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We introduce a new estimator for the vector of coefficients β in the linear
model y = Xβ + z, where X has dimensions n × p with p possibly larger
than n. SLOPE, short for Sorted L-One Penalized Estimation, is the solution
to

min
b∈Rp

1

2
‖y − Xb‖2

�2
+ λ1|b|(1) + λ2|b|(2) + · · · + λp|b|(p),

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and |b|(1) ≥ |b|(2) ≥ · · · ≥ |b|(p) are the de-
creasing absolute values of the entries of b. This is a convex program and we
demonstrate a solution algorithm whose computational complexity is roughly
comparable to that of classical �1 procedures such as the Lasso. Here, the
regularizer is a sorted �1 norm, which penalizes the regression coefficients
according to their rank: the higher the rank—that is, stronger the signal—
the larger the penalty. This is similar to the Benjamini and Hochberg [J. Roy.
Statist. Soc. Ser. B 57 (1995) 289–300] procedure (BH) which compares more
significant p-values with more stringent thresholds. One notable choice of the
sequence {λi} is given by the BH critical values λBH(i) = z(1 − i · q/2p),
where q ∈ (0,1) and z(α) is the quantile of a standard normal distribution.
SLOPE aims to provide finite sample guarantees on the selected model; of
special interest is the false discovery rate (FDR), defined as the expected pro-
portion of irrelevant regressors among all selected predictors. Under orthog-
onal designs, SLOPE with λBH provably controls FDR at level q. Moreover,
it also appears to have appreciable inferential properties under more general
designs X while having substantial power, as demonstrated in a series of ex-
periments running on both simulated and real data.
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Introduction. Analyzing and extracting information from data sets where the
number of observations n is smaller than the number of variables p is one of the
challenges of the present “big-data” world. In response, the statistics literature of
the past two decades documents the development of a variety of methodological
approaches to address this challenge. A frequently discussed problem is that of
linking, through a linear model, a response variable y to a set of predictors {Xj }
taken from a very large family of possible explanatory variables. In this context,
the Lasso [Tibshirani (1996)] and the Dantzig selector [Candes and Tao (2007)],
for example, are computationally attractive procedures offering some theoretical
guarantees, and with consequent widespread application. In spite of this, there are
some scientific problems where the outcome of these procedures is not entirely
satisfying, as they do not come with a machinery allowing us to make inferential
statements on the validity of selected models in finite samples. To illustrate this,
we resort to an example.

Consider a study where a geneticist has collected information about n individu-
als by having identified and measured all p possible genetics variants in a genomic
region. The geneticist wishes to discover which variants cause a certain biological
phenomenon, such as an increase in blood cholesterol level. Measuring choles-
terol levels in a new individual is cheaper and faster than scoring his or her genetic
variants, so that predicting y in future samples given the value of the relevant co-
variates is not an important goal. Instead, correctly identifying functional variants
is relevant. A genetic polymorphism correctly implicated in the determination of
cholesterol levels points to a specific gene and to a biological pathway that might
not be previously known to be related to blood lipid levels and, therefore, promotes
an increase in our understanding of biological mechanisms, as well as providing
targets for drug development. On the other hand, the erroneous discovery of an
association between a genetic variant and cholesterol levels will translate to a con-
siderable waste of time and money, which will be spent in trying to verify this as-
sociation with direct manipulation experiments. It is worth emphasizing that some
of the genetic variants in the study have a biological effect while others do not—
there is a ground truth that statisticians can aim to discover. To be able to share
the results with the scientific community in a convincing manner, the researcher
needs to be able to attach some finite sample confidence statements to his/her find-
ings. In a more abstract language, our geneticist would need a tool that privileges
correct model selection over minimization of prediction error, and would allow for
inferential statements to be made on the validity of his/her selections. This paper
presents a new methodology that attempts to address some of these needs.

We imagine that the n-dimensional response vector y is truly generated by a
linear model of the form

y = Xβ + z,

with X an n × p design matrix, β a p-dimensional vector of regression coeffi-
cients and z an n×1 vector of random errors. We assume that all relevant variables
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(those with βi �= 0) are measured in addition to a large number of irrelevant ones.
As any statistician knows, these assumptions are quite restrictive, but they are a
widely accepted starting point. To formalize our goal, namely, the selection of im-
portant variables accompanied by a finite sample confidence statement, we seek a
procedure that controls the expected proportion of irrelevant variables among the
selected. In a scientific context where selecting a variable corresponds to making
a discovery, we aim at controlling the False Discovery Rate (FDR). The FDR is of
course a well-recognized measure of global error in multiple testing and effective
procedures to control it are available: indeed, the Benjamini and Hochberg (1995)
procedure (BH) inspired the present proposal. The connection between multiple
testing and model selection has been made before [see, e.g., Abramovich and Ben-
jamini (1995), Abramovich et al. (2006), Bauer, Pötscher and Hackl (1988), Foster
and George (1994) and Bogdan, Ghosh and Żak-Szatkowska (2008)] and others in
recent literature have tackled the challenges encountered by our geneticists: we
will discuss the differences between our approach and others in later sections as
appropriate. The procedure we introduce in this paper is, however, entirely new.
Variable selection is achieved by solving a convex problem not previously consid-
ered in the statistical literature, and which marries the advantages of �1 penaliza-
tion with the adaptivity inherent in strategies like BH.

Section 1 of this paper introduces SLOPE, our novel penalization strategy, mo-
tivates its construction in the context of orthogonal designs, and places it in the
context of current knowledge of effective model selection strategies. Section 2 de-
scribes the algorithm we developed and implemented to find SLOPE estimates.
Section 3 showcases the application of our novel procedure in a variety of settings:
we illustrate how it effectively solves a multiple testing problem with positively
correlated test statistics; we discuss how regularizing parameters should be cho-
sen in nonorthogonal designs; we investigate the robustness of SLOPE to some
violations of model assumptions and we apply it to a genetic data set, not unlike
our idealized example. Section 4 concludes the paper with a discussion comparing
our methodology to other recently introduced proposals as well as outlining open
problems.

1. Sorted L-One Penalized Estimation (SLOPE).

1.1. Adaptive penalization and multiple testing in orthogonal designs. To
build intuition behind SLOPE, which encompasses our proposal for model se-
lection in situations where p > n, we begin by considering the case of orthogonal
designs and i.i.d. Gaussian errors with known standard deviation, as this makes the
connection between model selection and multiple testing natural. Since the design
is orthogonal, X′X = Ip , and the regression y = Xβ + z with z ∼ N (0, σ 2In) can
be recast as

ỹ = X′y = X′Xβ + X′z = β + X′z ∼ N
(
β,σ 2Ip

)
.(1.1)
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In some sense, the problem of selecting the correct model reduces to the problem of
testing the p hypotheses H0,j : βj = 0 versus two-sided alternatives H1,j : βi �= 0.
When p is large, a multiple comparison correction strategy is called for and we
consider two popular procedures:

• Bonferroni’s method. To control the familywise error rate6 (FWER) at level α ∈
[0,1], one can apply Bonferroni’s method, and reject H0,j if |ỹj |/σ > �−1(1 −
α/2p), where �−1(α) is the αth quantile of the standard normal distribution.
Hence, Bonferroni’s method defines a comparison threshold that depends only
on the number of covariates, p, and the noise level.

• Benjamini–Hochberg step-up procedure. To control the FDR at level q ∈ [0,1],
BH begins by sorting the entries of ỹ in decreasing order of magnitude,
|ỹ|(1) ≥ |ỹ|(2) ≥ · · · ≥ |ỹ|(p), which yields corresponding ordered hypotheses
H(1), . . . ,H(p). [Note that here, as in the rest of the paper, (1) indicates the
largest element of a set, instead of the smallest. This breaking with common
convention allows us to keep (1) as the index for the most “interesting” hy-
pothesis]. Then BH rejects all hypotheses H(i) for which i ≤ iBH, where iBH is
defined by

iBH = max
{
i : |ỹ|(i)/σ ≥ �−1(1 − qi)

}
, qi = i · q/2p(1.2)

(with the convention that iBH = 0 if the set above is empty). Letting V (resp., R)
be the total number of false rejections (resp., total number of rejections),
Benjamini and Hochberg (1995) showed that for BH

FDR = E

[
V

R ∨ 1

]
= q

p0

p
,(1.3)

where p0 is the number of true null hypotheses, p0 := |{i : βi = 0}| = p−‖β‖�0 .

In contrast to Bonferroni’s method, BH is an adaptive procedure in the sense that
the threshold for rejection |y|(iBH) is defined in a data-dependent fashion, and is
sensitive to the sparsity and magnitude of the true signals. In a setting where there
are many large βj ’s, the last selected variable needs to pass a far less stringent
threshold than it would in a situation where no βj is truly different from 0. It has
been shown in a variety of papers [see, e.g., Abramovich et al. (2006), Bogdan et al.
(2011), Frommlet and Bogdan (2013), Wu and Zhou (2013)] that this behavior
allows BH to adapt to the unknown signal sparsity, resulting in some important
asymptotic optimality properties.

We now consider how the Lasso would behave in this setting. The solution to

min
b∈Rp

1

2
‖y − Xb‖2

�2
+ λ‖b‖�1(1.4)

6Recall that the FWER is the probability of at least one false rejection.
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in the case of orthogonal designs is given by soft thresholding. In particular,
the Lasso estimate β̂j is not zero if and only if |ỹj | > λ. That is, variables
are selected using a nonadaptive threshold λ. Mindful of the costs associated
with the selection of irrelevant variables, we can control the FWER by setting
λBonf = σ · �−1(1 − α/2p) ≈ σ · √

2 logp.7 This choice, however, is likely to
result in a loss of power, and may not strike the right balance between errors of
type I and missed discoveries. Choosing a value of λ substantially smaller than
λBonf in a nondata dependent fashion would lead to a loss not only of FWER con-
trol, but also of FDR control since FDR and FWER are identical measures under
the global null in which all our variables are irrelevant. Another strategy is to use
cross-validation. However, this data-dependent approach for selecting the regular-
ization parameter λ targets the minimization of prediction error, and does not offer
guarantees with respect to model selection (see Section 1.3.3). Our idea to achieve
adaptivity, thereby increasing power while controlling some form of type-one er-
ror, is to break the monolithic penalty λ‖β‖�1 , which treats every variable in the
same manner. Set

λBH(i)
def= �−1(1 − qi), qi = i · q/2p,

and consider the following program:

min
b∈Rp

1

2
‖y − Xb‖2

�2
+ σ ·

p∑
i=1

λBH(i)|b|(i),(1.5)

where |b|(1) ≥ |b|(2) ≥ · · · ≥ |b|(p) are the order statistics of the absolute values
of the coordinates of b: in (1.5) different variables receive different levels of pe-
nalization depending on their relative importance. While the similarities of (1.5)
with BH are evident, the solution to (1.5) is not a series of scalar-thresholding op-
erations: the procedures are not—even in this case of orthogonal variables–exactly
equivalent. Nevertheless, an upper bound on FDR proved in the supplementary
appendix [Bogdan et al. (2015)] can still be assured.

THEOREM 1.1. In the linear model with orthogonal design X and z ∼
N (0, σ 2In), the procedure (1.5) rejecting hypotheses for which β̂j �= 0 has an
FDR obeying

FDR = E

[
V

R ∨ 1

]
≤ q

p0

p
.(1.6)

Figure 1 illustrates the FDR achieved by (1.5) in simulations using a 5000 ×
5000 orthogonal design X and nonzero regression coefficients equal to 5

√
2 logp.

7For large t , we have 1 −�(t) = t−1φ(t)(1 + o(t−1)), where φ(·) denotes the density of N(0,1).
Our approximation comes from setting the right-hand side to α/2p for a fixed value of α, say, α =
0.05, and a large value of p.
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FIG. 1. FDR of (1.5) in an orthogonal setting in which n = p = 5000. Straight lines correspond
to q · p0/p, marked points indicate the average False Discovery Proportion (FDP) across 500 repli-
cates, and bars correspond to ±2 SE.

We conclude this section with several remarks describing the properties of our
procedure under orthogonal designs:

1. While the λBH(i)’s are chosen with reference to BH, (1.5) is neither equiva-
lent to the step-up procedure described above nor to the step-down version.8

2. The proposal (1.5) is sandwiched between the step-down and step-up proce-
dures in the sense that it rejects at most as many hypotheses as the step-up proce-
dure and at least as many as the step-down cousin, also known to control the FDR
[Sarkar (2002)].

3. The fact that (1.5) controls FDR is not a trivial consequence of this sand-
wiching.

The observations above reinforce the fact that (1.5) is different from the procedure
known as FDR thresholding developed by Abramovich and Benjamini (1995) in
the context of wavelet estimation and later analyzed in Abramovich et al. (2006).
With tFDR = |ỹ|(iBH), FDR thresholding sets

β̂i =
{

ỹi , |ỹi | ≥ tFDR,
0, |ỹi | < tFDR.

(1.7)

This is a hard-thresholding estimate but with a data-dependent threshold: the
threshold decreases as more components are judged to be statistically significant.
It has been shown that this simple estimate is asymptotically minimax throughout
a range of sparsity classes [Abramovich et al. (2006)]. Our method is similar in

8The step-down version rejects H(1), . . . ,H(i−1), where i is the first time at which |ỹi |/σ ≤
�−1(1 − qi).
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the sense that it also chooses an adaptive threshold reflecting the BH procedure.
However, it does not produce a hard-thresholding estimate. Rather, owing to nature
of the sorted �1 norm, it outputs a sort of soft-thresholding estimate. A substantial
difference is that FDR thresholding (1.7) is designed specifically for orthogonal
designs, whereas the formulation (1.5) can be employed for arbitrary design ma-
trices leading to efficient algorithms. Aside from algorithmic issues, the choice of
the λ sequence is, however, generally challenging.

1.2. SLOPE. While orthogonal designs have helped us define the prog-
ram (1.5), this penalized estimation strategy is clearly applicable in more general
settings. To make this explicit, it is useful to introduce the sorted �1 norm: letting
λ �= 0 be a nonincreasing sequence of nonnegative scalars,

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0,(1.8)

we define the sorted-�1 norm of a vector b ∈ R
p as9

Jλ(b) = λ1|b|(1) + λ2|b|(2) + · · · + λp|b|(p).(1.9)

PROPOSITION 1.2. The functional (1.9) is a norm provided (1.8) holds.

The proof of Proposition 1.2 is provided in the supplementary appendix
[Bogdan et al. (2015)]. Now define SLOPE as the solution to

minimize
1

2
‖y − Xb‖2 +

p∑
i=1

λi |b|(i).(1.10)

As a convex program, SLOPE is tractable: as a matter of fact, we shall see in Sec-
tion 2 that its computational cost is roughly the same as that of the Lasso. Just as
the sorted �1 norm is an extension of the �1 norm, SLOPE can be also viewed as an
extension of the Lasso. SLOPE’s general formulation, however, allows to achieve
the adaptivity we discussed earlier. The case of orthogonal regressors suggests one
particular choice of a λ sequence and we will discuss others in later sections.

1.3. Relationship to other model selection strategies. Our purpose is to bring
the program (1.10) to the attention of the statistical community: this is a computa-
tional tractable proposal for which we provide robust algorithms; it is very similar
to BH when the design is orthogonal, and has promising properties in terms of
FDR control for general designs. We now compare it with two other commonly
used approaches to model selection: methods based on the minimization of �0
penalties and the adaptive Lasso. We discuss these here because they allow us to

9Observe that when all the λi ’s take on an identical positive value, the sorted �1 norm reduces
to the usual �1 norm (up to a multiplicative factor). Also, when λ1 > 0 and λ2 = · · · = λp = 0, the
sorted �1 norm reduces to the �∞ norm (again, up to a multiplicative factor).
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emphasize the motivation and characteristics of the SLOPE algorithm. We also
note that the last few years have witnessed a substantive push toward the develop-
ment of an inferential framework after selection [see, e.g., Benjamini and Yekutieli
(2005), Berk et al. (2013), Bühlmann (2013), Efron (2011), Javanmard and Mon-
tanari (2014a, 2014b), Lockhart et al. (2014), Meinshausen and Bühlmann (2010),
Meinshausen, Meier and Bühlmann (2009), van de Geer et al. (2014), Wasserman
and Roeder (2009), Zhang and Zhang (2014)], with the exploration of quite differ-
ent viewpoints. We will comment on the relationships between SLOPE and some
of these methods, developed while editing this work, in the discussion section.

1.3.1. Methods based on �0 penalties. Canonical model selection procedures
find estimates β̂ by solving

min
b∈Rp

‖y − Xb‖2
�2

+ λ‖b‖�0,(1.11)

where ‖b‖�0 is the number of nonzero components in b. The idea behind such pro-
cedures is to achieve the best possible trade-off between the goodness of fit and the
number of variables included in the model. Popular selection procedures such as
AIC [Akaike (1974)] and Cp [Mallows (1973)] are of this form: when the errors
are i.i.d. N (0, σ 2), AIC and Cp take λ = 2σ 2. In the high-dimensional regime,
such a choice typically leads to including very many irrelevant variables, yielding
rather poor predictive properties when the true vector of regression coefficients is
sparse. In part to remedy this problem, Foster and George (1994) developed the
risk inflation criterion (RIC): they proposed using a larger value of λ, effectively
proportional to 2σ 2 logp, where p is the total number of variables in the study.
Under orthogonal designs, if we associate nonzero fitted coefficients with rejec-
tions, this yields FWER control. Unfortunately, RIC is also rather conservative
and, therefore, it may not have much power in detecting variables with nonvanish-
ing regression coefficients unless they are very large.

The above dichotomy has been recognized for some time now and several re-
searchers have proposed more adaptive strategies. One frequently discussed idea in
the literature is to let the parameter λ in (1.11) decrease as the number of included
variables increases. For instance, when minimizing

‖y − Xb‖2
�2

+ p
(‖b‖�0

)
,

penalties with appealing information- and decision-theoretic properties are roughly
of the form

p(k) = 2σ 2k log(p/k) or p(k) = 2σ 2
∑

1≤j≤k

log(p/j).(1.12)

Among others, we refer the interested reader to Birgé and Massart (2001), Foster
and Stine (1999) and to Tibshirani and Knight (1999) for related approaches.
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Interestingly, for large p and small k these penalties are close to the FDR related
penalty

p(k) = σ 2
∑

1≤j≤k

λ2
BH(i),(1.13)

proposed in Abramovich et al. (2006) in the context of the estimation of the vec-
tor of normal means, or regression under the orthogonal design (see the preceding
section) and further explored in Benjamini and Gavrilov (2009). Due to an im-
plicit control of the number of false discoveries, similar model selection criteria
are appealing in gene mapping studies [see, e.g., Frommlet et al. (2012)].

The problem with these selection strategies is that, in general, they are computa-
tionally intractable. Solving (1.12) would involve a brute-force search essentially
requiring to fit least-squares estimates for all possible subsets of variables. This is
not practical for even moderate values of p, for example, for p > 60.

The decaying sequence of the smoothing parameters in SLOPE goes along the
line of the adaptive �0 penalties specified in (1.12), in which the “cost per variable
included” decreases as more get selected. However, SLOPE is computationally
tractable and can be easily evaluated even for large-dimensional problems.

1.3.2. Adaptive Lasso. Perhaps the most popular alternative to the computa-
tionally intractable �0 penalization methods is the Lasso. We have already dis-
cussed some of the limitations of this approach with respect to FDR control and
now wish to explore further the connections between SLOPE and variants of this
procedure. It is well known that the Lasso estimates of the regression coefficients
are biased due to the shrinkage imposed by the �1 penalty. To increase the accu-
racy of the estimation of large signals and eliminate some false discoveries, the
adaptive or reweighted versions of Lasso were introduced [see, e.g., Zou (2006)
or Candès, Wakin and Boyd (2008)]. In these procedures the smoothing param-
eters λ1, . . . , λp are adjusted to the unknown signal magnitudes based on some
estimates of regression coefficients, perhaps obtained through previous iterations
of Lasso. The idea is then to consider a weighted penalty

∑
i wi |bi |, where wi is

inversely proportional to the estimated magnitudes so that large regression coef-
ficients are shrunk less than smaller ones. In some circumstances, such adaptive
versions of Lasso outperform its regular version [Zou (2006)].

The idea behind SLOPE is entirely different. In the adaptive Lasso, the penalty
tends to decrease as the magnitude of coefficients increases. In our approach, the
exact opposite happens. This comes from the fact that we seek to adapt to the un-
known signal sparsity and control FDR. As shown in Abramovich et al. (2006),
FDR controlling properties can have interesting consequences for estimation. In
practice, since the SLOPE sequence λ1 ≥ · · · ≥ λp leading to FDR control is typi-
cally rather large, we do not recommend using SLOPE directly for the estimation
of regression coefficients. Instead we propose the following two-stage procedure:
in the first step, SLOPE is used to identify significant predictors; in the second step,
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the corresponding regression coefficients are estimated using the least-squares
method within the identified sparse regression model. Such a two-step procedure,
previously proposed in the context of Lasso [see, e.g., Meinshausen (2007)], can
be thought of as an extreme case of reweighting, where the selected variables are
not penalized while those that are not selected receive an infinite penalty. As shown
below, these estimates have very good properties when the coefficient sequence β

is sparse.

1.3.3. A first illustrative simulation. To concretely illustrate the specific be-
havior of SLOPE compared to more traditional penalized approaches, we rely on
the simulation of a relatively simple data structure. We set n = p = 5000 and
generate the entries of the design matrix with i.i.d. N (0,1/n) entries. The num-
ber of true signals k varies between 0 and 50 and their magnitudes are set to
βi = √

2 logp ≈ 4.1, while the variance of the error term is assumed known and
equal to 1. Since the expected value of the maximum of p independent standard
normal variables is approximately equal to

√
2 logp and the whole distribution

of the maximum concentrates around this value, this choice of model parameters
makes the sparse signal barely distinguishable from the noise because the nonzero
means are at the level of the largest null statistics. We refer to, for example, Ingster
(1998) for a precise discussion of the limits of detectability in sparse mixtures.

We fit these observations with three procedures: (1) Lasso with parameter
λBonf = σ · �−1(1 − α/2p), which controls FWER weakly; (2) Lasso with the
smoothing parameter λCV chosen with 10-fold cross-validation; (3) SLOPE with
a sequence λ1, . . . , λp defined in Section 3.2.2, expression (3.8). The level α for
λBonf and q for FDR control in SLOPE are both set to 0.1. To compensate for
the fact that Lasso with λBonf and SLOPE tend to apply a much more stringent
penalization than Lasso with λCV—which aims to minimize prediction error—we
have “de-biased” their resulting β̂ , using ordinary least squares to estimate the co-
efficients of the variables selected by Lasso–λBonf and SLOPE [see Meinshausen
(2007)].

We compare the procedures on the basis of three criteria: (a) FDR, (b) power,
and (c) relative squared error ‖Xβ̂ − Xβ‖2

�2/‖Xβ‖2
�2

. Note that only the first of
these measures is meaningful for the case where k = 0, and in such a case FDR =
FWER.

Figure 2 reports the results of 500 independent replicates. The three approaches
exhibit quite dramatically different properties with respect to model selection.
SLOPE controls FDR at the desired level 0.1 for the explored range of k; as k in-
creases, its power goes from 45% to 70%. Lasso–λBonf has FDR =0.1 at k = 0, and
a much lower one for the remaining values of k. This results in a loss of power with
respect to SLOPE: irrespective of k, the power is less than 45%. Cross-validation
chooses a λ that minimizes an estimate of prediction error, and in our experiments,
λCV is quite smaller than a penalization parameter chosen with FDR control in
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FIG. 2. Properties of different procedures as a function of the true number of nonzero regression co-
efficients: (a) FDR, (b) power, and (c) relative MSE defined as the average of 100 · ‖μ̂−μ‖2

�2
/‖μ‖2

�2
,

with μ = Xβ , μ̂ = Xβ̂ . The design matrix entries are i.i.d. N (0,1/n), n = p = 5000, all nonzero re-
gression coefficients are equal to

√
2 logp ≈ 4.13, and σ 2 = 1. Each point in the figures corresponds

to the average of 500 replicates.

mind. This results in greater power than SLOPE, but with a much larger FDR
(80% on average).

Figure 2(c) illustrates the relative mean-square error, which serves as a measure
of prediction accuracy. It is remarkable how, despite the fact that Lasso–λCV has
higher power, SLOPE builds a better predictive model since it has a lower predic-
tion error percentage for all the sparsity levels considered.

2. Algorithms. In this section we present effective algorithms for computing
the solution to SLOPE (1.10) which rely on the numerical evaluation of the prox-
imity operator (prox) to the sorted �1 norm.

2.1. Proximal gradient algorithms. SLOPE is a convex optimization problem
of the form

minimize f (b) = g(b) + h(b),(2.1)

where g is smooth and convex, and h is convex but not smooth. In SLOPE, g

is the residual sum of squares and, therefore, quadratic, while h is the sorted �1
norm. A general class of algorithms for solving problems of this kind are known
as proximal gradient methods; see Nesterov (2007), Parikh and Boyd (2013) and
references therein. These are iterative algorithms operating as follows: at each it-
eration, we hold a guess b of the solution and compute a local approximation to
the smooth term g of the form

g(b) + 〈∇g(b), x − b
〉 + 1

2t
‖x − b‖2

�2
.

This is interpreted as the sum of a Taylor approximation of g and of a proximity
term; as we shall see, this term is responsible for searching an update reasonably
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close to the current guess b, and t can be thought of as a step size. Then the next
guess b+ is the unique solution to

b+ = arg min
x

{
g(b) + 〈∇g(b), x − b

〉 + 1

2t
‖x − b‖2

�2
+ h(x)

}

= arg min
x

{
1

2t

∥∥(
b − t∇g(b)

) − x
∥∥2
�2

+ h(x)

}

(unicity follows from strong convexity). In the literature, the mapping

x(y) = arg min
x

{
1

2t
‖y − x‖2

�2
+ h(x)

}

is called the proximal mapping or prox for short, and denoted by x = proxth(y).
The prox of the �1 norm is given by entry-wise soft thresholding [Parikh and

Boyd (2013), page 150] so that a proximal gradient method to solve the Lasso
would take the following form: starting with b0 ∈R

p , inductively define

bk+1 = ηλtk

(
bk − tkX

′(Xbk − y
); tkλ)

,

where ηλ(y) = sign(y) · (|y| − λ)+ and {tk} is a sequence of step sizes. Hence, we
can solve the Lasso by iterative soft thresholding.

It turns out that one can compute the prox to the sorted �1 norm in nearly the
same amount of time as it takes to apply soft thesholding. In particular, assuming
that the entries are sorted (an order p logp operation), we shall demonstrate a
linear-time algorithm. Hence, we may consider a proximal gradient method for
SLOPE as in Algorithm 1.

It is well known that the algorithm converges [in the sense that f (bk), where f

is the objective functional, converges to the optimal value] under some conditions
on the sequence of step sizes {tk}. Valid choices include step sizes obeying tk <

2/‖X‖2 and step sizes obtained by backtracking line search; see Beck and Teboulle
(2009), Becker, Candès and Grant (2011). Further, one can use duality theory to
derive concrete stopping criteria; see the supplementary Appendix C [Bogdan et al.
(2015)] for details.

Many variants are of course possible and one may entertain accelerated prox-
imal gradient methods in the spirit of FISTA; see Beck and Teboulle (2009) and
Nesterov (2004, 2007). The scheme below is adapted from Beck and Teboulle
(2009).

Algorithm 1 Proximal gradient algorithm for SLOPE (1.10)

Require: b0 ∈R
p

1: for k = 0,1, . . . do
2: bk+1 = proxtkJλ

(bk − tkX
′(Xbk − y))

3: end for
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Algorithm 2 Accelerated proximal gradient algorithm for SLOPE (1.10)

Require: b0 ∈ R
p , and set a0 = b0 and θ0 = 1

1: for k = 0,1, . . . do
2: bk+1 = proxtkJλ

(ak − tkX
′(Xak − y))

3: θ−1
k+1 = 1

2(1 +
√

1 + 4/θ2
k )

4: ak+1 = bk+1 + θk+1(θ
−1
k − 1)(bk+1 − bk)

5: end for

The code in our numerical experiments uses a straightforward implementa-
tion of the standard FISTA algorithm, along with problem-specific stopping cri-
teria. Standalone Matlab and R implementations of the algorithm are available at
http://www-stat.stanford.edu/~candes/SortedL1. In addition, the TFOCS package
available at http://cvxr.com Becker, Candès and Grant (2011) implements Algo-
rithms 1 and 2 as well as its many variants.

2.2. Fast prox algorithm. Given y ∈ R
p and λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, the prox

to the sorted �1 norm is the unique solution to

prox(y;λ) := arg min
x∈Rp

1

2
‖y − x‖2

�2
+

p∑
i=1

λi |x|(i).(2.2)

A simple observation is this: at the solution to (2.2), the sign of each xi �= 0 will
match that of yi . It therefore suffices to solve the problem for |y| and restore the
signs in a post-processing step, if needed. Likewise, note that applying any per-
mutation P to y results in a solution Px. We can thus choose a permutation that
sorts the entries in y and apply its inverse to obtain the desired solution. Therefore,
without loss of generality, we can make the following assumption:

ASSUMPTION 2.1. The vector y obeys y1 ≥ y2 ≥ · · · ≥ yp ≥ 0.

The proposition below, proved in the supplementary Appendix [Bogdan et al.
(2015)], provides a convenient reformulation of the proximal problem (2.2) by
reformulating it as a quadratic program (QP).

PROPOSITION 2.2. Under Assumption 2.1 we can reformulate (2.2) as

minimize
1

2
‖y − x‖2

�2
+

p∑
i=1

λixi,

(2.3)
subject to x1 ≥ x2 ≥ · · · ≥ xp ≥ 0.

http://www-stat.stanford.edu/~candes/SortedL1
http://cvxr.com
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Algorithm 3 FastProxSL1
input: Nonnegative and nonincreasing sequences y and λ.
while y − λ is not nonincreasing do

Identify nondecreasing and nonconstant subsequences, that is, segments i : j
such that

yi − λi ≤ yi+1 − λi+1 ≤ · · · ≤ yj − λj and yi − λi < yj − λj .(2.4)

Replace the values of y and λ over such segments by their average value: for
k ∈ {i, i + 1, . . . , j}

yk ← 1

j − i + 1

∑
i≤k≤j

yk, λk ← 1

j − i + 1

∑
i≤k≤j

λk.

end while
output: x = (y − λ)+.

We do not suggest performing the prox calculation by calling a standard QP
solver applied to (2.3). Rather, we introduce the FastProxSL1 algorithm for com-
puting the prox: for ease of exposition, we introduce Algorithm 3 in its simplest
form before presenting a stack implementation (Algorithm 4) running in O(p)

flops, after an O(p logp) sorting step.
Algorithm 3, which terminates in at most p steps, is simple to understand: we

simply keep on averaging until the monotonicity property holds, at which point

Algorithm 4 Stack-based algorithm for FastProxSL1
1: input: Nonnegative and nonincreasing sequences y and λ.
2: # Find optimal group levels
3: t ← 0
4: for k = 1 to n do
5: t ← t + 1
6: (i, j, s,w)t = (k, k, yi − λi, (yi − λi)+)

7: while (t > 1) and (wt−1 ≤ wt) do
8: (i, j, s,w)t−1 ← (it−1, jt , st−1 + st , (

jt−1−it−1+1
jt−it−1+1 · st−1 + jt−it+1

jt−ii−1+1 · st )+)
9: Delete (i, j, s,w)t , t ← t − 1

10: end while
11: end for
12: # Set entries in x for each block
13: for � = 1 to t do
14: for k = i� to j� do
15: xk ← w�

16: end for
17: end for
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the solution is known in closed form. The key point establishing the correctness
of the algorithm is that the update does not change the value of the prox. This is
formalized below.

LEMMA 2.3. The solution does not change after each update; formally, letting
(y+, λ+) be the updated value of (y, λ) after one pass in Algorithm 3,

prox(y;λ) = prox
(
y+;λ+)

.

Next, if (y − λ)+ is nonincreasing, then it is the solution to (2.2), that is,
prox(y;λ) = (y − λ)+.

This lemma, whose proof is in the supplementary Appendix [Bogdan et al.
(2015)], guarantees that the FastProxSL1 algorithm finds the solution to (2.2) in a
finite number of steps.

As stated earlier, it is possible to obtain a careful O(p) implementation of
FastProxSL1. Below we present a stack-based approach. We use tuple notation
(a, b)i = (c, d) to denote ai = c, bi = d . For the complexity of the algorithm note
that we create a total of p new tuples. Each of these tuples is merged into a pre-
vious tuple at most once. Since the merge takes a constant amount of time, the
algorithm has the desired O(p) complexity.

With this paper, we are making available a C, a Matlab and an R implementation
of the stack-based algorithm at http://www-stat.stanford.edu/~candes/SortedL1.
The algorithm is also implemented in R package SLOPE, available on CRAN,
and included in the current version of the TFOCS package. Table 1 reports the
average runtimes of the algorithm (MacBook Pro, 2.66 GHz, Intel Core i7) when
applied to vectors of fixed length and varying sparsity.

2.3. Related algorithms. Brad Efron informed us about the connection be-
tween the FastProxSL1 algorithm for SLOPE and a simple iterative algorithm
for solving isotonic problems called the pool adjacent violators algorithm (PAVA)
[Barlow et al. (1972), Kruskal (1964)]. A simple instance of an isotonic regression
problem involves fitting data in a least-squares sense in such a way that the fitted

TABLE 1
Average runtimes of the stack-based prox implementation with normalization steps (sorting and sign

changes) included, respectively, excluded

p = 105 p = 106 p = 107

Total prox time (s) 9.82e–03 1.11e–01 1.20e+00
Prox time after normalization (s) 6.57e–05 4.96e–05 5.21e–05

http://www-stat.stanford.edu/~candes/SortedL1
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values are monotone:

minimize 1
2‖y − x‖2

�2
,

(2.5)
subject to x1 ≥ x2 ≥ · · · ≥ xp.

Here, y is a vector of observations and x is the vector of fitted values, which are
here constrained to be nonincreasing. We have chosen this formulation to empha-
size the connection with (2.3). Indeed, our QP (2.3) is equivalent to

minimize
1

2

p∑
i=1

(yi − λi − xi)
2,

subject to x1 ≥ x2 ≥ · · · ≥ xp ≥ 0,

so that we see are really solving an isotonic regression problem with data yi − λi .
Algorithm 3 is then a version of PAVA as described in Barlow et al. (1972); see
Best and Chakravarti (1990), Grotzinger and Witzgall (1984) for related work and
connections with active set methods. Also, an elegant R package for isotone re-
gression has been contributed by de Leeuw, Hornik and Mair (2009) and can be
used to compute the prox to the sorted �1 norm.

Similar algorithms were also proposed in Zhong and Kwok (2012) to solve the
OSCAR optimization problem defined as

minimize
1

2
‖y − Xb‖2

�2
+ λ1‖b‖�1 + λ2

∑
i<j

max
(|bi |, |bj |).(2.6)

The OSCAR formulation was introduced in Bondell and Reich (2008) to encour-
age grouping of correlated predictors. The OSCAR penalty term can be expressed
as

∑p
i=1 αi |b|(i) with αi = λ1 + (p − i)λ2; hence, this is a sorted �1 norm with a

linearly decaying sequence of weights. Bondell and Reich (2008) do not present
a special algorithm for solving (2.6) other than casting the problem as a QP. In
the article Zeng and Figueiredo (2014), which appeared after our manuscript was
made publicly available, the OSCAR penalty term was further generalized to a
Weigthed Sorted L-one norm, which coincides with the SLOPE formulation. This
latter article does not discuss statistical properties of this fitting procedure.

3. Results. We now illustrate the performance of our SLOPE proposal in
three different ways. First, we describe a multiple-testing situation where reduc-
ing the problem to a model selection setting and applying SLOPE assures FDR
control, and results in a testing procedure with appreciable properties. Second, we
discuss guiding principles to choose the sequence of λi’s in general settings, and
illustrate the efficacy of the proposals with simulations. Third, we apply SLOPE
to a data set collected in genetics investigations.
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3.1. An application to multiple testing. In this section we show how SLOPE
can be used as an effective multiple comparison controlling procedure in a testing
problem with a specific correlation structure. Consider the following situation. Sci-
entists perform p = 1000 experiments in each of 5 randomly selected laboratories,
resulting in observations that can be modeled as

yi,j = μi + τj + zi,j , 1 ≤ i ≤ 1000,1 ≤ j ≤ 5,(3.1)

where the laboratory effects τj are i.i.d. N (0, σ 2
τ ) random variables and the errors

zi,j are i.i.d. N (0, σ 2
z ), with the τ and z sequences independent of each other. It

is of interest to test whether Hi : μi = 0 versus a two-sided alternative. Averaging
the scores over all five labs results in

ȳi = μi + τ̄ + z̄i , 1 ≤ i ≤ 1000,

with ȳ ∼N (μ,�) and �i,i = 1
5(σ 2

τ + σ 2
z ) = σ 2 and �i,j = 1

5σ 2
τ = ρ for i �= j .

The problem has then been reduced to testing if the marginal means of a multi-
variate Gaussian vector with equicorrelated entries do not vanish. One possible ap-
proach is to use marginal tests based on ȳi ’s and rely on the Benjamini–Hochberg
procedure to control FDR. That is, we can order |ȳ|(1) ≥ |ȳ|(2) ≥ · · · ≥ |ȳ|(p) and
apply the step-up procedure with critical values equal to σ · �−1(1 − iq/2p).

Another possible approach is to “whiten the noise” and express our multiple
testing problem in the form of a regression equation

ỹ = �−1/2ȳ = �−1/2μ + ε,(3.2)

where ε ∼ N (0, Ip). Treating �−1/2 as the regression design matrix, our prob-
lem is equivalent to classical model selection: identify the nonzero components
of the vector μ of regression coefficients.10 Note that while the matrix � is far
from being diagonal, �−1/2 is diagonally dominant. For example, when σ 2 = 1
and ρ = 0.5, then �

−1/2
i,i = 1.4128 and �

−1/2
i,j = −0.0014 for i �= j . Thus, every

low-dimensional submodel obtained by selecting few columns of the design ma-
trix �−1/2 will be very close to orthogonal. In summary, the transformation (3.2)
reduces the multiple-testing problem with strongly positively correlated test statis-
tics to a problem of model selection under approximately orthogonal design, which
is well suited for the application of SLOPE with the λBH values.

To compare the performances of these two approaches, we simulate data ac-
cording to the model (3.1) with variance components σ 2

τ = σ 2
z = 2.5, which yield

σ 2 = 1 and ρ = 0.5. We consider a sequence of sparse settings, where the number
k of nonzero μi’s varies between 0 and 80. To obtain moderate power, the nonzero
means are set to

√
2 logp/c ≈ 2.63, where c is the Euclidean norm of each of the

columns of �−1/2. We compare the performance of SLOPE and BH on marginal
tests under two scenarios: (1) assuming σ 2

τ = σ 2
z = 2.5 known, and (2) estimating

10To be explicit, (3.2) is the basic regression model with X = �−1/2 and β = μ.
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FIG. 3. Simulation results for testing multiple means from correlated statistics. (a)–(b) Mean FDP
± 2 SE for marginal tests as a function of k. (c) Mean FDP ± 2 SE for SLOPE. (d) Power plot.

them using the classical unweighted means method based on equating the ANOVA
mean squares to their expectations:

σ̂ 2
z = MSE, σ̂ 2

τ = MSτ − MSE

1000
;

using the standard notation from ANOVA analysis, MSE is the mean square due
to the error in the model (3.1) and MSτ is the mean square due to the random
factor τ . To use SLOPE, we center the vector ỹ by subtracting its mean, and center
and standardize the columns of �̂−1/2, so they have zero means and unit l2 norms.
Figure 3 reports the results of these simulations, averaged over 500 independent
replicates.

In our setting, the estimation procedure has no influence on SLOPE. Under both
scenarios (variance components known and unknown) SLOPE keeps FDR at the
nominal level as long as k ≤ 40. Then its FDR slowly increases, but for k ≤ 80 it
is still very close to the nominal level as shown in Figure 3(c). In contrast, the per-
formance of BH differs significantly: when σ 2 is known, BH on the marginal tests
is too conservative, with an average FDP below the nominal level; see Figure 3(a)
and (b). When σ 2 is estimated, the average FDP of this procedure increases and for
q = 0.05, it significantly exceeds the nominal level. Under both scenarios (known
and unknown σ 2) the power of BH is substantially smaller than the power pro-
vided by SLOPE [Figure 3(d)]. Moreover, the False Discovery Proportion (FDP)
in the marginal tests with BH correction appears more variable across replicates
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FIG. 4. Testing example with q = 0.1 and k = 50. The top row refers to marginal tests, and the
bottom row to SLOPE. Both procedures use the estimated variance components. Histograms of false
discovery proportions are in the first column and of true positive proportions in the second.

than that of SLOPE [Figure 3(a), (b) and (c)]. Figure 4 presents the results in
greater detail for q = 0.1 and k = 50: in approximately 65% of the cases the ob-
served FDP for BH is equal to 0, while in the remaining 35% it takes values which
are distributed over the whole interval (0,1). This behavior is undesirable. On the
one hand, FDP = 0 typically equates with few discoveries (and hence power loss).
On the other hand, if many FDP = 0 contribute to the average in the FDR, this
quantity is kept below the desired level q even if, when there are discoveries, a
large number of them are false. Indeed, in approximately 26% of all cases BH on
the marginal tests did not make any rejections (i.e., R = 0); and conditional on
R > 0, the mean of FDP is equal to 0.16 with a standard deviation of 0.28, which
clearly shows that the observed FDP is typically far away from the nominal value
of q = 0.1. In other words, while BH is close to controlling the FDR, the scientists
would either make no discoveries or have very little confidence on those actually
made. In contrast, SLOPE results in a more predictable FDP and a substantially
larger and more predictable True Positive Proportion (TPP, fraction of correctly
identified true signals); see Figure 4.

3.2. Choosing λ in general settings. In the previous sections we observed that,
for orthogonal designs, Lasso with λBonf = σ · �−1(1 − α/2p) controls FWER at
the level α, while SLOPE with the sequence λ = λBH controls FDR at the level q .
We are interested, however, in applying these procedures in more general settings,
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FIG. 5. Observed (a) FWER for Lasso with λBonf and (b) FDR for SLOPE with λBH under Gaus-
sian design and n = 5000. The results are averaged over 500 replicates.

specifically when p > n and there is some correlation among the explanatory vari-
ables, and when the value of σ 2 is not known. We start tackling the first situation.
Correlation among regressors notoriously introduces a series of complications in
the statistical analysis of linear models, ranging from the increased computational
costs that motivated the early popularity of orthogonal designs, to the conceptual
difficulties of distinguishing causal variables among correlated ones. Indeed, re-
cent results on the consistency of �1 penalization methods typically require some
form of partial orthogonality. SLOPE and Lasso aim at finite sample properties,
but it would not be surprising if departures from orthogonality were to have a se-
rious effect. To explore this, we study the performance of Lasso and SLOPE in
the case where the entries of the design matrix are generated independently from
the N (0,1/n) distribution. Specifically, we consider two Gaussian designs with
n = 5000: one with p = 2n = 10,000 and one with p = n/2 = 2500. We set the
value of nonzero coefficients to 5

√
2 logp and consider situations where the num-

ber of important variables ranges between 0 and 100. Figure 5 illustrates that under
such Gaussian designs both Lasso–λBonf and SLOPE lose the control over their
targeted error rates (FWER and FDR) as the number k of nonzero coefficients in-
creases, with a departure that is more severe when the ratio between p/n is larger.

3.2.1. The effect of shrinkage. What is behind this fairly strong effect, and is
it possible to choose a λ sequence to compensate it? Some useful insights come
from studying the solution of the Lasso. Assume that the columns of X have unit
norm and that z ∼ N (0,1). Then the optimality conditions for the Lasso give

β̂ = ηλ

(
β̂ − X′(Xβ̂ − y)

) = ηλ

(
β̂ − X′(Xβ̂ − Xβ − z)

)
(3.3)

= ηλ

(
β̂ − X′X(β̂ − β) + X′z

)
,
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where ηλ is the soft-thresholding operator, ηλ(t) = sgn(t)(|t | − λ)+, applied com-
ponentwise. Defining vi = 〈Xi,

∑
j �=i Xj (βj − β̂j )〉, we can write

β̂i = ηλ

(
βi + X′

iz + vi

)
,(3.4)

which expresses the relation between the estimated value of β̂i and its true value βi .
If the variables are orthogonal, the vi ’s are identically equal to 0, leading to
β̂i = ηλ(βi + X′

iz). Conditionally on X, X′
iz ∼ N (0,1) and by using Bonfer-

roni’s method, one can choose λ such that P(maxi |X′
iz| > λ) ≤ α. When X is

not orthogonal, however, vi �= 0 and its size increases with the estimation error
of βj (for i �= j )—which depends on the magnitude of the shrinkage parameter λ.
Therefore, even in the perfect situation where all the k relevant variables, and those
alone, have been selected, and when all columns of the design matrix are realiza-
tions of independent random variables, vi will not be zero. Rather, the squared
magnitude v2

i will be on the order of λ2 · k/n. In other words, the variance that
would determine the correct Bonferroni threshold is on the order 1 + λ2 · k/n. In
reality, the true k is not known a priori, and the selected k depends on the value
of the smoothing parameter λ, so that it is not trivial to implement this correction
in the Lasso. SLOPE, however, uses a decreasing sequence λ, analogous to a step-
down procedure, and this extra noise due to the shrinkage of relevant variables can
be incorporated by progressively modifying the λ sequence. In evocative, if not
exact terms, λ1 is used to select the first variable to enter the model: at this stage
we are not aware of any variable whose shrunk coefficient is “effectively increas-
ing” the noise level, and we can keep λ1 = λBH(1). The value of λ2 determines the
second variable to enter the model and, hence, we know that there is already one
important variable whose coefficient has been shrunk by roughly λBH(1); we can
use this information to redefine λ2. Similarly, when using λ3 to identify the third
variable, we know of two relevant regressors whose coefficients have been shrunk
by amounts determined by λ1 and λ2, and so on. What follows is an attempt to
make this intuition more precise, accounting for the fact that the sequence λ needs
to be determined a priori, and we need to make a prediction on the values of the
cross products X′

iXj appearing in the definition of vi . Before we turn to this, we
want to underscore how this explanation for the loss of FDR control is consistent
with patterns evident from Figure 5: the problem is more serious as k increases
(and, hence, the effect of shrinkage is felt on a larger number of variables) and as
the ratio p/n increases (which for Gaussian designs results in larger empirical cor-
relation |X′

iXj |). Our loose analysis suggests that when k is really small, SLOPE
with λBH yields an FDR that is close to the nominal level, as empirically observed.

3.2.2. Adjusting the regularizing sequence for SLOPE. In light of (3.4), we
would like an expression for X′

iXS(βS − β̂S), where with S , XS and βS we indi-
cate the support of β , the subset of variables associated to βi �= 0, and the value of
their coefficients, respectively.
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Again, to obtain a very rough evaluation of the SLOPE solution, we can start
from the Lasso. Let us assume that the size of βS and the value of λ are such that
the support and the signs of the regression coefficients are correctly recovered in
the solution. That is, we assume that sign(βj ) = sign(β̂j ) for all j , with the con-
vention that sign(0) = 0. Without loss of generality, we further assume that βj ≥ 0.
Now, the Karush–Kuhn–Tucker (KKT) optimality conditions for the Lasso yield

X′
S(y − Xβ̂S) = λ · 1S,(3.5)

implying

β̂S = (
X′

SXS

)−1(
X′

Sy − λ · 1S

)
.

In the case of SLOPE, rather than one λ, we have a sequence λ1, . . . , λp . Assum-
ing again that this is chosen so that we recover exactly the support S , the estimates
of the nonzero components are very roughly equal to

β̂S = (
X′

SXS
)−1(

X′
Sy − λS

) = β̂OLS − (
X′

SXS
)−1

λS,

where λS = (λ1, . . . , λ|S|)′ and β̂OLS is the least-squares estimator of βS . This
leads to E(βS − β̂S) ≈ (X′

SXS)−1λS and

EX′
iXS(βS − β̂S) ≈ EX′

iXS
(
X′

SXS
)−1

λS,

an expression that tells us the typical size of vi in (3.4).
For the case of Gaussian designs, where the entries of X are i.i.d. N (0,1/n),

for i /∈ S ,

E
(
X′

iXS
(
X′

SXS
)−1

λS
)2 = 1

n
λ′
SE

(
X′

SXS
)−1

λS = w
(|S|) · ‖λS‖2

�2
,

(3.6)

w(k) = 1

n − k − 1
.

This uses the fact that the expected value of an inverse k×k Wishart with n degrees
of freedom is equal to Ik/(n − k − 1).

This suggests the sequence of λ’s described below denoted by λG since it is
motivated by Gaussian designs. We start with λG(1) = λBH(1). At the next stage,
however, we need to account for the slight increase in variance so that we do not
want to use λBH(2) but rather

λG(2) = λBH(2)

√
1 + w(1)λG(1)2.

Continuing, this gives

λG(i) = λBH(i)

√
1 + w(i − 1)

∑
j<i

λG(j)2.(3.7)

Figure 6 plots the adjusted values given by (3.7). As is clear, these new values yield
a procedure that is more conservative than that based on λBH. It can be observed
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FIG. 6. Graphical representation of sequences {λi} for p = 5000 and q = 0.1. The solid line is
λBH, the dashed (resp., dotted) line is λG given by (3.7) for n = p/2 (resp., n = 2p).

that the corrected sequence λG(i) may no longer be decreasing (as in the case
where n = p/2 in the figure). It would not make sense to use such a sequence—
note that SLOPE would no longer be convex—and letting k� = k(n,p, q) be the
location of the global minimum, we shall work with

λG�(i) =
{

λG(i), i ≤ k�,
λk�, i > k�,

with λG(i) as in (3.7).(3.8)

An immediate validation—if the intuition that we have stretched this far has any
bearing in reality—is the performance of λG� in the setup of Figure 5. In Figure 7

FIG. 7. Mean FDP ± 2 SE for SLOPE with λG� . Strong signals have nonzero regression coeffi-
cients set to 5

√
2 logp, while this value is set to

√
2 logp for weak signals. (a) p = 2n = 10,000.

(b) p = n/2 = 2500.
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we illustrate the performance of SLOPE for large signals βi = 5
√

2 logp as in
Figure 5, as well as for rather weak signals with βi = √

2 logp. The correction
works very well, rectifying the loss of FDR control documented in Figure 5. For
p = 2n = 10,000, the values of the critical point k� are 51 for q = 0.05 and 68
for q = 0.1. For p = n/2 = 2500, they become 95 and 147, respectively. It can be
observed that for large signals, SLOPE keeps FDR below the nominal level even
after passing the critical point. Interestingly, the control of FDR is more difficult
when the coefficients have small amplitudes. We believe that some increase of
FDR for weak signals is related to the loss of power, which our correction does not
account for. However, even for weak signals the observed FDR of SLOPE with
λG� is very close to the nominal level when k ≤ k�.

In situations where one cannot assume that the design is Gaussian or that
columns are independent, we suggest replacing w(i − 1)

∑
j<i λ

2
j in the for-

mula (3.7) with a Monte Carlo estimate of the correction. Let X denote the stan-
dardized version of the design matrix, so that each column has a mean equal to
zero and unit l2 norm. Suppose we have computed λ1, . . . , λi−1 and wish to com-
pute λi . Let XS indicate a matrix formed by selecting those columns with indices
in some set S of cardinality i − 1 and let j /∈ S . After randomly selecting S and j ,
the correction can be approximated by the average of (X′

jXS(X′
SXS)−1λ1:i−1)

2

across realizations, where λ1:i−1 = (λ1, . . . , λi−1)
′.

Significantly more research is needed to understand the properties of this heuris-
tic and to design more efficient alternatives. Our simulations so far suggest that it
provides approximate FDR control when looking at the average across all possible
signal placements, and—for any fixed signal location—if the columns of the de-
sign matrix are exchangeable. It is important to note that the computational cost of
this procedure is relatively low. Two elements contribute to this. First, the complex-
ity of the procedure is reduced by the fact that the sequence of λ’s does not need to
be estimated entirely, but only up to the point k� where it starts increasing (or sim-
ply flattens) and only for a number of entries on the order of the expected number
of nonzero coefficients. Second, the smoothness of λ assures that it is enough to
estimate λ on a grid of points between 1 and k�, making the problem tractable also
for very large p. In Bogdan et al. (2013) we applied a similar procedure for the
estimation of the regularizing sequence with p = 20482 = 4,194,304 and n = p/5
and found out that it was sufficient to estimate this sequence at only 40 grid points.

3.2.3. Unknown σ . According to formulas (1.5) and (1.10), the penalty in
SLOPE depends on the standard deviation σ of the error term. In many applica-
tions σ is not known and needs to be estimated. When n is larger than p, this can
easily be done by means of classical unbiased estimators. When p ≥ n, some so-
lutions for simultaneous estimation of σ and regression coefficients using �1 opti-
mization schemes were proposed; see, for example, Städler, Bühlmann and van de
Geer (2010) and Sun and Zhang (2012). Specifically, Sun and Zhang (2012) in-
troduced a simple iterative version of the Lasso called the scaled Lasso. The idea
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Algorithm 5 Iterative SLOPE fitting when σ is unknown

1: input: y, X and initial sequence λS (computed for σ = 1)
2: initialize: S+ =∅

3: repeat
4: S = S+
5: compute the RSS obtained by regressing y onto variables in S

6: set σ̂ 2 = RSS/(n − |S| − 1)

7: compute the solution β̂ to SLOPE with parameter sequence σ̂ · λS

8: set S+ = supp(β̂)

9: until S+ = S

of this algorithm can be applied to SLOPE, with some modifications. For one, our
simulation results show that, under very sparse scenarios, it is better to de-bias
the estimates of regression parameters by using classical least-squares estimates
within the selected model to obtain an estimate of σ 2.

We present our algorithm above (Algorithm 5). There, λS is the sequence of
SLOPE parameters designed to work with σ = 1, obtained using the methods from
Section 3.2.2.

The procedure starts by using a conservative estimate of the standard deviation
of the error term σ̂ (0) = Std(y) and a related conservative version of SLOPE with
λ(0) = σ̂ (0) · λS . Then, in consecutive runs σ̂ (k) is computed using residuals from
the regression model, which includes variables identified by SLOPE with sequence
σ (k−1) · λS . The procedure is repeated until convergence, that is, until the next
iteration results in exactly the same model as the current one.

3.2.4. Simulations with idealized GWAS data. We illustrate the performance
of the “scaled” version of SLOPE and of our algorithm for the estimation of the
parameters λi with simulations designed to mimic an idealized version of Genome
Wide Association Studies (GWAS). We set n = p = 5000, and simulate 5000
genotypes of p independent Single Nucleotide Polymorphisms (SNPs). For each
of these SNPs the minor allele frequency (MAF) is sampled from the uniform
distribution on the interval (0.1,0.5). Let us underscore that this assumption of
independence is not met in actual GWAS, where the number of typed SNPs is in
the order of millions. Rather, one can consider our data-generating mechanism as
an approximation of the result of preliminary screening of genotype variants to
avoid complications due to correlation. Our goal here is not to argue that SLOPE
has superior performance in GWAS, but rather to illustrate the computational costs
and inferential results of our algorithms. The explanatory variables are defined as

x̃ij =
⎧⎨
⎩

−1, for aa,
0, for aA,
1, for AA,

(3.9)
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where a and A denote the minor and reference alleles at the j th SNP for the ith
individual. Then the matrix X̃ is centered and standardized, so the columns of the
final design matrix X have zero mean and unit norm. The trait values are simulated
according to the model

y = Xβ + z,(3.10)

where z ∼ N(0, I ), that is, we assume only additive effects and no interaction be-
tween loci (epistasis). We vary the number of nonzero regression coefficients k

between 0 and 50 and we set their size to 1.2
√

2 logp ≈ 4.95 (“moderate” sig-
nal). For each value of k, 500 replicates are performed, in each selecting randomly
among the columns of X, the k with nonzero coefficients. Since our design matrix
is centered and does not contain an intercept, we also center the vector of responses
and let SLOPE work with ỹ = y − ȳ, where ȳ is the mean of y.

We set q = 0.05 and estimate the sequence λ via the Monte Carlo approach
described in Section 3.2.2; here, we use 5000 independent random draws of XS
and Xj to compute the next term in the sequence. The calculations terminated
in about 90 seconds (HP EliteDesk 800 G1 TWR, 3.40 GHz, Intel i7-4770) at
λ31, where the estimated sequence λ obtained a first local minimum. Figure 8(a)
illustrates that up to this first minimum the Monte Carlo sequence λMC coincides
with the heuristic sequence λG� for Gaussian matrices. In the result the FDR and
power of “scaled” SLOPE are almost the same for both sequences [Figure 8(b)
and (c)].

In our simulations, the proposed algorithm for scaled SLOPE converges very
quickly. The conservative initial estimate of σ leads to a relatively small model
with few false discoveries since σ (0) · λS controls the FDR in sparse settings. Typ-
ically, iterations to convergence see the estimated value of σ decrease and the
number of selected variables increase. Since some signals remain undetected (the

FIG. 8. (a) Graphical representation of sequences λMC and λG for the SNP design ma-
trix. (b) Mean FDP ± 2 SE for SLOPE with λG� and λMC and for BH as applied to
marginal tests. (c) Power of both versions of SLOPE and BH on marginal tests for β1 = · · · =
βk = 1.2

√
2 logp ≈ 4.95, σ = 1. In each replicate, the signals are randomly placed over the columns

of the design matrix, and the plotted data points are averages over 500 replicates.
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power is usually below 100%), σ is slightly overestimated at the point of con-
vergence, which translates into controlling the FDR at a level slightly below the
nominal one; see Figure 8(b).

Figure 8(b) and (c) compare scaled SLOPE with the “marginal” tests. The latter
are based on t-test statistics

ti = β̂i/σ̂
2, σ̂ 2 = RSSi/(n − 2),

where β̂i (resp., RSSi ) is the least-square estimate of the regression coefficient
(resp., the residual sum of squares) in the simple linear regression model including
only the ith SNP. To adjust for multiplicity, we use BH at the nominal FDR level
q = 0.05.

It can be observed that SLOPE and marginal tests do not differ substantially
when k ≤ 5. However, for k ≥ 10 the FDR of the marginal tests approach falls
below the nominal level and the power decreases from 80% for k = 10 to 67% for
k = 50. SLOPE’s power remains, instead, stable at the level of approximately 86%
for k ∈ {20, . . . ,50}. This conservative behavior of marginal tests results from the
inflation of the noise level estimate caused by regressors that are unaccounted for
in the simple regression model.

We use this idealized GWAS setting to also explore the effect of some model
misspecification. First, we consider a trait y on which genotypes have effects that
are not simply additive. We formalize this via the matrix Z̃ collecting the “domi-
nant” effects

z̃ij =
{−1, for aa,AA,

1, for aA.
(3.11)

The final design matrix [X,Z] has the columns [X̃, Z̃] centered and standardized.
Now the trait values are simulated according to the model

y = [X,Z][β ′
X,β ′

Z

]′ + ε,

where ε ∼ N(0, I ), the number of “causal” SNPs k varies between 0 and 50,
each causal SNP has an additive effect (nonzero components of βX) equal to
1.2

√
2 logp ≈ 4.95 and a dominant effect (nonzero components of βZ) randomly

sampled from N(0, σ = 2
√

2 logp). The data is analyzed using model (3.10), that
is, assuming linear effect of alleles even when this is not true.

Second, to explore the sensitivity to violations of the assumption of the normal-
ity of the error terms, we considered (1) error terms zi with a Laplace distribution
and a scale parameter adjusted to that the variance is equal to one, and (2) error
terms contaminated with 50 outliers ∼ N(0, σ = 5) representing 1% of all obser-
vations.

Figure 9 summarizes the performance of SLOPE and of the marginal tests (ad-
justed for multiplicity via BH), which we include for reference purposes. Viola-
tion of model assumption appears to affect power rather than FDR in the case of
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FIG. 9. FDR and power of “scaled” SLOPE based on “gaussian” sequence λG� (left panel) and
BH-corrected single marker tests (right panel) for different deviations from the assumed regression
model. Error bars for FDR correspond to mean FDP ± 2 SE.

SLOPE. Specifically, in all three examples FDR is kept very close to the nomi-
nal level while the power is somewhat diminished with respect to Figure 8. The
smallest difference is observed in the case of Laplace errors, where the results of
SLOPE are almost the same as in the case of normal errors. This is also the case
where the difference in performance due to model misspecification is negligible for
marginal tests. In all other cases, this approach seems to be much more sensitive
than SLOPE to model misspecification.

3.3. A real data example from genetics. In this section we illustrate the ap-
plication of SLOPE to a current problem in genetics. In Service et al. (2014), the
authors investigate the role of genetic variants in 17 regions in the genome, selected
on the basis of previously reported association with traits related to cardiovascu-
lar health. Polymorphisms are identified via exome resequencing in approximately
6000 individuals of Finnish descent: this provides a comprehensive survey of the
genetic diversity in the coding portions of these regions and affords the opportu-
nity to investigate which of these variants have an effect on the traits of interest.
While the original study has a broader scope, we here tackle the problem of identi-
fying which genetic variants in these regions impact the fasting blood HDL levels.
Previous literature reported associations between 9 of the 17 regions and HDL, but
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the resolution of these earlier studies was unable to pinpoint to specific variants in
these regions or to distinguish if only one or multiple variants within the regions
impact HDL. The resequencing study was designed to address this problem.

The analysis in Service et al. (2014) relies substantially on “marginal” tests:
the effect of each variant on HDL is examined via a linear regression that has
cholesterol level as outcome and the genotype of the variant as explanatory vari-
able, together with covariates that capture possible population stratification. Such
marginal tests are common in genetics and represent the standard approach in
genome-wide association studies (GWAS). Among their advantages, it is worth
mentioning that they allow to use all available observations for each variant with-
out requiring imputation of missing data; their computational cost is minimal; and
they result in a p-value for each variant that can be used to clearly communi-
cate to the scientific community the strength of the evidence in favor of its impact
on a particular trait. Marginal tests, however, cannot distinguish if the association
between a variant and a phenotype is “direct” or due to correlation between the
variant in question and another, truly linked to the phenotype. Since most of the
correlation between genetic variants is due to their location along the genome (with
nearby variants often correlated), this confounding is often considered not too se-
rious a limitation in GWAS: multiple polymorphisms associated to a phenotype in
one locus simply indicate that there is at least one genetic variant (most likely not
measured in the study) with impact on the phenotype in the locus. The situation is
quite different in the resequencing study we want to analyze, where establishing if
one or more variants in the same region influence HDL is one of the goals. To ad-
dress this, the authors of Service et al. (2014) resort to regressions that include two
variables at the time: one of these being the variant with previously documented
strongest marginal signal in the region, the other being variants that passed an FDR
controlling threshold in the single variant analysis. Model selection strategies were
only cursorily explored with a step-wise search routine that targets BIC. Such lim-
ited foray into model selection is motivated by the fact that one major concern in
genetics is to control some global measure of type I error, and currently available
model selection strategies do not offer finite sample guarantees with this regard.
This goal is in line with that of SLOPE and so it is interesting for us to apply this
new procedure to this problem.

The data set in Service et al. (2014) comprises 1878 variants, on 6121 subjects.
Before analyzing it with SLOPE, or other model selection tools, we performed
the following filtering. We eliminated from considerations variants observed only
once (a total of 486), since it would not be possible to make inference on their
effect without strong assumptions. We examined correlation between variants and
selected for analysis a set of variants with pair-wise correlation smaller than 0.3.
Larger values would make it quite challenging to interpret the outcomes; they ren-
der difficult the comparison of results across procedures since these might select
different variables from a group of correlated ones; and large correlations are likely
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to adversely impact the efficacy of any model selection procedure. This reduc-
tion was carried out in an iterative fashion, selecting representatives from groups
of correlated variables, starting from stronger levels of correlation and moving
onto lower ones. Among correlated variables, we selected those that had stronger
univariate association with HDL, larger minor allele frequency (diversity), and,
among very rare variants, we privileged those whose annotation was more indica-
tive of possible functional effects. Once variables were identified, we eliminated
subjects that were missing values for more than 10 variants and for HDL. The re-
maining missing values were imputed using the average allele count per variant.
This resulted in a design with 5375 subjects and 777 variants. The minor allele
frequency of the variants included ranges from 2 × 10−4 to 0.5, with a median of
0.001 and a mean of 0.028: the data set still includes a number of rare variants,
with the minor allele frequency smaller than 0.01.

In Service et al. (2014), association between HDL and polymorphisms was an-
alyzed only for variants in regions previously identified as having an influence on
HDL: ABCA1, APOA1, CEPT, FADS1, GALNT2, LIPC, LPL, MADD, and MVK
(regions are identified with the name of one of the genes they contain). Moreover,
only variants with minor allele frequencies larger than 0.01 were individually in-
vestigated, while nonsynonimous rare variants were analyzed with “burden tests.”
These restrictions were motivated, at least in part, by the desire to reduce tests to
the most well-powered ones, so that controlling for multiple comparisons would
not translate in an excessive decrease of power. Our analysis is based on all vari-
ants that survive the described filtering in all regions, including those not directly
sequenced in the experiment in Service et al. (2014), but included in the study as
landmarks of previously documented associations (array SNPs in the terminology
of the paper). We compare the following approaches: the (1) marginal tests de-
scribed above in conjunction with BH and q = 0.05; (2) BH and q = 0.05 applied
to the p-values from the full model regression; (3) Lasso with λBonf and α = 0.05;
(4) Lasso with λCV (in these last two cases we use the routines implemented in
glmnet in R); (5) the R routine Step.AIC in forward direction and BIC as op-
timality criteria; (6) the R routine Step.AIC in backward direction and BIC as
optimality criteria; (7) SLOPE with λG� and q = 0.05; (8) SLOPE with λ obtained
via Monte Carlo starting from our design matrix. Defining the λ for Lasso–λBonf
and SLOPE requires a knowledge of the noise level σ 2; we estimated this from
the residuals of the full model. When estimating λ via the Monte Carlo approach,
for each i we used 5000 independent random draws of XS and Xj . Figure 10(a)
illustrates that the Monte Carlo sequence λMC is only slightly larger than λG� : the
difference increases with the index i, and becomes substantial for ranges of i that
are unlikely to be relevant in the scientific problem at hand.

Tables 1 and 2 in Service et al. (2014) describe a total of 14 variants as having
an effect on HDL: two of these are for regions FADS1 and MVK and the strength
of the evidence in this specific data set is quite weak (a marginal p-value of the
order of 10−3). Multiple effects are identified in regions ABCA1, CEPT, LPL and
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FIG. 10. (a) Graphical representation of sequences λMC and λG for the variants design ma-
trix. Mean FDP ± 2 SE for SLOPE with (b) λG� and (c) λMC for the variants design matrix and
β1 = · · · = βk = √

2 logp ≈ 3.65, σ = 1.

LIPL. The results of the various “model selection” strategies we explored are in
Figure 11, which reports the estimated values of the coefficients. The effect of the
shrinkage induced by Lasso and SLOPE are evident. To properly compare effect
sizes across methods, it would be useful to resort to the two-step procedure that
we used for the simulation described in Figure 2. Since our interest here is purely
model selection, we report the coefficients directly as estimated by the �1 penalized
procedures; this has the welcome side effect of increasing the spread of points in
Figure 11, improving visibility.

Of the 14 variants described in Service et al. (2014), 8 are selected by all meth-
ods. The remaining 6 are all selected by at least some of the 8 methods we com-
pared. There are an additional 5 variants that are selected by all methods but are
not in the main list of findings in the original paper: four of these are rare variants,
and one is an array SNP for a trait other than HDL. While none of these, therefore,
was singularly analyzed for association in Service et al. (2014), they are in high-
lighted regions: one is in MADD, and the others in ABCA1 and CETP, where the
paper documents a plurality of signals.

Besides this core of common selections that correspond well to the original
findings, there are notable differences among the 8 approaches we considered. The
total number of selected variables ranges from 15, with BH on the p-values of
the full model, to 119, with the cross-validated Lasso. It is not surprising that these
methods would result in the extreme solutions. On the one hand, the p-values from
the full model reflect the contribution of one variable given all the others, which
are, however, not necessarily included in the models selected by other approaches;
on the other hand, we have seen how the cross-validated Lasso tends to select a
much larger number of variables and offers no control of FDR. In our case, the
cross-validated Lasso estimates nonzero coefficients for 90 variables that are not
selected by any other methods. Note that the number of variables selected by the
cross-validated Lasso changes in different runs of the procedure, as implemented
in glmnet with default parameters. It is quite reasonable to assume that a large
number of these are false positives: regions G6PC2, PANK1, CRY2 and MTNR1B,
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FIG. 11. Estimated effects on HDL for variants in 17 regions. Each panel corresponds to a re-
gion and is identified by the name of a gene in the region, following the convention in Service et al.
(2014). Regions with (without) previously reported association to HDL are on the green (red) back-
ground. On the x-axis variants position in base-pairs along their respective chromosomes. On the
y-axis estimated effect according to different methodologies. With the exception of marginal tests—
which we use to convey information on the number of variables and indicated with light gray
squares—we report only the value of nonzero coefficients. The rest of the plotting symbols and color
convention is as follows: dark gray bullet—BH on p-values from full model; magenta cross—forward
BIC; purple cross—backward BIC; red triangle—Lasso–λBonf; orange triangle—Lasso–λCV; cyan
star—SLOPE–λG� ; black circle—SLOPE with λ defined with Monte Carlo strategy.

where the Lasso–λCV selects some variants, have no documented association with
lipid levels, and regions CELSR2, GCKR, ABCG8 and NCAN have been associated
previously to total cholesterol and LDL, but not HDL. The other procedures that
select some variants in any of these regions are the forward and backward greedy
searches trying to optimize BIC, which have hits in CELSR2 and ABCG8, and the
BH on univariate p-value, which has one hit in ABCG8. SLOPE does not select
any variant in regions not known to be associated with HDL. This is true also
of the Lasso–λBonf and BH on the p-values from the full model, but these miss,
respectively, 2 and 6 of the variants described in the original paper, while SLOPE
λG� misses only one of them.
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FIG. 12. Each row corresponds to a variant in the set differently selected by the compared pro-
cedures, indicated by columns. Orange is used to represent rare variants and blue common ones.
Squares indicate synonymous (or noncoding variants) and circles nonsynonimous ones. Variants are
ordered according to the frequency with which they are selected. Variants with names in green are
mentioned in Service et al. (2014) as to have an effect on LDL, while variants with names in red are
not [if a variant was not in dbSNP build 137, we named it by indicating chromosome and position,
following the convention in Service et al. (2014)].

Figure 12 focuses on the set of variants where there is some disagreement be-
tween the 8 procedures we considered, after eliminating the 90 variants selected
only by the Lasso–λCV. In addition to recovering all except one of the variants
identified in Service et al. (2014), and to the core of variants selected by all meth-
ods, SLOPE–λG� selects 3 rare variants and 3 common variants. While the rare
variants were not singularly analyzed in the original study, they are in the two re-
gions where aggregate tests highlighted the role of this type of variation. One is
in ABCA1 and the other two are in CETP, and they are both nonsynonimous. Two
of the three additional common variants are in CETP and one is in MADD; in ad-
dition to SLOPE, these are selected by Lasso–λCV and the marginal tests. One of
the common variants and one rare variant in CETP are mentioned as a result of the
limited foray in model selection in Service et al. (2014). SLOPE–λMC selects two
less of these variants.

In order to get a handle on the effective FDR control of SLOPE in this setting,
we resorted to simulations. We consider a number k of relevant variants ranging
from 0 to 100, while concentrating on lower values. At each level, k columns of the
design matrix were selected at random and assigned an effect of

√
2 logp against

a noise level σ set to 1. While analyzing the data with λMC and λG� , we estimated
σ from the full model in each run. Figure 10(b)–(c) reports the average FDP across
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500 replicates and their standard error: the FDR of both λMC and λG� are close to
the nominal levels for all k ≤ 100.

In conclusion, the analysis with SLOPE confirms the results in Service et al.
(2014), does not appear to introduce a large number of false positives and, hence,
makes it easier to include in the final list of relevant variants a number of poly-
morphisms that are either directly highlighted in the original paper or in regions
that were described as including a plurality of signals, but for which the original
multi-step analysis did not allow to make a precise statement.

4. Discussion. The ease with which data are presently acquired has effec-
tively created a new scientific paradigm. In addition to carefully designing ex-
periments to test specific hypotheses, researchers often collect data first, leaving
question formulation to a later stage. In this context, linear regression has increas-
ingly been used to identify connections between one response and a large number
p of possible explanatory variables. When p � n, approaches based on convex
optimization have been particularly effective. An easily computable solution has
the advantage of definitiveness and of reproducibility—another researcher, work-
ing on the same data set, would obtain the same answer. Reproducibility of a sci-
entific finding or of the association between the outcome and the set of explana-
tory variables selected among many, however, is harder to achieve. Traditional
tools such as p-values are often unhelpful in this context because of the diffi-
culties of accounting for the effect of selection. In response, a great number of
proposals [see, e.g., Benjamini and Yekutieli (2005), Berk et al. (2013), Bühlmann
(2013), Efron (2011), Javanmard and Montanari (2014a, 2014b), Lockhart et al.
(2014), Meinshausen and Bühlmann (2010), Meinshausen, Meier and Bühlmann
(2009), van de Geer et al. (2014), Wasserman and Roeder (2009), Zhang and
Zhang (2014)] present different approaches for controlling some measures of type I
error in the context of variable selection. We here chose as a useful paradigm that of
controlling the expected proportion of irrelevant variables among the selected ones.
A similar goal of FDR control is pursued in Foygel-Barber and Candès (2014),
Grazier G’Sell, Hastie and Tibshirani (2013). While Foygel-Barber and Candès
(2014) achieve exact FDR control in finite sample irrespective of the structure of
the design matrix, this method, at least in the current implementation, is really best
tailored for cases where n > p. The work in Grazier G’Sell, Hastie and Tibshirani
(2013) relies on p-values evaluated as in Lockhart et al. (2014), and is limited to
the contexts where the assumptions in Lockhart et al. (2014) are met, including
the assumption that all true regressors appear before the false regressors along the
Lasso path. SLOPE controls FDR under orthogonal designs, and simulation stud-
ies also show that SLOPE can keep the FDR close to the nominal level when p > n

and the true model is sparse, while offering large power and accurate prediction.
This is, of course, only a starting point and many open problems remain.

First, while our heuristics for the choice of the λ sequence allows to keep FDR
under control for Gaussian designs and other random design matrices [more ex-
amples are provided in Bogdan et al. (2013)], it is by no means a definite solution.



SORTED L-ONE PENALIZED ESTIMATION 1137

Further theoretical research is needed to identify the sequences λ, which would
provably control FDR for these designs and other typical design matrices.

Second, just as in the BH procedure where the test statistics are compared with
fixed critical values, we have only considered in this paper fixed values of the
regularizing sequence {λi}. It would be interesting to know whether it is possible
to select such parameters in a data-driven fashion as to achieve desirable statistical
properties. For the simpler Lasso problem, for instance, an important question is
whether it is possible to select λ on the Lasso path as to control the FDR. In the
case where n ≥ p, a method to obtain this goal was recently proposed in Foygel-
Barber and Candès (2014). It would be of great interest to know if similar positive
theoretical results can be obtained for SLOPE, in perhaps restricted sparse settings.

Third, our research points out the limits of signal sparsity which can be handled
by SLOPE. Such limitations are inherent to �1 convex optimization methods and
also pertain to Lasso. Some discussion on the minimal FDR which can be obtained
with Lasso under Gaussian designs is provided in Bogdan et al. (2013), while new
evocative results on adaptive versions of Lasso are on the way.

Fourth, we illustrated the potential of SLOPE for multiple testing with positively
correlated test statistics. In our simple ANOVA model, SLOPE controls FDR even
when the unknown variance components are replaced with their estimates. It re-
mains an open problem to theoretically describe a possibly larger class of unknown
covariance matrices for which SLOPE can be used effectively.

In conclusion, we hope that the work presented so far would convince the reader
that SLOPE is an interesting convex program with promising applications in statis-
tics and motivates further research.
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SUPPLEMENTARY MATERIAL

Supplement to “SLOPE—Adaptive variable selection via convex optimiza-
tion.” (DOI: 10.1214/15-AOAS842SUPP; .pdf). The online Appendix contains
proofs of some technical results discussed in the text.
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