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We develop methods for estimating the size of hard-to-reach populations
from data collected using network-based questions on standard surveys. Such
data arise by asking respondents how many people they know in a specific
group (e.g., people named Michael, intravenous drug users). The Network
Scale up Method (NSUM) is a tool for producing population size estimates
using these indirect measures of respondents’ networks. Killworth et al. [Soc.
Netw. 20 (1998a) 23–50, Evaluation Review 22 (1998b) 289–308] proposed
maximum likelihood estimators of population size for a fixed effects model
in which respondents’ degrees or personal network sizes are treated as fixed.
We extend this by treating personal network sizes as random effects, yielding
principled statements of uncertainty. This allows us to generalize the model
to account for variation in people’s propensity to know people in particular
subgroups (barrier effects), such as their tendency to know people like them-
selves, as well as their lack of awareness of or reluctance to acknowledge
their contacts’ group memberships (transmission bias). NSUM estimates also
suffer from recall bias, in which respondents tend to underestimate the num-
ber of members of larger groups that they know, and conversely for smaller
groups. We propose a data-driven adjustment method to deal with this. Our
methods perform well in simulation studies, generating improved estimates
and calibrated uncertainty intervals, as well as in back estimates of real sam-
ple data. We apply them to data from a study of HIV/AIDS prevalence in
Curitiba, Brazil. Our results show that when transmission bias is present, ex-
ternal information about its likely extent can greatly improve the estimates.
The methods are implemented in the NSUM R package.

1. Introduction. The problem of estimating the size of hard-to-reach sub-
populations arises in many contexts. In countries with concentrated HIV/AIDS
epidemics, the sizes of key affected populations are important for estimating and
projecting the epidemic. Concentrated AIDS epidemics are defined as epidemics
where AIDS is largely concentrated within particular at-risk groups, such as intra-
venous drug users (IDU), female sex workers (FSW) and men who have sex with
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men (MSM). Estimates of the sizes of these groups are also needed to appropri-
ately distribute resources and prevention programs to contain the AIDS epidemic.

The Network Scale Up Method (NSUM) has been proposed as a way to esti-
mate the size of hard-to-reach subpopulations. The NSUM was first proposed by
Bernard et al. (1989, 1991) following the 1985 Mexico City earthquake in an at-
tempt to use respondents’ knowledge about their social contacts to estimate the
number of people that died in the earthquake. Bernard and colleagues realized that
the information an individual possesses about others in his or her social network
could be used to estimate populations that are currently difficult to size.

Respondents are asked questions of the type “How many X do you know?,”
where X ranges over different subpopulations of both known and unknown size.
Known subpopulations could include people named Michael, diabetics and women
who gave birth to a baby, while unknown subpopulations are typically the groups
of interest, such as female sex workers. To standardize what it means to know
someone, the McCarty et al. (2001) survey defines it as follows: “For the purposes
of this study, the definition of knowing someone is that you know them and they
know you by sight or by name, that you could contact them, that they live within
the United States and that there has been some contact (either in person, by tele-
phone or mail) in the past 2 years.” The survey can be applied to anyone in the
overall population of interest. Respondents do not have to admit to belonging to
any particular group, unlike in most other survey methods. “How many X do you
know?” questions can easily be integrated into almost any survey, allowing the
method to be implemented with limited cost.

Previous statistical work in this area refers to “How many X do you know?”
data as aggregated relational data. These questions are widely used on surveys
such as the General Social Survey to measure connectivity patterns between indi-
viduals. Statistical work in this area includes Zheng, Salganik and Gelman (2006)
who used aggregated relational data to estimate social structure through overdis-
persion, McCormick, Salganik and Zheng (2010) who developed methods for es-
timating individuals’ personal network size and rates of mixing between groups in
the population, and McCormick and Zheng (2012) who estimated the demographic
composition of hard-to-reach populations. While we focus here on estimating the
sizes of population groups, the previous work focused primarily on estimating fea-
tures of the population social network and the dynamics of interactions between
population groups.

In its simplest form, the NSUM is based on the idea that for all individuals,
the probability of knowing someone in a given subpopulation is the size of that
subpopulation divided by the overall population size. For example, if a respondent
knows 100 people total and knows 2 intravenous drug users, then it is inferred
that 2% of the total population are intravenous drug users. This assumption cor-
responds to a binomial model for the number of people in a given subpopulation
that the respondent knows. However, the total number of people known by a re-
spondent, also called his or her degree or personal network size, also needs to
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be estimated. A person’s degree is estimated by asking the respondents about the
number of contacts he or she has in several subpopulations of known size, such
as twins, people named Nicole or women over 70, using the same assumption that
an individual should know roughly their degree times the proportion of people in
a given subpopulation. The size of the unknown subpopulation is then estimated
using responses to questions about the number of people known in the unknown
subpopulation combined with the degree estimate, leading to the scale-up estima-
tor [Killworth et al. (1998a, 1998b)]. The estimator can be improved by increasing
the number of respondents and the number of known subpopulations asked about.

The scale-up estimator suffers from several kinds of bias [Killworth et al.
(2003, 2006), McCormick, Salganik and Zheng (2010)]. It does not take account
of the different propensities of people to know people in different groups, such as
people’s tendency to know people like themselves; these are called barrier effects.
Transmission bias arises when a respondent does not count his or her contact as
being in the group of interest, for example, because the respondent does not know
that the contact belongs to the group. This bias may be particularly large when a
group is stigmatized, as is the case of most of the key affected populations in which
we are interested. Recall bias refers to the tendency for people to underestimate the
number of people they know in larger groups because they forget some of these
contacts, and to overestimate the number of people they know in small or unusual
groups.

McCormick, Salganik and Zheng (2010) proposed strategies for improving de-
gree estimation. Efficiently estimating respondent degree was the focus of that
work, however, and so it did not directly address estimating population size. Fur-
ther, the McCormick, Salganik and Zheng (2010) method requires additional in-
formation about the demographic composition of populations with known size.
This information is not always available when estimating population group size.
Similarly, McCormick and Zheng (2007) proposed a calibration curve to adjust
for recall bias that was later incorporated into McCormick, Salganik and Zheng
(2010). We use a similar approach to address recall issues, but adjust our approach
to ensure compatibility with our model for size estimation.

Some attempts have been made to correct for transmission bias in size estimates.
These consist of estimating the probability that a respondent counts a contact that
belongs to the group of interest as being a member of the group, and then dividing
the NSUM size estimate by the estimated probability. Ezoe et al. (2012) surveyed
men who have sex with men, the population of interest, to find out how many
people in the MSM’s networks knew about their group status. Salganik et al.’s
(2011b) implementation of NSUM estimates in Curitiba, Brazil included a game
of contacts method where the researchers surveyed heavy drug users to estimate
the proportion of their network that are aware of their drug use status. The game
of contacts method involves asking heavy drug users about the number of people
they know with certain names and then asking if those contacts are aware of the
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respondent’s drug use status as well as the contacts’ own drug use status. This al-
lows for an estimate of the proportion of drug users that NSUM survey respondents
would be aware of within their own social network. The success of these methods
remains to be determined.

Zheng, Salganik and Gelman’s (2006) model involved a parameter denoted
by bk , defined as the prevalence parameter or the proportion of total links that
involve group k, and they provided a way of estimating it. It is tempting to inter-
pret this as the proportion of the population in group k, and hence as providing
a population size estimate for group k. However, this is incorrect, particularly for
populations for which transmission bias is a major concern, such as the hard-to-
reach populations that are our main focus. If Zheng, Salganik and Gelman’s (2006)
prevalence parameter bk was used to estimate the size of hard-to-reach populations,
it would tend to give substantially biased estimates.

In this paper, we develop a Bayesian framework for population group size es-
timation using the NSUM. We first build a random degree model with a random
effect for degree which incorporates variability and uncertainty across individuals’
network sizes. We then build on this basic model to adjust for barrier and trans-
mission effects, both separately and combined, resulting in four models altogether.
The overall goal is to provide size estimates with reduced bias and error, as well as
to assess the uncertainty of the estimates. The methods developed are implemented
in the freely available NSUM R package.

In Section 2 we introduce the four models: the random degree model, the bar-
rier effect model, the transmission bias model, and the combined barrier effect and
transmission bias model. We also propose a method for adjusting for recall bias.
In Section 3 we show results from several simulation studies, confirming the need
to account for biases and the success of our methods in correcting for them. We
also show that adjusting for barrier effects using our methods yields better size esti-
mates than the Killworth et al. (1998a, 1998b) estimates for the known populations
in the data set used by McCarty et al. (2001). We will also show the estimates pro-
duced by our model on the Curitiba, Brazil data of Salganik et al. (2011a, 2011b).
Last, in Section 4 we will discuss additional research needed to make NSUM esti-
mation a viable, accurate method to estimate the size of hard-to-reach populations.

2. Models. Previous size estimates based on “How many X’s do you know?”
data have been computed using the network scale-up estimator. Let yik be the
number of people known by individual i, i = 1, . . . , n, in group k, k = 1, . . . ,K ,
with groups 1, . . . ,K −1 being of known size and group K of unknown size. (Note
that there can be more than one group of unknown size, but we are using one to
simplify the exposition.) Let di be the number of people that respondent i knows,
also called his or her degree or personal network size. Also, let Nk be the size of
group k, and let N be the total population, which is taken to be known.

The scale-up estimates are based on the assumption that yik ∼ Binom(di,
NK
N

),
or that the number of people known by individual i in group k follows a binomial
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distribution. We refer to this as the scale-up model. From this model, Killworth
et al. (1998a, 1998b) derived the maximum likelihood estimator of di as

d̂i = N

∑K−1
k=1 yik∑K−1
k=1 Nk

.(1)

Conditional on estimates d̂i of di , the maximum likelihood estimator of NK , the
size of the unknown population, is then

N̂K = N

∑n
i=1 yiK∑n
i=1 d̂i

.(2)

Equations (1) and (2) are commonly referred to as the scale-up estimates.
Our proposed models build on the scale-up model. We first model degree as a

random effect, leading to regularized estimates of degree. We refer to this as our
random degree model. We then extend the random degree model to take account
of the fact that respondents have different propensities to know members of differ-
ent groups. For example, people are generally more likely to know people that are
similar to them in terms of age, sex, education, race and other characteristics, than
to know people who are not. We account for this nonrandom mixing of individuals
with an additional random effect, to yield what we call the barrier effects model.
We also separately extend the random degree model to account for lack of aware-
ness of or reluctance to acknowledge contacts’ group memberships, to yield what
we call the transmission bias model. We find that the quality of estimates from this
model can be greatly improved by external information on information transmis-
sion. Last, our combined model accounts for both barrier effects and transmission
bias. The models build on each other, as described in Figure 1.

2.1. Random degree model. Our first extension of the Killworth et al. (1998a,
1998b) scale-up model is to introduce a random effect for degree, to regularize
estimates of degree. If an individual responded that he or she knew a large number
of people in a given subpopulation, this would drive up the estimate of the indi-
vidual’s degree di . To reduce the sensitivity of estimates to extreme values of di ,
we incorporate degree estimation into our hierarchical modeling framework and
achieve regularization through partial pooling.

We call the resulting model our random degree model. It assumes that

yik ∼ Binom
(
di,

Nk

N

)
,

di ∼ Log Normal
(
μ,σ 2)

.

We choose a log normal distribution for di based on the observed distribution of
scale-up estimates of degree d̂i . We found the log normal distribution to have the
best fit to estimates of d̂i across multiple data sets, including data from the United
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FIG. 1. Our four models build on the basic Killworth et al. (1998a, 1998b) scale-up model, ac-
counting for nonrandom mixing or barrier effects, and transmission bias.

States, Ukraine, Moldova, Kazakhstan and Brazil [McCarty et al. (2001), Paniotto
et al. (2009), Salganik et al. (2011a)]. We estimate the parameters of the random
degree model in a Bayesian manner, using the prior distributions

π(NK) ∝ 1

NK

1NK≤N,

μ ∼ U(3,8),

σ ∼ U
(

1

4
,2

)
.

Our prior for NK has been used previously for Bayesian estimation of population
size with little prior information [Jeffreys (1961), Raftery (1988)]. The priors for
μ and σ were arrived at from the values we saw in fitting the scale-up d̂i estimates
to several data sets across multiple regions. Our prior for μ allows for mean de-
grees within a data set ranging from 20 to 3000, which is consistent with previous
research on social networks and the NSUM [McCarty et al. (2001), McCormick,
Salganik and Zheng (2010)]. Our prior on σ allows for 95% of degrees to fall in
the multiplicative range 1.6 times to 55 times in either direction from the mean,
which seemed to more than fully cover the range of results from scale-up estimates
across multiple data sets.

2.2. Barrier effects model. Nonrandom mixing, or barrier effects, occur be-
cause respondents have different tendencies to know people in different groups,
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depending on their own characteristics. For example, we might expect a 65-year-
old male respondent to know more people named Walter than a 20-year-old female
respondent, because Walter was a more common name 65 years ago. This leads to
overdispersion in the distribution of the number of people known in a given popu-
lation relative to what one would expect if the binomial assumption held.

We can model overdispersion in the binomial probabilities as follows. In the
Killworth et al. (1998a, 1998b) scale-up and random degree models, the probabil-
ity that respondent i knows someone in group k is assumed to be constant across
respondents, and equal to Nk/N . To model overdispersion, we instead allow this
probability, now denoted by qik , to vary randomly across respondents, following a
Beta distribution. The model then becomes

yik ∼ Binom(di, qik),

di ∼ Log Normal
(
μ,σ 2)

,

qik ∼ Beta(mk,ρk).

Here we use the nonstandard parameterization of the Beta distribution according to
which X ∼ Beta(m,ρ) if it has the probability density function fX(x) ∝ xα−1(1−
x)β−1, where m = α

α+β
and ρ = 1

1+α+β
[Diggle et al. (2002), Chapter 9, Mielke

(1975), Skellam (1948)]. Then mk is the prior mean of qik , and ρk determines its
dispersion. We set E[qik] = mk = Nk

N
. We use the prior distributions

π(mK) ∝ 1

mK

,

ρk ∼ U(0,1),

with the priors for μ and σ remaining the same as in the random degree model.

2.3. Transmission bias model. Transmission bias occurs when a respondent
is unaware of or reluctant to acknowledge the group membership status of his
or her contacts. For example, if a respondent is not aware that a contact is an
intravenous drug user, he or she would not count that contact when responding to
a question about the number of intravenous drug users known. We can think of
the transmission bias, denoted by τk , as the proportion of respondents’ contacts in
group k that the respondents report. For example, if 50% of intravenous drug users
disclose their status to their contacts and if respondents report all the IDUs that
they know, then τK = 0.5 for the subpopulation K of IDUs. Thus, we can add τk

to our model as a multiplier of the binomial proportion, since a respondent would
mention knowing only a proportion τk of their true contacts in group k on average.
This yields the transmission bias model

yik ∼ Binom
(
di, τk

Nk

N

)
,

di ∼ Log Normal
(
μ,σ 2)

.
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We specify the additional prior

τK ∼ Beta(ηK, νK),

with the priors for NK,μ and σ remaining the same as in the random degree
model. For the transmission bias, we assume τk to be 1 for the known popula-
tions k = 1, . . . ,K − 1, and to be less than or equal to one for the groups of un-
known size, in line with the definition of transmission bias. This means that we
are assuming that respondents are aware of and prepared to acknowledge contacts’
group membership status for the known groups. This assumption is reasonable,
as the known populations are typically less stigmatized, making it less likely for
respondents to be unaware of or reluctant to acknowledge their contacts’ mem-
bership statuses. Our simulation results indicated the desirability of using external
information about τK in the form of an informative prior, which will be discussed
further in Section 3.1.

2.4. Combined model. Previous research indicates both barrier effects and
transmission bias to be present in these data [Kadushin et al. (2006), McCarty
et al. (2001), McCormick, Salganik and Zheng (2010), Salganik et al. (2011a)].
For a model to produce unbiased estimates, we need to adjust for both sources of
bias. Thus, we can combine our barrier and transmission models to get a combined
model that accounts for both barrier effects and transmission bias. Our model is
thus

yik ∼ Binom(di, τkqik),

di ∼ Log Normal
(
μ,σ 2)

,

qik ∼ Beta(mk,ρk),

with priors the same as in the previous models.

2.5. Recall bias adjustment. Since respondents are asked to say quickly how
many people they know in certain groups, it is common for them to forget contacts
in large groups or to overcount contacts in small groups. For example, a respon-
dent might know 15 or 20 people in a large group and might forget to mention a
few while quickly answering a survey. In addition, small subpopulations can be
memorable, such as people who died in a car accident. Respondents might count
someone in a small subpopulation as someone they know even if the contact does
not actually fall under the definition of “know” in NSUM surveys.

Previous research has suggested methods to adjust for recall bias based on the
relationship between respondents’ recalled ties and the sizes of known groups
of interest [Killworth et al. (2003), McCormick, Salganik and Zheng (2010),
McCormick and Zheng (2007), Zheng, Salganik and Gelman (2006)]. Our ex-
ploratory work suggests a linear relationship between the two on the log scale.
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This leads to the following model to incorporate recall bias as well as barrier ef-
fects and transmission bias:

yik ∼ Binom
(
di, e

rk τkqik

)
,

rk ∼ N
(
a + b logNk,σ

2
r

)
,

di ∼ Log Normal
(
μ,σ 2)

,

qik ∼ Beta(mk,ρk).

The additional parameters a, b and σr have uniform flat priors, namely, a ∼
U(0,15), b ∼ U(0,1) and σr ∼ U(0,1). The quantity Nk would be calculated
just as in the barrier and combined models, where Nk = N · mk .

However, this model involves a large number of parameters and is quite com-
putationally demanding. For models estimating one unknown subpopulation, the
random degree model has n + 3 parameters, the barrier model has n + K + 2
parameters, and the transmission model has n + 4 parameters. This full model
has n + 2K + n · K + 7 parameters—a large increase from the simpler models.
This increase in parameters, coupled with the limited information about recall bias
present in the data, makes inference for this model difficult and, in our judgment,
not a worthwhile investment. Instead, we approximate a recall adjustment through
a postprocessing method. This method is computationally very efficient and makes
effective use of information available through populations with known size. This
method is also easier to implement and, thus, improves the likelihood that the
method will be used in practice. The barrier and transmission combined model
similarly has n + K + n · K + 4 parameters, but the relationship between barrier
effects and transmission bias makes a similar postprocessing approach difficult in
this case.

We outline our recall adjusted modeling strategy below. We found that this strat-
egy performed well in practice in our data experiments. We first estimate a linear
relationship (on the log scale) between the estimates and the true subpopulation
sizes using back estimates. For a data set with K − 1 known subpopulations, back
estimates estimate the kth subpopulation, k = 1, . . . ,K −1, treating it as unknown,
and treating all other K − 2 known subpopulations as known to produce the esti-
mate. This can be done for all K − 1 known subpopulations and then compared
to the true, known sizes of those subpopulations for estimation method evaluation.
To account for the variability in our estimate of N̂k as well, we approximate the
relationship using the errors-in-variables model

log(N̂k) = a + b log(Nk) + δk + εk,(3)

where N̂k is the posterior mean and sk the posterior standard deviation of the size of
the kth subpopulation, computed without knowledge of the true Nk , δk ∼ N(0, s2

k ),
and εk ∼ N(0, σ 2

ε ). The model (3) is estimated by maximum likelihood [Ripley
and Thompson (1987)].



1256 MALTIEL, RAFTERY, MCCORMICK AND BARAFF

We then adjust for recall bias as follows. Let Y
[t]
K denote the t th value simulated

from the posterior distribution of log(NK), where t indexes MCMC iterations. We
then replace each Y

[t]
k with a randomly drawn value

Y
[t]
K − a

b
+ Z,

where Z ∼ N(0, σ 2
ε /b2) to adjust for recall bias, based on the relationship shown

in equation (3). In our analyses, we have generally found a to be around 6.7, b to be
around 0.5, and σε to be around 0.35. Our strategy differs from that of McCormick
and Zheng (2007) and McCormick, Salganik and Zheng (2010) because we ap-
ply our adjustment after a complete run of our sampler. The correction for recall
cannot, therefore, influence the path of the sampler as in McCormick and Zheng
(2007) and McCormick, Salganik and Zheng (2010). The strategy is instead more
similar to that employed by Zheng, Salganik and Gelman (2006), who adjusted a
normalization constant (necessary to preserve identifiability) after sampling to ad-
just for recall issues. Our proposed method propagates uncertainty from responses
to size estimates, however, which is not a feature of the Zheng, Salganik and Gel-
man (2006) approach.

3. Results. We estimated all the models using Markov chain Monte Carlo
(MCMC). For all models, μ and σ were sampled from using closed-form Gibbs
steps while we used random walk Metropolis steps with normal proposals for all
the other parameters. Derivations of all Gibbs and Metropolis steps are included
in the Appendix. When possible, we used scale-up estimates as starting points for
the parameters.

The MCMC algorithms were implemented using the methodology described in
Raftery and Lewis (1996), using an initial chain to estimate the conditional pos-
terior standard deviation of each parameter given the other parameters, and then
using 2.3 times this value as the standard deviation in the normal proposal. We
used the Raftery–Lewis diagnostic to determine the number of iterations needed
for the MCMC. In general, our chains behaved well, converging in less than 30,000
iterations. Our combined model, though, required over 150,000 iterations. We also
checked the Gelman–Rubin diagnostic on all models on the Curitiba data set, dis-
cussed below [Gelman and Rubin (1992)]. For NK , our population size of interest,
the Gelman–Rubin diagnostic was close to 1 in all models. For the other parame-
ters, the Gelman–Rubin diagnostic was under 1.015 in the random degree, barrier
and transmission models and under 1.1 for 99.5% of the 10,416 parameters in the
combined model.

One difficulty in verifying NSUM estimation results is that we do not know the
true size of hard-to-reach subpopulations. Thus, we first ran several simulations
to verify the need for and improvement from our models that adjust for biases
when present. We tested our models on data containing no bias, barrier effects
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and transmission bias for three types of simulations and we report the results in
Section 3.1. Second, we computed back estimates on the data from McCarty et al.
(2001), or estimates of known subpopulations to be compared to the true size,
to assess the efficacy of our models, detailed in Section 3.2. Last, in Section 3.3
we give results from estimating all our models on data from the Curitiba study
[Salganik et al. (2011a, 2011b)].

3.1. Simulation studies. For our simulations, we created data sets containing
various effects and biases: no effects or biases, barrier effects, transmission bias,
and both barrier effects and transmission bias. In the simulations with no effects
or biases, the data followed the assumptions of our random degree model: the re-
spondents’ degrees followed a log normal distribution, while the number of people
known in each group followed a binomial distribution based on the respondent’s
degree and the proportion of the total population in a given group. In the barrier
effects simulations, we added a beta random effect to the binomial proportion. For
the data with transmission bias, we instead added a multiplier τK to the binomial
proportion. To simulate data with both biases, we added the beta random effect
and the multiplier τK to the binomial proportion.

The simulations with no effects or biases and with only barrier effects were
based on data from McCarty et al. (2001), while the simulations including a trans-
mission bias were based on data from Salganik et al. (2011a). While the McCarty
et al. (2001) data is a well understood and commonly used data set, we had more
detailed information on transmission bias for the prior in the Salganik et al. (2011a)
Curitiba data set, making it a better choice on which to base a transmission bias
simulation. For all simulations, we used a sample size of 500 and simulated 100
data sets. We estimated the size of one unknown population; for the simulations
based on McCarty et al. (2001), the unknown population had size 500,000 [based
on scale-up estimates of the unknown groups in the McCarty et al. (2001) data set],
while for the simulations based on Salganik et al. (2011a), the unknown population
had size 65,000 (based on the scale-up estimates of heavy drug users in Curitiba).
When barrier effects were present in the data, we used values for the barrier effect
parameters estimated in the McCarty et al. (2001) data set by the barrier effect
model. For transmission bias, we used τK = 0.54 based on the estimate of trans-
mission bias from Salganik et al. (2011b) using the game of contacts method. We
also obtained our transmission bias prior of Beta(0.542,0.011) by fitting a beta
distribution to the bootstrapped estimates of the transmission bias τK .

Salganik et al. (2011b) used both a transmission bias parameter, to measure
respondents’ awareness of contacts’ status, and a differential network size param-
eter, to measure differences in the size of networks of people in the population
of interest versus people in the general population. We have combined these two
parameters for our transmission bias parameter, as they are not identifiable in our
models without an additional sample of individuals from the population of interest
to perform the game of contacts.
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FIG. 2. Simulation study: absolute relative errors (ARE) of posterior means of NK relative to the
true size of NK . Each panel corresponds to a different simulation setup. The four boxplots in each
panel correspond to different estimates: scale-up estimates, random degree model estimates, and
estimates from either the barrier effects model, the transmission bias model, or the combined model.
Each boxplot shows the distribution of the AREs across 100 simulated data sets.

Across our simulations, we measured the mean absolute relative error (MARE)
to see how much error occurred in estimates when using different models based
on different assumptions. Figure 2 depicts the absolute errors scaled by the true
size of the unknown population, with the point estimate being the mean of the
posterior of NK , while the numbers are reported in Table 1 as well. We see that
when there are no barrier effects or biases in the data, the scale-up estimates and
random degree model produce estimates with little error. The barrier effects model
is also able to estimate population size with minimal error, even though the barrier
effects that the model includes are not present in the data. When barrier effects are
present in the data, the barrier effects model produces a MARE that is 12% lower
than the scale-up estimates or the random degree model.
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TABLE 1
Mean absolute relative error, relative to the true subpopulation sizes, and coverage over the 100 simulations across data set designs and estimation

models: scale-up model, random degree (Degree) model, barrier effects model, transmission bias (Trans.) model, and combined model

Data No effects or biases Barrier effects Transmission bias Barrier effects and trans. bias

Model Scale-up Degree Barrier Scale-up Degree Barrier Scale-up Degree Trans. Combined Scale-up Degree Barrier Trans. Combined

MARE 0.046 0.046 0.046 0.145 0.145 0.128 0.459 0.459 0.018 0.017 0.462 0.471 0.447 0.091 0.072
MARE SE 0.003 0.003 0.003 0.012 0.012 0.010 0.001 0.001 0.002 0.001 0.006 0.006 0.005 0.007 0.006
80% Coverage – 84% 83% – 27% 87% – 0% 100% 85% – 0% 0% 74% 83%
95% Coverage – 97% 97% – 48% 94% – 0% 100% 97% – 0% 0% 90% 91%
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We see the largest difference in estimates when transmission bias is present in
the data. When transmission bias is not accounted for in the model estimates, the
MARE is large, while the transmission and combined models result in estimates
with minimal error. When both barrier effects and transmission bias are present,
the combined model produces a MARE that is 21% lower than the estimates that
account for transmission bias alone. Interestingly, the combined model results in
slightly lower MARE even when no barrier effects are present in the data.

Our credible interval coverage, shown in Table 1, also indicates the value of us-
ing a model that correctly adjusts for bias in the data. We see appropriate coverage
for both the random degree and barrier models when there is no bias in the data.
When there are barrier effects or transmission bias in the data, the random degree
model results in undercoverage, while the appropriate model yields accurate inter-
val coverage. In particular, when transmission bias is present, the coverage of the
random degree model is close to zero. While failing to account for barrier effects
present in data results in some error in estimates and undercoverage, the results
are much more extreme when failing to account for transmission bias. We believe
accurate assessment of transmission bias to be the highest priority in improving
NSUM size estimates.

Through our simulations, we were also able to see the importance of the choice
of priors for the transmission bias model. In addition to our transmission bias sim-
ulation using the informative prior based on Salganik et al.’s (2011b) game of
contacts results, we also ran a simulation using Uniform(0,1) prior on τK , which
we will refer to as an informative prior. We found that for τK , the posterior dis-
tribution was very similar to the prior. Table 2 gives the 95% interval end points
and median for the τK prior as well as the average interval endpoints and medians
for the τK posterior for the simulations with both informative and uninformative
priors, where the posterior values are averaged over the estimates from the 100
simulation posteriors of τK .

The close match between the prior and posterior of τK has major implications
for the posterior estimates of NK as well. Table 2 shows the 95% credible interval
points and medians of NK averaged over the 100 simulations for both the infor-
mative and uninformative prior as well. The estimate of NK from the transmission
bias model is roughly equal to the estimate of NK from the random degree model
divided by τK . Our estimates from the transmission bias model were very close to
the estimates in the random degree model divided by the prior expected value τK .
Thus, the error in the prior expectation of the transmission bias will lead to a cor-
responding error in the estimate of NK . Our uninformative prior has an expected
transmission bias, τK , of 50% (as compared to the true 54%), and we do indeed
see an overestimate of the median prevalence in Table 2 when using the uninfor-
mative prior: the true prevalence is 3.6% as opposed to the estimate of 3.9% with
the noninformative prior.

If there is considerable uncertainty in the prior of τK , the posterior interval for
NK will also be wide. The bottom two panels of Figure 2 show the need to account
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TABLE 2
Comparison of prior and posterior 95% credible interval quantiles and medians for the

uninformative and informative prior transmission bias simulations, averaging over the posterior
samples for the 100 simulated data sets. We see that the posterior of τK aligns closely with the
prior, showing the need for an informative prior to produce accurate size estimates. In addition,

we see an incorrect point estimate for prevalence using the uninformative prior, and a wide
range of uncertainty

Transmission bias τK Prevalence

2.5% Median 97.5% 2.5% Median 97.5%

Uninformative prior
Prior 0.025 0.500 0.975 5.5 × 10−5% 0.06% 68.8%
Posterior 0.075 0.513 0.973 2.0% 3.9% 30.1%

Informative prior
Prior 0.438 0.542 0.644 5.5 × 10−5% 0.06% 68.8%
Posterior 0.438 0.542 0.644 3.0% 3.6% 4.5%

for transmission bias to produce an unbiased estimate, but Table 2 indicates that
an informative prior is needed to account for transmission bias. This indicates the
need for methods to estimate transmission bias.

3.2. McCarty back estimates. To further assess our methods, we fit back es-
timates using the random degree and barrier effect models for the 29 known sub-
populations in the McCarty et al. (2001) data set and compared them to the known
values. In line with previous analyses, we assumed that there was no transmission
bias in these data, which seems reasonable given these are not stigmatized or hid-
den populations. The McCarty et al. (2001) data set was obtained through random
digit dialing within the United States. It contains responses from 1375 adults from
two surveys: survey 1 with 801 responses conducted in January 1998 and survey 2
with 574 responses conducted in January 1999. The McCarty et al. (2001) data set
has been analyzed in numerous articles, evaluating methods to estimate degrees in
addition to methods to estimate hard-to-reach populations [Killworth et al. (2003),
McCormick, Salganik and Zheng (2010), Zheng, Salganik and Gelman (2006)].
Since previous research has indicated recall bias to be present in the McCarty data
set, we adjusted for recall bias as described in Section 2.5.

Figure 3 shows scale-up point estimates and random degree model and barrier
effects model 80% and 95% credible intervals of the posterior of the size estimates
of the McCarty et al. (2001) data set shown as proportions of the true subpopulation
sizes. We see generally that our estimates are close to the true subpopulation size
and our credible intervals cover the true subpopulation size.

Figure 4 shows the same estimates and credible intervals before adjusting for
recall bias. We can see that there is a clear association between recall bias and
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FIG. 3. Back estimates and 80% and 95% credible intervals for the McCarty data sets using the
random degree and barrier effect models and scale-up estimates. The x-axis shows the estimates
as proportions of the true subpopulation sizes on the logarithmic scale, while the y-axis shows the
subpopulations in decreasing order of true size. The black vertical line shows the goal where the
estimates and true subpopulation sizes are equal.

subpopulation size and that the adjustment is important in correcting not only the
estimates but the credible intervals as well. It should also be noted that unlike
the method of McCormick, Salganik and Zheng (2010), our method corrects for
over-recall as well as under-recall, so good estimates can be obtained for small
subpopulations.

Table 3 shows the mean absolute relative error (MARE) and coverage of credi-
ble intervals for the estimation methods over the 29 back estimates of the subpopu-
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FIG. 4. Back estimates and 80% and 95% credible intervals for the McCarty data sets using the
random degree and barrier effect models and scale-up estimates before recall bias adjustment. The
x-axis shows the estimates as proportions of the true subpopulation sizes on a log scale, while the
y-axis shows the subpopulations in decreasing order of size. The black vertical line shows the goal
where the estimates and true subpopulation sizes are equal.

lations in the McCarty et al. (2001) data set. We see that the barrier model produces
estimates with the smallest average absolute relative error, as we would hope given
the barrier effects present in the McCarty data set. We also see that both the random
degree and barrier effects models result in accurate credible interval coverage.

3.3. Curitiba results. The Curitiba data set consists of 500 adult residents of
Curitiba, Brazil and was collected through a household-based random sample in
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TABLE 3
Mean absolute relative error (MARE), standardized by dividing all

absolute errors by the true subpopulation sizes, and credible
interval coverage for scale-up estimates and random degree and

barrier model estimates over the 29 back estimates

Model estimates

Scale-up Degree Barrier

MARE 1.49 1.48 0.93
80% Coverage – 72% 66%
95% Coverage – 97% 93%

2010 by Salganik et al. (2011a). One aim of this study was to estimate the sizes of
hard-to-reach populations relevant to concentrated HIV/AIDS epidemics. In addi-
tion, a game of contacts survey was conducted to estimate transmission bias for
heavy drug users [Salganik et al. (2011b)]. From these game of contacts data, we
were able to obtain an informative prior for transmission bias, allowing us to fit
all of our models to the Curitiba data set and to assess our models’ performance
on relevant data. As in our simulations, we used a Beta(0.542,0.011) prior for
transmission bias based on the game of contacts estimate of transmission bias. We
did not adjust for recall bias, as the study design did not produce the information
needed to do this.

The estimates of prevalence of heavy drug users in Curitiba from our models
are shown in Figure 5. While there is limited uncertainty in the estimates from
the random degree model, the estimates and their uncertainty are probably under-
estimated due to the transmission bias in the data. The barrier model results in
a smaller estimate, while the transmission model results in a larger estimate of
heavy drug user prevalence. The uncertainty in the combined model seems rea-
sonable and is smaller than in the transmission model (and the transmission prior)
with a value between the separate barrier and transmission model estimates. This
compares to the estimates obtained by Salganik et al. (2011a) of 3.3% with a 95%
confidence interval from 2.7% to 4.1% without accounting for transmission bias,
and an estimate of 6.3% with a 95% confidence interval from 4.5% to 8.0% when
accounting for transmission bias.

4. Discussion. Indirectly observed social network data are one tool for esti-
mating the size of hard-to-reach populations. With knowledge of the true size of a
handful of subpopulations, data can be collected to then estimate the size of hard-
to-reach subpopulations that currently evade researchers. These techniques can be
used to provide accurate size estimates to improve public health efforts related
to AIDS in concentrated epidemics as well as other subpopulations that are cur-
rently difficult to size. NSUM surveys do not require large resources and can be
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FIG. 5. Posterior estimates and credible intervals for the prevalence of heavy drug users in Curitiba
based on the random degree, barrier, transmission and combined models, along with the Salganik
et al. (2011a) estimates after accounting for transmission bias.

carried out by adding questions to other surveys already being conducted for other
purposes.

Currently the most used method for size estimation from such data is the
Killworth et al. (1998a, 1998b) scale-up estimate, but this does not provide es-
timates of uncertainty and can suffer from barrier effects, transmission bias and
recall bias. In this paper we have proposed ways of overcoming these limitations.
First we proposed a Bayesian model, called the random degree model, that regu-
larizes estimation of degree and yields estimates of uncertainty about population
size. Then we extended the model to incorporate barrier effects, transmission bias
and recall bias, and also proposed a more efficient postprocessing method for ac-
counting for recall bias.

We found that the barrier effects model performs better than the scale-up esti-
mates or the random degree model. This makes sense because barrier effects, or
nonrandom mixing, are a pervasive feature of social networks. We also found that
adjusting for transmission bias is extremely important when this bias is present.
However, data typically do not contain much information about transmission bias,
and so it is important to use or generate external information about transmission
bias if possible. Finally, we found that adjusting for recall bias can improve esti-
mates and the assessment of their uncertainty.
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As seen in simulations in Section 3.1, it is important to adjust for bias in es-
timates through our proposed models to minimize error in estimates and to pro-
duce appropriate coverage of credible intervals. While nonrandom mixing can be
accounted for using our models that adjust for barrier effects without external in-
formation, adjusting for transmission bias does require external information. As
seen in our simulations, since the posterior closely aligns with the prior for the
transmission bias effect, an informative, accurate prior is needed to appropriately
adjust estimates. While researchers have started to find methods to estimate for
transmission bias, further work is needed in this area before NSUM can produce
estimates of hard-to-reach populations with an acceptable level of error. The game
of contacts of Salganik et al. (2011b) is one way of doing this. The future utility of
the NSUM will depend crucially on the development and use of ways to estimate
transmission bias.

We also observed that recall bias can only be effectively adjusted for when the
sizes of the known subpopulations encompass the size of the unknown subpopula-
tion. While the size of the unknown subpopulation is unknown before estimation,
researchers should aim to use external sources to cover possible sizes of the group
of interest.

APPENDIX: MCMC ALGORITHMS FOR MODEL ESTIMATION

This appendix contains derivations for the MCMC updates for the models de-
scribed in the main text. In Appendix A.1, we have the derivations for the random
degree model, detailed in Section 2.1. Appendix A.2 contains the derivations for
the barrier effects model, detailed in Section 2.2. The transmission bias model
derivations are shown in Appendix A.3, with the model detailed in Section 2.3.
Last, Appendix A.4 contains derivations for the combined model, which is de-
tailed in Section 2.4.

A.1. Random degree model. The random degree model follows the binomial
assumption of the Killworth et al. (1998a, 1998b) model while adding a random
effect on degree to regularize degree estimates, as discussed in Section 2.1. This
yields the posterior distribution

π
(
μ,σ 2, di,NK |yik,Nk,N

)
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.

First, σ 2 can be updated using a Gibbs sampler, as the conditional posterior
is a closed-form inverse gamma. Since σ 2 is inverse gamma, while our prior is
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specified in terms of σ , we need to include the Jacobian of the transformation,
namely, 1

2(σ 2)−1/2. The conditional posterior distribution of σ 2 is then

π
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Similarly, the conditional posterior distribution of μ is truncated normal, and so
we can also use a Gibbs sampler to update μ. We can see this as
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Since both μ,σ have uniform priors, if a value is proposed in the MCMC update
outside of the range of the prior, then another value will be proposed until a value
within the range of the prior is proposed.

For NK , the conditional posterior distribution does not have a closed form, and
so we can use a Metropolis step to update it. The conditional posterior distribution
of NK is

π
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,



1268 MALTIEL, RAFTERY, MCCORMICK AND BARAFF

which becomes



(
NK |μ,σ 2, di, yik,Nk,N

)
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i=1

yiK log
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N − NK

)
+

n∑
i=1

di log
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N

)
− logNK,

in log terms (to maintain numerical stability), where c= denotes equality up to an
additive constant. The proposed value of NK was rejected if it fell outside the
interval (maxi yik,N), but this happens rarely. We used a normal proposal for NK ,
with the standard deviation being equal to 2.3 times the residual standard error
obtained from regressing NK on μ and σ from an initial starting chain to obtain
an appropriate tuning parameter [Raftery and Lewis (1996)].

The posterior distribution of di is
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which results in
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again in log terms for numerical stability. Just as with NK , we will reject values
of di that are below maxk yik . As before, we used a normal proposal with a tuning
parameter calculated as 2.3 times the residual standard error from a regression on
an initial starting chain.

A.2. Barrier effects model. The barrier effects model is defined in Sec-
tion 2.2. The posterior distribution is
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using the beta-binomial distribution, effectively integrating out qik and reducing
the number of parameters to be sampled. Our MCMC updates for μ,σ are the
same as for the random degree model.
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We use a Metropolis step to update mK , as there is no closed form. The condi-
tional posterior distribution of mK is

π
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mK |yik,N,di, σ
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which becomes



(
mK |yik,N,di, σ

2,μ,mk,ρk

)
c=

n∑
i=1

log B
(
mK

(
1

ρK

− 1
)

+ yiK, di + (1 − mK)

(
1

ρK

− 1
)

− yiK

)

−
n∑

i=1

log B
(
mK

(
1

ρK

− 1
)
, (1 − mK)

(
1

ρK

− 1
))

− log(mK),

in log terms (to maintain numerical stability). The bounds on mK are (0,1), as mK

is the proportion of the total population in subpopulation K . We used a normal
symmetric reflective proposal, reflecting values when proposed outside of bounds,
as used in De Valpine (2003). For example, if m

(t)
K = 0.9 and the normal proposal

directs m
(t+1)
K = 1.05, we would instead bounce this back such that m

(t+1)
K goes up

0.1, but as that gets to 1, m
(t+1)
K then come down 0.05, resulting in m

(t+1)
K = 0.95.

This distribution is symmetric, allowing the use of a Metropolis step to update.
Just as with NK in the random degree model, we will use 2.3 times the residual
standard error from an initial chain as the tuning parameter.

Updating ρk will be very similar, with only a difference in the term for the prior.
The conditional posterior for ρk is
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,

in log terms (to maintain numerical stability). Just as with mK , ρk is similarly
bounded between 0 and 1. Thus, we have used the normal symmetric reflective
proposal with 2.3 times the residual standard error as the tuning parameter as well.
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Updating di can be simplified from the beta functions, as di only appears in one
term of the beta function. The posterior for di is

π
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in log terms (to maintain numerical stability). As in the random degree model, di

must be greater than maxk yik . We again used a normal proposal with a tuning
parameter of 2.3 times the residual standard error from a regression on an initial
starting chain.

A.3. Transmission bias model. The transmission bias model is defined in
Section 2.3. The posterior distribution is
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Since τK and NK are not very clearly identifiable and tend to be highly cor-
related a posteriori, and were mirroring each other in early MCMC chains, we
reparametrized the model using

wK = NKτK, zK = NK

τK

.

To compute the Jacobian, we have

NK = √
wKzK, τK =

√
wK

zK

.

Thus, the determinant of the Jacobian is
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The reparameterized posterior, in terms of wK,zK , is thus
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We can update μ,σ as in the previous models.
The conditional posterior of di is
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)di

,
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which results in



(
di |μ,σ 2,NK, τK, yik,Nk,N,ηK, νK

)
c= − logdi − (log(di) − μ)2

2σ 2 +
K∑

k=1

log
(

di

yik

)
+

K∑
k=1

di log
(

1 − wk

N

)
,

in log terms for numerical stability. Note that this equation calls for a wk for k

from the known subpopulations as well. Since wK = τKNK and we are assuming
τk = 1 for k known (no transmission bias present in known subpopulations), we
have wk = Nk in the known subpopulations. As before, we used a normal proposal
for di , keeping the old value when we propose a value less than maxk yik , and
used 2.3 times the residual standard error for the tuning parameter.

Now, instead of updating NK, τK , we can update wK,zK as given below. The
conditional posterior for wK is

π
(
wK |μ,σ 2, di, zKyik,Nk,N,ηK, νK

)
∝

n∏
i=1

[(
wK

N

)yiK
(

1 − wK

N

)di−yiK
]

1√
wK

√
wK

ηK(1/νK−1)−1

×
(

1 −
√

wK

zK

)(1−ηK)(1/νK−1)−1 1

2zK

=
n∏

i=1

[(
wK

N − wK

)yiK
(

1 − wK

N

)di
]√

wK
ηK(1/νK−1)−2

×
(

1 −
√

wK

zK

)(1−ηK)(1/νK−1)−1 1

2zK

.

This results in



(
wK |μ,σ 2, di, zKyik,Nk,N,ηK, νK

)
c=

n∑
i=1

yiK log
(

wK

N − wK

)
+

n∑
i=1

di

(
1 − wK

N

)

+ ηK(1/νK − 1) − 2

2
logwK +

(
(1 − ηK)

(
1

νK

− 1
)

− 1
)

× log
(

1 −
√

wK

zK

)
− log 2zK,

in log terms for numerical stability.
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The posterior for zK is

π
(
zK |μ,σ 2, di,wKyik,Nk,N,ηK, νK

)

∝ 1√
zK

√
1

zK

ηK(1/νK−1)−1(
1 −

√
wK

zK

)(1−ηK)(1/νK−1)−1 1

2zK

= zK
−ηK(1/νK−1)/2

(
1 −

√
wK

zK

)(1−ηK)(1/νK−1)−1 1

2zK

,

which results in



(
zK |μ,σ 2, di,wKyik,Nk,N,ηK, νK

)
c= −ηK(1/νK − 1)

2
log zK +

(
(1 − ηK)

(
1

νK

− 1
)

− 1
)

log
(

1 −
√

wK

zK

)

− log 2zK,

in log terms for numerical stability. Both wK and zK must be positive and wK must
be larger than zK . The parameter wK cannot be larger than the total population, but
zK does not have a clear upper bound, except that NK = √

wKzK must be less than
the total population. All relevant bounds are included, rejecting proposed values
of wK or zK if the they do not fall within the bounds. As for other parameters, for
the tuning parameter, we used 2.3 times the residual standard error obtained by a
regression from a small initial chain.

A.4. Barrier transmission combined model. The combined barrier effects
and transmission bias model is defined in Section 2.4. The posterior for this model
is

π(μ,σ, di,mk,ρk, qik, τk|yik,mk,N,ηK, νK)

=
n∏

i=1

1

diσ
√

2π
e−(log(di )−μ)2/(2σ 2)

×
K∏

k=1

((
di

yik

)
(τkqik)

yik (1 − τkqik)
di−yik

× q
mk(1/ρk−1)−1
ik (1 − qik)

(1−mk)(1/ρk−1)−1

B(mk(1/ρk − 1), (1 − mk)(1/ρk − 1)

)

× ∏
K

τ
ηK(1/νK−1)−1
K (1 − τK)(1−ηK)(1/νK−1)−1

B(ηK(1/νK − 1), (1 − ηK)(1/νK − 1))

1

mK

1

1

1

5

1

7/4
.

Note that ηK and νK in the distribution of τK would be fixed based on external
information. We cannot use the beta-binomial distribution to integrate out qik due
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to the τK in the model; thus, we must sample qik as well, significantly increasing
the number of parameters in the model.

The updates for μ,σ are as in the previous models.
We can update mK using a Metropolis step just as in the other models. The

conditional posterior for mK is

π(mK |yik,N,di, σ,μ,mk,ρk, qik, τK, ηK, νK)

∝
n∏

i=1

(
q

mK(1/ρK−1)−1
iK (1 − qiK)(1−mK)(1/ρK−1)−1

B(mK(1/ρK − 1), (1 − mK)(1/ρK − 1)

)
1

mK

,

which becomes


(mK |yik,N,di, σ,μ,mk,ρk, qik, τK, ηK, νK)

c=
n∑

i=1

[(
mK

(
1

ρK

− 1
)

− 1
)

logqiK

+
(
(1 − mK)

(
1

ρK

− 1
)

− 1
)

log(1 − qiK)

− log B
(
mK

(
1

ρK

− 1
)
, (1 − mK)

(
1

ρK

− 1
))]

− log(mK),

in log terms (to maintain numerical stability).
Updating ρk is similar, just with a different prior. The conditional posterior for

ρk is

π(ρk|yik,N,di, σ,μ,mk,mK,qik, τK, ηK, νK)

∝
n∏

i=1

(
q

mk(1/ρk−1)−1
ik (1 − qik)

(1−mk)(1/ρk−1)−1

B(mk(1/ρk − 1), (1 − mk)(1/ρk − 1)

)
,

which becomes


(ρK |yik,N,di, σ,μ,mk,mK,qik, τK, ηK, νK)

c=
n∑

i=1

[(
mk

(
1

ρk

− 1
)

− 1
)

logqik

+
(
(1 − mk)

(
1

ρk

− 1
)

− 1
)

log(1 − qik)

− log B
(
mk

(
1

ρk

− 1
)
, (1 − mk)

(
1

ρk

− 1
))]

,

in log terms (to maintain numerical stability). Note that τk = 1 for k a known
population.
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To update qik , the conditional posterior is

π(qik|yik,N,di, σ,μ,mk,mK,ρk, τK,ηK, νK)

∝ qik
yik (1 − τkqik)

di−yikq
mk(1/ρk−1)−1
ik (1 − qik)

(1−mk)(1/ρk−1)−1

∝ q
yik+mk(1/ρk−1)−1
ik (1 − τkqik)

di−yik (1 − qik)
(1−mk)(1/ρk−1)−1,

which becomes


(qik|yik,N,di, σ,μ,mk,mK,ρk, τK,ηK, νK)

c=
(
yik + mk

(
1

ρk

− 1
)

− 1
)

logqik + (di − yik) log(1 − τkqik)

+
(
(1 − mk)

(
1

ρk

− 1
)

− 1
)

log(1 − qik),

in log terms (to maintain numerical stability). Again, note that τk = 1 when k

represents a known population.
To update τK , the posterior is

π(τK |yik,N,di,μ,σ,mk,mK,ρk, qiK, ηK, νK)

∝
n∏

i=1

τ
yiK

K (1 − τKqiK)di−yiK τ
ηK(1/νK−1)−1
K (1 − τK)(1−ηK)(1/νK−1)−1

∝
n∏

i=1

τ
yik+ηK(1/νK−1)−1
K (1 − τKqiK)di−yiK (1 − τK)(1−ηK)(1/νK−1)−1,

which results in


(τK |yik,N,di,μ,σ,mk,mK,ρk, qiK, ηK, νK)

c=
n∑

i=1

(
yiK + ηK

(
1

νK

− 1
)

− 1
)

log τK

+
n∑

i=1

(di − yiK) log(1 − τKqiK)

+ n

(
(1 − ηK)

(
1

νK

− 1
)

− 1
)

log(1 − τK),

in log terms (to maintain numerical stability).
All of mK , ρk , pik and τK are constrained to lie between 0 and 1. We again used

the normal symmetric reflective proposal, reflecting values outside of the allowed
range. We also again used 2.3 times the residual standard error from an initial chain
for the tuning parameter.
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The posterior for di is

π(di |yik,N,μ,σ,mk,mK,ρk, qiK, τK,ηK, νK)

∝ 1

di

e−(log(di )−μ)2/(2σ 2)
K∏

k=1

(
di

yik

)
(1 − τkqik)

di ,

which becomes


(di |yik,N,μ,σ,mk,mK,ρk, qiK, τK,ηK, νK)

c= − log(di) − (log(di) − μ)2

2σ 2 +
K∑

k=1

[
log

(
di

yik

)
+ di log(1 − τkqik)

]
,

in log terms (to maintain numerical stability). For di , we again used a normal
proposal with a tuning parameter of 2.3 times the residual standard error.

REFERENCES

BERNARD, R. H., JOHNSEN, E., KILLWORTH, P. and ROBINSON, S. (1989). Estimating the size
of an average personal network and of an event subpopulation. In The Small World (M. Kochen,
ed.) 159–175. Ablex Press, New Jersey.

BERNARD, R. H., JOHNSEN, E., KILLWORTH, P. and ROBINSON, S. (1991). Estimating the size
of an average personal network and of an event subpopulation: Some empirical results. Soc. Sci.
Res. 20 109–121.

DE VALPINE, P. (2003). Better inferences from population-dynamics experiments using Monte
Carlo state-space likelihood methods. Ecology 84 3064–3077.

DIGGLE, P. J., HEAGERTY, P. J., LIANG, K.-Y. and ZEGER, S. L. (2002). Analysis of Longitudinal
Data, 2nd ed. Oxford Statistical Science Series 25. Oxford Univ. Press, Oxford. MR2049007

EZOE, S., MOROOKA, T., NODA, T., SABIN, M. L. and KOIKE, S. (2012). Population size estima-
tion of men who have sex with men through the network scale-up method in Japan. PLoS ONE 7
e31184.

GELMAN, A. and RUBIN, D. B. (1992). Inference from iterative simulation using multiple se-
quences. Statist. Sci. 28 457–472.

JEFFREYS, H. (1961). Theory of Probability, 3rd ed. Clarendon Press, Oxford. MR0187257
KADUSHIN, C., KILLWORTH, P., BERNARD, H. and BEVERIDGE, A. (2006). Scale-up methods as

applied to estimates of heroin use. J. Drug Issues 36 417.
KILLWORTH, P., JOHNSEN, E., MCCARTY, C., SHELLEY, G. and BERNARD, H. (1998a). A social

network approach to estimating seroprevalence in the United States. Soc. Netw. 20 23–50.
KILLWORTH, P., MCCARTY, C., BERNARD, H., SHELLEY, G. and JOHNSEN, E. (1998b). Esti-

mation of seroprevalence, rape, and homelessness in the United States using a social network
approach. Evaluation Review 22 289–308.

KILLWORTH, P. D., MCCARTY, C., BERNARD, H. R., JOHNSEN, E. C., DOMINI, J. and SHEL-
LEY, G. A. (2003). Two interpretations of reports of knowledge of subpopulation sizes. Soc. Netw.
25 141–160.

KILLWORTH, P. D., MCCARTY, C., JOHNSEN, E. C., BERNARD, H. R. and SHELLEY, G. A.
(2006). Investigating the variation of personal network size under unknown error conditions. So-
ciol. Methods Res. 35 84–112. MR2247154

MCCARTY, C., KILLWORTH, P. D., BERNARD, H. R., JOHNSEN, E. C. and SHELLEY, G. A.
(2001). Comparing two methods for estimating network size. Human Organ. 60 28–39.

http://www.ams.org/mathscinet-getitem?mr=2049007
http://www.ams.org/mathscinet-getitem?mr=0187257
http://www.ams.org/mathscinet-getitem?mr=2247154


ESTIMATING POPULATION SIZE 1277

MCCORMICK, T. H., SALGANIK, M. J. and ZHENG, T. (2010). How many people do you know?
Efficiently estimating personal network size. J. Amer. Statist. Assoc. 105 59–70. MR2757192

MCCORMICK, T. H. and ZHENG, T. (2007). Adjusting for recall bias in “How many X’s do you
know?” surveys. In Proceedings of the Joint Statistical Meetings American Statistical Associa-
tion, Washington, DC.

MCCORMICK, T. H. and ZHENG, T. (2012). Latent demographic profile estimation in hard-to-reach
groups. Ann. Appl. Stat. 6 1795–1813. MR3058684

MIELKE, P. JR. (1975). Convenient beta distribution likelihood techniques for describing and com-
paring meteorological data. J. Appl. Meteorol. 14 985–990.

PANIOTTO, V., PETRENKO, T., KUPRIYANOV, V. and PAKHOK, O. (2009). Estimating the size of
populations with high risk for HIV using the network scale-up method. Analytical report, Kiev
International Institute of Sociology.

RAFTERY, A. E. (1988). Inference and prediction for the binomial N parameter: A hierarchical Bayes
approach. Biometrika 75 223–228.

RAFTERY, A. E. and LEWIS, S. M. (1996). Implementing MCMC. In Markov Chain Monte Carlo
in Practice (W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds.) 115–130. Chapman & Hall,
London.

RIPLEY, B. D. and THOMPSON, M. (1987). Regression techniques for the detection of analytical
bias. Analyst 112 377–383.

SALGANIK, M., FAZITO, D., BERTONI, N., ABDO, A., MELLO, M. and BASTOS, F. (2011a).
Assessing network scale-up estimates for groups most at risk of HIV/AIDS: Evidence from a
multiple-method study of heavy drug users in Curitiba, Brazil. Am. J. Epidemiol. 174 1190–1196.

SALGANIK, M. J., MELLO, M. B., ABDO, A. H., BERTONI, N., FAZITO, D. and BASTOS, F. I.
(2011b). The game of contacts: Estimating the social visibility of groups. Soc. Netw. 33 70–78.

SKELLAM, J. G. (1948). A probability distribution derived from the binomial distribution by regard-
ing the probability of success as variable between the sets of trials. J. Roy. Statist. Soc. Ser. B 10
257–261. MR0028539

ZHENG, T., SALGANIK, M. J. and GELMAN, A. (2006). How many people do you know in prison?:
Using overdispersion in count data to estimate social structure in networks. J. Amer. Statist. Assoc.
101 409–423. MR2256163

R. MALTIEL

MARKETING ANALYSIS

EXPEDIA, INC.
333 108TH AVENUE NE
BELLEVUE, WASHINGTON 98004
USA
E-MAIL: rmaltiel@uw.edu

A. E. RAFTERY

T. H. MCCORMICK

A. J. BARAFF

DEPARTMENT OF STATISTICS

UNIVERSITY OF WASHINGTON

BOX 354322
SEATTLE, WASHINGTON 98195-4322
USA
E-MAIL: raftery@uw.edu

tylermc@uw.edu
ajbaraff@uw.edu

http://www.ams.org/mathscinet-getitem?mr=2757192
http://www.ams.org/mathscinet-getitem?mr=3058684
http://www.ams.org/mathscinet-getitem?mr=0028539
http://www.ams.org/mathscinet-getitem?mr=2256163
mailto:rmaltiel@uw.edu
mailto:raftery@uw.edu
mailto:tylermc@uw.edu
mailto:ajbaraff@uw.edu

	Introduction
	Models
	Random degree model
	Barrier effects model
	Transmission bias model
	Combined model
	Recall bias adjustment

	Results
	Simulation studies
	McCarty back estimates
	Curitiba results

	Discussion
	Appendix: MCMC algorithms for model estimation
	Random degree model
	Barrier effects model
	Transmission bias model
	Barrier transmission combined model

	References
	Author's Addresses

