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MIXED GAUSSIAN PROCESSES: A FILTERING APPROACH

BY CHUNHAO CAI, PAVEL CHIGANSKY1 AND MARINA KLEPTSYNA2

Nankai University, The Hebrew University of Jerusalem and Université du Maine

This paper presents a new approach to the analysis of mixed processes

Xt = Bt + Gt , t ∈ [0, T ],
where Bt is a Brownian motion and Gt is an independent centered Gaussian
process. We obtain a new canonical innovation representation of X, using
linear filtering theory. When the kernel

K(s, t) = ∂2

∂s ∂t
EGtGs, s �= t

has a weak singularity on the diagonal, our results generalize the classical
innovation formulas beyond the square integrable setting. For kernels with
stronger singularity, our approach is applicable to processes with additional
“fractional” structure, including the mixed fractional Brownian motion from
mathematical finance. We show how previously-known measure equivalence
relations and semimartingale properties follow from our canonical represen-
tation in a unified way, and complement them with new formulas for Radon–
Nikodym densities.

1. Introduction. In this paper, we present a new perspective on mixed pro-
cesses of the form

Xt = Bt + Gt, t ∈ [0, T ], T > 0,(1.1)

where B = (Bt ) is a Brownian motion and G = (Gt) is an independent Gaussian
process. Such mixtures have been the subject of much research in the past, due to
their importance in engineering applications (see, e.g., the survey [18]), and, more
recently, have reemerged in mathematical finance in the context of option pricing.

The renewed interest was triggered by Cheridito’s paper [5], in which the author
considered mixed fractional Brownian motion (fBm)

Xt = Bt + BH
t , t ∈ [0, T ],(1.2)

where BH = (BH
t ) is fBm with the Hurst exponent H ∈ (0,1], that is, the centered

Gaussian process with covariance function

R(s, t) := EBH
t BH

s = 1
2

(
t2H + s2H − |t − s|2H )

, s, t ∈ [0, T ].(1.3)
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A curious change in properties of X was shown to occur at H = 3
4 , where it be-

came apparent that X is a semimartingale in its own filtration if, and only if, either
H = 1

2 or H ∈ (3
4 ,1]. Moreover, in the latter case, the probability measure μX ,

induced by X on its paths space, is equivalent to the Wiener measure μB .
Since BH is not a semimartingale on its own, unless H = 1

2 or H = 1, this
assertion means that BH can be “regularized” up to a semimartingale by adding
to it an independent Brownian perturbation. In [5], this fact is discussed in the
context of arbitrage opportunities on nonsemimartingale markets (see also [6]).
A comprehensive survey of further related developments in finance can be found
in [3].

Besides being of interest to the finance community, the result in [5] also led to
a number of elegant generalizations and alternative proofs [2, 31, 32]. In addition,
as pointed out in [7], the equivalence μX ∼ μB follows from the general theory of
Shepp [28], Hitsuda [14] and Kailath [17], which, moreover, gives a formula for
the density dμX/dμB .

A complementary result, obtained in [1] (see Proposition 6.5) and [31], asserts
that μX ∼ μBH

if, and only if, H < 1
4 . Both proofs are based on the spectral theory

of processes with stationary increments and the corresponding density is given in
[31] in terms of certain reproducing kernels. However, as the author points out, a
more explicit expression might be hard to obtain using this method.

The main contribution of this paper is a novel approach to the analysis of mix-
tures such as (1.1), based on the filtering theory of Gaussian processes. The core
of our method is a new canonical innovation representation of X. Our construction
reveals a new interesting connection between the probabilistic properties of X and
the structure of solutions of integral equations with weakly singular kernels.

In the context of mixed fBm (1.2), all the aforementioned properties can be
deduced from this representation in a unified manner for all values of H , due to
an apposite choice of the fundamental martingale. Moreover, it yields the missing
density dμX/dμBH

for H < 1
4 , as well as Girsanov-type formulas for the density

of μX with respect to measures induced by stochastic shifts of X.
The precise formulation of our results is given in the next section. Section 3

contains auxiliary results, including a relevant theory of integral equations and
frequently used formulas from stochastic calculus with respect to fBm. The proofs
of the main theorems appear in Sections 5–7, and in Section 8 we show how our
method applies to the Riemann–Liouville process.

2. The main results.

2.1. A background. Let us briefly recall the essential elements of the linear
innovation theory [13, 27]. A Gaussian process admits an innovation represen-
tation if it can be generated by a linear causal transformation of N orthogonal
processes with independent increments. Such a representation is called canonical,
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if the transformation is also causally invertible. A well-known result of Hida [12]
and Cramer [8] asserts that under mild regularity conditions any Gaussian process
admits a canonical innovation representation.

Certain properties of canonical representations, collectively referred to as type,
are the unique attributes of the process. This includes the number N of innova-
tion components, called multiplicity, which can be finite or infinite. For example,
stationary processes have unit multiplicity, that is, N = 1, and the corresponding
innovation representation can be found by solving the spectral factorization prob-
lem. Processes which induce equivalent measures on their paths space, have the
same innovation type (see [19]).

Let us now review in greater detail the results directly relevant to the mixed
processes of the form (1.1). A general criteria for equivalence, obtained by Shepp
in [28], implies that μX ∼ μB if and only if

EGtGs =
∫ s

0

∫ t

0
K(u,v) dudv,(2.1)

with a kernel K ∈ L2([0, T ]2). The corresponding formula for the density
dμX/dμB , given in [28], involves the Carleman–Fredholm determinant and re-
solvent kernel of the covariance operator, associated with K .

While Shepp’s result gives a complete answer to the question of equivalence, it
does not immediately reveal the innovation structure of the process X. The miss-
ing link was found by Kailath in [17], who noticed the relevance of factorization
theory of Fredholm operators in Hilbert spaces, developed by Gohberg and Krein
at around the same time. Using the resolvent identity (7.10) from [10], Shepp’s
density formula is rewritten in [17] in the form:

dμX

dμB
(X) = exp

(
−

∫ T

0
ϕt(X)dXt − 1

2

∫ T

0
ϕ2

t (X)dt

)
,

where ϕt(X) = ∫ t
0 L(s, t) dXs with L ∈ L2([0, T ]2) being the unique solution of

the Wiener–Hopf integral equation

L(s, t) +
∫ t

0
L(r, t)K(r, s) dr = −K(s, t), 0 ≤ s ≤ t ≤ T .(2.2)

It follows by Girsanov’s theorem that the process

Bt = Xt +
∫ t

0

∫ s

0
L(r, s) dXr ds(2.3)

is a Brownian motion. Moreover, it is shown in [17] that FX
t =FB

t and

Xt = Bt −
∫ t

0

∫ s

0
�(r, s) dBr ds,(2.4)

where � ∈ L2([0, T ]2) solves the Volterra equation

�(s, t) +
∫ t

s
�(r, t)L(s, r) dr = L(s, t), 0 ≤ s ≤ t ≤ T .(2.5)
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In particular, it follows that X has unit multiplicity.
A different construction of canonical representation was given by Hitsuda in

[14], where μX ∼ μB is shown to hold if and only if X can be represented
in the form (2.4) with some Brownian motion B and some Volterra kernel � ∈
L2([0, T ]2). The representation is proved to be canonical and the formula (2.3)
is obtained. Though kernels � and L are characterized in [14] in a different way,
it can be shown that, in fact, both representations coincide. A detailed discussion
about the links between all the aforementioned results can be found in [7].

2.2. A new canonical representation. The canonical representation (2.3) and
(2.4) requires that the kernel K belongs to L2([0, T ]2). On the other hand, it is
well known that X may have multiplicity greater than one if, for example, K is
only integrable on [0, T ]2. This can be seen in a simple example.

EXAMPLE 2.1. Consider the process

Xt = Bt + ξ

∫ t

0

1√|1 − s| ds,

where ξ ∼ N(0,1) is independent of B . It is easy to see that ξ can be recovered
precisely from FX

t for all t ≥ 1. Therefore, the filtration FX
t is discontinuous at

t = 1, with FX
t− � FX

t = FB
t ∨ σ {ξ} for all t ≥ 1. By uniqueness of multiplicity,

X cannot be innovated by a single Brownian motion on any interval [0, T ] with
T > 1. In this case, equation (2.2) has no solution on [0, T ], even though K ∈
L1([0, T ]2). In fact, discontinuity of filtration is not essential and it is possible to
construct X with arbitrary multiplicity and continuous natural filtration (Example 2
on page 266 in [22] and Example D on page 72 in [13]).

The following theorem shows that X has unit multiplicity under fairly general
conditions, beyond the L2([0, T ]2) case, and gives the corresponding canonical
representation.

THEOREM 2.2. Let X be given by (1.1), where G satisfies (2.1) with∣∣K(s, t)
∣∣ ≤ C

(
1 + |s − t |−α)

, 0 ≤ α < 1,(2.6)

for some constant C. Define φs = 1 − ∫ s
0 L(r, s) dr , where L(s, t) is the solution

of equation (2.2). Then the process

Bt = E

(∫ t

0
φs dBs

∣∣∣FX
t

)
,(2.7)

is a Brownian motion, satisfying

Bt =
∫ t

0
q(s, t) dXs,(2.8)



3036 C. CAI, P. CHIGANSKY AND M. KLEPTSYNA

with q(s, t) being the unique solution of the Wiener–Hopf equation:

q(s, t) +
∫ t

0
q(r, t)K(r, s) dr = φ(s), 0 ≤ s, t ≤ T .(2.9)

The representation

Xt =
∫ t

0
q̂(s, t) dBs(2.10)

with q̂(s, t) = − ∂
∂s

∫ t
s q(r, s) dr , is canonical, that is, FX

t = FB
t .

REMARK 2.3. 1. As can be seen from the proof in Section 4, the assertion of
this theorem remains true when K ∈ L2([0, T ]2), without assuming the particular
structure of (2.6). Moreover, ∂

∂t
q(s, t) = L(s, t) and, therefore,

Bt =
∫ t

0
q(s, t) dXs = Xt +

∫ t

0

∫ t

s
L(s, r) dr dXs.

When K is square integrable, so is the solution L of (2.2) and the order of inte-
gration in the right-hand side can be interchanged, recovering the formula (2.3).
Moreover, in this case q̂(t, t) = q(t, t) = 1 and

q̂(s, t) = 1 −
∫ t

s
L(r, s) dr

and hence

Xt =
∫ t

0
q̂(s, t) dBs = Bt −

∫ t

0

∫ t

s
L(r, s) dr dBs

(2.11)

= Bt −
∫ t

0

∫ r

0
L(r, s) dBs dr.

Comparing this with (2.4) reveals a curious relation between the solutions of
the Volterra equation (2.5) and the Wiener–Hopf equation (2.2): the solution of the
former on the sub-diagonal coincides with the solution of the latter on the super-
diagonal, that is, �(s, t) = L(t, s) for s ≤ t . In other words, both the direct and the
inverse transformation between X and B can be expressed in terms of the single
Wiener–Hopf equation (2.2), whose solution is extended to the whole rectangle
[0, T ]2.

2. A two stage procedure can be used to construct a canonical representation for
the process

Xt = Bt + Gt + G
†
t ,

where G† is an independent centered Gaussian process, satisfying (2.1) with K† ∈
L2([0, T ]2). We can first generate an intermediate process X by applying (2.8):

Xt =
∫ t

0
q(s, t) dXs = Bt +

∫ t

0
q(s, t) dG†

s .
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It can readily be seen that the process, defined by the last term, satisfies (2.1) with
a square integrable kernel and, therefore, can be represented canonically in the
standard way.

3. When K ∈ L2([0, T ]2), it follows from the results of Shepp and Hitsuda, that
the kernel �(s, t) also solves the Riccati–Volterra equation

�(s, t) = K(s, t) −
∫ t∧s

0
�(s, r)�(t, r) dr.(2.12)

If Gt = ∫ t
0 γs ds with a Gaussian process γ , then the innovating Brownian motion

reduces to

Bt = Xt −
∫ t

0
πs(γ ) ds,(2.13)

with πt(γ ) = E(γt |FX
t ) = ∫ t

0 �(s, t) dBs . In this form, due to Kailath [16], the
canonical representation plays an important role in control and filtering theory,
which goes beyond the linear setting (see [11]). If furthermore, γ is the Gauss–
Markov process, (2.12) reduces to the familiar Riccati equation from the Kalman–
Bucy filter.

Note that in our approach conditioning on FX
t is used in an essentially differ-

ent way than in (2.13): in the lack of derivative of Gt , the innovation Brownian
motion is produced by projecting a specially designed martingale (2.7). Somewhat
unexpectedly, equality of filtrations can be established in this case, using only the
basic theory of integral equations, which needs nothing more than weak singularity
of K .

4. Condition (2.6) is borrowed from the classical theory of integral equations
(see Section 3.1 below). It is satisfied by some interesting processes, related to the
fBm. One example is bifractional Brownian motion, introduced in [15], which is
a centered Gaussian process G with covariance function

EGtGs = 1

2K

((
t2H + s2H )K − |t − s|2HK)

,

where H ∈ (0,1) and K ∈ (0,1]. The representation (2.1) holds for HK > 1
2 with

K(s, t) = C1(H,K)
(
t2H + s2H )K−2

s2H−1t2H−1

(2.14)
+ C2(H,K)|t − s|2HK−2, t �= s,

where C1(H,K) = K(K−1)(2H)2

2K < 0 and C2(H,K) = 2HK(2HK−1)

2K > 0. Since

HK > 1
2 implies H > 1

2 and 2HK − 2 ∈ (−1,0),(
t2H + s2H )K−2

s2H−1t2H−1 ≤ (s ∧ t)2H−1(s ∨ t)2H(K−1)−1

=
(

s ∧ t

s ∨ t

)2H−1

(s ∨ t)2HK−2 ≤ |s − t |2HK−2
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and thus the kernel (2.14) satisfies (2.6) with α := 2HK − 2.
Other examples are the sub-fractional Brownian motion from [4] and the

Riemann–Liouville process, which can be fitted in by a similar calculation.

Let us now return to the mixed fBm (1.2). For H > 1
2 , BH satisfies (2.1) with

KH(s, t) = ∂2

∂s ∂t
EBH

t BH
s = H(2H − 1)|s − t |2H−2.(2.15)

For H > 3
4 , this kernel is square integrable and, therefore, the mixed fBm X =

B + BH can be represented canonically by (2.3)–(2.4). For H ∈ (1
2 , 3

4 ], KH does
not belong to L2([0, T ]2), but still satisfies the assumptions of Theorem 2.2. There-
fore, its canonical representation is given by (2.8) and (2.10) for all values of H in
(1

2 ,1].
For H < 1

2 , the kernel KH has stronger singularity than admitted by (2.6) and
the covariance of BH fails to satisfy (2.1). Nevertheless, quite remarkably (see
Example 2.6), the mixed fBm can still be innovated canonically by a different
martingale [cf. (2.7)].

THEOREM 2.4. (i) Let X be defined by (1.2). The martingale Mt = E(Bt |FX
t )

admits the representation

Mt =
∫ t

0
g(s, t) dXs, 〈M〉t =

∫ t

0
g(s, t) ds,(2.16)

where g(s, t) is the unique solution of the integro-differential equation

g(s, t) + ∂

∂s

∫ t

0
g(r, t)

∂

∂r
R(r, s) dr = 1, 0 < s, t ≤ T ,(2.17)

with R(s, t) defined in (1.3).
(ii) The quadratic variation of M is given by

d

dt
〈M〉t = g2(t, t) + 2 − 2H

λH

(
t1/2−H (�g)(t, t)

)2
> 0, t ∈ [0, T ],(2.18)

where λH is the constant defined in (3.13) and � is the operator, defined in (3.14)
below. The innovation representation

Xt =
∫ t

0
ĝ(s, t) dMs,(2.19)

with

ĝ(s, t) = 1 − d

d〈M〉s
∫ t

0
g(r, s) dr,(2.20)

is canonical, that is, FX
t = FM

t for all t ∈ [0, T ].
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REMARK 2.5. 1. For H > 1
2 the kernel KH in (2.15) is integrable and, there-

fore, the derivative in (2.17) can be interchanged with integration, so that it takes
the form of the Wiener–Hopf integral equation [cf. (2.9)]

g(s, t) +
∫ t

0
g(r, t)KH(r, s) dr = 1, 0 ≤ s, t ≤ T .(2.21)

In this case, the second term in (2.18) vanishes [see (3.14) below] and (2.20) be-
comes

ĝ(s, t) = 1 − 1

g(s, s)

∫ t

0

∂/∂sg(r, s)

g(s, s)
dr = 1 − 1

g(s, s)

∫ t

0
L(r, s) dr.(2.22)

The last equality holds, since ∂/∂sg(r,s)
g(s,s)

turns to be the solution of equation (2.2).

Differentiating (2.22) yields ∂
∂t

ĝ(s, t) = −L(t,s)
g(s,s)

, and we obtain

Xt =
∫ t

0
ĝ(s, t) dMs =

∫ t

0
ĝ(s, s) dMs +

∫ t

0

∫ t

s

∂

∂τ
ĝ(s, τ ) dτ dMs

=
∫ t

0
ĝ(s, s) dMs −

∫ t

0

∫ t

s

L(τ, s)

g(s, s)
dτ dMs.

A calculation shows that ĝ(s, s) = 1/g(s, s) and, therefore,

Xt = Bt −
∫ t

0

∫ t

s
L(τ, s) dτ dBs,

where Bt = ∫ t
0

1
g(s,s)

dMs , is a Brownian motion. Similar calculations give
[cf. (2.11)]

Bt = Xt +
∫ t

0

∫ t

s
L(s, r) dr dXs,

and hence we are back to the innovation representation from Theorem 2.2.
2. Natural, as it may seem, the choice of the martingale Mt = E(Bt |FX

t ) is not
at all obvious and, in fact, it fails to innovate X in general, as demonstrated in the
following example.

EXAMPLE 2.6. Let m(t) = 61/3 ∧ t and ξ(t) = ηm(t), where the random vari-
able η ∼ N(0,1) is independent of B . The martingale Mt = E(Bt |FX

t ) still satis-
fies (2.16) where g(s, t) solves the Wiener–Hopf equation (2.21), with KH(s, t)

replaced by K(s, t) = m(s)m(t). Its quadratic variation is 〈M〉t = ∫ t
0 g2(s, s) ds,

as in Theorem 2.4 for H > 1
2 .

For the degenerate kernel K(s, t) = m(s)m(t), equation (2.21) can be solved
explicitly:

g(s, t) = 1 − m(s)

∫ t
0 m(r) dr

1 + ∫ t
0 m2(r) dr

, 0 ≤ s ≤ t ≤ T ,
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and an easy calculation shows that g(t, t) = 0 for all t ≥ 61/3. On the other
hand, since K ∈ L2([0, T ]2) the representation (2.3)–(2.4) is canonical and there-
fore X cannot be innovated by M , that is, FM

t � FX
t for t ≥ 61/3. Incidentally,

{Mt, t ∈ [0, T ]} is a sufficient statistic in the problem of estimating θ ∈ R from the
observations of {θt + Xt, t ∈ [0, T ]}.

The equality FX
t = FM

t in Theorem 2.4 is closely related to Krein’s method of
solving integral equations with difference kernels (see Theorem 3.3 below). Krein
showed that the solution of the Wiener–Hopf equation with a unit forcing function
such as (2.21) does not vanish on the diagonal and that it can be used to express
solutions to this equation with an arbitrary right-hand side. Remarkably, this prop-
erty remains true for kernels with a somewhat more general structure (Lemma 3.6),
arising in the case of mixed fBm. Thus, Theorem 2.4 gives a probabilistic inter-
pretation of the nondegeneracy of Krein’s solutions in terms of the equality of
filtrations.

3. For H < 1
2 , the kernel KH in (2.15) has a stronger singularity and, con-

sequently, the derivative and integration in equation (2.17) are no longer inter-
changeable and the integral equation (2.21) makes no sense. Nevertheless, (2.17)
can still be solved by reduction to a different weakly singular integral equation,
using tools from fractional calculus. Moreover, it turns out that, while the first
term in (2.18) vanishes in this case, the second term remains strictly positive for
all t ∈ [0, T ] and, consequently, the martingale M generates the same filtration as
X. Martingales with such property are sometimes referred to as fundamental in
fBm literature (see, e.g., [24]), playing the central role in related statistical prob-
lems.

Construction of a canonical representation for more general mixed Gaussian
processes of the form (1.1), beyond the condition (2.6), seems to be quite a deli-
cate problem, especially in view of Example 2.1. Our approach remains applicable
to other processes of “fractional” type. One example is the Riemann–Liouville
process (see [23]):

V H
t = 2H

∫ t

0
(t − s)H−1/2 dVs,(2.23)

where V is a Brownian motion. While many properties of V H are similar to those
of BH , there are some essential differences, at least from the standpoint of the
problems under consideration.

First, the increments of V H are not stationary, and hence the equivalence of
X = B + V H and V H for H < 1

4 , cannot be deduced by the spectral technique,
used in [1] and [31]. Second, for H < 1

2 the first partial derivative ∂/∂sEV H
t V H

s

already has a nonintegrable singularity of the diagonal and consequently, equa-
tion (2.17) makes sense only if the inner derivative is moved to the solution itself.
Further details are referred to Section 8.
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2.3. Equivalence relations and density formulas.

2.3.1. The mixed fBm. As discussed in the Introduction, our interest in mixed
fBm was motivated by the equivalence relations, discovered in [5] and [31]. We
will show how these results can be derived from the canonical representation
of Theorem 2.4 and, in addition, complement them with a new formula for the
Radon–Nikodym density in the case H < 1

4 .

THEOREM 2.7. (i) The process X defined in (1.2) is a semimartingale in its
own filtration if and only if H ∈ {1

2} ∪ (3
4 ,1]. For H ∈ (3

4 ,1], X is a diffusion type
process

Xt = Bt −
∫ t

0
ϕs(X)ds, t ∈ [0, T ],

where B is a Brownian motion with FB
t = FX

t , ϕt(X) = ∫ t
0 L(s, t) dXs and

L(s, t) := ∂

∂t
g(s, t)

/√
d

dt
〈M〉t .

The measures μX and μB are equivalent, if and only if H ∈ (3
4 ,1], and

dμX

dμB
(X) = exp

{
−

∫ T

0
ϕt(X)dXt − 1

2

∫ T

0
ϕ2

t (X)dt

}
.

(ii) For H ∈ (0, 1
4), X is a fractional diffusion type process

Xt = B
H

t −
∫ t

0
ρ(s, t)ϕs(X)ds,(2.24)

where B
H

is fBm with FB
H

t = FX
t , ϕt(X) = ∫ t

0 L(s, t) dXs and

L(s, t) := ∂

∂t
g(s, t)

/√
d

dt
〈M〉t − ∂

∂t
ρ̃(s, t),

with the kernels ρ(s, t) and ρ̃(s, t) are defined in (3.20) below. The measures μX

and μBH
are equivalent if and only if H ∈ (0, 1

4) and

dμX

dμBH
(X) = exp

{
−

∫ T

0
ϕt(X)dX̃t − 1

2

∫ T

0
ϕ2

t (X)dt

}
,(2.25)

where X̃t = ∫ t
0 ρ̃(s, t) dXs .

REMARK 2.8. 1. The density formulas in both cases are given in terms of
solutions of certain integral equations, rather than reproducing kernels as in [31].
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Work in progress indicates that in some statistical applications, such as estimat-
ing H > 3

4 from the sample XT = {Xt, t ∈ [0, T ]}, integral equations are a more
manageable alternative.

2. A similar result holds for the mixed Riemann–Liouville process X = B +V H

with V H defined in (2.23). The precise details appear in Section 8 below.

2.3.2. Mixed processes with drift. The canonical representation also yields
Girsanov’s-type formulas, useful in the likelihood based statistical inference. Con-
sider the process

Yt =
∫ t

0
ξs ds + Xt, t ∈ [0, T ],(2.26)

where X is defined in (1.2) and ξ = (ξt ) is a process with continuous paths, sat-
isfying E

∫ T
0 |ξt |dt < ∞. Assume that ξ is adapted to a filtration G = (Gt ), with

respect to which M , introduced in Theorem 2.4, is a martingale.
The choice of the filtration G can vary in different applications. For example, in

filtering problems ξ plays the role of unobserved state process and X is interpreted
as the observation noise. If the state process and the noise are independent, then
the assumption holds with Gt := F ξ

t ∨FX
t .

If ξt is a function of Yt , then (2.26) becomes a stochastic differential equation
with respect to the mixed fBm X. In this case, ξ is adapted to FX

t itself, and hence
the natural choice is Gt := FX

t . For example, ξt := aYt with a ∈ R corresponds to
the mixed fractional Ornstein–Uhlenbeck process

Yt = a

∫ t

0
Ys ds + Xt, t ∈ [0, T ],

with the drift parameter a.
Theorem 2.4 yields a formula for the density of μY with respect to μX:

COROLLARY 2.9. The process Y admits the representation

Yt =
∫ t

0
ĝ(s, t) dZs(2.27)

with ĝ(s, t) defined in (2.20), where

Zt =
∫ t

0
g(s, t) dYs, t ∈ [0, T ]

is a G-semimartingale with decomposition

Zt = Mt +
∫ t

0
�(s) d〈M〉s(2.28)

and

�(t) = d

d〈M〉t
∫ t

0
g(s, t)ξs ds.(2.29)
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In particular, FY
t = FZ

t , for all t ∈ [0, T ] and, if

E exp
{
−

∫ T

0
�(t) dMt − 1

2

∫ T

0
�2(t) d〈M〉t

}
= 1,

then μX ∼ μY and

dμY

dμX
(Y ) = exp

{∫ T

0
�̂(t) dZt − 1

2

∫ T

0
�̂2(t) d〈M〉t

}
,(2.30)

where �̂(t) = E(�(t)|FY
t ).

In the setting of Theorem 2.2, we have the following analog.

COROLLARY 2.10. Let Y be the process in (2.26), where X is defined in (1.1)
and satisfies the assumptions of Theorem 2.2. Then Y admits the representation

Yt =
∫ t

0
q̂(s, t) dZs,

where the process Zt = ∫ t
0 q(s, t) dYs satisfies

Zt = Bt +
∫ t

0
�(s) ds,

with �(s) = ξs + ∫ s
0 L(u, s)ξu du. In particular, FY

t = FZ
t , for all t ∈ [0, T ] and,

if

E exp
{
−

∫ T

0
�(t) dBt − 1

2

∫ T

0
�2(t) dt

}
= 1,

then μX ∼ μY and

dμY

dμX
(Y ) = exp

{∫ T

0
�̂(t) dZt − 1

2

∫ T

0
�̂2(t) dt

}
,

where �̂(t) = E(�(t)|FY
t ).

3. Notation and auxiliary results.

3.1. Weakly singular integral equations. In this section, we review terminol-
ogy and basic theory of integral equations, relevant to our problem. We will be
concerned with the Wiener–Hopf equations on the finite interval [0, T ], T < ∞

u(s, t) +
∫ t

0
u(r, t)K(r, s) dr = f (s, t), 0 < s, t ≤ T ,(3.1)

where the kernel K : [0, T ]2 �→ R and the forcing function f : [0, T ]2 �→ R are
given.
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Note that the values of u(s, t) on the sub-diagonal {0 < s < t ≤ T } determine
u(s, t) on the super-diagonal. Hence, the problem of solving (3.1) reduces to solv-
ing it on the sub-diagonal {0 < s < t} for all t ∈ [0, T ]. In this regard, (3.1) can be
interpreted as an evolution equation in the second (forward) variable. Let us stress,
however, that we will consider the solution u as a function on [0, T ]2.

For a fixed t ∈ (0, T ], the restriction of (3.1) to the sub-diagonal:

u(s, t) +
∫ t

0
u(r, t)K(r, s) dr = f (s, t), 0 < s < t,(3.2)

is the Fredholm equation of the second kind, whose solvability is very well-known
under various conditions (see, e.g., [20]).

In this paper, we will consider weakly singular symmetric nonnegative definite
kernels satisfying (2.6). Iterates of K are denoted by K(m):

K(1)(s, t) = K(s, t),

K(m)(s, t) =
∫ T

0
K(m−1)(s, r)K(r, t) dr, m = 2,3, . . . .

Recall that for 0 < α,β < 1

∫ T

0
|s − r|−α|r − t |−β dr ≤

⎧⎪⎪⎨⎪⎪⎩
C1|s − t |1−α−β, α + β > 1,

C2 log
1

|s − t | + C3, α + β = 1,

C4, α + β < 1,

where Ci’s are constants. Therefore, singularity improves with iterations and even-
tually disappears.

For weakly singular kernels, equation (3.2) is uniquely solvable in L1([0, t]),
provided f (·, t) ∈ L1([0, t]). If f (·, t) is bounded on [0, t], so is the solution
u(·, t). If the kernel K is continuous outside the diagonal and f (·, t) ∈ C([0, t]),
the solution u(·, t) is continuous on [0, t], but typically its derivative has discon-
tinuities at the end points of the interval. The comprehensive accounts of these
results can be found in [20, 30] and [29].

The following lemma shows that the solution of (3.1) has at most the same type
of singularity as the forcing function.

LEMMA 3.1. Assume that |f (s, t)| ≤ c|s − t |−β with constants c and β ∈
[0,1), then the solution of (3.2) satisfies∣∣u(s, t)

∣∣ ≤ C|s − t |−β, s, t ∈ [0, T ]
for some constant C.

PROOF. Let m0 be an integer, such that f̃ (s, t) = ∫ t
0 K(m0)(s, r)f (r, t) dr is

bounded. The function

ũ(s, t) = u(s, t) − f (s, t) −
m0−1∑
m=1

∫ t

0
(−1)mK(m)(s, r)f (r, t) dr,
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solves the equation

ũ(s, t) +
∫ t

0
ũ(r, t)K(r, s) dr = (−1)m0 f̃ (s, t), 0 ≤ s ≤ t.(3.3)

Multiplying this equation by ũ(s, t), integrating and using positive definiteness of
the kernel K , we get ∫ t

0
ũ2(s, t) ds ≤

∫ t

0
ũ(s, t)f̃ (s, t) ds,

and, by the Cauchy–Schwarz inequality,∫ t

0
ũ2(s, t) ds ≤

∫ t

0
f̃ 2(s, t) ds ≤ ‖f̃ ‖2∞.(3.4)

Let n0 be the integer such that K(n0) is bounded, then iterating (3.3) n0 times gives

ũ(s, t) = f̃ (s, t) +
n0−1∑
m=1

(−1)m
∫ t

0
K(m)(r, s)f̃ (r, t) dr

+ (−1)n0

∫ t

0
K(n0)(r, s)ũ(r, t) dr.

The first two terms in the right-hand side are bounded, since f̃ is bounded and

sup
s≤T

∫ T

0
K(m)(s, t) dt < ∞ ∀m ≥ 1.

The last term is bounded due to (3.4). It follows that ũ(s, t) is bounded and there-
fore |u(s, t)| ≤ C1|s − t |−β for all s < t ≤ T with a constant C1. As discussed
above, the solution of (3.1) on the super-diagonal is determined by the solution on
the sub-diagonal and, therefore, the same bound holds for t < s ≤ T possibly with
a different constant. �

The following lemma shows that certain integrals of the solution are determined
by its values on the diagonal.

LEMMA 3.2. Assume f ∈ C([0, T ]) does not depend on t and the partial
derivative u̇(s, t) := ∂

∂t
u(s, t) exists and u̇(·, t) ∈ L1([0, t]), then∫ t

0
u(s, t)f (s) ds =

∫ t

0
u2(s, s) ds.

PROOF. Multiplying (3.2) by u(s, t) and integrating, we get∫ t

0
u2(s, t) ds +

∫ t

0

∫ t

0
u(r, t)u(s, t)K(r, s) dr ds =

∫ t

0
u(s, t)f (s) ds(3.5)
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and, consequently,

d

dt

∫ t

0
u(s, t)f (s) ds = u2(t, t) + 2u(t, t)

∫ t

0
u(r, t)K(r, t) dr

+ 2
∫ t

0
u̇(r, t)

(
u(r, t) +

∫ t

0
u(s, t)K(r, s) ds

)
dr

= u2(t, t) + 2u(t, t)
(
f (t) − u(t, t)

) + 2
∫ t

0
u̇(r, t)f (r) dr

= −u2(t, t) + 2
d

dt

∫ t

0
u(r, t)f (r) dr,

which gives the claimed identity. �

3.1.1. Krein’s method. For kernels with certain special structure, the solution
of (3.2) with an arbitrary forcing can be expressed in terms of its solution with the
unit forcing. The following theorem is an adaptation of Theorem 8.1, Section 8,
Chapter IV in [10].

THEOREM 3.3. Assume that the equation

g(s, t) +
∫ t

0
g(r, t)K(r, s) dr = 1, 0 ≤ s ≤ t ≤ T ,(3.6)

has a unique continuous solution and g(t, t) �= 0, t ∈ [0, T ]. Then the solution
of (3.2) with an arbitrary f (·, t) ∈ L1([0, T ]) is given by

u(s, t) = g(s, t)F (t, t) −
∫ t

s
g(s, u)

∂

∂u
F(u, t) du,(3.7)

where

F(τ, t) = 1

g2(τ, τ )

∂

∂τ

∫ τ

0
g(s, τ )f (s, t) ds.(3.8)

REMARK 3.4. The result in [10] requires that the forcing function f does not
depend on t and is continuous. The extension to integrable f can be carried out
through approximation of f by continuous functions in L1([0, t]) in the usual way.
The formulas (3.7) and (3.8), where f is allowed to depend on t , are obtained by
treating t in the right-hand side of (3.2) as a fixed parameter, applying the original
formula (8.7) in [10] and then equating t to the integration limit. We omit lengthy,
but otherwise routine details.

The following class of kernels will be particularly useful for our purposes.

LEMMA 3.5. Assume that f does not depend on t , f ∈ C1((0, T ))∩C([0, T ])
and the kernel K has the form

K(s, t) = χ(s/t)|s − t |−α, 0 ≤ α < 1(3.9)



MIXED GAUSSIAN PROCESSES 3047

with χ ∈ C([0,∞)). Then the solution u(s, t) of (3.1) satisfies the following prop-
erties:

(i) u(s, t) is continuously differentiable in t ∈ (0, T ] for any s > 0, s �= t ,
(ii) the derivative u̇(s, t) := ∂

∂t
u(s, t) solves the equation

u̇(s, t) +
∫ t

0
u̇(r, t)K(r, s) dr = −u(t, t)K(s, t), 0 < s < t ≤ T(3.10)

and satisfies the bound∣∣u̇(s, t)
∣∣ ≤ C|s − t |−α, 0 ≤ s, t ≤ T .

(iii) u̇(·, t) ∈ L2([0, t]) for α < 1
2 .

PROOF. (i) The function ut (x) := u(xt, t), x ∈ [0,1], t > 0 satisfies the inte-
gral equation

ut (x) + t1−α
∫ 1

0
ut(y)K(x, y) dv = f (xt), u ∈ [0,1].

As mentioned above, the unique continuous solution exists and in the terminology
of [26], any point λ := t1−α is regular. The operator associated with the weakly
singular kernel K maps L2([0,1]) into itself (see, e.g., Theorem 9.5.1 in [9]). It
follows from, for example, the theorem on page 154 in [26], that the resolvent is
analytic in λ, and hence ut (x) is continuously differentiable at t ∈ (0, T ] for all
x ∈ [0,1]. Differentiability of ut (x) with respect to x ∈ (0,1) for continuous χ(·)
can be shown by the method from [30], using the particular form of the kernel K .
Therefore, the function u(s, t) = ut (s/t) is continuously differentiable at t > 0 for
any s ∈ (0, t) and, therefore, for s ∈ (t, T ] as well.

(ii) Equation (3.10) is obtained by taking the derivative of both sides of (3.1)
and the bound follows from Lemma 3.1.

(iii) Obvious in view of (ii). �

The crucial assumption in Theorem 3.3, inherited from Theorem 8.1 in [10],
is that the solution of (3.6) does not vanish in the diagonal. This property is
guaranteed for symmetric difference kernels of the form K(s, t) = κ(s − t) with
κ ∈ L1([−T ,T ]) (Theorem 8.2 in [10]). Obviously such nondegeneracy cannot
be expected to hold in general (see Example 2.6). The following lemma extends
applicability of Krein’s method to kernels, introduced in Lemma 3.5:

LEMMA 3.6. The assertion of Theorem 3.3 is true for kernels of the form (3.9).

PROOF. We will argue that g(t, t) �= 0 by contradiction. Suppose g(t, t) = 0
for some t > 0. Changing the integration variable, equation (3.6) can be rewritten
as

g(s, t) + s1−α
∫ t/s

0
g(xs, t)|1 − x|−αχ(x) dx = 1.
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Taking the derivative of both sides with respect to s and multiplying by s, we get

sg′(s, t) + s2−α
∫ t/s

0
xg′(xs, t)|1 − x|−αχ(x) dx

= −(1 − α)s1−α
∫ t/s

0
g(xs, t)|1 − x|−αχ(x) dx,

where g′(s, t) = ∂
∂s

g(s, t) and we used g(t, t) = 0. Now change the variables back
to get

sg′(s, t) +
∫ t

0
rg′(r, t)K(r, s) dr = −(1 − α)

(
1 − g(s, t)

)
.

Multiplying by g(s, t) and integrating gives

−(1 − α)

∫ t

0
g(s, t) ds + (1 − α)

∫ t

0
g2(s, t) ds

=
∫ t

0
sg′(s, t)g(s, t) ds +

∫ t

0

∫ t

0
rg′(r, t)g(s, t)K(r, s) dr ds

=
∫ t

0
rg′(r, t) dr = −

∫ t

0
g(r, t) dr

and, after a rearrangement,

(1 − α)

∫ t

0
g2(s, t) ds + α

∫ t

0
g(s, t) ds = 0.

By Lemma 3.2, it follows that

(1 − α)

∫ t

0
g2(s, t) ds + α

∫ t

0
g2(s, s) ds = 0.

This implies that g(s, t) = 0 for a.e. s ∈ [0, t], which contradicts (3.6). �

COROLLARY 3.7. For the kernel (3.9) and f (s) = sβ with β ≥ 0, the solution
of (3.1) does not vanish on the diagonal, that is, u(t, t) �= 0 for all t ∈ (0, T ].

PROOF. The function ũ(s, t) := s−βu(s, t) solves the equation

ũ(s, t) +
∫ t

0
ũ(r, t)(r/s)βK(r, s) dr = 1.

The claim follows, since the kernel (r/s)βK(r, s) satisfies the assumption of
Lemma 3.6. �

Krein’s method reveals yet another useful formula.
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COROLLARY 3.8. The function L(s, t) = ġ(s,t)
g(t,t)

satisfies the equation (2.2)
and

L(s, t) − L(t, s) =
∫ t

s
L(s, τ )L(t, τ ) dτ, s < t.

PROOF. Equation (2.2) readily follows from Lemma 3.5. By (3.8),

F(τ, t) = − 1

g2(τ, τ )

∂

∂τ

∫ τ

0
g(r, τ )K(r, t) dr

= − 1

g2(τ, τ )

∂

∂τ

(
1 − g(t, τ )

) = ġ(t, τ )

g2(τ, τ )
,

and, integrating by parts in (3.7), we get

L(s, t) = ġ(t, s)

g(s, s)
+

∫ t

s

ġ(t, τ )

g2(τ, τ )
ġ(s, τ ) dτ

= L(t, s) +
∫ t

s
L(s, τ )L(t, τ ) dτ. �

3.2. Stochastic integral representation. Consider the process X defined
in (1.1) and let η be a random variable, such that the pair (η,Xt) forms a Gaussian
process. Then E(η|FX

t ) belongs to the closure HX
t of the linear combinations of

the increments of X in L2(�,P). What is less apparent is that this conditional ex-
pectation can be expressed as a stochastic integral with respect to X. For example,
it is not hard to see that such a representation is impossible in Example 2.1.

We will assume that the stochastic integral with respect to the process G is
defined on a scalar product space �t of deterministic functions f : [0, t] �→ R, in
which simple (piecewise constant) functions are dense. For f ∈ �t∫ t

0
f (s) dGs = lim

n→∞

∫ t

0
fn(s) dGs in L2(�,P),

whenever fn → f in �t . Also we will assume that

E

∫ t

0
f (s) dGs

∫ t

0
h(s) dGs = 〈f,g〉�t ,(3.11)

and either L2([0, t]) ⊆ �t or �t is complete.
All these assumptions hold for a variety of familiar processes, including fBm.

Let us stress, however, that they do not exclude the possibility of HG
t being strictly

larger than the image of �t in L2(�,P) under the stochastic integral. For example,
not all random variables in HBH

t can be expressed as stochastic integrals with
respect to BH (see [25]).
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LEMMA 3.9. Under the above assumptions,

E
(
η|FX

t

) = Eη +
∫ t

0
h(s, t) dXt ,

with a unique function h(·, t) ∈ L2([0, t]) ∩ �t .

PROOF. Following the arguments of the proof of Lemma 10.1 in [21], let ti =
t i/2n, i = 0, . . . ,2n and FX

t,n = σ {Xti − Xti−1, i = 1, . . . ,2n}. Then FX
t,n ↗ FX

t

and by the martingale convergence

lim
n

E
(
η|FX

t,n

) = E
(
η|FX

t

)
in L2(�,P).(3.12)

By the normal correlation theorem,

E
(
η|FX

t,n

) = Eη +
2n∑
i=1

hn
i−1(Xti − Xti−1),

with constants hn
i−1, i = 1, . . . ,2n. Define

hn(s, t) :=
2n∑
i=1

hn
i−11{s∈[ti−1,ti )},

then

E
(
η|FX

t,n

) = Eη +
∫ t

0
hn(s, t) dBs +

∫ t

0
hn(s, t) dGs,

and by independence of B and G

E
(
E

(
η|FX

t,n

) −E
(
η|FX

t,m

))2 = ‖hn − hm‖2
2 + ‖hn − hm‖2

�t
.

Therefore, by (3.12)

lim
n

sup
m≥n

(‖hn − hm‖2
2 + ‖hn − hm‖2

�t

)
= lim

n
sup
m≥n

E
(
E

(
η|FX

t,n

) −E
(
η|FX

t,m

))2 = 0,

and hence hn → h in L2([0, t]) by its completeness. Since we assumed that either
L2([0, t]) ⊆ �t or �t is complete, h ∈ �t as well. The claimed representation now
follows, since

E

(
E

(
η|FX

t

) −Eη −
∫ t

0
h(s, t) dBs −

∫ t

0
h(s, t) dBH

s

)2

≤ 3E
(
E

(
η|FX

t

) −E
(
η|FX

t,n

))2 + 3‖h − hn‖2
2 + 3‖h − hn‖2

�t

n→∞−−−→ 0.

The uniqueness of h is obvious. �
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REMARK 3.10. In particular, the conclusion of Lemma 3.9 holds, when G

satisfies (2.1) with K , such that

sup
s≤T

∫ T

0

∣∣K(s, t)
∣∣dt < ∞.

In this case, (3.11) holds with

〈f,g〉�t =
∫ t

0

∫ t

0
f (s)g(s)K(s, r) ds dr,

and L2([0, t]) ⊆ �t . Note that weakly singular kernels as in (2.6) fit this frame-
work.

3.3. Fractional Brownian motion. In the proofs below, we will frequently use
a number of well-known formulas, related to fBm. Our main references are [24]
and [25].

3.3.1. Constants.

cH = 1

2H�(3/2 − H)�(H + 1/2)
,

λH = 2H�(H + 1/2)�(3 − 2H)

�(3/2 − H)
,(3.13)

βH = c2
H

(
1

2
− H

)2 λH

2 − 2H
.

3.3.2. Spaces and operators. For f : [0, t] �→R, define the operators

(�f )(s, t) = −2H
d

ds

∫ t

s
f (r)rH−1/2(r − s)H−1/2 dr, 0 ≤ s ≤ t,(3.14)

and

(�f )(s) = d

ds

∫ s

0
f (r)r1/2−H (s − r)1/2−H dr, 0 ≤ s ≤ t.

These formulas can be readily expressed in terms of the Riemann–Liouville frac-
tional integrals and derivatives; see [25]. The respective inverse operators are given
by (

�−1g
)
(s, t) = −cH s1/2−H d

ds

∫ t

s
g(r, t)(r − s)1/2−H dr(3.15)

and (
�−1g

)
(s) = 2HcHsH−1/2 d

ds

∫ s

0
g(r)(s − r)H−1/2 dr.(3.16)
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Let us define the space

�
H−1/2
t :=

{
f : [0, t] �→R such that

∫ t

0

(
s1/2−H(�f )(s, t)

)2
ds < ∞

}
,

with the scalar product

〈f,g〉
�

H−1/2
t

:= 2 − 2H

λH

∫ t

0
s1−2H(�f )(s, t)(�g)(s, t) ds.(3.17)

The inclusion L2([0, t]) ⊂ �
H−1/2
t holds for H > 1

2 and fails for H < 1
2 (see

Remark 4.2 in [25]).
The expression in (3.17) can be rewritten as

〈f,g〉
�

H−1/2
t

= H

∫ t

0
f (r)

d

dr

∫ t

0
g(u)|r − u|2H−1 sign(r − u)dudr,(3.18)

which for H > 1
2 becomes

〈f,g〉
�

H−1/2
t

=
∫ t

0

∫ s

0
KH(u, v)f (u)g(v) dudv,

with kernel KH defined in (2.15).
Finally, for any H ∈ (0,1) and f,g ∈ L2([0, t]) ∩ �

H−1/2
t , the following iden-

tity holds: ∫ t

0
f (s)g(s) ds = cH

∫ t

0
(�f )(s, t)(�g)(s) ds.(3.19)

3.3.3. Representation formulas for fBm. The stochastic integral with respect
to fBm,

∫ t
0 f (s) dBH

s , can be defined for f ∈ �
H−1/2
t in the usual way (see [25]).

Integrals with kernels

ρ(s, t) =
√

2 − 2H

λH

s1/2−H (�1)(s, t),

(3.20)

ρ̃(s, t) =
√

2 − 2H

λH

(
�−1uH−1/2)

(s, t),

transform fBm into standard Brownian motion and vise versa. Namely,

BH
t =

∫ t

0
ρ(s, t) dWs,

where

Wt =
∫ t

0
ρ̃(s, t) dBH

s
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is a standard Brownian motion. More generally,∫ t

0
f (s) dBH

s =
∫ t

0

√
2 − 2H

λH

s1/2−H(�f )(s, t) dWs

and ∫ t

0
f (s) dWs =

∫ t

0

√
2 − 2H

λH

(
�−1uH−1/2f (u)

)
(s, t) dBH

s .

It follows that

E

∫ t

0
f (u)dBH

u

∫ s

0
g(v) dBH

v = 〈f,g〉
�

H−1/2
t

.

4. Proof of Theorem 2.2. As mentioned in Section 3.1, for kernels of the
form (2.6), equation (2.2) has a unique solution L(·, t) ∈ L1([0, t]). Let

Wt =
∫ t

0
φ(s) dBs,

with φ(s) = 1 − ∫ s
0 L(r, s) dr , and define the martingale Bt := E(Wt |FX

t ). By
Lemma 3.9 (see Remark 3.10)

Bt =
∫ t

0
q(s, t) dXs,

where q solves the integral equation (2.9). A direct substitution shows that the
unique solution is given by

q(s, t) = 1 +
∫ t

s
L(s, r) dr,

and hence

〈B〉t = EB
2
t = EBtWt =

∫ t

0
q(s, t)φ(s) ds

†=
∫ t

0
q2(s, s) ds = t,

where the equality † holds by Lemma 3.2 and the last equality holds since
q(s, s) = 1. By the Lévy theorem, B is a Brownian motion in filtration FX

t .

Let us check that FB
t = FX

t . Since FB
t ⊆ FX

t , the process Dt = Xt −E(Xt |FB
t )

is FX
t -adapted, and hence admits the representation

Dt =
∫ t

0
h(s, t) dXs,

for some h(·, t) ∈ L2([0, T ]). On the other hand, by the orthogonality property of
conditional expectation, EDtBs = 0 for all s ≤ t . Let us show that this condition
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implies h(s, t) = 0 for all s ≤ t , that is, Dt = 0. To this end, we have

EDtBs = E

∫ t

0
h(u, t) dXu

∫ s

0
q(u, s) dXu

=
∫ s

0
h(u, t)q(u, s) du +

∫ t

0
h(u, t)

∫ s

0
q(v, s)K(v,u) dv du

=
∫ s

0
h(u, t)q(u, s) du +

∫ t

0
h(u, t)

(
ϕ(u) − q(u, s)

)
du

=
∫ t

0
h(u, t)ϕ(u)du −

∫ t

s
h(u, t)q(u, s) du,

where we used (2.9). Since EDtBs = 0 for all s ≤ t , taking the derivative with
respect to s, we obtain the Volterra equation for h(s, t):

h(s, t) −
∫ t

s
h(u, t)L(u, s) du = 0, s ≤ t.(4.1)

Recall that L solves equation (2.2), and thus by Lemma 3.1, |L(s, t)| ≤ C|s − t |−α

with a constant C. Iterating (4.1) sufficient number of times, it follows that h also
solves the Volterra equation with a bounded kernel. Such equations are well known
to have a unique solution, and hence h(s, t) ≡ 0. Consequently, Xt = E(Xt |FB

t )

and FB
t = FX

t .
Finally, the inverse transformation (2.10) follows from the normal correlation

theorem:

q̂(s, t) = ∂

∂s
EXtBs = ∂

∂s
EXt

∫ s

0
q(r, s) dXr

= ∂

∂s

(∫ s

0
q(r, s) dr +

∫ t

0

∫ s

0
K(r,u)q(r, s) dr du

)
= ∂

∂s

(∫ s

0
q(r, s) dr +

∫ t

0

(
φ(u) − q(u, s)

)
du

)
= − ∂

∂s

∫ t

s
q(r, s) dr.

5. Proof of Theorem 2.4. Let us first sketch the main steps of the proof. Our
candidate for the innovation process is the martingale Mt = E(Bt |FX

t ). We argue
that it can be represented as a stochastic integral with respect to X and then iden-
tify the integrand as the solution of equation (2.17). This equation is solved by
reduction to a weakly singular integral equation, whose precise form depends on
whether H is greater or less than 1

2 . The quadratic variation 〈M〉t is then expressed
as an integral of the solution on the diagonal, which gives the formula (2.18).

The claimed assertions are obvious for the case H = 1
2 , which we exclude from

the consideration thereafter.
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5.1. Proof of part (i).

5.1.1. The equation (2.17) and its alternative forms. The following theorem
proves part (i) of Theorem 2.4 and elaborates on the structure of equation (2.17).

THEOREM 5.1. The representation (2.16) holds with g(s, t), s ≤ t , being the
unique continuous solution of the following equations:

(i) for H ∈ (0,1], the integro-differential equation (2.17),
(ii) for H ∈ (0,1), the fractional integro-differential equation

cH (�g)(s) + 2 − 2H

λH

(�g)(s, t)s1−2H = cH (�1)(s), s ∈ (0, t],(5.1)

(iii) for H ∈ (1
2 ,1], the weakly singular integral equation

g(s, t) +
∫ t

0
g(r, t)KH(r, s) dr = 1, s ∈ (0, t],(5.2)

with kernel KH , defined in (2.15),
(iv) for H ∈ (0, 1

2), the weakly singular integral equation

g(s, t) + βH t−2H
∫ t

0
g(r, t)KH

(
r

t
,
s

t

)
dr

(5.3)
= cH s1/2−H(t − s)1/2−H , s ∈ [0, t],

with the kernel

KH(u, v) = |u − v|−2H N(u, v),(5.4)

where N ∈ C([0,1]2) is given in (5.6) below.

PROOF. By Lemma 3.9, there exists a function g(·, t) ∈ L2([0, t]) ∩ �
H−1/2
t ,

such that

Mt = E
(
Bt |FX

t

) =
∫ t

0
g(s, t) dXs.

To verify the representation (2.16), we have to check that g(s, t) uniquely solves
each one of the equations in (i)–(iv). To this end, we will argue that g(s, t) sat-
isfies the equation from (ii) for almost every s ∈ [0, t]. Then we show that this
equation reduces to (iii) for H > 1

2 and to (iv) for H < 1
2 . These weakly singular

integral equations are well known to have unique continuous solutions and, there-
fore, g(s, t), in fact, satisfies (ii) for all s ∈ [0, t]. Finally, we will argue that (ii)
and (i) share the same solution.
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For any test function ϕ ∈ L2([0, t])∩�
H−1/2
t , the orthogonality property of the

conditional expectation implies

0 = E

(
Bt −

∫ t

0
g(s, t) dXs

)∫ t

0
ϕ(s) dXs

=
∫ t

0
ϕ(s) ds −

∫ t

0
ϕ(s)g(s, t) ds

− 2 − 2H

λH

∫ t

0
s1−2H (�g)(s, t)(�ϕ)(s, t) ds(5.5)

=
∫ t

0
(�ϕ)(s, t)

(
cH (�1)(s) ds − cH (�g)(s, t)

− 2 − 2H

λH

s1−2H(�g)(s, t)

)
ds,

where we used the identity (3.19). Since ϕ can be an arbitrary differentiable func-
tion, g(s, t) satisfies (5.1) for almost all s ∈ [0, t].

Applying the transformation (3.16) with H > 1
2 to equation (5.1), a direct cal-

culation shows that g(s, t) satisfies (5.2). This weakly singular equation is well
known to have a unique solution (see, e.g., [30]), continuous on [0, t]. Since the
transformation (3.16) is invertible, g(s, t) is also the unique continuous solution
of (5.1) for H > 1

2 .
Similarly, equation (5.3) is obtained for H < 1

2 by multiplying (5.1) by
λH

2−2H
s2H−1 and applying the transformation �−1. A calculation shows that

KH(u, v) = (uv)1/2−H
∫ 1

u∨v
r2H−1(r − u)−1/2−H (r − v)−1/2−H dr,

and changing the integration variable to x := 1−v
u−v

r−u
1−r

we get (5.4), where

N(u, v) =
(

a

b

)1/2−H

(5.6)

×
∫ ∞

0
x−1/2−H (1 + x)−1/2−H

(
1 +

(
1 − a

b

)
x

)2H−1

dx,

with

a = u

1 − u
∧ v

1 − v
, b = u

1 − u
∨ v

1 − v
.

For H < 1
2 the function N is continuous and thus kernel KH is weakly singular.

Since the right-hand side of (5.3) is a continuous function for H < 1
2 , this equation

has a unique solution, continuous on [0, t]. This completes the proof of (iv) and,
in turn, of (ii).
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Further, the identity (3.18) and orthogonality property (5.5) imply

0 =
∫ t

0
ϕ(s) ds −

∫ t

0
ϕ(s)g(s, t) ds − 2 − 2H

λH

∫ t

0
s1−2H (�g)(s, t)(�ϕ)(s, t) ds

=
∫ t

0
ϕ(s)

(
1 − g(s, t) − H

d

ds

∫ t

0
g(r, t)|s − r|2H−1 sign(s − r) dr

)
ds.

The assertion (i) follows, in view of arbitrariness of ϕ and unique solvability
of (5.1). Finally, for t ∈ [0, T ],

〈M〉t = EM2
t = EBtMt = EBt

∫ t

0
g(s, t) dXs =

∫ t

0
g(s, t) ds. �

5.2. Proof of part (ii) for H > 1
2 . Note that in this case, the derivative and

integration in (3.14) can be interchanged, and hence

(�g)(s, t) = 2H

(
H − 1

2

)∫ t

s
g(r, t)rH−1/2(r − s)H−3/2 dr, 0 ≤ s ≤ t,

and (�g)(t, t) = 0 for all t ∈ [0, T ]. Therefore, (2.18) holds by (2.16) and
Lemma 3.2, and, in fact,

〈M〉t =
∫ t

0
g2(s, s) ds > 0.(5.7)

Since g(t, t) > 0 for all t ∈ [0, T ] there exists a function ĝ(·, t) ∈ L2([0, t]), such
that

E
(
Xt |FM

t

) =
∫ t

0
ĝ(s, t) dMs, t ∈ [0, T ].

By the normal correlation theorem,

ĝ(s, t) = d

d〈M〉s EXtMs,

and the formula (2.20) follows, since

EXtMs =
∫ s

0
g(r, s)

∂

∂r
EXtXr dr

=
∫ s

0
g(r, s) dr + H

∫ s

0
g(r, s)

(
r2H−1 + (t − r)2H−1)

dr

(5.8)

= 〈M〉s +
∫ t

0
H

d

dτ

∫ s

0
g(r, s)|r − τ |2H−1 sign(r − τ ) dr dτ

= 〈M〉s +
∫ t

0

(
1 − g(τ, s)

)
dτ.

It is left to check that FX
t = FM

t , that is, E(Xt |FM
t ) = Xt or

E
(
Xt −E

(
Xt |FM

t

))2 = EX2
t −E

(
E

(
Xt |FM

t

))2 = 0.(5.9)
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Since X0 = E(X0|FM
0 ) = 0, (5.9) holds if

∂2

∂t ∂s

∫ t∧s

0
ĝ(r, t)ĝ(r, s) d〈M〉r = KH(t, s), s < t,

or, by (5.7), if

˙̂g(s, t)ĝ(s, s)g2(s, s) +
∫ s

0

˙̂g(r, t) ˙̂g(r, s)g2(r, r) dr = KH(t, s).(5.10)

Further, we have

ĝ(t, t) = 1 − 1

g2(t, t)

∫ t

0
ġ(s, t) ds = 1 − 1

g2(t, t)

(
d

dt

∫ t

0
g(s, t) ds − g(t, t)

)

= 1 − 1

g2(t, t)

(
g2(t, t) − g(t, t)

) = 1

g(t, t)
,

and, since ˙̂g(s, t)g(s, s) = −L(t, s), (5.10) becomes

−L(t, s) +
∫ s

0
L(t, r)L(s, r) dr = KH(t, s).(5.11)

Recall that the function L, satisfies equation (2.2). Rearranging the terms, multi-
plying by L(s,u) and integrating gives∫ s

0
L(t, u)L(s, u) du +

∫ s

0
KH(t, u)L(s, u) du

= −
∫ s

0

∫ u

0
L(r,u)L(s, u)KH(r, t) dr du

= −
∫ s

0

(∫ s

r
L(r, u)L(s, u) du

)
KH(r, t) dr

= −
∫ s

0

(
L(r, s) − L(s, r)

)
KH(r, t) dr,

where we used Corollary 3.8. The second term on the left-hand side and the last
term on the right-hand side cancel out and we get∫ s

0
L(t, u)L(s, u) du = −

∫ s

0
L(r, s)KH(r, t) dr = L(t, s) + KH(s, t),

which verifies (5.11) and, therefore, (5.9), thus completing the proof.

5.3. An auxiliary process X̃. The proof of (ii) of Theorem 2.4 in the case
H < 1

2 relies on the auxiliary process

X̃t =
∫ t

0
ρ̃(s, t) dXs,(5.12)

where the kernel ρ̃ is defined in (3.20). In this section, we explore some of its
properties.
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LEMMA 5.2. X̃ = B̃ + Ũ , where B̃ is a Brownian motion in its own filtration
and Ũ is a centered Gaussian process with the covariance function, satisfying

K̃H (s, t) := ∂2

∂s ∂t
EŨsŨt = |t − s|−2Hχ(t/s), s �= t,(5.13)

where

χ(u) = βH

(
u ∧ u−1)1/2−H

L

(
1

u ∨ u−1 − 1

)
, u ∈R+,

and

L(v) =
∫ v

0
r−1/2−H (1 + r)−1/2−H

(
1 − r

v

)1−2H

dr.

Moreover, FX
t = F X̃

t for all t ∈ [0, T ].
PROOF. It is well known (see, e.g., [24]), that the integral transformation

(5.12) is invertible:

Xt =
∫ t

0
ρ(s, t) dX̃s, t ∈ [0, T ],

where ρ is defined in (3.20). In particular, FX
t = F X̃

t , t ∈ [0, T ].
Further, it follows from [24] that the process B̃t = ∫ t

0 ρ̃(s, t) dBH
s is the Brown-

ian motion in its own filtration. Hence, X̃ = B̃ + Ũ with

Ũt =
∫ t

0
ρ̃(s, t) dBs,

and

K̃H (s, t) = ∂2

∂s ∂t
EŨt Ũs = ∂2

∂s ∂t

∫ s∧t

0
ρ̃(r, s)ρ̃(r, t) dr =

∫ s∧t

0
˙̃ρ(r, s) ˙̃ρ(r, t) dr,

where ˙̃ρ(s, t) = ∂
∂t

ρ̃(s, t) and we used the property ρ̃(s, s) = 0. The expression
in (5.13) is obtained by a direct calculation, using the explicit expression (3.20)
for ρ̃(s, t). �

5.4. The martingale M for H < 1
2 . The structure of the martingale M and its

relation to the process X̃ are described in detail in the following lemma.

LEMMA 5.3. For H < 1
2 and t ∈ [0, T ],

Mt =
∫ t

0
p(s, t) dX̃s, 〈M〉t =

∫ t

0
p2(s, s) ds,(5.14)

where

p(s, t) :=
√

2 − 2H

λH

s1/2−H (�g)(s, t)(5.15)
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solves the equation

p(s, t) +
∫ t

0
p(r, t)K̃H (r, s) dr =

√
2 − 2H

λH

s1/2−H ,

(5.16)
0 ≤ s ≤ t ≤ T .

Moreover, p2(t, t) > 0 for all t > 0 and FM
t = F X̃

t .

PROOF. Let us set C :=
√

λH
2−2H

for brevity. The equation (5.16) is obtained
from equation (5.1) by replacing g in the first term with [see (3.15)]

g(s, t) = −cH s1/2−H d

ds

∫ t

s
(�g)(r, t)(r − s)1/2−H dr

= −cHCs1/2−H d

ds

∫ t

s
p(r, t)rH−1/2(r − s)1/2−H dr.

Indeed,

cH (�g)(s)

= −c2
HC

d

ds

∫ s

0
r1−2H(s − r)1/2−H d

dr

×
∫ t

r
p(u, t)uH−1/2(u − r)1/2−H dudr

= s1/2−HC

∫ t

0
p(u, t)βH (su)H−1/2

×
∫ s∧u

0
r1−2H(s − r)−1/2−H (u − r)−1/2−H dr du

= s1/2−HC

∫ t

0
p(u, t)K̃H (u, s) du,

where we used the definition (5.13) of K̃H . Equation (5.16) follows, since

cH (�1)(s) = 2 − 2H

λH

s1−2H .

Integrating by parts, we get the first formula in (5.14):∫ t

0
p(s, t) dX̃s

= p(t, t)X̃t −
∫ t

0
X̃sp

′(s, t) ds

= p(t, t)X̃t −
∫ t

0

∫ s

0
ρ̃(r, s) dXrp

′(s, t) ds
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=
∫ t

0
p(t, t)ρ̃(r, s) dXr −

∫ t

0

∫ t

r
ρ̃(r, s)p′(s, t) ds dXr

=
∫ t

0

∫ t

r
ρ̃′(r, s)p(s, t) ds dXr =

∫ t

0
g(s, t) dXs,

where the last equality holds by a direct calculation, using the definitions (5.12)
and (5.15).

The second formula is obtained, using the identity (3.19):

〈M〉t =
∫ t

0
g(s, t) ds = 2 − 2H

λH

∫ t

0
s1−2H(�g)(s, t) ds

=
√

2 − 2H

λH

∫ t

0
p(s, t)s1/2−H ds =

∫ t

0
p2(s, s) ds,

where the last equality holds by Lemma 3.2 and p2(t, t) > 0 for all t > 0 by Corol-
lary 3.7.

It is left to verify the inclusion F X̃
t ⊆ FM

t , or equivalently, E(X̃t |FM
t ) = X̃t .

Since X̃t − E(X̃t |FM
t ) is measurable with respect to F X̃

t and K̃H (s, t) is weakly
singular, it admits the representation (see Remark 3.10)

X̃t −E
(
X̃t |FM

t

) =
∫ t

0
h(r, t) dX̃r

with h(·, t) ∈ L2([0, t]). By the orthogonality property of the conditional expecta-
tion,

EMs

∫ t

0
h(r, t) dX̃r = 0, s ≤ t.

Let us show that this condition implies that h(s, t) = 0 for all s ≤ t , therefore,
completing the proof. Indeed, for s ≤ t ,

EMs

∫ t

0
h(r, t) dX̃r

= E

∫ s

0
p(u, s) dX̃u

∫ t

0
h(r, t) dX̃r

=
∫ s

0
p(r, s)h(r, t) dr +

∫ t

0
h(r, t)

∫ s

0
p(u, s)K̃(r, u) dudr

=
∫ s

0
p(r, s)h(r, t) dr +

∫ t

0
h(r, t)

(
Cr1/2−H − p(r, s)

)
dr

= C

∫ t

0
h(r, t)r1/2−H dr −

∫ t

s
h(r, t)p(r, s) dr.

Taking the derivative with respect to s, we get

h(s, t)p(s, s) −
∫ t

s
h(r, t)ṗ(r, s) dr = 0
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and, since p(s, s) > 0, it follows that h(s, t) solves the Volterra equation

h(s, t) −
∫ t

s
h(r, t)L̃(r, s) dr = 0,(5.17)

where L̃(s, t) = ṗ(r, s)/p(s, s) solves the equation [cf. (2.2)]

L̃(s, t) +
∫ t

0
L̃(r, t)K̃H (r, s) dr = −K̃H (r, s), 0 ≤ s ≤ t ≤ T .

By Lemma 3.1, |L̃(s, t)| ≤ C1|s − t |−2H for some constant C1. By a sufficient
number of iterations, (5.17) becomes the Volterra equation with a continuous ker-
nel, which has a unique solution h(s, t) ≡ 0. �

5.5. Proof of part (ii) for H < 1
2 . Equation (5.3) with s := t yields g(t, t) = 0,

t ≥ 0, since KH(u,1) ≡ 0. Hence, the formula (2.18) holds by Lemma 5.3. The
calculations in (5.8) are valid for any H , and hence

E
(
Xt |FM

t

) =
∫ t

0
ĝ(s, t) dMs,

where ĝ(s, t) is given by (2.20). Finally, FM
t =F X̃

t = FX
t , by Lemmas 5.3 and 5.2.

6. Proof of Theorem 2.7. As discussed in the Introduction, some of the as-
sertions in this theorem have been previously proved by a number of authors, using
different methods. Our objective is to show how all these results can be deduced
from the canonical representation of Theorem 2.4. The original contribution here
is the new density formula (2.25).

6.1. Proof of (i). The fBm BH and hence also X have infinite quadratic vari-
ation for H ∈ (0, 1

2). Hence, X is not a semimartingale in its own filtration and
a fortiori μX and μW are singular. For H = 1

2 , the statement of the theorem is
evident. Below we focus on the case H ∈ (1

2 ,1].

REMARK 6.1. The fact that X is not a semimartingale for H ∈ (1
2 , 3

4 ] implies
singularity of μX and μW , but not vise versa. For the sake of completeness, we
prove both assertions directly, showing how they stem from the same property of
the kernel KH in (2.15).

6.1.1. Equivalence for H ∈ (3
4 ,1]. Recall that for H > 1

2 the second term
in (2.18) vanishes and

〈M〉t =
∫ t

0
g2(s, s) ds, t ∈ [0, T ].
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By Lemma 3.6, g(t, t) > 0 for all t ≥ 0 and the process

Bt =
∫ t

0

1

g(s, s)
dMs(6.1)

is a Brownian motion in filtration FX
t . On the other hand,

Mt =
∫ t

0
g(s, t) dXs =

∫ t

0
g(s, s) dXs +

∫ t

0

(
g(r, t) − g(r, r)

)
dXr

=
∫ t

0
g(s, s) dXs +

∫ t

0

∫ t

r
ġ(r, s) ds dXr

=
∫ t

0
g(s, s) dXs +

∫ t

0

∫ s

0
ġ(r, s) dXr ds,

where the last equality holds since ġ(·, s) ∈ L2([0, s]) by Lemma 3.5. Hence,

Bt =
∫ t

0

1

g(s, s)
dMs = Xt +

∫ t

0

∫ s

0

ġ(r, s)

g(s, s)
dXr ds =: Xt +

∫ t

0
ϕs(X)ds.

The desired claim follows by the Girsanov theorem (Theorem 7.7 in [21]), once
we check ∫ T

0
Eϕ2

t (B) dt < ∞ and
∫ T

0
Eϕ2

t (X)dt < ∞.(6.2)

Since ϕt(·) is a linear functional of X = B + BH and B and BH are indepen-
dent, it is enough to check only the latter condition. The function L(s, t) = ġ(s,t)

g(t,t)

satisfies (2.2), and hence for H > 3/4

Eϕ2
t (X) = E

(∫ t

0
L(r, t) dXr

)2

=
∫ t

0
L2(s, t) ds +

∫ t

0

∫ t

0
L(s, t)L(r, t)KH(r, s) dr ds

=
∫ t

0
L(s, t)

(
L(s, t) +

∫ t

0
L(r, t)KH(r, s) dr

)
ds

= −
∫ t

0
L(s, t)KH (s, t) ds

≤
(∫ t

0
L2(s, t) ds

)1/2(∫ t

0
K2

H (s, t) ds

)1/2

= C1

(∫ t

0
L2(s, t) ds

)1/2

t2H−3/2.

Since the kernel is positive definite, multiplying (2.2) by L(s, t) and integrating
gives∫ t

0
L2(s, t) ds ≤ −

∫ t

0
L(s, t)KH(s, t) ds ≤ C1

(∫ t

0
L2(s, t) ds

)1/2

t2H−3/2,
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and consequently (∫ t

0
L2(s, t) ds

)1/2

≤ C1t
2H−3/2.

Plugging this bound back gives Eϕ2
t (X) ≤ C2

1 t4H−3 and in turn∫ T

0
Eϕ2

t (X)dt ≤ C2
1

∫ T

0
t4H−3 dt = C2T

4H−2,

which verifies (6.2) and completes the proof.

6.1.2. Singularity for H ∈ (1
2 , 3

4 ]. Suppose there exists a probability mea-
sure Q, equivalent to P, under which X is a Brownian motion in its natural fil-
tration. Since the semimartingale property is preserved under equivalent change of
measure, the P-martingale

Mt =
∫ t

0
g(s, t) dXs, t ∈ [0, T ],

must be a semimartingale under Q. Since X is assumed to be a Brownian motion
under Q, this is equivalent to saying that the process

Lt :=
∫ t

0
g(s, t) dBs,

with the Brownian motion B , defined in (6.1), must be a semimartingale under P.
We will argue by contradiction that this is impossible for H ≤ 3

4 . To this end,
we define

ψ(s, t) = −
∫ t

s
g(r, r)

n0−1∑
m=1

(−1)mK
(m)
H (r, s) dr, 0 < s < t ≤ T ,

where n0 is the least integer greater than 1
4H−2 . Note that ψ(·, t) ∈ L2([0, t]) and

define the processes

Ut :=
∫ t

0
ψ(s, t) dBs,

Vt :=
∫ t

0

(
g(s, t) − g(s, s) + ψ(s, t)

)
dBs,

so that

Lt = Vt +
∫ t

0
g(s, s) dBs − Ut .

The second term is a martingale in filtration FX
t and hence, in order to argue that

L is not a semimartingale, it is enough to show that:

(a) U has zero quadratic variation, but infinite variation,
(b) V has bounded variation.
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PROOF OF (a). To verify this assertion, we will need an estimate for the vari-
ance of increments of U . To this end, for any two points t1, t2 ∈ [0, T ], such that
0 < t2 − t1 < 1,

E(Ut2 − Ut1)
2 = E

(∫ t2

t1

ψ(s, t2) dBs +
∫ t1

0

(
ψ(s, t2) − ψ(s, t1)

)
dBs

)2

(6.3)

=
∫ t2

t1

ψ2(s, t2) ds +
∫ t1

0

(
ψ(s, t2) − ψ(s, t1)

)2
ds.

To bound the first term, note that

ψ2(s, t2) ≤ ‖g‖2∞n0

n0−1∑
m=1

(∫ t2

s
K

(m)
H (s, r) dr

)2

≤ C1

n0−1∑
m=1

(t2 − s)(4H−2)m ≤ C2(t2 − s)4H−2,

where ‖g‖∞ = supr≤T |g(r, r)| < ∞, and consequently∫ t2

t1

ψ2(s, t2) ds ≤ C3(t2 − t1)
4H−1.

For the second term, we have∫ t1

0

(
ψ(s, t2) − ψ(s, t1)

)2
ds

=
∫ t1

0

(
n0−1∑
m=1

∫ t2

t1

(−1)mg(r, r)K
(m)
H (s, r) dr

)2

ds

(6.4)

=
n0−1∑
m=1

n0−1∑
�=1

∫ t1

0

∫ t2

t1

∫ t2

t1

(−1)m+�g(r, r)g(τ, τ )

× K
(m)
H (s, r)K

(�)
H (s, τ ) dr dτ ds.

The dominating term in this sum corresponds to m = 1, � = 1:∫ t1

0

(∫ t2

t1

g(r, r)KH(r, s) dr

)2

ds.

We have ∫ t1

0

(∫ t2

t1

KH(r, s) dr

)2

ds

= H 2
∫ t1

0

(
(t2 − t1 + s)2H−1 − s2H−1)2

ds(6.5)

= H 2(t2 − t1)
4H−1

∫ t1/(t2−t1)

0

(
(1 + u)2H−1 − u2H−1)2

du.
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The increasing function

γ (y) := H 2
∫ y

0

(
(1 + u)2H−1 − u2H−1)2

du, y ≥ 0

satisfies

lim
y→∞γ (y) = γH , H ∈ (1

2 , 3
4

)
,

lim
y→∞

γ (y)

logy
= γ3/4, H = 3

4 ,

with positive constants γH . The function r �→ g(r, r) is positive and continuous on
[0, T ], and hence

c4 ≤
∫ t1

0

(∫ t2

t1

g(r, r)KH(s, r) dr

)2/
(t2 − t1)

4H−1γ

(
t1

t2 − t1

)
≤ C4

with some positive constants c4, C4 for all sufficiently small t2 − t1. A similar
calculation shows that the rest of the terms in (6.4) converge to zero as t2 − t1 → 0
at a faster rate and assembling all parts together, we obtain

c5 ≤ E(Ut2 − Ut1)
2/(t2 − t1)

4H−1γ

(
t1

t2 − t1

)
≤ C5.(6.6)

Now let 0 = t0 < t1 < · · · < tn = T be an arbitrary partition, then for all H ∈
(1

2 , 3
4 ]

E
n∑

i=1

(Uti − Uti−1)
2 ≤ C5

n∑
i=1

(ti − ti−1)
4H−1γ

(
T

ti − ti−1

)

≤ C6 max
i

(ti − ti−1)
4H−2 log

1

ti − ti−1

n→∞−−−→ 0,

that is, U has zero quadratic variation.
On the other hand, since the process U is Gaussian

E
n∑

i=1

|Uti − Uti−1 | ≥
√

2

π
c5

∑
i:ti≥T/2

(ti − ti−1)
2H−1/2γ 1/2

(
T/2

ti − ti−1

)

≥ c6 min
i

(ti − ti−1)
2H−3/2γ 1/2

(
T/2

ti − ti−1

)
n→∞−−−→ ∞,

which implies that U has infinite variation (see, e.g., Theorem 4, Chapter 4, Sec-
tion 9 in [22]). �

PROOF OF (b). For 0 < s < t ≤ T

ψ̇(s, t) := ∂

∂t
ψ(s, t) = −g(t, t)

n0−1∑
m=1

(−1)mK
(m)
H (s, t)
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and hence∫ t

0
ψ̇(s, t)KH (r, s) dr

= −
∫ t

0

(
g(t, t)

n0−1∑
m=1

(−1)mK
(m)
H (s, t)

)
KH(r, s) dr

= −g(t, t)

n0−1∑
m=1

(−1)mK
(m+1)
H (s, t) = g(t, t)

n0∑
m=2

(−1)mK
(m)
H (s, t)

= g(t, t)KH (s, t) − ψ̇(s, t) + (−1)n0g(t, t)K
(n0)
H (s, t).

Adding this expression to the equation for ġ(s, t) [see (3.10)], we get(
ġ(s, t) + ψ̇(s, t)

) +
∫ t

0

(
ġ(r, t) + ψ̇(r, t)

)
KH(r, s) dr

= (−1)n0g(t, t)K
(n0)
H (s, t).

By the choice of n0, the right-hand side is square integrable and so is the function
ġ(s, t) + ψ̇(s, t), s ∈ (0, t). Since ψ(s, s) = 0,

Vt =
∫ t

0

(
g(s, t) − g(s, s) + ψ(s, t)

)
dBs

=
∫ t

0

∫ t

s

(
ġ(s, r) + ψ̇(s, r)

)
dr dBs

=
∫ t

0

∫ r

0

(
ġ(s, r) + ψ̇(s, r)

)
dBs dr,

and hence V has bounded variation. �

6.1.3. X is not a semimartingale for H ∈ (1
2 , 3

4 ]. We will use the representa-
tion (2.20), where, for H > 1

2 ,

ĝ(s, t) = 1 − 1

g(s, s)

∫ t

0
L(r, s) dr.

We have

Xt = Mt −
∫ t

0

1

g(s, s)

∫ t

0
L(τ, s) dτ dMs

= Mt −
∫ t

0

∫ t

0
L(τ, s) dτ dBs

= Mt −
∫ t

0

∫ s

0
L(τ, s) dτ dBs −

∫ t

0

∫ t

s
L(τ, s) dτ dBs =: Mt − Nt − Ut,
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where B is the Brownian motion, defined by (6.1). By Lemma 3.1, the function∫ s
0 L(τ, s) dτ is bounded, and hence M − N is a martingale in filtration FX

t . To
argue that X is not a semimartingale in its own filtration, we will show that U has
zero quadratic variation, but infinite variation.

Let n0 be the least integer greater than 1
4H−2 . It then follows from (2.2) that the

function

Q(s, t) :=
∫ t

0
L(r, t)K

(n0−1)
H (r, s) dr

satisfies

Q(s, t) +
∫ t

0
Q(r, t)KH(r, s) dr = −K

(n0)
H (s, t),

and hence Q(·, t) ∈ L2([0, t]). Iterating the equation (2.2), we get

L(s, t) =
n0−1∑
m=1

(−1)mK
(m)
H (s, t) + (−1)(n0−1)Q(s, t).(6.7)

Define φ(s, t) := ∫ t
s L(τ, s) dτ , then, similar to (6.3),

E(Ut2 − Ut1)
2 =

∫ t2

t1

φ2(s, t2) ds +
∫ t1

0

(
φ(s, t2) − φ(s, t1)

)2
ds.(6.8)

By (6.7),

φ2(s, t) ≤ C1

n0−1∑
m=1

(∫ t

s
K

(m)
H (τ, s) dτ

)2

+ C1

(∫ t

s
Q(τ, s) dτ

)2

≤ C2|t − s|4H−2

and hence the first term in (6.8) is bounded by∫ t2

t1

φ2(s, t2) ds ≤
∫ t2

t1

C2(t2 − s)4H−2 ds ≤ C3(t2 − t1)
4H−1.

Further,∫ t1

0

(
φ(s, t2) − φ(s, t1)

)2
ds =

∫ t1

0

(∫ t2

t1

L(τ, s) dτ

)2

ds

=
∫ t1

0

∫ t2

t1

∫ t2

t1

L(τ, s)L(r, s) dτ dr ds.

After plugging in the expression (6.7), the dominating term is readily seen to be
given by (6.5), and hence as in the previous section the bound (6.6) holds. Conse-
quently, U has infinite variation and zero quadratic variation and thus X is not a
semimartingale.
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6.2. Proof of (ii).

6.2.1. Equivalence for H < 1
4 . By Lemma 5.3,

Mt =
∫ t

0
p(s, t) dX̃s =

∫ t

0
p(s, s) dX̃s +

∫ t

0

∫ t

s
ṗ(s, r) dr dX̃s

=
∫ t

0
p(s, s) dX̃s +

∫ t

0

∫ r

0
ṗ(s, r) dX̃s dr.

The last equality holds since ṗ(·, t) ∈ L2([0, t]) for H < 1
4 by Lemma 3.5. Hence,

X̃t = Wt −
∫ t

0
ϕ̃s(X̃) ds,

where Wt = ∫ t
0

dMs

p(s,s)
is a Brownian motion in filtration F X̃

t and

ϕ̃t (X̃) =
∫ t

0
L̃(s, t) dX̃s =

∫ t

0

√
2 − 2H

λH

(
�−1uH−1/2L̃(u, t)

)
(s, t) dXs

=:
∫ t

0
L(s, t) dXs =: ϕt (X),

with L̃(s, t) := ṗ(s,t)
p(t,t)

. A calculation shows that

L(s, t) = ġ(s, t)

p(t, t)
− ˙̃ρ(s, t).(6.9)

Since the kernel in (5.4) is weakly singular, by Lemma 3.5, the solution g(s, t)

of (5.3) is differentiable with respect to the second variable. Taking the derivative
of (5.1), we obtain

cH (�ġ)(s) + 2 − 2H

λH

(�ġ)(s, t)s1−2H = 0, 0 < s < t ≤ T ,

since g(t, t) = 0 for H < 1
2 . Multiplying this equation by λH

2−2H
s2H−1 and apply-

ing �−1, it can be seen that ġ(s, t) satisfies [cf. (3.10)]

ġ(s, t) + βH t−2H
∫ t

0
ġ(r, t)KH

(
r

t
,
s

t

)
dr = p(t, t) ˙̃ρ(s, t),(6.10)

and plugging (6.9) into this equation yields

L(s, t) + βH t−2H
∫ t

0

(
L(r, t) + ˙̃ρ(r, t)

)
KH

(
r

t
,
s

t

)
dr = 0.

After applying � and rearranging the terms, it becomes

L(s, t) + ∂

∂s

∫ t

0
L(r, t)

∂

∂r
R(r, s) dr = −˙̃ρ(s, t).
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Assembling all the parts together, we get

X̃t = Wt −
∫ t

0
ϕs(X)ds,

and, consequently, the representation (2.24):

Xt =
∫ t

0
ρ(s, t) dWt −

∫ t

0
ρ(s, t)ϕs(X)ds =: BH

t −
∫ t

0
ρ(s, t)ϕs(X)ds.

The density (2.25) is obtained by Girsanov’s change of measure as in Section 6.1.1,
under which X̃ is a Brownian motion and, therefore, X is an fBm.

6.2.2. Singularity for H ≥ 1
4 . The claim is obvious for H = 1

2 . For H > 1
2 ,

the process X has positive quadratic variation, and hence cannot be equivalent to
fBm with H > 1

2 , whose quadratic variation vanishes.
To prove singularity for H ∈ [1

4 , 1
2), suppose there is a probability Q, equivalent

to P, under which X is an fBm with the Hurst exponent H in its own filtration.
Then X̃t = ∫ t

0 ρ̃(s, t) dXs , with ρ̃(s, t) defined in (3.20), is a Brownian motion
under Q. By calculations as in Section 6.1.3, it can be seen that X̃ is not a semi-
martingale for H ∈ [1

4 , 1
2), thus obtaining a contradiction.

7. Proof of Corollaries 2.9 and 2.10. The proofs of Corollaries 2.9 and 2.10
follow the same pattern and we will omit the details for the latter. The represen-
tation (2.28) is obvious in view of (2.16) and the definition (2.29). To prove the
inversion formula (2.27), we have to check that∫ t

0
ξs ds =

∫ t

0
ĝ(s, t)�(s) d〈M〉s, t ∈ [0, T ].(7.1)

Since this is a pathwise statement and ξ is the only random object, no generality
will be lost if ξt is assumed to be deterministic. For ξ ∈ L2([0, t]), we have

E

(∫ t

0
ξs dBs

∣∣∣FX
t

)
= E

(∫ t

0
ξs dBs

∣∣∣FM
t

)
=

∫ t

0

d

d〈M〉s
(
EMs

∫ t

0
ξr dBr

)
dMs

=
∫ t

0

d

d〈M〉s
(
E

∫ s

0
g(r, s) dXr

∫ t

0
ξr dBr

)
dMs

=
∫ t

0
�(s) dMs,

and, using the representation (2.19), we obtain (7.1):∫ t

0
ξs ds = EXt

∫ t

0
ξs dBs = EXt

∫ t

0
�(s) dMs =

∫ t

0
ĝ(s, t)�(s) d〈M〉s .
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The formula (2.30) follows from Theorem 7.13 in [21], once we check∫ T

0
�2(t) d〈M〉t < ∞, P-a.s.(7.2)

and

E

∫ T

0

∣∣�(t)
∣∣d〈M〉t < ∞.(7.3)

Let us first consider the case H > 1
2 , for which d〈M〉t /dt = g2(t, t) > 0. By defi-

nition (2.29) and continuity of ξt

�(t)g(t, t) = ξt +
∫ t

0
L(s, t)ξs ds,

where L(s, t) solves (2.2). By (ii) of Lemma 3.5, |L(s, τ )| ≤ c1|s − τ |2H−2 with a
constant c1 and, therefore,∣∣∣∣∫ τ

0
L(s, τ )ξs ds

∣∣∣∣ ≤
(∫ τ

0

∣∣L(s, τ )
∣∣ξ2

s ds

)1/2(∫ τ

0

∣∣L(s, τ )
∣∣ds

)1/2

≤ c2

(∫ T

0

∣∣L(s, τ )
∣∣ξ2

s ds

)1/2

,

where c2
2 = c1 supτ∈[0,T ]

∫ T
0 |s − τ |2H−2 ds. Consequently,∫ T

0
�2(t) d〈M〉t ≤ 2

∫ T

0
ξ2
t dt + 2

∫ T

0

(∫ t

0
L(s, t)ξs ds

)2

dt

≤ 2
∫ T

0
ξ2
s ds + 2c2

2

∫ T

0
ξ2
s

∫ T

0

∣∣L(s, t)
∣∣dt ds

≤ 2
(
1 + c4

2
) ∫ T

0
ξ2
t dt < ∞,

which proves (7.2). Condition (7.3) is verified similarly:

E

∫ T

0

∣∣�(t)
∣∣d〈M〉t ≤ c3E

∫ T

0
|ξt |dt + c3E

∫ T

0
|ξs |

∫ T

0

∣∣L(s, t)
∣∣ds dt

≤ c3
(
1 + c2

2
)
E

∫ T

0
|ξt |dt < ∞,

where c3 := supt∈[0,T ] g(t, t).
For H < 1

2 , by Lemma 5.3, d〈M〉t /dt = p2(t, t) > 0 and, therefore,

�(t)p(t, t) = ξt +
∫ t

0

ġ(s, t)

p(t, t)
ξs ds.
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Dividing both sides of equation (6.10) by p(t, t), we see that H(s, t) :=
ġ(s, t)/p(t, t) solves the equation

H(s, t) + βH t−2H
∫ t

0
H(r, t)KH

(
r

t
,
s

t

)
dr = ˙̃ρ(s, t),

where |KH(s, t)| ≤ c4|s − t |−2H and | ˙̃ρ(s, t)| ≤ c5|s − t |−1/2−H . Therefore, by
Lemma 3.1, |H(s, t)| ≤ c6|s − t |−1/2−H and the claim follows by the same argu-
ments as in the case H < 1

2 .

8. The mixed Riemann–Liouville process. In this section, we outline the
results, obtained by our method, for the mixed Riemann–Liouville process:

Xt = Bt + V H
t , t ∈ [0, T ],

where V H is defined in (2.23).
As mentioned in the Introduction, V H shares many properties with BH . In par-

ticular, the respective stochastic calculus builds on operators similar to those de-
fined in (3.14)–(3.16). In this case, they are defined in a slightly different way:

(�f )(s, t) = −2H
d

ds

∫ t

s
f (r)(r − s)H−1/2 dr, 0 ≤ s ≤ t,

(�f )(s) = cH

d

ds

∫ s

0
f (r)(s − r)1/2−H dr,

and (
�−1g

)
(s, t) = −cH

d

ds

∫ t

s
(r − s)1/2−Hg(r) dr,

(
�−1g

)
(s) = 2H

cH

d

ds

∫ s

0
g(r)(s − r)H−1/2 dr.

Stochastic integrals with respect to V H can be defined on the space

�t :=
{
f : [0, t] �→R such that

∫ t

0
(�f )2(s, t) ds < ∞

}
,

with the scalar product

〈f,g〉�t =
∫ t

0
(�f )(s)(�g)(s) ds.

The formula (3.19) remains valid and the kernels ρ and ρ̃ become [cf. (3.20)]

ρ(s, t) = (�1)(s, t), ρ̃(s, t) = (
�−11

)
(s, t),

so that

V H
t =

∫ t

0
ρ(s, t) dWs,
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where

Wt =
∫ t

0
ρ̃(s, t) dV H

t ,

is a Brownian motion with FW
t = FV H

t . As before, we have

E

∫ t

0
f (u)dV H

u

∫ t

0
f (r) dV H

r = 〈f,g〉�t .

For H > 1
2 , the covariance function of V H

R(s, t) = EV H
t V H

s = (2H)2
∫ s∧t

0
(t − r)H−1/2(s − r)H−1/2 dr,(8.1)

satisfies

KH(s, t) := ∂2R(s, t)

∂t ∂s
= H 2(2H − 1)2|t − s|2H−2χ

(
s

t

)
, s ≤ t(8.2)

with χ ∈ C([0,1]) given by

χ(u) =
∫ u/(1−u)

0
τH−3/2(1 + τ)H−3/2 dτ.

Repeating the proofs with these modifications gives the following analogs of
the main results.

THEOREM 8.1. (i) Theorem 2.4 remains valid with g(s, t) solving the equa-
tion

g(s, t) − ∂

∂s

∫ t

0
R(r, s)

∂

∂r
g(r, t) dr + g(t, t)

∂

∂s
R(s, t) = 1,

(8.3)
0 < s, t ≤ T ,

where R(s, t) is defined in (8.1), and (2.18) is replaced with
d

dt
〈M〉t = g2(t, t) + (�g)2(t, t) > 0, t ∈ [0, T ].

(ii) Theorem 2.7 remains valid with B
H

being replaced with the Riemann–

Liouville process V
H

.
(iii) Corollary 2.9 remains valid.

Note that equation (8.3) can be obtained formally from (2.17) through integra-
tion by parts. The reason for such a twist is that the first derivative ∂R(s, t)/∂s of
the covariance function R(s, t) is not integrable for H < 1

2 . Let us note that (8.3)
also reduces to a weakly singular integral equation with the kernel KH from (8.2)
for H > 1

2 and the kernel

KH(u, v) = |u − v|−2H
∫ (1−u)/|u−v|

0
τ−1/2−H (1 + τ)−1/2−H dτ

for H < 1
2 (cf. Theorem 5.1).
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