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A Bernstein–von Mises theorem is derived for general semiparametric
functionals. The result is applied to a variety of semiparametric problems in
i.i.d. and non-i.i.d. situations. In particular, new tools are developed to han-
dle semiparametric bias, in particular for nonlinear functionals and in cases
where regularity is possibly low. Examples include the squared L2-norm in
Gaussian white noise, nonlinear functionals in density estimation, as well
as functionals in autoregressive models. For density estimation, a systematic
study of BvM results for two important classes of priors is provided, namely
random histograms and Gaussian process priors.

1. Introduction. Bayesian approaches are often considered to be close
asymptotically to frequentist likelihood-based approaches so that the impact of the
prior disappears as the information brought by the data—typically the number of
observations—increases. This common knowledge is verified in most parametric
models, with a precise expression of it through the so-called Bernstein–von Mises
theorem or property (hereafter, BvM). This property says that, as the number of
observations increases the posterior distribution can be approached by a Gaussian
distribution centered at an efficient estimator of the parameter of interest and with
variance the inverse of the Fisher information matrix of the whole sample; see,
for instance, van der Vaart [32], Berger [2] or Ghosh and Ramamoorthi [23]. The
situation becomes, however, more complicated in non- and semiparametric mod-
els. Semiparametric versions of the BvM property consider the behaviour of the
marginal posterior in a parameter of interest, in models potentially containing an
infinite-dimensional nuisance parameter. There some care is typically needed in
the choice of the nonparametric prior and a variety of questions linked to prior
choice and techniques of proofs arise. Results on semiparametric BvM applicable
to general models and/or general priors include Shen [31], Castillo [10], Rivoirard
and Rousseau [30] and Bickel and Kleijn [3]. The variety of possible interac-
tions between prior and model and the subtleties of prior choice are illustrated in
the previous general papers and in recent results in specific models such as Kim
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[24], De Blasi and Hjort [17], Leahu [29], Knapik et al. [26], Castillo [11] and
Kruijer and Rousseau [27]. In between semi- and nonparametric results, BvM for
parameters with growing dimension have been obtained in, for example, Ghosal
[21], Boucheron and Gassiat [7] and Bontemps [6]. Finally, although there is no
immediate analogue of the BvM property for infinite dimensional parameters, as
pointed out by Cox [16] and Freedman [19], some recent contributions have in-
troduced possible notions of nonparametric BvM; see Castillo and Nickl [13] and
also Leahu [29]. In fact, the results of the present paper are relevant for these, as
discussed below.

For semiparametric BvM, it is of particular interest to obtain generic sufficient
conditions that do not depend on the specific form of the considered model. In
this paper, we provide a general result, Theorem 2.1 in Section 2, on the existence
of the BvM property for generic models and functionals of the parameter. Let
us briefly discuss the scope of our results; see Section 2 for precise definitions.
Consider a model parameterised by η varying in a (subset of a) metric space S

equipped with a σ -field S . Let ψ : S → R
d , d ≥ 1, be a measurable functional

of interest and let � be a probability distribution on S. Given observations Yn

from the model, we study the asymptotic posterior distribution of ψ(η), denoted
�[ψ(η)|Yn]. Let N (0,V ) denote the centered normal law with covariance matrix
V . We give general conditions under which a BvM-type property is valid,

�
[√

n
(
ψ(η) − ψ̂

)|Yn]
� N (0,V ),(1.1)

as n → ∞ in probability, where ψ̂ is a (random) centering point, and V a covari-
ance matrix, both to be specified, and where � stands for weak convergence. An
interesting and well-known consequence of BvM is that posterior credible sets,
such as equal-tail credible intervals, highest posterior density regions or one-sided
credible intervals are also confidence regions with the same asymptotic coverage.

The contributions of the present paper can be regrouped around the following
aims:

1. Provide general conditions on the model and on the functional ψ to guaran-
tee (1.1) to hold, in a variety of frameworks both i.i.d. and non-i.i.d. This includes
investigating how the choice of the prior influences bias ψ̂ and variance V . This
also includes studying the case of nonlinear functionals, which involves specific
techniques for the bias. This is done via a Taylor-type expansion of the functional
involving a linear term as well as, possibly, an additional quadratic term.

2. In frameworks with low regularity, second-order properties in the functional
expansion may become relevant. We study this as an application of the main the-
orem in the important case of estimation of the squared L2-norm of an unknown
regression function in the case where the convergence rate for the functional is still
parametric but where the “plug-in” property in the sense of Bickel and Ritov [5] is
not necessarily satisfied.
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3. Provide simple and ready-to-use sufficient conditions for BvM in the impor-
tant example of density estimation on the unit interval. We present extensions and
refinements in particular of results of Castillo [10] and Rivoirard and Rousseau
[30] regarding, respectively, the use of Gaussian process priors in the context of
density estimation, and, the possibility to consider nonlinear functionals. The class
of random density histogram priors is also studied in details systematically for the
first time in the context of Bayesian semiparametrics.

4. Provide simple sufficient conditions on the prior for BvM to hold in a more
complex example involving dependent data, namely the nonlinear autoregressive
model. To our knowledge, this is the first result of this type in such a model.

The techniques and results of the paper, as it turned out, have also been use-
ful for different purposes in a recent series of works developing a multiscale ap-
proach for posteriors, in particular: (a) to prove functional limiting results, such
as Bayesian versions of Donsker’s theorem, or more generally BvM results as in
Castillo and Nickl [14], a first step consists in proving the result for finite dimen-
sional projections: this is exactly asking for a semiparametric BvM to hold, and
results from Section 4 can be directly applied; (b) related to this is the study of
many functionals simultaneously: this is used in the study of posterior contrac-
tion rates in the supremum norm in Castillo [12]. Finally, along the way, we shall
also derive posterior rate results for Gaussian processes which are of independent
interest; see Proposition 2 in the supplemental article (Castillo and Rousseau [15]).

Our results show that the most important condition is a no-bias condition, which
will be seen to be essentially necessary. This condition is written in a nonexplicit
way in the general Theorem 2.1, since the study of such a condition depends heav-
ily on the family of priors that are considered together with the statistical model.
Extensive discussions on the implication of this no-bias condition are provided in
the context of the white noise model and density models for two families of priors.
In the examples, we have considered the main tool used to verify this condition
consists in constructing a change of parameterisation in the form η → η + �/

√
n

for some given � depending on the functional of interest, which leaves the prior
approximately unchanged. Roughly speaking, for the no-bias condition to be valid,
it is necessary that both η0 and � are well approximated under the prior. If this con-
dition is not verified, then BvM may not hold: an example of this phenomenon is
provided in Section 4.3.

Theorem 2.1 does not rely on a specific type of model, nor on a specific family
of functionals. In Section 3, it is applied to the study of a nonlinear functional
in the white noise model, namely the squared-norm of the signal. Applications to
density estimation with three different types of functionals and to an autoregressive
model can be found respectively in Section 4 and Section 5. Section 6 is devoted
to proofs, together with the supplemental article (Castillo and Rousseau [15]).
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Model, prior and notation. Let (Yn,Gn,P n
η , η ∈ S) be a statistical experiment,

with observations Yn sitting on a space Yn equipped with a σ -field Gn, and where
n is an integer quantifying the available amount of information. We typically con-
sider the asymptotic framework n → ∞. We assume that S is equipped with a
σ -field S , that S is a subset of a linear space and that for all η ∈ S, the measures
P n

η are absolutely continuous with respect to a dominating measure μn. Denote by
pn

η the associated density and by �n(η) the log-likelihood. Let η0 denote the true
value of the parameter and P n

η0
the frequentist distribution of the observations Yn

under η0. Throughout the paper, we set P n
0 := P n

η0
and P0 := P 1

0 . Similarly, En
0 [·]

and E0[·] denote the expectation under P n
0 and P0, respectively, and En

η and Eη

are the corresponding expectations under P n
η and Pη. Given any prior probability

� on S, we denote by �[·|Yn] the associated posterior distribution on S, given by
Bayes formula: �[B|Yn] = ∫

B pn
η(Y n) d�(η)/

∫
pn

η(Y n) d�(η). Throughout the
paper, we use the notation op in the place of oP n

0
for simplicity.

The quantity of interest in this paper is a functional ψ : S → R
d, d ≥ 1. We

restrict in this paper to the case of real-valued functionals d = 1, noting that the
presented tools do have natural multivariate counterparts not detailed here for no-
tational simplicity.

For η1, η2 in S, the Kullback–Leibler divergence between P n
η1

and P n
η2

is

KL
(
P n

η1
,P n

η2

) :=
∫
Yn

log
(

dP n
η1

dP n
η2

(
yn))

dP n
η1

(
yn)

,

and the corresponding variance of the likelihood ratio is denoted by

Vn

(
P n

η1
,P n

η2

) :=
∫
Yn

log2
(

dP n
η1

dP n
η2

(
yn))

dP n
η1

(
yn) − KL

(
P n

η1
,P n

η2

)2
.

Let ‖ · ‖2 and 〈·, ·〉2 denote respectively the L2 norm and the associated inner
product on [0,1]. We use also ‖ · ‖1 to denote the L1 norm on [0,1]. For all β ≥ 0,
Cβ denotes the class of β-Hölder functions on [0,1] where β = 0 corresponds to
the case of continuous functions. Let h(f1, f2) = (

∫ 1
0 (

√
f1 − √

f2)
2 dμ)1/2 stand

for the Hellinger distance between two densities f1 and f2 relative to a measure μ.
For g integrable on [0,1] with respect to Lebesgue measure, we often write

∫ 1
0 g

or
∫

g instead of
∫ 1

0 g(x) dx. For two real-valued functions A,B (defined on R or
on N), we write A � B if A/B is bounded and A � B if |A/B| is bounded away
from 0 and ∞.

2. Main result. In this section, we give the general theorem which provides
sufficient conditions on the model, the functional and the prior for BvM to be valid.

We say that the posterior distribution for the functional ψ(η) is asymptotically
normal with centering ψn and variance V if, for β the bounded Lipschitz metric
(also known as the Lévy–Prohorov metric) for weak convergence (see Section 1 in
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the supplemental article Castillo and Rousseau [15], and τn the mapping τn : η →√
n(ψ(η) − ψn)), it holds, as n → ∞, that

β
(
�

[·|Yn] ◦ τ−1
n ,N (0,V )

) → 0,(2.1)

in P n
0 -probability, which we also denote �[·|Yn] ◦ τ−1

n � N (0,V ).
In models where an efficiency theory at rate

√
n is available, we say that the

posterior distribution for the functional ψ(η) at η = η0 satisfies the BvM theorem
if (2.1) holds with ψn = ψ̂n+op(1/

√
n), for ψ̂n a linear efficient estimator of ψ(η)

and V the efficiency bound for estimating ψ(η). For instance, for i.i.d. models and
a differentiable functional ψ with efficient influence function ψ̃η0 (see, e.g., [32]
Chapter 25), the efficiency bound is attained if V = P n

0 [ψ̃2
η0

]. Let us now state the
assumptions which will be required.

Let An be a sequence of measurable sets such that, as n → ∞,

�
[
An|Yn] = 1 + op(1).(2.2)

We assume that there exists a Hilbert space (H, 〈·, ·〉L) with associated norm de-
noted ‖ · ‖L, and for which the inclusion An − η0 ⊂ H is satisfied for n large
enough. Note that we do not necessarily assume that S ⊂H, as H gives a local de-
scription of the parameter space near η0 only. Note also that H may depend on n.
The norm ‖ · ‖L typically corresponds to the LAN (locally asymptotically normal)
norm as described in (2.3) below.

Let us first introduce some notation which corresponds to expanding both the
log-likelihood �n(η) := �n(η,Y n) in the model and the functional of interest ψ(η).
Both expansions have remainders Rn and r , respectively.

LAN expansion. Write, for all η ∈ An,

�n(η) − �n(η0) = −n‖η − η0‖2
L

2
+ √

nWn(η − η0) + Rn(η, η0),(2.3)

where [Wn(h), h ∈ H] is a collection of real random variables verifying that, P n
0 -

almost surely, the mapping h → Wn(h) is linear, and that for all h ∈ H, we have
Wn(h) � N (0,‖h‖2

L) as n → ∞.

Functional smoothness. Consider ψ
(1)
0 ∈ H and a self-adjoint linear operator

ψ
(2)
0 : H → H and write, for any η ∈ An,

ψ(η) = ψ(η0) + 〈
ψ

(1)
0 , η − η0

〉
L

(2.4)
+ 1

2

〈
ψ

(2)
0 (η − η0), η − η0

〉
L + r(η, η0),

where there exists a positive constant C1 such that∥∥ψ(2)
0 h

∥∥
L ≤ C1‖h‖L ∀h ∈H and

∥∥ψ(1)
0

∥∥
L ≤ C1.(2.5)

Note that both formulations, on the functional smoothness and on the LAN
expansion, are not assumptions since nothing is required yet on r(η, η0) or on
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R(η,η0). This is done in Assumption A. The norm ‖ · ‖L is typically identified
from a local asymptotic normality property of the model at the point η0. It is thus
intrinsic to the considered statistical model. Next, the expansion of ψ around η0
is in term of the latter norm: since this norm is intrinsic to the model, this can be
seen as a canonical choice.

Consider two cases, depending on the value of ψ
(2)
0 in (2.4). The first case corre-

sponds to a first-order analysis of the problem. It ignores any potential nonlinearity
in the functional η → ψ(η) by considering a linear approximation with representer
ψ

(1)
0 in (2.4) and shifting any remainder term into r .

Case A1. We set ψ
(2)
0 = 0 in (2.4) and, for all η ∈ An and t ∈ R define

ηt = η − tψ
(1)
0√
n

.(2.6)

Case A2. We allow for a nonzero second-order term ψ
(2)
0 in (2.4). In this case,

we need a few more assumptions. One is simply the existence of some posterior
convergence rate in ‖ · ‖L-norm. Suppose that, for some sequence εn = o(1) and
An as in (2.2),

�
[
η ∈ An; ‖η − η0‖L ≤ εn/2|Yn] = 1 + op(1).(2.7)

Next, we assume that the action of the process Wn above can be approximated
by an inner-product, with a representer wn, which will be particularly useful in
defining a suitable path ηt enabling to handle second-order terms.

Suppose that there exists wn ∈ H such that, for all h ∈ H,

Wn(h) = 〈wn,h〉L + �n(h), P n
0 -almost surely,(2.8)

where the remainder term �n(·) is such that

sup
η∈An

∣∣�n

(
ψ

(2)
0 (η − η0)

)∣∣ = op(1)(2.9)

and where one further assumes that〈
wn,ψ

(2)
0

(
ψ

(1)
0

)〉
L + εn‖wn‖L = op(

√
n).(2.10)

Finally set, for all η ∈ An and wn as in (2.8), for all t ∈ R,

ηt = η − tψ
(1)
0√
n

− tψ
(2)
0 (η − η0)

2
√

n
− tψ

(2)
0 wn

2n
.(2.11)

ASSUMPTION A. In cases A1 and A2, with ηt defined by (2.6) and (2.11),
respectively, assume that for all t ∈R, ηt ∈ S for n large enough and that

sup
η∈An

∣∣t√nr(η, η0) + Rn(η, η0) − Rn(ηt , η0)
∣∣ = op(1).(2.12)
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The suprema in the previous display may not be measurable, in this case one
interprets the previous probability statements in terms of outer measure.

We then provide a characterisation of the asymptotic distribution of ψ(η). At
first read, one may set ψ

(2)
0 = 0 in the next theorem: this provides a first-order

result that will be used repeatedly in Sections 4 and 5. The complete statement
allows for a second-order analysis via a possibly nonzero ψ

(2)
0 and will be applied

in Section 3.

THEOREM 2.1. Consider a statistical model {P n
η , η ∈ S}, a real-valued func-

tional η → ψ(η) and 〈·, ·〉L,ψ
(1)
0 ,ψ

(2)
0 ,Wn,wn as defined above. Suppose that

Assumption A is satisfied, and denote

ψ̂ = ψ(η0) + Wn(ψ
(1)
0 )√
n

+ 〈wn,ψ
(2)
0 wn〉L

2n
, V0,n =

∥∥∥∥ψ(1)
0 − ψ

(2)
0 wn

2
√

n

∥∥∥∥2

L

.

Let � be a prior distribution on η. Let An be any measurable set such that (2.2)
holds. Then for any real t with ηt as in (2.11),

E�[
et

√
n(ψ(η)−ψ̂)|Yn,An

] = eop(1)+t2V0,n/2

∫
An

e�n(ηt )−�n(η0) d�(η)∫
An

e�n(η)−�n(η0) d�(η)
.(2.13)

Moreover, if V0,n = V0 + op(1) for some V0 > 0 and if for some possibly random
sequence of reals μn, for any real t ,∫

An
e�n(ηt )−�n(η0) d�(η)∫

An
e�n(η)−�n(η0) d�(η)

= eμnt (1 + op(1)
)
,(2.14)

then the posterior distribution of
√

n(ψ(η) − ψ̂) − μn is asymptotically normal
and mean-zero, with variance V0.

The proof of Theorem 2.1 is given in Section 6.1.

COROLLARY 1. Under the conditions of Theorem 2.1, if (2.14) holds with
μn = op(1) and ‖ψ(2)

0 wn‖L = op(
√

n), then the posterior distribution of√
n(ψ(η) − ψ̂) is asymptotically mean-zero normal, with variance ‖ψ(1)

0 ‖2
L.

Assumption A ensures that the local behaviour of the likelihood resembles the
one in a Gaussian experiment with norm ‖ · ‖L. An assumption of this type is
expected, as the target distribution in the BvM theorem is Gaussian. As will be
seen in the examples in Sections 3, 4 and 5, An is often a well chosen subset of a
neighbourhood of η0, with respect to a given metric, which need not be the LAN
norm ‖ · ‖L.

We note that for simplicity here we restrict to approximating paths ηt to η0
in (2.6) (first-order results) and (2.11) (second-order results) that are linear in the
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perturbation. This covers already quite a few interesting models. More generally,
some models may be locally curved around η0, with a possibly nonlinear form
of approximating paths. A more general statement would possibly have an extra
condition to control the curvature. Examining this type of example is left for future
work.

The central condition for applying Theorem 2.1 is (2.13). To check this condi-
tion, a possible approach is to construct a change of parameter from η to ηt (or
some parameter close enough to ηt ), which leaves the prior and An approximately
unchanged. More formally, let ψn be an approximation of ψ

(1)
0 in a sense to be

made precise below and let �ψn := � ◦ (τψn)−1 denote the image measure of �

through the mapping

τψn : η → η − tψn/
√

n.

To check (2.13), one may for instance suppose that the measures �ψn and � are
mutually absolutely continuous and that the density d�/d�ψn is close to the quan-
tity eμnt on An. This is the approach we follow for various models and priors in
the sequel. In particular, we prove that a functional change of variable is possible
for various classes of prior distributions. For instance, in density estimation, Gaus-
sian process priors and piecewise constant priors are considered and Propositions 1
and 3 below give a set of sufficient conditions that guarantee (2.13) for each class
of priors.

In general, the construction of a feasible change of parameterisation heavily de-
pends on the structure of the prior model. We note that this change of parameter
approach above only provides a sufficient condition. For some priors, shifted mea-
sures may be far from being absolutely continuous, even using approximations
of the shifting direction: for such priors, one may have to compare the integrals
directly.

REMARK 1. Here, the main focus is on estimation of abstract semiparametric
functionals ψ(η). Our results also apply to the case of separated semiparametric
models where η = (ψ,f ) and ψ(η) = ψ ∈ R, as considered in [10], with a weak
convergence to the normal distribution instead of a strong convergence obtained
in [10]. We have ψ(η) − ψ(η0) = 〈η − η0, (1,−γ )〉L/Ĩη0 where γ is the least

favorable direction and Ĩη0 = ‖(1,−γ )‖2
L; see [10]. We can then choose ψ

(1)
0 =

(1,−γ )/Ĩη0 in [10]. If γ = 0 (no loss of information), ηt = (ψ − t Ĩ−1
η0

/
√

n,f )

and (2.13) is satisfied if π = πψ ⊗ πf with πψ positive and continuous at ψ(η0),
so that we obtain a similar result as Theorem 1 of [10]. In [10], a slightly weaker
version of condition (2.12) is considered; however, the proof of Section 6.1 can
be easily adapted—in the case of separated semiparametric models—so that the
result holds under the weaker version of (2.12) as well.
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REMARK 2. As follows from the proof of Theorem 2.1, ψ
(1)
0 can be replaced

by any element, say ψ̃ of H such that

〈ψ̃, η − η0〉L = 〈
ψ

(1)
0 , η − η0

〉
L, ‖ψ̃‖L = ∥∥ψ(1)

0

∥∥
L,

where ψ̃ may potentially depend on η. This proves to be useful when considering
constraint spaces as in the case of density estimation.

We now apply Theorem 2.1 in the cases of white noise, density and autoregres-
sive models and for various types of functionals and priors.

3. Applications to the white noise model. Consider the model

dYn(t) = f (t) dt + n−1/2 dB(t), t ∈ [0,1],
where f ∈ L2[0,1] and B is standard Brownian motion. Let (φk)k≥1 be an or-
thonormal basis for L2[0,1] =: L2. The model can be rewritten

Yk = fk +n−1/2εk, fk =
∫ 1

0
f (t)φk(t) dt, εk ∼N (0,1) i.i.d., k ≥ 1.

The likelihood admits a LAN expansion, with η = f here, ‖ · ‖L = ‖ · ‖2 and
Rn = 0:

�n(f ) − �n(f0) = −n‖f − f0‖2

2
+ √

nW(f − f0),

where for any u ∈ L2 = H with coefficients uk = ∫ 1
0 u(t)φk(t) dt , we set W(u) =∑

k≥1 εkuk .
In this model, consider the squared-L2 norm as a functional of f . Set

ψ(f ) = ‖f ‖2
2 = ψ(f0) + 2〈f0, f − f0〉2 + ‖f − f0‖2

2,

ψ
(1)
0 = 2f0, ψ

(2)
0 h = 2h, r(f, f0) = 0.

The functional has been extensively studied in the frequentist literature; see [4,
18, 20, 28] and [8] to name but a few, as it is used in many testing problems. The
verification of Assumption A and of condition (2.14) is prior-dependent and is
considered within the proof of the next theorem.

Suppose that the true function f0 belongs to the Sobolev class

Wβ :=
{
f ∈ L2,

∑
k≥1

k2β〈f,φk〉2 < ∞
}

of order β > 1/4. First, one should note that, while the case β > 1/2 can be treated
using the first-order term of the expansion of the functional only (case A1), the case
1/4 < β < 1/2 requires the conditions from case A2 as the second-order term can-
not be neglected. This is related to the fact that the so-called plug-in property in [5]
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does not work for β < 1/2. An analysis based on second-order terms as in Theo-
rem 2.1 is thus required. The case β ≤ 1/4 is interesting too, but one obtains a rate
slower than 1/

√
n; see, for example, Cai and Low [8] and references therein, and

a BvM result in a strict sense does not hold. Although a BvM-type result can be
obtained essentially with the tools developed here, its formulation is more compli-
cated and this case will be treated elsewhere. When β > 1/4, a natural frequentist
estimator of ψ(η) is

ψ̄ := ψ̄n :=
Kn∑
k=1

[
Y 2

k − 1

n

]
with Kn = �n/ logn�.

Now define a prior � on f by sampling independently each coordinate fk ,
k ≥ 1 in the following way. Given a density ϕ on R and a sequence of positive real
numbers (σk), set Kn = �n/ logn� and

fk ∼ 1

σk

ϕ

( ·
σk

)
if 1 ≤ k ≤ Kn and fk = 0 if k > Kn.(3.1)

In particular, we focus on the cases where ϕ is either the standard Gaussian den-
sity or ϕ(x) = 1[−M,M](x)/M, M > 0, called respectively Gaussian ϕ and Uni-
form ϕ.

Suppose that there exists M > 0 such that, for any 1 ≤ k ≤ Kn,

|f0,k|
σk

≤ M and σk ≥ 1√
n
.(3.2)

THEOREM 3.1. Suppose the true function f0 belongs to the Sobolev space
Wβ of order β > 1/4. Let the prior � and Kn be chosen according to (3.1) and let
f0, {σk} satisfy (3.2). Consider the following choices for ϕ:

1. Gaussian ϕ. Suppose that as n → ∞,

1√
n

Kn∑
k=1

σ−2
k

n
= o(1).(3.3)

2. Uniform ϕ. Suppose M > 4 ∨ (16M) and that for any c > 0

Kn∑
k=1

σke
−cnσ 2

k = o(1).(3.4)

Then, in P n
f0

-probability, as n → ∞,

�

(√
n

(
ψ(f ) − ψ̄ − 2

Kn

n

)∣∣∣Yn

)
� N

(
0,4‖f0‖2

2
)
.(3.5)
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The proof of Theorem 3.1 is given in Section 2.2 of the supplemental article
Castillo and Rousseau [15].

Theorem 3.1 gives the BvM theorem for the nonlinear functional ψ(f ) = ∫
f 2,

up to a (known) bias term 2Kn/n. Indeed it implies that the posterior distribu-
tion of ψ(f ) − ψ̂n = ψ(f ) − ψ̄ − 2Kn

n
is asymptotically Gaussian with mean 0

and variance 4‖f0‖2
2/n which is the inverse of the efficient information (divided

by n). Recall that ψ̄ is an efficient estimate when β > 1/4; see, for instance, [8].
Therefore, even though the posterior distribution of ψ(η) does not satisfy the BvM
theorem per se, it can be modified a posteriori by recentering with the known quan-
tity 2Kn/n to lead to a BvM theorem. The possibility of existence of a Bayesian
nonparametric prior leading to a BvM for the functional ‖f ‖2

2 without any bias
term in general is unclear. However, if we restrict our attention to β > 1/2, a dif-
ferent choice of Kn can be made, in particular Kn = √

n/ logn leads to a standard
BvM property without bias term.

Condition (3.2) can be interpreted as an undersmoothing condition: the true
function should be at least as “smooth” as the prior; for a fixed prior, it corre-
sponds to intersecting the Sobolev regularity constraint on f0 with a Hölder-type
constraint. It is used to verify the concentration of the posterior (2.7); see Lemma 3
of the supplemental article (Castillo and Rousseau [15]) (it is used here mostly for
simplicity of presentation and can possibly be slightly improved). For instance,
if σk � k−1/4 for all k ≤ Kn, then condition (3.2) is valid for all f0 ∈ Wβ , with
β > 1/4. Conditions (3.3) and (3.4) are here to ensure that the prior is hardly mod-
ified by the change of parametrisation (2.11), they are verified in particular for any
σk � k−1/4.

An interesting phenomenon appears when comparing the two examples of pri-
ors considered in Theorem 3.1. If σk = k−δ , for some δ ∈ R, condition (3.3) holds
for any δ ≤ 1/4 in the Gaussian ϕ case, whereas (3.4) only requires δ < 1/2 in
the Uniform ϕ case, this for any f0 in W1/4 intersected with the Hölder-type space
{f0 : |f0,k| ≤ Mk−δ, k ≥ 1}. One can conclude that fine details of the prior (here,
the specific form of ϕ chosen, for given variances {σ 2

k }) really matter for BvM
to hold in this case. Indeed, it can be checked that the condition for the Gaussian
prior is sharp: while the proof of Theorem 3.1 is an application of the general
Theorem 2.1, a completely different proof can be given for Gaussian priors us-
ing conjugacy, similar in spirit to [26], leading to (3.3) as a necessary condition.
Hence, choosing σk � k−1/4 leads to a posterior distribution satisfying the BvM
property adaptively over Sobolev balls with smoothness β > 1/4.

The introduced methodology also allows us to provide conditions under generic
smoothness assumptions on ϕ. For instance, if the density ϕ of the prior is a Lips-
chitz function on R, then the conclusion of Theorem 3.1 holds when, as n → ∞,

Kn∑
k=1

σ−1
k

n
= o(1).(3.6)
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This last condition is not sharp in general [compare for instance with the sharp
(3.3) in the Gaussian case], but provides a sufficient condition for a variety of prior
distributions, including light and heavy tails behaviours. For instance, if σk = k−δ ,
then (3.6) asks for δ ≤ 0.

4. Application to the density model. The case of functionals of the density
is another interesting application of Theorem 2.1. The case of linear functionals
of the density has first been considered by [30]. Here, we obtain a broader version
of Theorem 2.1 in [30], which weakens the assumptions for the case of linear
functionals and also allows for nonlinear functionals.

4.1. Statement. Let Yn = (Y1, . . . , Yn) be independent and identically dis-
tributed, having density f with respect to Lebesgue measure on the interval [0,1].
In all of this section, we assume that the true density f0 belongs to the set F0
of all densities that are bounded away from 0 and ∞ on [0,1]. Let us consider
An = {f ; ‖f − f0‖1 ≤ εn} where εn is a sequence decreasing to 0, or any set of
the form An ∩Fn, as long as P n

0 �(Fc
n|Yn) → 0. Define

L2(f0) =
{
ϕ : [0,1] → R,

∫ 1

0
ϕ(x)2f0(x) dx < ∞

}
.

For any ϕ in L2(f0), let us write F0(ϕ) as shorthand for
∫ 1

0 ϕ(x)f0(x) dx and set,
for any positive density f on [0,1],

η = logf, η0 = logf0, h = √
n(η − η0).

Following [30], we have the LAN expansion

�n(η) − �n(η0) = √
nF0(h) + 1√

n

n∑
i=1

[
h(Yi) − F0(h)

]

= −1

2
‖h‖2

L + Wn(h) + Rn(η, η0),

with the following notation, for any g in L2(f0),

‖g‖2
L =

∫ 1

0

(
g − F0(g)

)2
f0,Wn(g) =Gng = 1√

n

n∑
i=1

[
g(Yi) − F0(g)

]
,(4.1)

and Rn(η, η0) = √
nPf0h + 1

2‖h‖2
L. Note that ‖ · ‖L is an Hilbertian norm in-

duced by the inner-product 〈g1, g2〉L = ∫
g1g2f0 defined on the space HT := {g ∈

L2(Pf0),
∫

gf0 = 0} ⊂H = L2(f0), the so-called maximal tangent set at f0.
We consider functionals ψ(f ) of the density f , which are differentiable relative

to (a dense subset of) the tangent set HT with efficient influence function ψ̃f0 ; see
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[32], Chapter 25. In particular, ψ̃f0 belongs to HT , so F0(ψ̃f0) = 0. We further
assume that ψ̃f0 is bounded on [0,1]. Set

ψ(f ) − ψ(f0)

=
〈
f − f0

f0
, ψ̃f0

〉
L

+ r̃(f, f0)(4.2)

= 〈
η − η0 − F0(η − η0), ψ̃f0

〉
L +B(f, f0) + r̃(f, f0), η = logf,

where B(f, f0) is the difference

B(f, f0) =
∫ 1

0

[
η − η0 − f − f0

f0

]
(x)ψ̃f0(x)f0(x) dx,

and define r(f, f0) = B(f, f0) + r̃(f, f0).

THEOREM 4.1. Let ψ be a differentiable functional relative to the tangent
set HT , with efficient influence function ψ̃f0 bounded on [0,1]. Let r̃ be defined
by (4.2). Suppose that for some εn → 0 it holds

�
[
f : ‖f − f0‖1 ≤ εn|Yn] → 1,(4.3)

in P0-probability and that, for An = {f,‖f − f0‖1 ≤ εn},
sup

f ∈An

r̃(f, f0) = o(1/
√

n).

Set ηt = η − t√
n
ψ̃f0 − log

∫ 1
0 eη−(t/

√
n)ψ̃f0 and assume that in P0-probability

∫
An

e�n(ηt )−�n(η0) d�(η)∫
e�n(η)−�n(η0) d�(η)

→ 1.(4.4)

Then, for ψ̂ any linear efficient estimator of ψ(f ), the BvM theorem holds for the
functional ψ . That is, the posterior distribution of

√
n(ψ(f )−ψ̂) is asymptotically

Gaussian with mean 0 and variance ‖ψ̃f0‖2
L, in P0-probability.

The semiparametric efficiency bound for estimating ψ is ‖ψ̃f0‖2
L and linear effi-

cient estimators of ψ are those for which ψ̂ = ψ(f0)+Gn(ψ̃f0)/
√

n+op(1/
√

n);
see, for example, van der Vaart [32], Chapter 25, so Theorem 4.1 yields the BvM
theorem (with best possible limit distribution).

REMARK 3. The L1-distance between densities in Theorem 4.1 can be re-
placed by Hellinger’s distance h(·, ·) up to replacing εn by εn/

√
2.

Theorem 4.1 is proved in Section 6 and is deduced from Theorem 2.1

with ψ
(2)
0 = 0 and ψ

(1)
0 = ψ̃f0 − t−1√n log

∫ 1
0 eη−(t/

√
n)ψ̃f0 . The condition



2366 I. CASTILLO AND J. ROUSSEAU

supf ∈An
r̃(f, f0) = o(1/

√
n), together with (4.3) imply Assumption A. It improves

on Theorem 2.1 of [30] in the sense that an L1 -posterior concentration rate is re-
quired instead of a posterior concentration rate in terms of the LAN norm ‖ · ‖L,
it is also a generalisation to approximately linear functionals, which include the
following examples.

EXAMPLE 4.1 (Linear functionals). Let ψ(f ) = ∫ 1
0 f (x)a(x) dx, for some

bounded function a. Then, writing
∫

as shorthand for
∫ 1

0 ,

ψ(f ) − ψ(f0) =
〈
f − f0

f0
, a −

∫
af0

〉
L

with the efficient influence function ψ̃f0 = a − ∫
af0. In this case, r̃(f, f0) = 0.

EXAMPLE 4.2 (Entropy functional). Let ψ(f ) = ∫ 1
0 f (x) logf (x) dx, for f

bounded away from 0 and infinity. Then

ψ(f ) − ψ(f0) =
〈
f − f0

f0
, logf0 −

∫
f0 logf0

〉
L

+
∫

f log
f

f0

with the efficient influence function ψ̃f0 = logf0 − ∫
f0 logf0. In this case,

r̃(f, f0) = ∫
f log f

f0
. For the two types of priors considered below, under some

smoothness assumptions on f0, it holds supf ∈An
r̃(f, f0) = o(1/

√
n).

EXAMPLE 4.3 (Square-root functional). Let ψ(f ) = ∫ 1
0

√
f (x) dx, for f a

bounded density. Then

ψ(f ) − ψ(f0) = 1

2

〈
f − f0

f0
,

1√
f0

−
∫ √

f0

〉
L

+ 1

2

∫ √
f0 − √

f√
f0 + √

f

f − f0√
f0

with the efficient influence function ψ̃f0 = 1
2( 1√

f0
− ∫ √

f0). In this case,

r̃(f, f0) = − ∫ (
√

f0−√
f )2

2
√

f0
. In particular, the remainder term of the functional ex-

pansion is bounded by a constant times the square of the Hellinger distance be-
tween densities, hence as soon as ε2

n

√
n = o(1), if An is written in terms of h (see

Remark 3), one has supf ∈An
r̃(f, f0) = o(1/

√
n).

EXAMPLE 4.4 (Power functional). Let ψ(f ) = ∫ 1
0 f (x)q dx, for f a bounded

density and q ≥ 2 an integer. Then

ψ(f ) − ψ(f0) =
〈
f − f0

f0
, qf

q−1
0 − q

∫
f

q
0

〉
L

+ r(f, f0).

The remainder r̃(f, f0) is a sum of terms of the form
∫
(f − f0)

2+sf
q−2−s
0 ,

for 0 ≤ s ≤ q − 2 an integer. For the two types of priors considered below,
supf ∈An

r̃(f, f0) = o(1/
√

n), under some smoothness assumptions on f0.
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We now consider two families of priors: random histograms and Gaussian pro-
cess priors. For each family, we provide a key no-bias condition for BvM on func-
tionals to be valid. For each, the idea is based on a certain functional change of
variables formula. To simplify the notation, we write ψ̃ = ψ̃f0 in the sequel.

4.2. Random histograms. For any k ∈ N
∗, consider the partition of [0,1] de-

fined by Ij = [(j − 1)/k, j/k) for j = 1, . . . , k. Denote by

Hk =
{
g ∈ L2[0,1], g(x) =

k∑
j=1

gj1Ij
(x), gj ∈ R, j = 1, . . . , k

}

the set of all regular histograms with k bins on [0,1]. Let Sk = {ω ∈ [0,1]k;∑k
j=1 ωj = 1} be the unit simplex in R

k and denote H1
k the subset of Hk con-

sisting of histograms which are densities on [0,1]:

H1
k =

{
f ∈ L2[0,1], f (x) = fω,k = k

k∑
j=1

ωj1Ij
(x), (ω1, . . . ,ωk) ∈ Sk

}
.

A prior on H1
k is completely specified by the distributions of k and of (ω1, . . . ,ωk)

given k. Conditionally, on k, we consider a Dirichlet prior on ω = (ω1, . . . ,ωk):

ω ∼ D(α1,k, . . . , αk,k), c1k
−a ≤ αj,k ≤ c2,(4.5)

for some fixed constants a, c1, c2 > 0 and any 1 ≤ j ≤ k.
Consider two situations: either a deterministic number of bins with k = Kn =

o(n) or, for πk a distribution on positive integers,

k ∼ πk, e−b1k log(k) ≤ πk(k) ≤ e−b2k log(k),(4.6)

for all k large enough and some 0 < b2 < b1 < ∞. Condition (4.6) is verified for
instance by the Poisson distribution which is commonly used in Bayesian nonpara-
metric models; see, for instance, [1].

The set Hk is a closed subspace of L2[0,1]. For any function h in L2[0,1],
consider its projection h[k] in the L2-sense on Hk . It holds

h[k] = k

k∑
j=1

{∫
Ij

h

}
1Ij

.

Lemma 4 in the supplemental article Castillo and Rousseau [15] gathers useful
properties on histograms.

Let the functional ψ satisfy (4.2) with bounded efficient influence function
ψ̃f0 = ψ̃ �= 0 and set, for k ≥ 1,

ψ̂k = ψ(f0[k]) + Gnψ̃[k]√
n

, Vk = ‖ψ̃[k]‖2
L,

(4.7)

ψ̂ = ψ(f0) + Gnψ̃√
n

, V = ‖ψ̃‖2
L,
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with ‖ · ‖L,Gn as in (4.1). Finally, for n ≥ 2, k ≥ 1, M > 0, denote

An,k(M) = {
f ∈ H1

k, h(f, f0,[k]) ≤ Mεn,k

}
with ε2

n,k = k logn

n
.(4.8)

In Section 6.3, we shall see that the posterior distribution of k concentrates on
a deterministic subset Kn of {1, . . . , �n/(logn)2�} and that under the following
technical condition on the weights, as n → ∞,

sup
k∈Kn

k∑
j=1

αj,k = o(
√

n),(4.9)

the conditional posterior distribution given k, concentrates on the sets An,k(M). It
can then be checked that

�
[√

n(ψ − ψ̂) ≤ z|Yn]
= ∑

k∈Kn

�
[
k|Yn]

�
[√

n(ψ − ψ̂k) ≤ z + √
n(ψ̂ − ψ̂k)|Yn, k

] + op(1)

= ∑
k∈Kn

�
[
k|Yn]

�
((

z + √
n(ψ̂ − ψ̂k)

)
/
√

Vk

) + op(1).

The last line expresses that the posterior is asymptotically close to a mixture of
normals, and that the mixture reduces to the target law N(0,V ) if Vk goes to V

and
√

n(ψ̂ −ψ̂k) to 0, uniformly for k in Kn. The last quantity can also be rewritten√
n(ψ̂k − ψ̂) = √

n
(
ψ(f0[k]) − ψ(f0)

) +Gn(ψ̃[k] − ψ̃)

= √
n

∫
(ψ̃ − ψ̃[k])(f0[k] − f0) +Gn(ψ̃[k] − ψ̃) + o(1).

It is thus natural to ask for, and this is satisfied in most examples (see below),

max
k∈Kn

∣∣‖ψ̃[k]‖2
L − ‖ψ̃‖2

L

∣∣ = op(1) and max
k∈Kn

Gn(ψ̃[k] − ψ̃) = op(1).(4.10)

This leads to the next proposition, proved in Section 6.

PROPOSITION 1. Let f0 belong to F0 and the prior � be defined by (4.5)–
(4.9). Let the prior πk be either the Dirac mass at k = Kn ≤ n/(logn)2, or the law
given in (4.6). Let Kn be a subset of {1,2, . . . , n/ log2 n} such that �(Kn|Yn) =
1 + op(1).

Consider estimating a functional ψ(f ), with r̃ in (4.2), verifying (4.10) and, for
any M > 0, with An,k(M) defined in (4.8),

sup
k∈Kn

sup
f ∈An,k(M)

√
nr̃(f, f0) = op(1),(4.11)

as n → ∞. Additionally, suppose

max
k∈Kn

√
n

∣∣∣∣
∫

(ψ̃ − ψ̃[k])(f0[k] − f0)

∣∣∣∣ = o(1).(4.12)

Then the BvM theorem for the functional ψ holds.
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The core condition is (4.12), which can be seen as a no-bias condition. Condi-
tion (4.11) controls the remainder term of the expansion of ψ(f ) around f0. Con-
dition (4.10) is satisfied under very mild conditions: for its first part it is enough
that infKn goes to ∞ with n. For the second part, barely more than this typically
suffices, using a simple empirical process argument; see Section 6.

The next theorem investigates the previous conditions under deterministic and
random priors on k, for the examples of functionals 4.1 to 4.4.

THEOREM 4.2. Suppose f0 ∈ Cβ , with β > 0. Let two priors �1,�2 be de-
fined by (4.5)–(4.9) and the prior on k be either the Dirac mass at k = Kn =
�n1/2(logn)−2� for �1, or k ∼ πk given by (4.6) for �2. Then:

• Example 4.1, linear functionals ψ(f ) = ∫
af , under the prior �1 with deter-

ministic k = Kn

� if a(·) ∈ Cγ with γ + β > 1 for some γ > 0, then the BvM theorem holds for
the functional ψ(f );

� if a(·) = 1·≤z for z ∈ [0,1], then BvM holds for the functional
∫

1·≤zf =
F(z), the cumulative distribution function of f .

• Examples 4.2–4.3–4.4. For all β > 1/2, the BvM theorem holds for ψ(f ) for
both priors �1 (deterministic k) and �2 (random k).

Theorem 4.2 is proved in Section 6.3. From this proof, it may be noted that
different choices of Kn in some range lead to similar results for some examples.
For instance, if ψ(f ) = ∫

ψf and ψ ∈ Cγ , choosing Kn = �n/(logn)2� implies
that the BvM holds for all γ + β > 1/2.

Obtaining BvM in the case of a prior with random k in Example 4.1 is case-
dependent. The answer lies in the respective approximation properties of both f0

and ψ̃f0 through the prior (note that a random k prior typically adapts to the regu-
larity of f0), and the no-bias condition (4.12) may not be satisfied if infKn is not
large enough.

We present below a counterexample where BvM is proved to fail for a large
class of true densities f0 when a prior with random k is chosen.

4.3. A semiparametric curse of adaptation: A counterexample for BvM under
random number of bins histogram priors. Consider a C1, strictly increasing true
function f0, say

f ′
0 ≥ ρ > 0 on [0,1].(4.13)

The following reasoning can be extended to any approximately monotone smooth
function on [0,1]. Consider estimation of the linear functional ψ(f ) = ∫

ψf . The
BvM theorem is not satisfied if the bias term

√
n(ψ̂ − ψ̂k) is predominant for all
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k’s which are asymptotically given mass under the posterior. This will happen if
for all such k’s,

−bn,k = √
n

∫
ψ(f0 − f0[k]) = √

n

∫
(ψ − ψ[k])(f0 − f0[k]) � 1,

as n → ∞. To simplify the presentation, we restrict ourselves to the case of dyadic
random histograms; in other words, the prior on k only puts mass on values of
k = 2p , p ≥ 0. Then define ψ(x) as, for α > 0,

ψ(x) = ∑
l≥0

2l−1∑
j=0

2−l(1/2+α)ψH
lj (x),(4.14)

where ψH
lj (x) = 2l/2ψ00(2lx − j) and ψ00(x) = −1[0,1/2](x) + 1(1/2,1](x) is the

mother wavelet of the Haar basis (we omit the scaling function 1 in the definition
of ψ).

PROPOSITION 2. Let f0 be any function as in (4.13) and α,ψ as in (4.14).
Let the prior be as in Theorem 4.2. Then there exists k1 > 0 such that

�
(
k < k1(n/ logn)1/3|Yn) = 1 + oP (1)

and for all p ∈ N such that 2p := K < k1(n/ logn)1/3, the conditional posterior
distribution of

√
n(ψ(f ) − ψ̂ − bn,k)/

√
Vk|k = K converges in distribution to

N (0,1), in P n
0 -probability, with

bn,K � −√
nK−α−1.

In particular, the BvM property does not hold if α < 1/2.

REMARK 4. For the considered f0, it can be checked that the posterior even
concentrates on values of k such that k = kn � (n/ logn)1/3.

As soon as the regularities of the functional ψ(f ) to be estimated and of the true
function f0 are fairly different, taking an adaptive prior (with respect to f ) can
have disastrous effects with a nonnegligible bias appearing in the centering of the
posterior distribution. As in the counterexample in Rivoirard and Rousseau [30],
the BvM is ruled out because the posterior distribution concentrates on values of k

that are too small and for which the bias bn,k is not negligible. Note that for each
of these functionals the BvM is violated for a large class of true densities f0. Some
related phenomena in terms of rates are discussed in Knapik et al. [25] for linear
functionals and adaptive priors in white noise inverse problems.

Let us sketch the proof of Proposition 2. It is not difficult to show that (see
the Supplement), since f0 ∈ C1, the posterior concentrates on the set {f : ‖f −
f0‖1 ≤ M(n/ logn)−1/3, k ≤ k1(n/ logn)1/3}, for some positive M and k1. Since
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Haar wavelets are special cases of (dyadic) histograms, for any K ≥ 1 the best
approximation of ψ within HK is

ψ[K](x) =
p∑

l=0

2l−1∑
j=0

2−l(1/2+α)ψH
lj (x).

The semiparametric bias −bn,K is equal to
√

n
∫ 1

0 (f0 − f0,[K])(ψ − ψ[K]) =√
n

∫ 1
0 f0(ψ − ψ[K]), which can be written, for any K ≥ 1,

−bn,K = √
n

∑
l>p

2l−1∑
j=0

2−l(1/2+α)
∫ 1

0
f0(x)ψH

lj (x) dx

= √
n

∑
l>p

2l−1∑
j=0

2−lα
∫ 2−l (j+1/2)

2−l j

(
f0

(
x + 2−l/2

) − f0(x)
)
dx

�
√

n
∑
l>p

2−lα2l2−2l �
√

nK−α−1.

Since �(k ≤ n1/3|Yn) = 1 + op(1), we have that infk≤n1/3 −bn,k → +∞ for all
α < 1/2. Also, the sequence of real numbers {Vk}k≥1 stays bounded, while the
supremum sup1≤k≤n1/3 |Gn(ψ̃ − ψ̃[k])| is bounded by a constant times (logn)1/2

in probability, by a standard empirical process argument. This implies that

E�[
et

√
n(ψ(f )−ψ̂)|Yn,Bn

] = (
1 + o(1)

) ∑
k∈Kn

et2Vk/2+t
√

n(ψ̂−ψ̂k)�
[
k|Yn] = op(1),

so that the posterior distribution is not asymptotically equivalent to N (0,‖ψ̃‖2
L),

and there exists Mn going to infinity such that

�
[√

n|ψ(f ) − ψ̂ | > Mn|Yn] = 1 + op(1).

4.4. Gaussian process priors. We now investigate the implications of Theo-
rem 4.1 in the case of Gaussian process priors for the density f . Consider as a
prior on f the distribution on densities generated by

f (x) = eW(x)∫ 1
0 eW(x) dx

,(4.15)

where W is a zero-mean Gaussian process indexed by [0,1] with continuous
sample paths. The process W can also be viewed as a random element in the
Banach space B of continuous functions on [0,1] equipped with the sup-norm
‖ · ‖∞; see [34] for precise definitions. We refer to [33, 34] and [9] for basic def-
initions on Gaussian priors and some convergence properties, respectively. Let
K(x,y) = E[W(x)W(y)] denote the covariance kernel of the process and let
(H,‖ · ‖H) denote the reproducing kernel Hilbert space of W .
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EXAMPLE 4.5 (Brownian motion released at 0). Consider the distribution in-
duced by

W(x) = N + Bx, x ∈ [0,1],
where Bx is standard Brownian motion and N is an independent N (0,1) variable.
We use it as a prior on w. It can be seen (see [33]) as a random element in the
Banach space B= (C0,‖ · ‖∞) and its RKHS is

H
B =

{
c +

∫ ·
0

g(u)du, c ∈R, g ∈ L2[0,1]
}
,

a Hilbert space with norm given by ‖c + ∫ ·
0 g(u)du‖2

HB = c2 + ∫ 1
0 g(u)2 du.

EXAMPLE 4.6 (Riemann–Liouville-type processes). Consider the distribution
induced by, for α > 0 and x ∈ [0,1],

Wα(x) =
�α�+1∑
k=0

Zkx
k +

∫ x

0
(x − s)α−1/2 dBs,

where Zis are independent standard normal variables and B is an independent
Brownian motion. The RKHS H

α of Wα can be obtained explicitly from the one
of Brownian motion, and is nothing but a Sobolev space of order α + 1; see [33],
Theorem 4.1.

The concentration function of the Gaussian process in B at η0 = logf0 is de-
fined for any ε > 0 by (see [34])

ϕη0(ε) = − log�
(‖W‖∞ ≤ ε

) + 1

2
inf

h∈H:‖h−η0‖B<ε
‖h‖2

H
.

In van der Vaart and van Zanten [33], it is shown that the posterior contraction rate
for such a prior is closely connected to a solution εn of

ϕη0(εn) ≤ nε2
n, η0 = logf0.(4.16)

PROPOSITION 3. Suppose f0 verifies c0 ≤ f0 ≤ C0 on [0,1], for some positive
c0,C0. Let the prior � on f be induced via a Gaussian process W as in (4.15) and
let H denote its RKHS. Let εn → 0 verify (4.16). Consider estimating a functional
ψ(f ), with r̃ in (4.2) verifying

sup
f ∈An

r̃(f, f0) = o(1/
√

n),

for An such that �(An|Yn) = 1 + op(1) and An ⊂ {f : h(f,f0) ≤ εn}. Suppose
that ψ̃f0 is continuous and that there exists a sequence ψn ∈ H and ζn → 0, such
that

‖ψn − ψ̃f0‖∞ ≤ ζn and ‖ψn‖H ≤ √
nζn,(4.17) √

nεnζn → 0.(4.18)
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Then, for ψ̂ any linear efficient estimator of ψ(f ), in P n
0 -probability, the posterior

distribution of
√

n(ψ(f ) − ψ̂) converges to a Gaussian distribution with mean 0
and variance ‖ψ̃f0‖2

L and the BvM theorem holds.

The proof is presented in Section 3.2 of Castillo and Rousseau [15]. We now
investigate conditions (4.17)–(4.18) for examples of Gaussian priors.

THEOREM 4.3. Suppose that η0 = logf0 belongs to Cβ , for some β > 0. Let
�α be the priors defined from a Gaussian process W via (4.15). For �1, we take W

to be Brownian motion (released at 0) and for �2 we take W = Wα , a Riemann–
Liouville-type process of parameter α > 0.

• Example 4.1, linear functionals ψ(f ) = ∫
af

� if a(·) ∈ H
B , then the BvM theorem holds for the functional ψ(f ) and prior

�1. The same holds if a(·) ∈ H
α for prior �2;

� if a(·) ∈ Cμ, μ > 0, the BvM property holds for prior �2 if

α ∧ β > 1
2 + (α − μ) ∨ 0.

• Examples 4.3–4.4. Under the same condition as for the linear functional with
μ = β , the BvM theorem holds for �2.

An immediate illustration of Theorem 4.3 is as follows. Consider prior �1 built
from Brownian motion. Then for all linear functionals

ψ(f ) =
∫ 1

0
xrf (x) dx, r >

1

2
,

the BvM theorem holds. Indeed, x → xr, r > 1/2 belongs to H
B .

To prove Theorem 4.3, one applies Proposition 3: it is enough to compute
bounds for εn and ζn. This follows from the results on the concentration func-
tion for Riemann–Louville-type processes obtained in Theorem 4 in [9]. For lin-
ear functionals ψ(f ) = ∫

af and a ∈ Cμ, one can take εn = n−α∧β/(2α+1) and
ζn = n−μ/(2α+1), up to some logarithmic factors. So (4.18) holds if α ∧ β >
1
2 + (α − μ) ∨ 0.

The square-root functional is similar to a linear functional with μ = β , since the
remainder term in the expansion of the functional is of the order of the Hellinger
distance. Indeed, since f0 is bounded away from 0 and ∞, the fact that w0 ∈ Cβ

implies that f0 ∈ Cβ and
√

f0 ∈ Cβ . For power functionals, the remainder term
r(f, f0) is more complicated but is easily bounded by a linear combination of
terms of the type∫

(f − f0)
2+rf

q−2−r
0 ≤ ‖f0‖q−r−2∞ ‖f − f0‖r∞

∫
(f − f0)

2.

Using Proposition 1 in Castillo and Rousseau [15], one obtains that, under the
posterior distribution, ‖f −f0‖∞ � 1 and ‖f −f0‖2 � εn. So,

√
nr(f,f0) = o(1)

holds if
√

nε2
n = o(1), which is the case since α ∧ β > 1/2.
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5. Application to the nonlinear autoregressive model. Consider an autore-
gressive model in which one observes Y1, . . . , Yn given by

Yi+1 = f (Yi) + εi, εi ∼ N (0,1) i.i.d.,(5.1)

where ‖f ‖∞ ≤ L for a fixed given positive constant L and f belongs to a Hölder
space Cβ , β > 0. This example has been in particular studied by [22] and it is
known that (Yi, i = 1, . . . , n) is an homogeneous Markov chain and that under
these assumptions, for all f , there exists a unique stationary distribution Qf with
density qf with respect to Lebesgue measure. The transition density is pf (y|x) =
φ(y − f (x)). Denoting r(y) = (φ(y − L) + φ(y + L))/2, the transition density
satisfies pf (y|x) � r(y) for all x, y ∈R. Following [22], define the norms, for any
s ≥ 2,

‖f − f0‖s,r =
(∫

R

∣∣f (x) − f0(x)
∣∣sr(x) dx

)1/s

.

As in [22], we consider a prior � on f based on piecewise constant functions.
Let us set an = b

√
logn, where b > 0 and consider functions f of the form

f (x) := fω,k(x) =
k−1∑
j=0

ωj1Ij
(x), Ij = an

([
j/k, (j + 1)/k

] − 1/2
)
.

A prior on k and on ω = (ω0, . . . ,ωk−1) is then specified as follows. First, draw
k ∼ πk , for πk a law on the integers. Given k, the law ω|k is supposed to have a
Lebesgue density πω|k with support [−M,M]k for some M > 0. Assume further
that these laws satisfy, for 0 < c2 ≤ c1 < ∞ and C1,C2 > 0,

e−c1K logK ≤ πk[k > K] ≤ e−c2K logK for large K,
(5.2)

e−C2k log k � πω|k(ω) ≤ C1 ∀ω ∈ [−M,M]k.
We consider the squared-weighted-L2 norm functional ψ(f ) = ∫

R
f 2(y)qf (y) dy.

As before, define

kn(β) = ⌊
(n/ logn)1/(2β+1)⌋, εn(β) = (n/ logn)−β/(2β+1).

For all bounded f0 and all k > 0, define

ω̃0[k] = (
ω̃0

1, . . . , ω̃
0
k

)
, ω̃0

j =
∫
Ij

f0(x)qf0(x) dx∫
Ij

qf0(x) dx
;

these are the weights of the projection of f0 on the weighted space L2(qf0). We
then have the following sufficient condition for the BvM to be valid.
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THEOREM 5.1. Consider the autoregressive model (5.1) and the prior (5.2).
Assume that f0 ∈ Cβ , with β > 1/2 and ‖f0‖∞ < L, and assume that πω|k satisfies
for all t > 0 and all M0 > 0

sup
‖ω−ω̃0[k]‖2,r≤M0εn(β)

∣∣∣∣πω|k(ω − tω̃0[k]/
√

n)

πω|k(ω)
− 1

∣∣∣∣ = o(1).(5.3)

Then the posterior distribution of
√

n(ψ(f )− ψ̂) is asymptotically Gaussian with
mean 0 and variance V0, where

ψ̂ = ψ(f0) + 2

n

n∑
i=1

εif0(Yi−1) + op

(
n−1/2)

, V0 = 4‖f0‖2
2,qf0

and the BvM is valid under the distribution associated to f0 and any initial distri-
bution ν on R.

Theorem 5.1 is proved in Section 4 of Castillo and Rousseau [15]. The condi-
tions on the prior (5.2) and (5.3) are satisfied in particular when k ∼ P(λ) and
when given k, the law ω|k is the independent product of k laws U(−M,M).
Theorem 5.1 is an application of the general Theorem 2.1, with An = {fω,k;k ≤
k1kn(β); ‖ω − ω0[k]‖2,r ≤ M0εn(β)} and Assumption A implied by β > 1/2. Con-
dition (5.3) is used to prove condition (2.13).

6. Proofs.

6.1. Proof of Theorem 2.1. Let the set An be as in Assumption A. Set

In := E
[
et

√
n(ψ(η)−ψ(η0))|Yn,An

]
.

For the sake of conciseness, we prove the result in the case where ψ
(2)
0 �= 0 since

the other case is a simpler version of it. Using the LAN expansion (2.3) together
with the expansion (2.4) of the functional ψ , one can write

In =
∫
An

e
√

nt (〈ψ(1)
0 ,η−η0〉L+(1/2)〈ψ(2)

0 (η−η0),η−η0〉L)+�n(η)−�n(η0)+t
√

nr(η,η0) d�(η)∫
An

e−n‖η−η0‖2
L/2+√

nWn(η−η0)+Rn(η,η0) d�(η)
.

Consider, for any real number t , as defined in (2.11),

ηt = η − tψ
(1)
0√
n

− t

2
√

n
ψ

(2)
0 (η − η0) − tψ

(2)
0 wn

2n
.

Then using (2.9)–(2.10) in Assumption A, on An,

�n(ηt ) − �n(η0) − (
�n(η) − �n(η0)

)
= −n

2

[‖ηt − η0‖2
L − ‖η − η0‖2

L

] + √
n〈wn,ηt − η〉L + Rn(ηt , η0)
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− Rn(η, η0) + oP (1)

= −t
〈
wn,ψ

(1)
0 + ψ

(2)
0 wn/(2

√
n)

〉
L − t2

2

∥∥∥∥ψ(1)
0 + ψ

(2)
0 wn

2
√

n

∥∥∥∥
2

L

+ √
nt

〈
ψ

(1)
0 , η − η0

〉
L

+ t
√

n

2

〈
ψ

(2)
0 (η − η0), η − η0

〉
L + Rn(ηt , η0) − Rn(η, η0) + oP (1).

One deduces that on An, from (2.12) in Assumption A,

√
nt

(〈
ψ

(1)
0 , η − η0

〉
L + 1

2

〈
ψ

(2)
0 (η − η0), η − η0

〉
L

)
+ �n(η) − �n(η0)

+ √
ntr(η, η0)

= �n(ηt ) − �n(η0) + t
〈
wn,ψ

(1)
0 + ψ

(2)
0 wn/(2

√
n)

〉
L

+ t2

2

∥∥∥∥ψ(1)
0 + ψ

(2)
0 wn

2
√

n

∥∥∥∥
2

L

+ oP (1).

We can then rewrite In as

In = e
oP (1)+ t2

2 ‖ψ(1)
0 +ψ

(2)
0 wn

2
√

n
‖2
L+t〈wn,ψ

(1)
0 +ψ

(2)
0 wn

2
√

n
〉L

∫
An

e�n(ηt )−�n(η0) d�(η)∫
An

e�n(η)−�n(η0) d�(η)
,

and Theorem 2.1 is proved using condition (2.14), together with the fact that (see
Section 1 of Castillo and Rousseau [15]), convergence of Laplace transforms for
all t in probability implies convergence in distribution in probability.

6.2. Proof of Theorem 4.1. One can define ψ
(1)
0 = ψ̃f0 + c for any constant

c, since the inner product associated to the LAN norm corresponds to re-centered
quantities. In particular, for all η = logf

〈
(ψ̃f0 + c), η − η0

〉
L =

∫
(ψ̃f0 − Pf0ψ̃f0)(η − η0)f0, ‖ψ̃f0 + c‖L = ‖ψ̃f0‖L.

To check Assumption A, let us write

ψ
(1)
0 = ψ̃f0 +

√
n

t
log

(∫ 1

0
eη−(t/

√
n)ψ̃f0 (x) dx

)
,(6.1)

which depends on η but is of the form ψ̃f0 + c (see also Remark 2), and we study√
ntr(η, η0) + Rn(η, η0) − Rn(ηt , η0) using Rivoirard and Rousseau’s [30] calcu-

lations pages 1504–1505. Indeed, writing h = √
n(η − η0) we have

Rn(η, η0) − Rn(ηt , η0) = t〈h, ψ̃f0〉L − t2

2
‖ψ̃f0‖2

L + n logF
[
e−tψ̃f0/

√
n]
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and expanding the last term as in page 1506 of [30] we obtain that

n logF
[
e−tψ̃f0/

√
n] = n log

(
1 − t

n
〈h, ψ̃f0〉L − t√

n
B(f, f0) + t2

2n
‖ψ̃f0‖2

L

+ t2

2n
(F − F0)

(
ψ̃2

f0

) + O
(
n−3/2))

= −t〈h, ψ̃f0〉L − t
√

nB(f, f0) + t2

2
‖ψ̃f0‖2

L

+ O
(‖f − f0‖1 + n−1/2)

= −t〈h, ψ̃f0〉L − t
√

nB(f, f0) + t2

2
‖ψ̃f0‖2

L + o(1)

since |(F − F0)(ψ̃
2
f0

) ≤ ‖ψ̃f0‖2∞‖f − f0‖1 � εn on An. Finally, this implies that√
ntr(η, η0) + Rn(η, η0) − Rn(ηt , η0) = o(1) uniformly over An and Assump-

tion A is satisfied.

6.3. Proof of Theorem 4.2. The first part of the proof consists in establishing
that the posterior distribution on random histograms concentrates (a) given the
number of bins k, around the projection f0,[k] of f0, and (b) globally around f0 in
terms of the Hellinger distance.

More precisely, (a) there exist c,M > 0 such that

P0

[
∃k ≤ n

logn
;�[

f /∈ An,k(M)|Yn, k
]
> e−ck logn

]
= o(1).(6.2)

(b) Suppose f0 ∈ Cβ with 0 < β ≤ 1. If kn(β) = (n/ logn)1/(2β+1) and εn(β) =
kn(β)−β , then for k1,M large enough,

�
[
h(f0, f ) ≤ Mεn(β);k ≤ k1kn(β)|Yn] = 1 + op(1).(6.3)

Both results are new. As (a)–(b) are an intermediate step and concern rates rather
than BvM per se, their proofs are given in Castillo and Rousseau [15].

We now prove that the BvM holds if there exists Kn such that �(Kn|Yn) =
1 + op(1), and for which

sup
k∈Kn

√
n|ψ̂ − ψ̂k| = op(1), sup

k∈Kn

|Vk − V | = op(1),(6.4)

for all ψ(f ) satisfying (4.2) with

sup
k∈Kn

sup
f ∈An,k(M)

r̃(f ;f0) = op(1).(6.5)

Consider first the deterministic k = Kn number of bins case. The study of the
posterior distribution of

√
n(ψ(f ) − ψ̂) is based on a slight modification of the
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proof of Theorem 4.1. Instead of taking the true f0 as basis point for the LAN
expansion, we take instead f0,[k]. This enables to write the main terms in the LAN
expansion completely within Hk .

Let us define ψ̄(k) := ψ[k] − ∫
ψ[k]f0,[k] = ψ̃[k] − ∫

ψ̃[k]f0,[k] and ψ̂k =
ψ(f0,[k]) + 1√

n
Wn(ψ̄(k)). With the same notation as in Section 4, where index-

ation by k means that f0 is replaced by f0,[k] [in ‖ · ‖L,k,Rn,k , etc., where one can
note that for g ∈ Hk , one has Wn,k(g) = Wn(g)],

t
√

n
(
ψ(f ) − ψ̂k

) + �n(f ) − �n(f0,[k])

= −n

2

∥∥∥∥log
f

f0,[k]
− t√

n
ψ̄(k)

∥∥∥∥
2

L,k

+ √
nWn

(
log

f

f0,[k]
− t√

n
ψ̄(k)

)

+ t2

2
‖ψ̄(k)‖2

L,k + t
√

nBn,k + Rn,k(f, f0,[k]).

Let us set ft,k = f e−tψ̄(k)/
√

n/F (e−tψ̄(k)/
√

n). Then, using the same arguments as
in Section 4, together with (6.2) and the fact that

∫
ψ̄(k)f0,[k] = 0,

t
√

n
(
ψ(f ) − ψ̂k

) + �n(f ) − �n(f0,[k])

= t2

2
‖ψ̄(k)‖2

L,k + �n(ft,k) − �n(f0,[k]) + o(1),

so that choosing An,k = {ω ∈ Sk; ‖fω,k − f0[k]‖1 ≤ M
√

k logn/n}, we have

E�[
et

√
n(ψ(f )−ψ̂k)|Yn,An,k

]

= e
(t2/2)‖ψ̄(k)‖2

L,k+o(1) ×
∫
An,k

e�n(ft,k)−�n(f0[k]) d�k(f )∫
An,k

e�n(f )−�n(f0[k]) d�k(f )
,

uniformly over k = o(n/ logn). Within each model Hk , since f = fω,k , we can
express ft,k = k

∑k
j=1 ζj1Ij

, with

ζj = ωjγ
−1
j∑k

j=1 ωjγ
−1
j

,(6.6)

where we have set, for 1 ≤ j ≤ k, γj = etψ̄j /
√

n, and ψ̄j := k
∫
Ij

ψ̄(k). Denote

Sγ −1(ω) = ∑k
j=1 ωjγ

−1
j . Note that (6.6) implies Sγ −1(ω) = Sγ (ζ )−1. So,

�k(ω)

�k(ζ )
=

k∏
j=1

et(αj,k−1)ψ̄j /
√

nSγ (ζ )
−∑k

j=1(αj,k−1)
.
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Let � be the Jacobian of the change of variable computed in Lemma 5 of the
supplemental article (Castillo and Rousseau [15]). Over the set An,k , it holds

d�k(ω)

=
k∏

j=1

et(αj,k−1)ψ̄j /
√

nSγ (ζ )
−∑k

j=1(αj,k−1)
�(ζ ) d�k(ζ )

= Sγ (ζ )
−∑k

j=1 αj,k e
t
∑k

j=1 αj,kψ̄j /
√

n
d�k(ζ )

= e
t
∑k

j=1 αj,kψ̄j /
√

n
(

1 − t√
n

∫ 1

0
ψ̄(k)(f − f0) + O

(
n−1))∑k

j=1 αj,k

d�k(ζ ),

where we have used that

Sγ −1(ω) =
∫ 1

0
e−tψ̄(k)/

√
nf = 1 − t√

n

∫ 1

0
ψ̄(k)(f − f0) + O

(
n−1)

.

Moreover, if ‖ω − ω0‖1 ≤ M
√

k logn/
√

n,

∥∥ζ − ω0∥∥
1 ≤ M

√
k logn/

√
n + 2|t |‖ψ̃‖∞√

n
≤ (M + 1)

√
k logn√

n

and vice versa. Hence, choosing M large enough (independent of k) such that

�
[∥∥ω − ω0∥∥

1 ≤ (M − 1)
√

k logn/n|Yn, k
] = 1 + op(1)

implies that if
∑k

j=1 αj = o(
√

n), noting ‖ψ̄(k)‖L,k = ‖ψ̃[k]‖L,

E�[
et

√
n(ψ(f )−ψ̂k)|Yn,An,k

] = et2‖ψ̃[k]‖2
L/2(

1 + o(1)
)
.(6.7)

The last estimate is for the restricted distribution �[·|Yn,An,k], but (6.2) implies
that the unrestricted version also follows. Since ‖ψ̃‖2

L is the efficiency bound for
estimating ψ in the density model, (6.4) follows.

Now we turn to the random k case. The previous proof can be reproduced k by k,
that is, one decomposes the posterior �[·|Yn,Bn], for Bn = ⋃

1≤k≤n An,k ∩ {f =
fω,k, k ∈ Kn}, into the mixture of the laws �[·|Yn,Bn, k] with weights �[k|Yn].
Combining the assumption on Kn and (6.2) yields �[Bn|Yn] = 1 + op(1). Now
notice that in the present context (6.7) becomes

E�[
et

√
n(ψ(f )−ψ̂k)|Yn,Bn, k

] = E�[
et

√
n(ψ(f )−ψ̂k)|Yn,An,k, k

]
= et2‖ψ̃[k]‖2

L/2(
1 + o(1)

)
,

where it is important to note that the o(1) is uniform in k. This follows from the
fact that the proof in the deterministic case holds for any given k less than n and



2380 I. CASTILLO AND J. ROUSSEAU

any dependence in k has been made explicit in that proof. Thus,

E�[
et

√
n(ψ(f )−ψ̂)|Yn,Bn

] = ∑
k∈Kn

E�[
et

√
n(ψ(f )−ψ̂k)|Yn,An,k, k

]
�

[
k|Yn]

= (
1 + o(1)

) ∑
k∈Kn

et2Vk/2+t
√

n(ψ̂k−ψ̂)�
[
k|Yn]

.

Using (6.4) together with the continuous mapping theorem for the exponential
function yields that the last display converges in probability to et2V/2 as n → ∞,
which leads to the BvM theorem.

We apply this to the four examples. First, in the case of Example 4.1 with de-
terministic k = Kn, we have by definition that r̃(f, f0) = 0 and

√
n(ψ̂Kn − ψ̂) =

bn,Kn + op(1) with bn,Kn = O(
√

nK
−β−γ
n ) = o(1) if β + γ > 1, when a ∈ Cγ . On

the other hand, if a(x) = 1x≤z, for all β > 0,

|bn,Kn | �
√

n

∣∣∣∣
∫ z

�Knz�/Kn

(
f0(x) − kw0�Knz�

)
dx

∣∣∣∣ = O
(√

nK−(β+1)
n

) = o(1).

We now verify (6.4) together with (6.5) for Examples 4.2, 4.3 and 4.4. We
present the proof in the case Example 4.2, since the other two are treated simi-
larly. Set, in the random k case

Kn = {
k ∈ [

1, k1kn(β)
]
,∃f ∈ H1

k, h(f, f0) ≤ Mεn(β)
}
,

for some k1,M large enough so that �[Kn|Yn] = 1 + op(1) from (6.2), with
εn(β) = (n/ logn)−β/(2β+1). For β > 1/2, note that kε2

n,k � kεn(β)2 = o(1), uni-
formly over k � kn(β). In the deterministic case, simply set Kn = {Kn}.

First, observe that for k ∈ Kn, the elements of the set {f ∈ H1
k, h(f, f0) ≤

Mεn(β)} are bounded away from 0 and ∞. Indeed, since this is true for f0, writ-
ing the Hellinger distance as a sum over the various bins leads to

√
f (x) ≥ √

c0 −
εn,k

√
k which implies that f (x) ≥ c0/2 for n large enough, since kε2

n = o(1).
Similarly, ‖f ‖∞ ≤ 2‖f0‖∞ for n large. Now, by writing log(f/f0) = 1 + (f −
f0)/f0 + ρ(f − f0), and using that f/f0 is bounded away from 0 and ∞, one
easily checks that |r̃(f, f0)| in Example 4.2 is bounded from above by a multiple
of

∫ 1
0 (f − f0)

2, which itself is controlled by h(f,f0)
2 for f,f0 as before. Also√

nε2
n,k = o(1) when β > 1/2, which implies (6.5). It is easy to adapt the above

computations to the case where k = Kn = O(
√

n/(logn)2).
Next, we check condition (6.4). Since ψ̃ = logf0 − ψ(f0), under the determin-

istic k-prior with k = Kn = �n1/2(logn)−2� and β > 1/2,∣∣∣∣
∫ 1

0
ψ̃(f0 − f0[k])

∣∣∣∣ =
∣∣∣∣
∫ 1

0
(ψ̃ − ψ̃[k])(f0 − f0[k])

∣∣∣∣ � h2(f0, f0[k]) = o(1/
√

n).

In that case, the posterior distribution of
√

n(ψ(f ) − ψ̂) is asymptotically Gaus-
sian with mean 0 and variance ‖ψ̃‖2

L, so the BvM theorem is valid.
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Under the random k-prior, recall from the reasoning above that any f with
h(f,f0) ≤ Mεn(β) is bounded from below and above, so the Hellinger and L2-
distances considered below are comparable. For a given k ∈ Kn, by definition there
exists f ∗

k ∈ H1
k with h(f0, f

∗
k ) ≤ Mεn(β), so using (6.3),

h2(f0, f0[k]) �
∫ 1

0
(f0 − f0[k])2(x) dx ≤

∫ 1

0

(
f0 − f ∗

k

)2
(x) dx � h2(

f0, f
∗
k

)
� ε2

n(β).

This implies, using the same bound as in the deterministic-k case,

F0
(
(ψ̃[k] − ψ̃)2)

� h(f0, f0[k])2 = O
(
ε2
n(β)

)
,

and that |F0(ψ̃
2[k])−F0(ψ̃

2)| = o(1), uniformly over k ∈ Kn. To control the empir-
ical process part of (6.4), that is the second part of (4.10), one uses, for example,
Lemma 19.33 in [32], which provides an upper-bound for the maximum, together
with the last display. So, for random k, the BvM theorem is satisfied if β > 1/2.

SUPPLEMENTARY MATERIAL

Supplement to “A Bernstein–von Mises theorem for smooth functionals in
semiparametric models” (DOI: 10.1214/15-AOS1336SUPP; .pdf). In the supple-
mentary material, we state and prove several technical results used in the paper and
provide the remaining proofs.
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