumption (A1) assumes each community has size at least proportional to
n/K(n). For example, it is satisfied almost surely if the membership vector g(n)

is generated from a multinomial distribution with n trials and probability π =
(π1, . . . , πK(n)) such that min1≤k≤K πk > c0/K

(n) and K(n) grows slowly.

DEFINITION (Consistency of community recovery). For a sequence of
stochastic block models {(g(n),B(n)) : n ≥ 1} with K(n) communities and B(n) ∈
BK(n) , we say a community membership estimator ĝ = ĝ(A,K(n)) is consistent if

PA∼(g(n),B(n))

(
ĝ = g(n)) → 1.

REMARK. The notion “ĝ = g” shall be interpreted as being equal up to a
label permutation. Such a label permutation does not affect our methodological
and theoretical development so we will assume that the label permutation is iden-
tity for simplicity. The definition of consistent community recovery can be satis-
fied by several methods. For example, in the case of fixed finite K(n) = K and
B(n) = B , the profile likelihood method [Bickel and Chen (2009)] is consistent for
all (g(n) : n ≥ 1) satisfying (A1) and all B ∈ BK ; the spectral clustering method
can be made consistent, with slight modification, for all (g(n) : n ≥ 1) satisfy-
ing (A1) and B ∈ BK with full rank [Lei and Zhu (2014), McSherry (2001), Vu
(2014)]. In the case of slowly growing K(n), consistent community recovery can
be achieved in some special cases such as the planted partition model [Amini and
Levina (2014), Chaudhuri, Chung and Tsiatas (2012)].

3.1. The asymptotic null distribution.

THEOREM 3.1 (Asymptotic null distribution). Let A be an adjacency ma-
trix generated from stochastic block model (g(n),B(n)), where B(n) ∈ BK(n) and
(g(n) : n ≥ 1) satisfies condition (A1). Let Ã be given as in (7) using a consistent
community estimate ĝ and corresponding plug-in estimate of B(n) as in (6). As-
sume in addition that K(n) = O(n1/6−τ ) for some τ > 0, and the entries of B(n)
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are uniformly bounded away from 0 and 1. The following holds under the null
hypothesis K(n) = K0:

n2/3(
λ1(Ã) − 2

)
� T W1, n2/3(−λn(Ã) − 2

)
� T W1.(12)

Theorem 3.1 is proved in Section A.2. The main challenge is that, assuming
ĝ = g, the entry-wise estimation error in B̂ is of order K(n)/n. The simple upper
bound of Ã − Ã∗ in Frobenius norm is of order K(n)n−1/2 which exceeds the
n−2/3 scaling required in (12). Our proof establishes (12) using a more delicate
analysis that exploits the block-wise constant structure in Ã − Ã∗, combined with
random matrix theory results which ensure that (i) the leading eigenvectors of
Ã∗ are delocalized, in the sense that the chance these eigenvectors being close
to any fixed vector is small, and (ii) the number of large eigenvalues of Ã∗ in
an interval of length K(n)/

√
n can be accurately approximated. This result is a

nontrivial generalization of Theorem 2.1 in Bickel and Sarkar (2013).
An immediate consequence of Theorem 3.1 is an asymptotic type I error bound

for the rejection rule (10):

P
[
Tn,K0 ≥ t (α/2)

]
≤ P

[
n2/3(

λ1(Ã) − 2
) ≥ t (α/2)

] + P
[
n2/3(−λn(Ã) − 2

) ≥ t (α/2)
]

= α/2 + o(1) + α/2 + o(1) = α + o(1).

Formally, we have the following corollary.

COROLLARY 3.2 (Asymptotic type I error control). Under the assumptions of
Theorem 3.1, the rejection rule in (10) has asymptotic level α.

3.2. Asymptotic power against K > K0 and consistent estimation of K . Now
we consider the power of the test against finer stochastic block models. The fol-
lowing theorem provides a lower bound of the growth rate of the test statistic Tn,K0

under the alternative model K(n) > K0.

THEOREM 3.3 (Asymptotic power guarantee). Let A be an adjacency matrix
generated from stochastic block model (g(n),B(n)) with B(n) ∈ BK(n) and (g(n) :
n ≥ 1) satisfying condition (A1). Let δn be the smallest �∞ distance among all
pairs of distinct rows of B(n). For any K0 < K(n) and any community estimator ĝ,
we have

σ1(Ã) ≥ 1
2δnc0

[
K(n)]−2

n1/2 + OP (1).

Theorem 3.3 is powerful in that it puts no structural condition on the connectiv-
ity matrix B(n), nor does it make any assumption about the particular method used
to estimate the membership. Theorem 3.3 is proved in Section A.3. The main idea
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is that if the nodes are partitioned into less than K(n) groups, the corresponding
block partition of the expected adjacency matrix cannot be block-wise constant,
and hence it is impossible to remove the mean effect by subtracting a constant
from each estimated block submatrix of A.

When B(n) = B and K(n) = K are fixed and do not change with n, the com-
munity separation parameter δn is constant and Theorem 3.3 gives a growth rate
at least n1/2. When K(n) is allowed to grow with n, consistent community recov-
ery can be achieved for the planted partition model where B

(n)
kk = p and B

(n)
kk′ = q

(k �= k′) for some 0 ≤ q < p ≤ 1. If p and q are constants independent of n, then
δn = p − q is also a constant. Therefore, in this case Theorem 3.3 says that the
growth rate of Tn,K0 is at least [K(n)]−2n1/2.

The asymptotic null distribution and growth rate under alternative K(n) > K0
suggest that the null and alternative hypotheses are well separated. Therefore, if
in the sequential testing estimator (11) we choose the rejection threshold tn to
increase with the network size n, we shall expect to have a consistent estimate
of K(n).

THEOREM 3.4 (Consistency of estimating K). Under the assumptions of The-
orem 3.1 and Theorem 3.3, assume in addition that lim infn→∞ δn > 0. Let K̂ be
the sequential testing estimator given in (11) with threshold tn satisfying tn 
 nε

for some ε ∈ (0,5/6), then

P
(
K̂ = K(n)) → 1.

Corollary 3.4 is proved in Section A.3. We note that the asymptotic null distri-
bution given in Theorem 3.1 cannot be directly used to bound the probability of
P(Tn,K(n) ≥ tn) because tn changes with n. Instead, we need to use a tail proba-

bility bound on the largest singular value of Ã (Lemma A.4). The condition that
δn is bounded away from zero is satisfied both when B(n) is fixed or when B(n) is
given by a planted partition model with constant diagonal and off-diagonal edge
probabilities. This condition can be relaxed to requiring δn to decay no faster than
n−1/6 and having tn � n5/6δn.

3.3. Asymptotic power against degree corrected block models. The goodness-
of-fit test (10) is also powerful against certain degree corrected block models.
A degree corrected block model is parameterized by a triplet (g,B,ψ), where
ψ ∈ [0,1]n is the node activeness parameter and the edge probability between
nodes i and j is ψiψjBgigj

. The probability mass function of the observed adja-
cency matrix is

Pg,B,ψ(A) = ∏
1≤i<j≤n

(ψiψjBgigj
)Aij (1 − ψiψjBgigj

)1−Aij .
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Let φk be the subvector of ψ corresponding to the entries in community k, and
φ̃k = φk/‖φk‖.

The condition we will need on ψ is that there exists a community whose node
activeness parameters cannot be approximated by block-wise constant vectors.
Formally, for any vector v and positive integer L let

E(v,L) = min
{‖v − u‖2

2 : the entries of u take at most L distinct values
}
.

THEOREM 3.5. Let A be generated by a degree corrected block model
(g,B,ψ) on n nodes and K communities. If there exists 1 ≤ k∗ ≤ K such that
E(φ̃k∗,K0) > 0, then for any estimator (ĝ, B̂) of a K0-stochastic block model, we
have

‖Ã‖ ≥ E(φ̃k∗,K0)

2K
3/2
0

‖Bk∗,·‖∞κnn
1/2 + OP (1),

where κn = min1≤k≤K ‖φk‖2/n and ‖Bk∗,·‖∞ = max1≤k≤K Bk∗,k .

Theorem 3.5 is proved in Section A.4. The quantity E(ψ̃k∗,K0) reflects the
idea that there exists at least one community whose node activeness cannot be
approximated by a simple K0-block structure. Recall that for each k, φ̃k is a vector
with unit �2 norm. If the entries of φk are sampled from a compact interval with
strictly positive density, then E(φ̃k,K0) 
 K−2

0 when K0 is small compared to the
length of φk . When K0 increases, E(φ̃k,K0) decreases for all k and the test will
be less powerful. This agrees with the fact that any degree corrected block model
can be approximated by regular stochastic block models with a large number of
communities.

Consider an opposite case, where A is generated by a degree corrected block
model with one community and degree parameter vector ψ containing only K0
distinct values. Here, the model can also be viewed as a regular stochastic block
model with K0 communities. Then E(ψ̃k∗,K0) = 0 and the test will not tend to
reject the null hypothesis, provided that a consistent community recovery method
is used.

The quantity κn acts as a lower bound on the overall node activeness. A larger
value of κn usually leads to better power because there are more observed edges for
inference. Under the balanced community assumption (A1), κn 
 K−1 if the en-
tries of ψ are uniformly bounded away from zero, or are sampled from a common
distribution independent of n.

Applying Theorem 3.5 in the simple special case where B ∈ BK (and hence K)
is fixed and ψi’s are sampled from a compact interval with strictly positive density,
under Assumption (A1) we have, for any given K0,

‖Ã‖ ≥ Cn1/2 + OP (1).
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Therefore, with probability tending to one, the test will reject the null hypothesis
that A is generated from a regular stochastic block model with K0 blocks. If K

grows with n and the entries of B scale at rate ρn, the test is still powerful as long
as n1/2ρn/(K

7/2
0 K) → ∞.

4. Numerical experiments. Now we illustrate the performance of the pro-
posed test and the estimator of K in various simulations. In our simulation, we
use simple spectral clustering for community recovery. Given an adjacency ma-
trix A and a hypothetical number of communities K0, this algorithm estimates the
community membership by applying k-means clustering to the rows of the matrix
formed by the K0 leading singular vectors of A.

4.1. Simulation 1: The null distribution and bootstrap correction. In the first
simulation, we consider the finite sample null distribution of the scaled and cen-
tered extreme eigenvalues of Ã and empirically verify Theorem 3.1 for a simple
stochastic block model. Following the observation in Bickel and Sarkar (2013),
the speed of convergence to the limit distribution may be slow. A practical solu-
tion to this issue using a fused bootstrap correction has been proposed in Bickel
and Sarkar (2013) for the special case of K0 = 1. Here, we extend this idea to the
more general case considered in this paper.

For a given adjacency matrix A on n nodes and null hypothesis K = K0, the
goodness-of-fit test statistic with fused bootstrap correction is given as follows:

1. Let ĝ be an estimated community membership vector with K0 communities,
and (B̂, P̂ ) be the corresponding estimates in (6) and (8).

2. Calculate Ã as in (7) and its extreme eigenvalues λ1(Ã), λn(Ã).
3. For m = 1, . . . ,M :

(a) Let A(m) be an adjacency matrix independently generated from stochas-
tic block model (ĝ, B̂).

(b) Let Ã(m) = (Ã
(m)
ij )ni,j=1 be such that

Ã
(m)
ii = 0 and Ã

(m)
ij = A

(m)
ij − P̂ij√

(n − 1)P̂ij (1 − P̂ij )
, 1 ≤ i < j ≤ n.

(c) Let λ
(m)
1 and λ

(m)
n be the largest and smallest eigenvalues of Ã(m), re-

spectively.

4. Let (μ̂1, ŝ
2
1) and (μ̂n, ŝ

2
n) be the sample mean and variance of (λ

(m)
1 : 1 ≤ m ≤

M) and (λ
(m)
n : 1 ≤ m ≤ M), respectively.

5. The bootstrap corrected test statistic is

T
(boot)
n,K0

= μtw + stw max
(

λ1(Ã) − μ̂1

ŝ1
,−λn(Ã) − μ̂n

ŝn

)
,(13)
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where μtw and stw are the mean and standard deviation of the Tracy–Widom
distribution.

The fused bootstrap correction is computationally appealing as the bootstrap
sample size M can be chosen as small as 50. All of our simulations use M = 50.

REMARK. The bootstrap correction is based on the empirical observation that
although the finite sample null distribution is different from the theoretical limit, it
has a similar shape, with different location and spread. Instead of using the theoret-
ical centering and scaling as in (5) and (12), the corresponding bootstrap corrected
extreme eigenvalues are

μtw + stw
λ1(Ã) − μ̂1

ŝ1
and μtw + stw

−λn(Ã) + μ̂n

ŝn
.(14)

The largest and smallest eigenvalues of Ã are individually corrected using the boot-
strap population, because they are individually shown to have asymptotic Tracy–
Widom distribution in Theorem 3.1.

In Figure 1, we plot the estimated density of the scaled and centered extreme
eigenvalues of Ã calculated from 1000 independent realizations, with and without
bootstrap correction. The stochastic block model used here has two equal-sized
communities, with B11 = B22 = 0.7 and B12 = B21 = 0.3. It is clear that the finite
sample null distribution is systematically different from the limiting distribution
when n = 200, and the difference is reduced but still visible when n = 1600. When
bootstrap correction is used, the finite sample null distributions for both the largest
and smallest eigenvalues are close to the limit even when n = 200.

FIG. 1. The empirical null distributions of scaled and centered extreme eigenvalues of Ã over 1000
repetitions. Dashed line: largest eigenvalue; dotted line: smallest eigenvalue; solid line: theoretical
limit distribution. Left: centered and scaled extreme eigenvalues as in (12) for n = 200; middle:
centered and scaled extreme eigenvalues as in (12) for n = 1600; right: bootstrap corrected ex-
treme eigenvalues as in (14). The stochastic block model used has two equal-sized communities, and
B11 = B22 = 0.7, B12 = B21 = 0.3.
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4.2. Simulation 2: Type I and type II errors. Now we investigate the type I
error of the proposed test under the null hypothesis and the power against vari-
ous alternative distributions. For each K0 ∈ {2,3,4}, we investigate four differ-
ent models: (i) the null model, which is a stochastic block model with K = K0
communities; (ii) a finer stochastic block model (finer SBM) with K = K0 + 1
communities; (iii) a degree corrected block model [DCBM, Karrer and New-
man (2011)] with K = K0 communities; and (iv) a mixed membership block
model [MMBM, Airoldi et al. (2008)] with K = K0 communities. For any value
of K , the community-wise edge probability matrix B is chosen such that Bkl =
0.2 + 0.4 × 1(k = l), for all 1 ≤ k, l ≤ K . For the stochastic block model, the
membership vector g is generated by sampling each entry independently from
{1, . . . ,K} with equal probability. For the degree corrected model, the member-
ship vector is generated the same way as for the stochastic block model, with
additional node activeness parameter ψi independently sampled from Unif(0,1).
In the degree corrected block model, the edge probability between nodes i and
j is ψiψjBgigj

. For the mixed membership block model, the community mixing
probability φi for each node i is an independent sample from a Dirichlet distribu-
tion with parameter 0.5 × eK where eK is a vector of ones with length K . With
such a parameter, each node will tend to favor one or two communities so there
is a weak community structure. The edge probability between nodes i and j in
the mixed membership block model is φT

i Bφj . For each model, we generate 200
independent adjacency matrices with n = 1000 nodes and perform the proposed
hypothesis test, with or without bootstrap correction. The proportion of rejection
at nominal level 0.05 is summarized in Table 1. We observe that the type I er-
ror is correctly kept at the nominal level. The type I error of bootstrap correction
method is slightly closer to the nominal level. Also we observe that the test can
successfully detect all three types of alternative hypotheses.

TABLE 1
Simulation 2: proportion of rejection at nominal level 0.05 over 200 independent samples. The
models considered are (i) Null: the stochastic block model with K = K0 communities; (ii) Finer

SBM: the stochastic block model with K = K0 + 1 communities; (iii) DCBM: degree
corrected block models with K = K0 communities; and (iv) MMBM: mixed
membership block model with K = K0 communities. The edge probability

between communities k and l is Bkl = 0.2 + 0.4 × 1(k = l)

K0 Null Finer SBM DCBM MMBM

Without bootstrap 2 0.02 1 1 1
3 0.04 1 1 1
4 0.03 1 1 0.92

With bootstrap 2 0.02 1 1 1
3 0.05 1 1 1
4 0.06 1 1 0.93
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4.3. Simulation 3: Estimating K using sequential testing. Our third simulation
examines the performance of the sequential testing estimator of K given in (11).
We use two settings for this simulation. The first setting concerns different levels of
network sparsity, where the community-wise connectivity matrices B is given by
Bkl = r(1+2×1(k = l)). That is, the edge probability is 3r within community and
r between communities. We consider r ∈ {0.01,0.02,0.05,0.1,0.2} for different
levels of network sparsity, and values of K between 2 and 8. For each combination
of K and r , we generate 200 independent adjacency matrices A with n = 1000
nodes and K equal-sized communities. The number of communities is estimated
for each observation as in (11) using threshold tn corresponding to nominal type I
error bound 10−4. The proportion of correct estimates is summarized in Table 2.
The sequential testing estimator with bootstrap correction works well for K = 2,3
at all sparsity levels. When K gets larger, both methods require denser models
to consistently estimate K . When the model is moderately dense, both methods
work well for all values of K . For very sparse models, the null distribution without
bootstrap is biased and the sequential testing method tends to pick larger values
of K .

In the second setting, the focus is on different types of block structures. To this
end, for each K ∈ {2,3,4} we generate matrices B whose diagonal and upper di-
agonal entries are independently drawn from a uniform distribution between 0 and
0.5. The success of spectral clustering requires the smallest singular value of B

to be bounded away from zero, so we only use those B matrices whose smallest
singular values are at least 0.1. The membership vector g is generated by sam-
pling each entry independently from {1, . . . ,K} with equal probability. For each
K and network size n = 500 and n = 1000, we generate 200 independent adja-
cency matrices using random B and g described above. Similarly, K is estimated
as in (11) using threshold tn corresponding to nominal type I error bound 10−4. In

TABLE 2
Simulation 3: proportion of correct estimates of K over 200 simulations under different sparsity
levels indexed by r . The edge probability between communities k and l is r(1 + 2 × 1(k = l)).

The network size is n = 1000 with equal sized communities

With bootstrap Without bootstrap

r 0.01 0.02 0.05 0.1 0.2 0.01 0.02 0.05 0.1 0.2

K = 2 1 1 1 1 1 0.30 0.98 1 1 1
K = 3 0.99 1 1 1 1 0.11 0.91 1 1 1
K = 4 0 1 1 1 1 0.24 0.89 1 1 1
K = 5 0 0.5 1 1 1 0.25 0.93 1 1 1
K = 6 0 0 1 1 1 0.16 0.09 1 1 1
K = 7 0 0 1 1 1 0.04 0 1 1 1
K = 8 0 0 0.71 1 1 0.03 0 0.9 1 1
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TABLE 3
Simulation 3: proportion of correct estimates of K over 200 simulations with randomly generated

matrices B and membership vectors g

With bootstrap Without bootstrap

K 2 3 4 2 3 4

n = 500 0.99 0.90 0.76 0.91 0.84 0.74
n = 1000 1 1 0.93 0.98 0.93 0.90

Table 3, we summarize the proportion of correct estimates. The proposed test can
correctly estimate the number of communities in a very large proportion of these
randomly generated models. In general, the bootstrap correction helps improve the
estimation accuracy.

4.4. The political blog data. The political blog data [Adamic and Glance
(2005)] records hyperlinks between web blogs shortly before the 2004 US presi-
dential election. It has been used widely in the network community detection lit-
erature as an example of significant within-community node degree variation [see
Jin (2012), Karrer and Newman (2011), Zhao, Levina and Zhu (2012), e.g.]. It
is widely believed that a degree corrected block model is more suitable for this
data, rather than a regular stochastic block model. Yan et al. (2014) used a likeli-
hood ratio method to choose the degree corrected model over the regular stochas-
tic block model. Theoretical justification of the χ2 approximation used in this
method is still an open problem, and maximizing the likelihood is computation-
ally demanding. Following common practice, we consider the largest connected
component of the political blog data. There are 1222 nodes with community sizes
586 and 636. We set ĝ to be the true labeling given in the data—the results are
similar for ĝ estimated from the data. Under the null hypothesis that the data is
generated from a stochastic block model of two communities, the test statistic is
1172.3 for the original test and 491.5 for the bootstrap corrected test, both indi-
cating strong evidence to reject the null hypothesis. In addition, we apply the se-
quential testing procedure at type I error level 10−5, with block model parameters
estimated by spectral clustering using two leading eigenvectors of the adjacency
matrix. The procedure partitions the nodes into 17 groups. Sixteen of these esti-
mated groups mostly contain nodes from one true community, with 8 groups for
each community and stratified by degrees. The additional estimated group contains
nodes with very small degrees, whose community memberships are very hard to
recover.

5. Discussion. The goodness-of-fit test developed in this paper is an attempt
to perform principled statistical inference for stochastic block models. The test
statistic reflects a fundamental difference between network models and traditional
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statistical models on independent individuals. In traditional independent and iden-
tically distributed data samples, the goodness-of-fit is usually assessed by the sum
of residuals or squared residuals. For stochastic block models, the residual is a
matrix, where the signal is not carried in the sum of individual residuals but is
determined by how these residuals align across the rows and columns. For ex-
ample, suppose A is generated from a stochastic block model with two commu-
nities and we want to test if K = 1. If we simply treat the upper diagonal en-
tries of A as independent Bernoulli variables, the goodness-of-fit test reduces to
testing whether the n(n − 1)/2 upper diagonal entries look like an independent
sample of a Bernoulli variable. Such tests have little power in detecting the block
structure. On the other hand, the extreme singular value of the residual matrix ac-
curately captures the block structure. This is an example of detecting low-rank
mean effect from a noisy random matrix using its extreme eigenvalues. Other
examples using the similar idea include Kargin (2014) for reduced rank multi-
variate regression and Montanari, Reichman and Zeitouni (2014) for the Gaus-
sian hidden clique problem. It would be interesting to further develop goodness-
of-fit testing methods for more realistic null hypotheses, such as the degree cor-
rected block model or even the nonparametric graphon model [Wolfe and Olhede
(2013)].

It is possible to extend the method and theory developed in this paper to certain
sparse stochastic block models. Consider sparse stochastic block models with B =
ρnB0 where the entries of B0 are of order 1 and ρn ↓ 0 controls the overall network
sparsity. Most random matrix theory used in this paper (namely, Lemmas A.1,
A.3, A.4) has been developed for moderately sparse stochastic block models with
ρn � n−1/3 in Erdős et al. (2013b, 2012). However, existing arguments do not
guarantee isotropic delocalization of eigenvectors (Lemma A.2) due to the heavy
tail of the normalized adjacency matrix entries (Aij − Pij )/[Pij (1 − Pij )]. The
possibility of proving such a result using modified techniques has been mentioned
in Erdős et al. (2013a).

APPENDIX: PROOFS

Additional notation. Let (λ∗
j , u

∗
j )

n
j=1 be the eigenvalue-eigenvector pairs

of Ã∗ such that λ∗
1 ≥ λ∗

2 ≥ · · · ≥ λ∗
n. For a pair of random sequences (an) and (bn),

we write an = ÕP (bn) if for any ε > 0 and D > 0 there exists n0 = n0(ε,D) such
that

P
(
an ≥ nεbn

) ≤ n−D for all n ≥ n0.

For any matrix M with singular value decomposition M = ∑
j σjujv

T
j , define

|M| = ∑
j |σj |ujv

T
j . We will use c and C to denote positive constants independent

of n, which may vary from line to line.



416 J. LEI

A.1. Results from random matrix theory. We first collect some useful re-
sults from random matrix theory regarding the distributions of the eigenvalues and
eigenvectors of Ã∗.

LEMMA A.1 [Asymptotic distributions of λ1(Ã
∗) and λn(Ã

∗)]. For Ã∗ de-
fined in (4) we have

n2/3(
λ1

(
Ã∗) − 2

)
� T W1, n2/3(−λn

(
Ã∗) − 2

)
� T W1.

PROOF. Let G∗ be an n × n symmetric matrix whose upper diagonal en-
tries are independent normal with mean zero and variance 1/(n − 1), and di-
agonal entries are zero. Then Ã∗ and G∗ have the same first and second mo-
ments. According to Theorem 2.4 of Erdős, Yau and Yin (2012), we know that
n2/3(λ1(Ã

∗) − 2) and n2/3(λ1(G
∗) − 2) have the same limiting distribution. But

n2/3(λ1(G
∗) − 2) � T W1 according to Lee and Yin (2014). The same argument

applies to λn(Ã
∗). �

LEMMA A.2 (Eigenvector delocalization). For each deterministic unit vector
u and each 1 ≤ j ≤ n, for any ε > 0 and D > 0 there exists n0 = n0(ε,D) such
that

P
[(

uT u∗
j

)2 ≥ n−1+ε] ≤ n−D for all n ≥ n0.

It is worth noting that the above result is uniform over j and u in the sense
that n0(ε,D) does not depend on u or j . Lemma A.2 can be equivalently stated as
(uT u∗

j )
2 = ÕP (n−1) uniformly over all u∗

j (1 ≤ j ≤ n) and all deterministic unit
vector u.

Lemma A.2 is Theorem 2.16 of Bloemendal et al. (2014). Although Bloemendal
et al. (2014) requires the diagonal entries of Ã∗ to have positive variance, their
Theorem 2.16 is a consequence of the local semicircle law [Theorem 2.12 of
Bloemendal et al. (2014)], which can be established for matrices with zero di-
agonals using the result of Erdős et al. (2013a). See also the discussion in Bickel
and Sarkar (2013).

LEMMA A.3 (Counting large eigenvalues). Let cn be a possibly random num-
ber of order oP (1) and m(cn) be the number of eigenvalues of Ã∗ larger than
λ∗

1 − cn. Then m(cn) = OP (nc
3/2
n ) + ÕP (1).

Lemma A.3 extends equation (26) of Bickel and Sarkar (2013).

PROOF OF LEMMA A.3. For any a < b < 5, let N∗(a, b) be the num-
ber of eigenvalues of Ã∗ in the interval (a, b], and N(a, b) = n

∫ b
a ρsc(x) dx

where ρsc(x) = (1/2π)((4 − x2)+)1/2 is the density of the semicircle law. Let
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δ(a, b) = N∗(a, b) − N(a, b) then according to Theorem 2.2 of Erdős, Yau and
Yin (2012) we have supa,b<5 |δ(a, b)| = ÕP (1). Then, conditioning on the event
that {|2 − λ∗

1| + cn ≤ 1}, we have

m(cn) = N∗(
λ∗

1 − cn, λ
∗
1
)

= N
(
λ∗

1 − cn, λ
∗
1
) + sup

a,b<5

∣∣δ(a, b)
∣∣

≤ n

∫ 2

2−(2−λ∗
1)−cn

((
4 − x2)

+
)1/2

dx + ÕP (1)

≤ 2n
(
cn + ∣∣2 − λ∗

1
∣∣)3/2 + ÕP (1)

≤ O
(
nc3/2

n

) + ÕP (1). �

The claimed result follows by observing that the event {|2 − λ∗
1| + cn ≤ 1} has

probability 1 − o(1).

LEMMA A.4 (Deviation of largest singular value). There exists absolute pos-
itive constants a, b, c, C, such that

P
[
n2/3(

σ1
(
Ã∗) − 2

) ≥ (logn)a log logn] ≤ C exp
[−b(logn)c log logn]

.

Lemma A.4 is a direct consequence of equation (2.22) in Erdős, Yau and Yin
(2012). We can simplify the statement so that there exists an absolute constant
b > 0 such that for any ε > 0

P
[
n2/3(

σ1
(
Ã∗) − 2

) ≥ nε] = O
(
n−b)

.(15)

A.2. Proof of asymptotic null distribution. Now we provide proofs for the-
oretical results in Section 3. Here, we omit the dependence on n in g, B and K for
simplicity.

PROOF OF THEOREM 3.1. The consistency of ĝ allows us to focus on the
event ĝ = g.

We will prove the claim for λ1(Ã). The other claim can be proved by applying
the same argument on −Ã.

Let Ã′ ∈ R
n×n be such that

Ã′
ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Aij − P̂ij√
(n − 1)Pij (1 − Pij )

, i �= j ,

Pii − P̂ii√
(n − 1)Pii(1 − Pii)

, i = j .

(16)
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Thus, Ã′ = Ã∗ + �′, where �′
ij = (Pij − P̂ij )/

√
(n − 1)Pij (1 − Pij ). Because �′

is a K × K block-wise constant symmetric matrix, its rank is at most K , and the
corresponding principal subspace is spanned by (θ1, . . . , θK), where θk ∈ R

n is the
unit norm indicator of the kth community in g. That is, the ith entry of θk is n

−1/2
k

if gi = k and zero otherwise, where nk is the size of the kth community.
The consistency of ĝ implies that with probability tending to one, for each

1 ≤ k, k′ ≤ K , B̂k,k′ is the sample mean of independent Bernoulli random variables
with parameter Bk,k′ and sample size of order (n/K)2. Thus, standard large devi-
ation inequalities such as Bernstein’s inequality or Hoeffding’s inequality suggest
that supk,k′ |B̂k,k′ −Bk,k′ | = oP (K logn/n), which implies that supi,j |P̂ij −Pij | =
oP (K logn/n). Note here the oP statement goes through a union bound over K2

terms, which is valid since the tail probability bound for P̂ij − Pij can be made
exponentially small in n. Let �′ = ���T , where � = (θ1, . . . , θK) and � is a
K × K symmetric matrix. Then each entry of � is oP (n−1/2 logn), and hence
‖�‖ = oP (Kn−1/2 logn).

We will show that

λ1
(
Ã′) = λ1

(
Ã∗) + oP

(
n−2/3)

,(17)

by establishing a lower and upper bound on λ1(Ã
′). Both parts uses the eigen-

vector delocalization result (Lemma A.2) as follows. Let � = (θ1, . . . , θK), then,
uniformly over j we have

∥∥�T u∗
j

∥∥2
2 =

K∑
k=1

(
θT
k u∗

j

)2 = ÕP

(
Kn−1)

,(18)

and hence
∣∣(u∗

j

)T
�′u∗

j

∣∣ ≤ ∣∣(�T u∗
j

)T
�

(
�T u∗

j

)∣∣ ≤ ∥∥�T u∗
j

∥∥2
2‖�‖

(19)
= ÕP

(
K2n−3/2 logn

)
.

Here, the ÕP statement in (18) holds when taking union bound over K terms by
choosing D large enough in Lemma A.2.

First, we provide a lower bound on λ1(Ã
′):

λ1
(
Ã′) ≥ (

u∗
1
)T

Ã′u∗
1 = λ∗

1 + (
u∗

1
)T

�′u∗
1

≥ λ∗
1 − ÕP

(
K2n−3/2 logn

)
(20)

≥ λ∗
1 − oP

(
n−2/3)

,

where the last inequality uses the assumed upper bound on the rate at which K

grows with n, and the second last inequality uses (19).
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Next, we provide an upper bound of λ1(Ã
′). For any unit vector u ∈ R

n, let
(a1, . . . , an) be a unit vector in R

n such that

u =
n∑

j=1

aju
∗
j .

Let m be the number of λ∗
j ’s in the interval (λ∗

1 − 2‖�′‖, λ∗
1], and u1 =∑m

j=1 aju
∗
j , u2 = ∑n

j=m+1 aju
∗
j . Then

uT Ã′u = uT Ã∗u + uT �′u

≤ λ∗
1

m∑
j=1

a2
j + (

λ∗
1 − 2

∥∥�′∥∥) n∑
j=m+1

a2
j + 2uT

1
∣∣�′∣∣u1 + 2uT

2
∣∣�′∣∣u2

≤ λ∗
1

m∑
j=1

a2
j + (

λ∗
1 − 2

∥∥�′∥∥) n∑
j=m+1

a2
j

+ 2m

m∑
j=1

a2
j

(
u∗

j

)T ∣∣�′∣∣u∗
j + 2uT

2
∣∣�′∣∣u2

≤ λ∗
1

m∑
j=1

a2
j + (

λ∗
1 − 2

∥∥�′∥∥) n∑
j=m+1

a2
j(21)

+ 2mÕP

(
K2n−3/2 logn

) m∑
j=1

a2
j + 2

∥∥�′∥∥ n∑
j=m+1

a2
j

≤ λ∗
1 + mÕP

(
K2n−3/2 logn

)

≤ λ∗
1 + (

O
(
n
∥∥�′∥∥3/2) + ÕP (1)

)
ÕP

(
K2n−3/2 logn

)
= λ∗

1 + ÕP

(
K7/2(logn)5/2n−5/4)

,

where the third inequality uses (19) and uniformity over j , and the second last line

uses Lemma A.3 together with ‖�′‖ = oP (Kn−1/2 logn).
Thus, (17) is established by combining (20) and (21), provided that K =

O(n1/6−τ ) for some small positive τ .

Next, we show that λ1(Ã) = λ1(Ã
′)+oP (n−2/3). Let Ã′′ = Ã′ −diag(Ã′). Con-

sider the block representation of Ã:

Ã = (Ã(k,l))
K
k,l=1,

where Ã(k,l) is the submatrix corresponding to the rows in community k and
columns in community l. Similar block representations can be defined for Ã′′.
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It is obvious that

Ã(k,l) = Ã′′
(k,l)

√
Bkl(1 − Bkl)√
B̂kl(1 − B̂kl)

= Ã′′
(k,l)

(
1 + oP

(
Kn−1 logn

))
.

Therefore,∥∥Ã − Ã′′∥∥ ≤ K max
k,l

∥∥Ã(k,l) − Ã′′
(k,l)

∥∥ ≤ oP

(
Kn−1 logn

)
K

∑
k,l

∥∥Ã′′
(k,l)

∥∥

≤ oP

(
K2n−1 logn

)∥∥Ã′′∥∥ ≤ oP

(
K2n−1 logn

)(∥∥Ã′∥∥ + ∥∥diag
(
Ã′)∥∥)

≤ oP

(
K2n−1 logn

)(
OP (1) + OP

(
Kn−3/2 logn

))
= oP

(
K2n−1 logn

) = oP

(
n−2/3)

.

Then ∥∥Ã − Ã′∥∥ ≤ ∥∥Ã − Ã′′∥∥ + ∥∥diag
(
Ã′)∥∥ = oP

(
n−2/3)

.(22)

Combining (17) and (22), we have

λ1(Ã) = λ1
(
Ã∗) + oP

(
n−2/3)

.(23)

Now applying Lemma A.1 and combining with (23) we have

n2/3(
λ1(Ã) − 2

)
� T W1. �

A.3. Proof of power and consistency.

PROOF OF THEOREM 3.3. For all 1 ≤ l ≤ K , 1 ≤ k ≤ K0, let Nl = {i : gi =
l}, N̂k = {i : ĝi = k} and N̂k,l = {i : ĝi = k, gi = l}. For each 1 ≤ l ≤ K , Nl is
partitioned into {N̂k,l : 1 ≤ k ≤ K0}. Thus, for each 1 ≤ l ≤ K there exists a kl

such that 1 ≤ kl ≤ K0 and |N̂kl,l| ≥ |Nl|/K0 ≥ c0n/(K ×K0) ≥ c0nK−2. Because
K0 < K , there exist l1 and l2 such that kl1 = kl2 = k. Since B ∈ BK , there exists an
l3 such that Bl1,l3 �= Bl2,l3 . Let k′ = kl3 and we have |N̂k′,l3 | ≥ c0nK−2.

Let Ã(0) be the submatrix of Ã consisting the rows in N̂k,l1 ∪ N̂k,l2 , and the
columns in N̂k′,l3 . Define A(0), P̂ (0), and P (0) correspondingly.

When k �= k′, or k = k′ but l3 /∈ {l1, l2}, the submatrix A(0) contains only off-
diagonal entries of A. Therefore, P̂ (0) is a constant matrix in that all of its entries
are equal. We have

‖Ã‖ ≥ ∥∥Ã(0)
∥∥ ≥ n−1/2∥∥A(0) − P̂ (0)

∥∥
≥ n−1/2(∥∥P (0) − P̂ (0)

∥∥ − ∥∥A(0) − P (0)
∥∥)

(24)
≥ n−1/2(∥∥P (0) − P̂ (0)

∥∥ − OP

(
n1/2))

≥ n−1/2(
δBc0nK−2/2 − OP

(
n1/2))

.
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To obtain the last inequality, first note that P (0) has two distinct blocks each with
at least c0nK−2 rows and at least c0nK−2 columns. Each of these two blocks has
constant entries and at least one of them has absolute entry value at least δB/2.
Thus, ‖P (0) − P̂ (0)‖ ≥ δBc0nK−2/2.

When k = k′ and l3 ∈ {l1, l2}, the submatrix A(0) defined above contains diag-
onal entries of A. The corresponding entries of P̂ (0) are zero. These zero entries
causes an additional O(1) term in ‖P̂ (0) − P (0)‖ and (24) still goes through. �

PROOF OF COROLLARY 3.4. Following the notation in the proof of Theo-
rem 3.3, for any K0 < K we have, in view of (24) and letting C = infn δBc0/2,

P(Tn,K0 < tn) = P
[
n2/3(‖Ã‖ − 2

)
< tn

] = P
[‖Ã‖ < n−2/3tn + 2

]
≤ P

[
n−1/2(∥∥P (0) − P̂ (0)

∥∥ − ∥∥A(0) − P (0)
∥∥) ≤ n−2/3tn + 2

]
≤ P

[
n−1/2∥∥A(0) − P (0)

∥∥ ≥ Cn1/2K−2 − n−2/3tn − 2
]

≤ n−1,

the last inequality is obtained by first using the assumption K = O(n1/6−τ ), and
tn = O(n5/6), so that Cn1/2K−2 + n−2/3tn + 2 ≥ n1/6 for large n, and then apply-
ing operator norm deviation bound results such as Theorem 5.2 of Lei and Rinaldo
(2013) [see also Theorem 3.4 of Chatterjee (2015)].

Therefore,

P(K̂ < K) ≤
K−1∑
K0=1

P(Tn,K0 < tn) ≤ n−1(K − 1) = o(1).

On the other hand,

P(K̂ > K) ≤ P(Tn,K ≥ tn) = P
(
n2/3(

σ1(Ã) − 2
) ≥ tn

)
≤ P

(
n2/3(

σ1
(
Ã∗) − 2

) ≥ tn/2
) + P

(
n2/3∣∣σ1

(
Ã∗) − σ1(Ã)

∣∣ ≥ tn/2
)

= o(1),

where the first probability is controlled using Lemma A.4 and the second proba-
bility is controlled using (23) and its analogous result for λn(Ã) − λn(Ã

∗). �

A.4. Asymptotic power against degree corrected block models.

PROOF OF THEOREM 3.5. Recall that N̂l,k = {i : gi = k, ĝi = l} (1 ≤ l ≤ K0,
1 ≤ k ≤ K). Let φ̃

k,N̂l,k
be the subvector of φ̃k on the entries in N̂l,k .

Let ηl = φ̃
k∗,N̂l,k∗ for each 1 ≤ l ≤ K0. By definition of E ,

∑K0
l=1 E(ηl,1) ≥

E(ψ̃k∗,K0), and hence there exists an l∗ such that E(ηl∗,1) ≥ E(φ̃k∗,K0)/K0.
For simplicity, denote η = ηl∗ and η̄ = η/‖η‖. Let m = |N̂l∗,k∗ | and define em

as the 1 × m vector with 1/
√

m on each entry. Therefore, we have

‖η̄ − em‖2 ≥ E(η̄,1) = ‖η‖−2E(η,1) ≥ ‖η‖−2E(φ̃k∗,K0)/K0.(25)
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Because η̄ and em both have unit �2 norm, (25) implies that

∣∣eT
mη̄

∣∣ ≤ 1 − E(φ̃k∗,K0)

2K0‖η‖2 .

Let u = (η̄ − emeT
mη̄)/‖η̄ − emeT

mη̄‖, then

uT η = uT η̄‖η‖ = ‖η‖ 1 − (eT
mη̄)2

‖η̄ − emeT
mη̄‖ ≥ E(φ̃k∗,K0)

2K0‖η‖ ≥ E(φ̃k∗,K0)

2K0
.(26)

Now let k′ be such that Bk∗,k′ = ‖Bk∗,·‖∞. There exists an l′ such that

‖φ̃
k′,N̂l′,k′ ‖ ≥ K

−1/2
0 .

Let A(0) be the submatrix of A corresponding to the rows in N̂l∗,k∗ and columns
in N̂l′,k′ , and define Ã(0), P (0), P̂ (0) similarly. Thus, by construction we have,
letting m′ = |N̂l′,k′ |,

P (0) = ‖φk∗‖‖φk′‖Bk∗k′ηφ̃T

k′,N̂l′,k′ , P̂ (0) = B̂l∗l′
√

mm′emeT
m′ .

Observing that uT em = 0, we have∥∥uT (
P (0) − P̂ (0))∥∥ = ∥∥uT P (0)

∥∥ = ‖ψk∗‖‖ψk′‖Bk∗k′
∣∣uT η

∣∣‖φ̃
k′,N̂k′,l′

‖

≥ ‖ψk∗‖‖ψk′‖Bk∗k′
E(φ̃k∗,K0)

2K
3/2
0

≥ κnn‖Bk∗,·‖∞
E(φ̃k∗,K0)

2K
3/2
0

.

The claimed result follows by observing that∥∥Ã(0)
∥∥ ≥ n−1/2(∥∥P (0) − P̂ (0)

∥∥ − ∥∥A(0) − P (0)
∥∥)

and ‖A(0) − P (0)‖ = OP (
√

n). �
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BLOEMENDAL, A., ERDŐS, L., KNOWLES, A., YAU, H.-T. and YIN, J. (2014). Isotropic local
laws for sample covariance and generalized Wigner matrices. Electron. J. Probab. 19 1–53.
MR3183577

CHATTERJEE, S. (2015). Matrix estimation by universal singular value thresholding. Ann. Statist. 43
177–214. MR3285604

CHAUDHURI, K., CHUNG, F. and TSIATAS, A. (2012). Spectral clustering of graphs with general
degrees in the extended planted partition model. J. Mach. Learn. Res. Workshop Conf. Proc. 2012
35.1–35.23.

CHEN, K. and LEI, J. (2014). Network cross-validation for determining the number of communities
in network data. Preprint. Available at arXiv:1411.1715.

CHEN, Y., SANGHAVI, S. and XU, H. (2012). Clustering sparse graphs. In Advances in Neural
Information Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou and K. Q. Weinberger,
eds.) 2204–2212. Curran Associates, Red Hook, NY.

DECELLE, A., KRZAKALA, F., MOORE, C. and ZDEBOROVÁ, L. (2011). Asymptotic analysis of
the stochastic block model for modular networks and its algorithmic applications. Phys. Rev. E
(3) 84 066106.
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