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Abstract. In this paper we study the structure of the limit aggregate A∞ = ⋃
n≥0 An of the one-dimensional long range diffusion

limited aggregation process defined in (Ann. Probab. 44 (2016) 3546–3579). We show (under some regularity conditions) that for
walks with finite third moment A∞ has renewal structure and positive density, while for walks with finite variance the renewal
structure no longer exists and A∞ has 0 density. We define a tree structure on the aggregates and show some results on the degrees
and number of ends of these random trees. We introduce a new “harmonic competition” model where different colours compete
for harmonic measure, and show how the tree structure is related to coexistence in this model.

Résumé. Nous étudions la structure de l’agrégat limite A∞ = ⋃
n≥0 An du DLA en dimension 1 avec longue portée, tel

qu’introduit dens (Ann. Probab. 44 (2016) 3546–3579). Nous montrons (sous des hypothèses de régularité) que pour des marches
aléatoires admettant un moment d’ordre 3, A∞ a une structure de renouvellement et une densité positive, tandis que pour les
marches ayant seulement une variance finie, la structure de renouvellement disparaît et la densité est nulle. Nous définissions une
structure arborescente sur l’agrégat et montrons quelques résultats sur les degrés et le nombre de bouts de ces arbres aléatoires.
Nous introduisons un nouveau modèle de « compétition harmonique » entre des particules de couleurs différentes, et nous montrons
que la structure d’arbre est reliée au problème de coexistence dans ce modèle.

MSC: Primary 82C24; secondary 60K35; 97K50; 97K60
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1. Introduction

In [1] a new 1-dimensional model of diffusion limited aggregation(DLA), that tries to capture the fractal nature of
the celebrated DLA model of T. Witten and L. Sander [6], is defined and studied. The model, defined rigorously in
Section 2.1 can be described as follows: Start with an aggregate containing a single particle at 0, at each stage, let
a new particle perform a random walk with long jumps starting “from infinity” until it attempts to jump onto the
existing aggregate, at which stage the jump is not performed and the particle is glued (added to the aggregate) in its
current position. Thus the process generates a sequence {0} = A0 ⊂ A1 ⊂ · · · of disconnected sets in Z, dubbed the
aggregates, with the nth aggregate An having n+1 points. In [1] and [2], we study the relation between the diameter of
the aggregates, Dn = diam(An) and the step-distribution of the underlying random walk R. More precisely, denoting
by α(R) := sup{a ≥ 0 : E|R1 − R0|a < ∞} – the highest moment of the walk, it is shown that under some regularity
conditions the diameters exhibit several phase transitions as the highest moment of the walk varies. A minimal version
of these results is given in the following theorem (and illustrated in Figure 1):
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Fig. 1. From [1]: If the random walk R has α finite moments, then the diameter of the resulting n-particle aggregate grows as nβ . For 1
3 < α < 1

the lower and upper bounds for β differ, and the lower bound is conjectured to be correct.

Theorem 0 ([1], Theorem 1). Let R be a symmetric random walk with step distribution satisfying P(|R1 − R0| =
k) = (c + o(1))k−1−α . Let Dn be the diameter of the n particle aggregate. Then

• If α > 3, then n − 1 ≤ Dn ≤ Cn + o(n) a.s., where C is a constant depending only on the random walk.
• If 2 < α ≤ 3, then Dn = nβ+o(1) a.s., where β = 2

α−1 .

• If 1 < α < 2 then Dn = n2+o(1) a.s.
• If 1

3 < α < 1 then

nβ+o(1) ≤ Dn ≤ nβ ′+o(1)

a.s., where β = max(2, α−1) and β ′ = 2
α(2−α)

.

• If 0 < α < 1
3 then Dn = nβ+o(1) a.s., where β = 1/α.

For explanations concerning the various phase transitions in the theorem, as well as a more thorough introduction
to diffusion limited aggregation processes, the reader is referred to the introduction of [1].

In this paper, we study the limit aggregate of the 1 dimensional diffusion limited aggregation process, defined
simply as A∞ = ⋃

n≥0 An – the set of all points eventually added to the aggregates. The natural expectation is that the
density of A∞ reflects the growth rate of Dn, at least to order of magnitude, that is if Dn = nβ+o(1) then∣∣A∞ ∩ [−n,n]∣∣ = n1/β+o(1). (1)

In this paper, we show that this is indeed the case when α > 2, and in doing so provide some further detail into the
structure of A∞. Our main results are as follows:

Theorem 1. Assume P(ξ > t) ≤ Ct−α for any t and some α > 3. There exists some B > 0 such that a.s. A∞ has
density B . Further, B is the limit density of An:

B = lim
m1,m2→∞

|A∞ ∩ [−m1,m2]|
m1 + m2

= lim
n→∞

n

Dn

.

Theorem 2. Assume there exist 2 < α < 3 and constants c1, c2 > 0 so that ξ satisfies c1n
−α ≤ P(ξ ≥ n) ≤ c2n

−α for
all n then a.s.∣∣A∞ ∩ [−n,n]∣∣ = n

α−1
2 +o(1).

In particular, A∞ has 0 density in the sense that limn→∞ |A∞∩[−n,n]|
n

= 0.

To show Theorem 1, we first derive upper bounds on the probability of a random walk passing through a set with n

points without hitting it. These bounds, which hold uniformly in the structure of the set, are then used to show that the
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process has renewal times – times at which the subsequent growth of the aggregate is independent of the structure of
the aggregate until that time. We show that the set of renewal times dominates a renewal process with positive density,
and deduce Theorem 1 as a consequence.

When 2 < α < 3, the strategy of “jumping over” a set to avoid it becomes possible. Using a lower bound on this
probability we show the obstacles created by the growing aggregates are not enough to stop new particles from occa-
sionally coming through, and conclude that the renewal structure no longer exists. However, by combining properties
of the random walk with simple geometric properties of the aggregates that follow from the diameter growth rates, we
are able to show that it is still hard for particles to penetrate deep into the aggregate, and derive the upper bound of
Theorem 2. The lower bounds follows from directly from the 2 < α ≤ 3 clause of Theorem 0

The case α < 2 has rather different difficulties and at present we are not ready to speculate on the validity of (1).
However, one must make some precautions as in Chapter 7 of [1] an example is given of a walk with α = 0, “the Z

3

restricted walk” for which, despite the fact that Dn grows faster then any polynomial, A∞ = Z. We do not know if
such examples exist for 0 < α < 2, as the construction used is somewhat special.

Last, we introduce some additional tree structure onto the aggregates, creating increasing families of random trees
which we call the aggregation trees.

To get the aggregation tree Tn from the aggregate An and the paths of its particles, we draw an edge between the
position at which each particle was stopped when coming from infinity, and the position onto which it attempted to
jump. The limit aggregation tree T∞ is defined simply as the union of the finite stage trees. Thus T∞ combines spatial
information (distance) together with the graph structure. Two basic questions on the tree structure are the degree
distribution of its vertices and the number of ends in the tree. In Section 4 we give a formal definition of these trees,
relate them to a competition model where colours compete for harmonic measure and give some partial answers to
the above questions.

2. Preliminaries and notation

We will denote a single step of our random walk by ξ , and the random walk itself by R = (R0,R1, . . .). We will
assume through out the paper that our random walk is aperiodic and symmetric. We denote by Px the probability
measure of the random walk started at x. We denote by px,y the probability of the random walk to move from x to y

in one step (so P(ξ = x) = p0,x ). For a given set A, define

p(x,A) =
∑
a∈A

px,a.

We denote by TA be the hitting time of A, defined as

TA = min{n > 0 s.t. Rn ∈ A}.
Note that TA > 0 even if the random walks starts in A. For a set A = {x} with a single member we also write Tx .

We define the hitting measure by

HA(x, a) =
{
Px(RTA

= a), x /∈ A,

δx,a, x ∈ A,
HA(±∞, a) = lim

x→±∞HA(x, a)

by [4, T30.1] the limit on the right-hand side exists for any aperiodic random walk. HA(±∞, ·) is called the harmonic
measure on A from ±∞. We will set HA(a) = 1

2HA(+∞, a) + 1
2HA(−∞, a) and call it the harmonic measure of a

with respect to A.
For a subset A ⊂ Z we will denote by diamA the diameter of A, namely maxA − minA, by A = [minA,maxA]

the minimal interval containing A, and by |A| the number of points in A. For x ∈ Z we will denote by d(x,A) the
point-to-set distance, namely miny∈A |x − y|. For convenience we denote by Z+ the positive integers including 0 and
by Z− the strictly negative integers.

By C and c we denote constants which depend only on the walk R but not on the other parameters involved. The
constants hidden in the o(·) notation may also be random. Generally C and c might take different values at different
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places, even within the same formula. C will usually pertain to constants which are “big enough” and c to constants
which are “small enough.”

X � Y denotes that X < CY . By X ≈ Y we mean cX < Y < CX (that is, X � Y � X).
In this paper we consider only random walks with finite variance. The following lemma (Lemma 4.2 of [1]) captures

some properties of such walks that will be useful for our analysis.

Lemma 3. Let R be a random walk on Z with steps of mean 0 and variation σ 2 < ∞. Then there are c,C > 0 such
that for any A ⊂ Z, A �=∅,

(1) If x > maxA, then limy→∞ Py(Tx < TA) > c.
(2) If d(x,A) is large enough then c < d(x,A)Px(TA < Tx) < C.

2.1. DLA as a measure on infinite paths

The purpose of this subsection is to define the DLA generated by a set of random walkers starting “at infinity,” in a
way that will retain information on the paths of the particles that were used to generate the aggregate. This will allow
us to study properties of these paths and relate them to the structure of the aggregates and the limit aggregate, and in
particular allow us to define a renewal structure on the aggregation process.

We define the measure P+∞, depending implicitly on A, as follows. This measure is supported on paths {γi}i≤0,
i.e. paths with no beginning but a last step. It is defined as the limit as y → ∞ of the law of {RTA+i}i≤0 under Py .
Informally, P+∞ is interpreted as the random walk started at +∞, and stopped when it hits A. Clearly it is supported
on paths in Z \ A, except for R0 ∈ A. The measure P−∞ is defined similarly using y → −∞. We define the measure
P∞ = 1

2 (P+∞ + P−∞).
It was proved in Lemma 2.1 of [1] that for recurrent random walks P+∞, P−∞ are probability measures and that

for any x0 ∈ A and x−1, . . . , x−n ∈ Z \ A

P±∞(Ri = xi for − n ≤ i ≤ 0) = P±∞(Tx−n < TA)

Px−n(TA < Tx−n)

−1∏
i=−n

pxi ,xi+1 . (2)

Let us spend a moment explaining formula (2), as this type of analysis will return later on in the paper. For clarity,
write z = x−n. Now, in order for the event on the right-hand side to happen, the walk must hit z before hitting A,
which happens with probability P±∞(Tz < TA). By the strong Markov property at Tz, with probability Pz(TA < Tz)

the walk will not hit A before its next return to z. Thus the expected number of visits to z before TA is

P±∞(Tz < TA)

Pz(TA < Tz)
.

At each of these visits there is probability
∏−1

i=−n pxi ,xi+1 of making the prescribed sequence of jumps ending at
x0 ∈ A. Since the walk is stopped once such a sequence of jumps is made, the events of making these jumps after the
ith visit to z are disjoint (for different i’s). Hence summing over these events gives (2).

To define the aggregates of the 1-DLA process, it is enough to use the projection of P∞ into the last two steps R0,
R−1 of the random walk, as was done in [1]. However, some of the events we would like to consider, such as renewal
times, will depend on the set of paths used to build the aggregates and not only on the aggregates themselves. We
therefore define the 1-DLA process with paths:

Definition 4. Let R be a recurrent random walk on Z. The DLA process with paths with respect to R is a sequence
of random tuples {An,�1, . . .�n}n≥0 where A0 = {0}, �i is chosen according to P∞ with respect to the set Ai−1,
and Ai = Ai−1 ∪ {�i(−1)}. The sets A0 = {0} ⊂ A1 ⊂ · · · are called the aggregates of the process while �i , called
the path of the ith particle, is a backward infinite path on Z \ Ai−1 ending at �i(0) ∈ Ai−1. We set a0 = 0 and
ai = �i(−1), thus An = {a0, a1, . . . , an}. We call ai the ith particle in the aggregate. The limit aggregate of the
process, A∞ is defined as the union of all the finite-time aggregates A∞ = ⋃

n≥0 An = ⋃
n≥0{an}.

We define Fn to be the minimal σ -field generated by �1, . . . ,�n. This includes all information about the aggre-
gates A0, . . . ,An.
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It is immediate from the definition that the projection of this process onto the sequence {An}n ≥ 0 gives back the
usual 1-DLA process defined in [1].

We say that the ith particle started from +∞ if limn→−∞ �i(n) = +∞, and that the ith particle started from −∞
if limn→−∞ �i(n) = −∞.

Since P±∞(limn→−∞ Rn = ±∞) = 1 with probability 1 every particle has a well defined starting position.
Given the paths constructing the 1-DLA processes, we can now define renewal times:

Definition 5. n is called a weak right renewal time for the 1 − DLA process if an > maxAn−1, and from time n and
on all particles that start from +∞ are added to the aggregate to the right of an.

n is called a strong right renewal time if in addition the paths of all particles that start from +∞ after time n do not
hit the half line to the left of an, nor are any such particles glued to a point to the left of an (i.e. an > maxAn−1 and
�i(j) ≥ an for all times i ≥ n at which the ith particle starts from infinity and for all j ≤ 0).

A symmetric definition holds for left renewal times and particles coming from −∞.

3. The structure of the limit aggregate

3.1. Walks with α > 3

Our starting point for analyzing the limit aggregate for the case α > 3 is the following theorem from [1] bounding
diameter of the aggregates {An}:

Theorem 6 ([1], Theorem 4.1). If E|ξ |3 < ∞ and Eξ = 0 then there is some C so that lim sup Dn

n
< C a.s.

As noted in the Introduction, this suggests that the limit aggregate A∞ might have positive density. Theorem 1
state that this is indeed the case. To prove Theorem 1 we study the strong renewal times of the 1 − DLA process.

Proposition 7. If P(ξ > t) ≤ Ct−α for some α > 3 and all t > 0, then there exists a constant c > 0 depending only
on ξ , such that for any n

P (n is a strong renewal time |Fn−1) > c.

Further, the set of renewal times dominates a renewal process with positive density c.

The lower bound given in the proposition is uniform in Fn−1 meaning that it holds for almost all possible paths of
the first n − 1 particles, however one should note that the sigma algebra Fn−1 does not contain the information what
are the renewal times before particle n, as to know this one must have information on future paths as well.

To prove the proposition, we will first prove a general lemma on 1-dimensional random walks with finite variance.
We will need the following definition:

Definition 8. Let R be a random walk on Z with step distribution ξ . We define the (left-oriented) Ladder process of
R, denoted LR , to be the sequence of distinct values attained by the infimum process {infl≤n R(l)}n. We denote the
step distribution of LR by Lξ . Thus LR has strictly negative steps with distribution equal to the hitting measure from
0 of Z−.

Lemma 9. Assume E(|ξ |2) < ∞. Start the walk R at some y ≥ 0, and let τ = TZ− . Let z := −R(τ) be the overshoot.

(1) There exists a constant c > 0 such that Py(z = 1) > c, uniformly in y ≥ 0 (z = 1 means the walk hits the half line
at its rightmost point). In particular for y = 0 we find P(Lξ = −1) > c.

(2) There exists a constant C > 0 s.t. for any k > 0 P(Lξ = −k) ≤ CP(ξ ≥ k).
(3) Assume in addition P(ξ > t) ≤ Ct−α for some α > 2. Then there is some C > 0 s.t. Py(z = k) ≤ Ck1−α for any

k > 0, uniformly in y ≥ 0.
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Note that by translation invariance similar estimates hold for the hitting measure of (−∞, x) from y for any x and
any y ≥ x.

Proof.

(1) By Lemma 3, we know that Py(T0 < TZ−) −−−→
y→∞ c0 > 0, so the requisite bound holds for all large enough y > y0.

However, the walk can make positive steps as well, so for any y > 0 there is a positive probability of exceeding
y0 before hitting the negatives.

(2) Starting the random walk at 0, Lξ = −z is the hitting point of Z−. Fix k > 0, then P(z = k) is the sum of
probabilities of all paths from 0 that hit Z− at −k and terminate there. Partitioning the paths according to the
value of R(τ − 1), we get:

P(z = −k) =
∑
l≥0

P0(Tl < τ)P(ξ = l + k)

Pl (τ < Tl)
.

By Lemma 3, P0(Tl < τ) ≤ C
l

, and Pl (τ < Tl) ≥ c
l
. Together this gives

P(Lξ = −z = −k) ≤ CP(ξ ≥ k).

(3) We partition the paths of the ladder walk from y to −k according to the place from which the ladder walk made
the jump to −k. Since LR is strictly decreasing, this gives

Py(z = k) =
y∑

i=0

P(LR visits i)P
(
Lξ = −(i + k)

)

≤
y∑

i=0

P
(
Lξ = −(i + k)

) ≤ P(Lξ ≤ −k) < Ct1−α,

where the last inequality follows from the bound of (2) on Lξ . �

Assume, without loss of generality, that the nth particle starts from +∞. Let xn be the minimal point in the path
of the nth particle and denote Jn = |An−1 ∩ (xn,∞)|, i.e. the number of distinct points in An−1 which the nth particle
has passed before being added to the aggregate. Thus Jn measures the amount by which the nth particle penetrates
into the aggregate.

The following lemma is the key ingredient of the proof of Proposition 7:

Lemma 10. Assume ξ satisfies P(ξ > t) � t−α for some c > 0, α > 2 and all t > 0. Then there exists a constant
C > 0 s.t.

P(Jn > l | Fn−1) ≤ Cl2−α logα−1 l

uniformly in Fn−1. In particular the Jn’s are stochastically dominated by i.i.d. random variables with the above tail.

Proof. The lemma is easy consequence of the following statement: There exist positive constants c, C such that for
any m,k > 0 and for any set A ⊂ Z

+ with |A| ≥ km and any y > maxA,

Py(TZ− < TA) < e−cm + Cmk2−α. (3)

Indeed, we may shift An−1 so that it has exactly l non-negative elements, and apply (3) with A = An−1 ∩ Z
+, with

k = l
C log l

and m = C log l for a large enough constant C > 0.
To prove (3), we use the bound

Py(TZ− < TA) < Py(LR avoids A),
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since if the ladder process visits A, then the corresponding time for the walk R is before TZ− . Henceforth we will only
consider the ladder process and its steps and time.

Let M (for many) be the event that there are more then m steps in which L jumps over points in A without landing
in A. Let B (for big) be the event that L jumps over at least k points of A in a single step. Since |A| ≥ km, it is clear
that in order to miss A, one of M or B must happen. And therefore

Py(TZ− < TA) ≤ Py(M) + Py

(
B ∩ Mc

)
.

Let {ρi}Ii=1 be the sequence of times at which the ladder walk LR passes over or hits points in A. Formally, define
ρ0 = 0 and define inductively

ρi+1 = inf
{
t : A ∩ [L(t),L(ρi)) �=∅

}
.

This defines a finite sequence since A is finite. Let ρI be the time the process passes the last point of A. Let Hk be
the natural filtration of LR . By Lemma 9(1), on the event i < I we have P(LR(ρi+1) ∈ A | Hρi

) > c. Therefore the
probability of avoiding A on at least m jumps is

P(M) ≤
m−1∏
i=0

1 − P
(
LR(ρi+1) ∈ A | Hρi

) ≤ e−cm. (4)

Let Bi be the event that |A ∩ (LR(ρi),LR(ρi+1))| > k. Then for Bi to occur, LR must make a large step. By
Lemma 9(3), P(Bi |Hρi

) < Ck2−α , we deduce

Py

(
Bi

∣∣∣ i−1⋂
j=0

Bc
j

)
< Ck2−α.

The event B ∩ Mc implies that at least one of the events B0, . . . ,BI−1 occurs, and that I < m, therefore

Py

(
B ∩ Mc

) ≤
I∑

i=0

Py

(
Bi

∣∣∣ i−1⋂
j=0

Bc
j

)
≤ mCk2−α.

Together with (4) this yields (3). �

Proof of Proposition 7. By symmetry it suffices to prove the proposition for right renewal times. Let {ni} be the
sequence of times at which particles start from +∞, and let Ĵi = Jni

be the amounts by which these particles penetrate
the aggregate. By Lemma 10, Ĵi are stochastically dominated by i.i.d. random variables: Ĵi ≤ Yi with

P(Yi > t) < Ct2−α+ε,

where ε > 0 is such that 2 − α + ε < −1 (or ε < α − 3). Also, by Lemma 9(1), we can have P(Yi = 0) > c > 0.
First, we claim that a sufficient condition for nk to be a strong right renewal time is that Ĵi ≤ i − k for all i ≥ k.

This follows by induction on i: if at time ni there are at least i − k particles to the right of ank
, and Jni

< i − k then the
path of ani

does not pass ank
and ani

is added to the right of ank
. Note that particles arriving from −∞ do not pose a

problem here for two reasons. First, these can only increase the number of points to the right of ank
and second, after

the first left strong renewal time even that will not occur.
Consider an infinite family of i.i.d. variables {Yi}i∈Z with distribution as above, coupled with the variables {Ji}i∈Z+

so that Yi ≥ Ji for i ≥ 0. Define

ϒ = {n : ∀m ≥ n,Ym ≤ m − n}.
Equivalently, ϒ is the complement of the union of (open) intervals

⋃
(m−Ym,m). Clearly ϒ is a translation invariant

renewal process, and by the above, ϒ ∩Z
+ is a subset of the strong right renewal times.
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To bound from below the probability that n is a strong renewal time, we find the density of ϒ . By translation
invariance this is

P(0 ∈ ϒ) = P(∀m ≥ 0, Ym < m) ≥
∏
m≥0

c ∨ (
1 − (n − m)2−α+ε

)
> 0.

�

We are now ready to prove Theorem 1.

Proof of Theorem 1. First, observe that after the first right and left strong renewal times, no particle coming from
−∞ affects the growth of the right side of the aggregate. By symmetry it is therefore enough to consider only particles
coming from +∞ and show that

lim
m→∞

|A∞ ∩ [0,m]|
m

= lim
n→∞

n

Dn

exists and is a.s. constant.
Let {rk}k≥1 be the sequence of all strong right renewal times. Denote wk = rk+1 − rk : the number of particles in

the kth renewal interval. Since the growth to the right of the aggregate after time rk does not depend on the history
before time rk , after the first left renewal time, wk form an i.i.d. sequence. By Proposition 7 and the Renewal Theorem,
Ewk < ∞, and therefore by the law of large numbers rk = B1k(1 + o(1)) for some constant B1.

Denote dk = maxArk+1 − maxArk : the diameter of the kth renewal interval. dk also form an i.i.d. sequence. As
noted in the proof of Theorem 6, dk is stochastically dominated by

∑wk

i=1 Yi where Yi are i.i.d. variables with finite

expectation, and thus Edk < ∞. We can apply the Renewal Reward Theorem (see e.g. [3]) to conclude that
∑k

di =
B2k(1 + o(1)) for some constant B2 ≥ 1.

The result follows (with B = B1/B2) for the subsequence where n is a renewal time and m = maxAn at the renewal
times. Existence of the limit over all m and n follows by sandwiching m between two renewal points (or n between
two renewal times). �

Note that while the above theorem proved that the aggregate has positive density, it also easy to see that under the
conditions of the theorem, if R is not a simple random walk, the density of the limit aggregate is not 1, as holes may
happen in any renewal interval.

3.2. Walks with 2 < α < 3

When 2 < α(R) < 3, the structure of the limit aggregate is quite different from the case α > 3, as will be seen in
Theorem 2 and in Claim 12.

Our starting point will be once again the bounds on the diameters Dn given in [1]. The following theorem summa-
rizes the lower bound ([1], Theorem 5.1) and the upper bound ([1], Theorem 5.3) for our special case:

Theorem 11. Fix α ∈ (2,3] and let β = 2
α−1 . If the random walk is such that P(ξ > t) ≈ t−α and Eξ = 0, then a.s.

maxAn = nβ+o(1) and −minAn = nβ+o(1).

Note that while the lower bound ([1], Theorem 5.1) was stated for diam(An), the proof dealt separately with maxAn

and minAn.
We first show that the renewal structure that existed for α > 3 no longer holds:

Claim 12. If P(ξ > t) ≈ t−α for some 2 < α < 3 then there are only finitely many weak renewal times in the 1−DLA

process.

The main tool for proving the claim, is a lower bound on the probability of hitting a set A while avoiding a set B

to its right, given in the next lemma:
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Lemma 13. Assume P(ξ > t) ≥ ct−α ∀t ∈ R+ for some constant c > 0, and E(|ξ |2) < ∞. There is a constant c > 0,
such that for any two finite sets of A, B satisfying maxA < minB

P∞
(
R(TA∪B − 1) ∈ A

) ≥ c · (diam(A) − |A|) · diam(A ∪ B)1−α

Proof. By Lemma 9(1), there is some c > 0 (independent of A, B), such that if the random walker is at A \ A, it will
hit A before leaving A with probability ≥ c. Therefore it is enough to bound from below the probability that a random
walker from infinity hits A \ A before hitting B ∪ A.

We bound this by decomposing the set of all paths from infinity that hit A without hitting B according to the place
from which the walker jumps to A, we get (using the same counting argument as in (2))

P∞(TA\A < TB∪A) =
∑

z/∈A∪B

P∞(Tz < TA∪B)p(z, (A \ A))

Pz(TA∪B < Tz)

≥
∑

z≥max (A∪B)+diam(A∪B)

P∞(Tz < TA∪B)p(z,A \ A)

Pz(TA∪B < Tz)

≥
∑

z≥max (A∪B)+diam(A∪B)

cd(z,A ∪ B)p(z,A \ A) (5)

=
∑

a∈A\A

( ∑
z≥max (A∪B)+diam(A∪B)

cd(z,A ∪ B)pz,a

)
(6)

≥ c|A \ A|(diam(A ∪ B)P
(
ξ ≥ 2 · diam(A ∪ B)

)
(7)

≥ c · (diam(A) − |A|) · diam(A ∪ B)1−α. (8)

The inequality in (5) following by using both parts of Lemma 3. �

Proof of Claim 12. We now use our bounds on the diameter of An to prove the claim:
Fix some ε > 0. Let n0 be the (random) minimal n0 such that for all n > n0

n
2

α−1 −ε ≤ diam(An) ≤ n
2

α−1 +ε .

By Theorem 11, n
2

α−1 −o(1) ≤ diam(An) ≤ n
2

α−1 +o(1) a.s., so n0 is finite a.s.
Fix n. Let Ew

k (k ≥ 0) be the event that the particle at time n+k either starts at −∞ or is glued to the right of An−1,

and that (n − 1)
2

α−1 −ε ≤ diam(An−1) ≤ (n − 1)
2

α−1 +ε . If n is a weak right renewal time and n > n0, then
⋂

k≥0 Ew
k

must occur. Therefore

P(n is a weak renewal time and n > n0) ≤ P
(
Ew

0

) ∏
k≥1

P

(
Ew

k

∣∣∣ k−1⋂
j=1

Ew
j

)
.

Let Bk = {an, an+1, . . . , an+k−1}. By applying Lemma 13 with respect to the sets A = An−1 and B = Bk , we get that

P

(
Ew

k

∣∣∣ k−1⋂
j=1

Ew
j

)

≤ 1 − c · (diam(An−1) − |n − 1|) · diam(An+k−1)
1−α

≤ 1 − cn
2

α−1 −ε(n + k)(
2

α−1 +ε)(1−α)

≤ 1 − cn
2

α−1 (n + k)−2(n + k)−εα.
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And therefore

P(n is a weak renewal time and n > n0) ≤ P
(
Ew

0

) ∏
k≥1

P

(
Ew

k

∣∣∣ k−1⋂
j=1

Ew
j

)

≤
∏

1≤k≤n

P
(
Ew

k | Ew
k−1

)

≤
∏

1≤k≤n

(
1 − cn

2
α−1 (n + k)−2(n + k)−εα

)

≤ (
1 − cn

2
α−1 −2−εα

)n

≤ e−n
2

α−1 −1−εα

.

Thus for any 2 < α < 3 and ε small enough∑
n≥1

P(n is a weak renewal time and n > n0) < ∞.

So by the Borel-Cantelli lemma there are a.s. only finitely many weak renewal times bigger than n0. Since n0 is finite
a.s., there are a.s. only finitely many weak right renewal times. The case of left renewal times follows by symmetry. �

Next we will prove an upper bound on the probability of a random walk hitting An at time m > n, without hitting
the points glued to the right or to the left of An. To get this bound we will need some geometric properties of An

(unlike the lower bound in Lemma 13 which holds for general sets).
The following definition captures the geometric property we will need, which roughly means that the set does not

have big gaps between its points, where the gaps are measured on the scale of their position on Z.

Definition 14. A set of positive integers B = {b1 < · · · < bk} is said to be ε-dense if bi+1 < b1+ε
i for each i. The set

is said to be dense in an interval [n,m] if {n,m} ∪ (B ∩ [n,m]) is ε-dense. A set B ⊂ Z
− is said to be dense if −B is

dense.

We remark that by this definition the empty set, and any singleton, are also considered ε-dense, as they do not
contain any gaps.

Lemma 15. Assume P(ξ > t) < ct−α for some 2 < α < 3, and fix 0 < ε < α/2 − 1. Let B+ ⊂ Z+ and B− ⊂ Z−
be finite sets. Let B = B− ∪ B+ and set m = min(maxB+,minB−),and M = max(maxB+,−minB−). Suppose that
m > 2n, B+ is ε-dense in [n,maxB+] and that B− is ε-dense in [minB−,−n]. Then for some C > 0 depending only
on ε and the walk (and not on B or n), for any y with |y| > M

Py(T[−n,n] < TB) < Cn1+εm1−α.

Proof. Define

f (k) =
{

supx≥k Px(T[−n,n] < TB), k ≥ 0,

supx≤k Px(T[−n,n] < TB), k < 0.

We will prove by induction on |k| that for a suitable γ and any k ∈ B with |k| > 2n,

f (k) ≤ γ n1+εk1−α. (9)

The lemma follows by considering k = maxB and k = minB .
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By symmetry we may assume k > 2n. As the base of our induction we will first prove the statement for 2n < k ≤
n1+ε . Fix x > k and let Ek be the event that the random walker does not hit k before hitting the half line (−∞, k

2 ).
Our first task is to bound P(Ek). Let z be the first point at which the walk hits (−∞, k). Partitioning according to z,
we have for any x ≥ k

Px(Ek) ≤
k∑

i= k
2

Px(z = i)Pi (Ek) + Px

(
z ≤ k

2

)
.

By Lemma 9(3), Px(z = i) ≤ c(k − i)1−α , and Px(z ≤ k
2 ) ≤ ck2−α . By Lemma 3, Pi (Ek) ≤ c k−i

k
for any k

2 ≤ i ≤ k.
Combining these bounds gives

Px(Ek) ≤
k∑

i=k/2

c(k − i)2−α

k
+ ck2−α ≤ ck2−α. (10)

For k ∈ B , k > 2n implies {T[−n,n] < TB} ⊂ Ek and thus for any k ∈ B with 2n < k ≤ n1+ε

f (k) ≤ sup
x≥k

Px(Ek) ≤ ck2−α ≤ cn1+εk1−α.

Giving us the basis for our induction (for γ > c).
It remains to show using induction on k that (9) holds for k > n1+ε .
Let τ = T(−∞,k/2) denote the hitting time of (−∞, k

2 ) by the random walk.
Denote the hitting point by y = Rτ and define the events

Q1 =
{
y < −k

4

}
, Q2 =

{
|y| ≤ k

4

}
, Q3 =

{
y >

k

4

}
.

We have

Px(T[−n,n] < TB) =
3∑

i=1

Px(Qi, T[−n,n] < TB). (11)

We bound each of the three summands in terms of the value of f at smaller x. By Lemma 9 we have Px(y <

− k
4 ) < ck2−α . By the definition of f , this implies

Px(Q1, T[−n,n] < TB) < ck2−αf

(
−k

4

)
. (12)

Similarly, for any i ∈ [− k
4 , k

4 ] we have P(y = i) < ck1−α , and so

Px(Q2, T[−n,n] < TB) < ck1−α

k/4∑
i=−k/4

f (i). (13)

To bound the third summand, note that Q3 ∩ {T[−n,n] < TB} ⊂ Ek , and so by (10) and the Markov property at
time τ ,

Px(Q3, T[−n,n] < TB) ≤ Px(Ek) max
k
4 <z< k

2

Pz(T[−n,n] < TB)

≤ ck2−αf

(
k

4

)
. (14)
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Combining (11)–(14) gives

f (k) < ck2−αf

(
−k

4

)
+ ck2−αf

(
k

4

)
+ ck1−α

k/4∑
i=−k/4

f (i)

< ck1−α

(
kf

(
−k

4

)
+ kf

(
k

4

)
+

k/4∑
i=−k/4

f (i)

)
. (15)

We will now want to bound f (i) for i < k/4. We will first assume i > n1+ε . At this point we use the fact that B±
are ε-dense (and therefore B ∩ (i

1
1+ε , i) �= ∅). and that f is by definition decreasing on Z

+ (and decreasing on Z
−).

Together with the induction hypothesis these facts imply

f (i) ≤ γ n1+ε|i| 1−α
1+ε < γ n1+ε|i|1−α+2ε as long as |i| > n1+ε.

For i < n1+ε we will use the trivial bound f (i) ≤ 1.
Using these bounds in (15) gives

f (k) < ck1−α2n1+ε + ck1−αγ n1+ε

(
2k(k/4)1−α+2ε + 2

k/4∑
i=n1+ε

i1−α+2ε

)

< ck1−α2n1+ε + ck1−αγ n1+ε
(
k2−α+2ε + n(1+ε)(2−α+2ε)

)
.

Here c is some constant depending only on the random walk. To get the claimed bound on f (k) we need this to be
less than γ n1+εk1−α . This happens iff

2c + γ c
(
k2−α+2ε + n(1+ε)(2−α+2ε)

)
< γ.

We can easily find γ , n0 so that this holds for any k > n > n0. �

We now have all the pieces to prove Theorem 2.

Proof of Theorem 2. For the lower bound on A∞ ∩[−n,n] it is enough to note that by Theorem 0 the first n
α−1

2 +o(1)

points of the aggregate a.s. lie in the interval [−n,n]. We are therefor left with showing the upper bound.
Fix ε > 0, which we may assume to be small enough. It is enough to prove that there a.s. exists a constant C so

that |A∞ ∩ [−n,n]| ≤ Cn
α−1

2 +ε for all n. We will first show that the aggregates Am satisfy the geometric property
required for Lemma 15 for large enough m:

Lemma 16. For any ε > 0 there is some n0 s.t. for any m > n > n0

(1) m
2

α−1 −ε ≤ maxAm ≤ m
2

α−1 +ε ,

(2) m
2

α−1 −ε ≤ −minAm ≤ m
2

α−1 +ε ,
(3) Am is ε-dense in [minAm,minAn] and in [maxAn,maxAm].

Proof. The first two clauses are just a restatement of Theorem 11. To prove the third clause, observe that if there is
no point in Am between k and k1+ε (or between −k and −k1+ε), then the diameter of the aggregates must grow by
too much in one step, contradicting the diameter bounds. �

We now return to the proof of Theorem 2. Fix some n > n0. For any m > n

P(am+1 ∈ An) ≤ sup
|x|≥maxa∈Am |a|

Px(TAn
< TAm\An

).
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Take m0 = 8n1+3ε . By the above lemma maxAn ≤ n
2

α−1 +ε , −minAn ≤ n
2

α−1 +ε and also maxAm ≥ m
2

α−1 −ε ,

−minAm ≥ m
2

α−1 −ε . In particular for any m > m0, maxAm ≥ 2 maxAn, −minAm ≥ −2 minAn, and by the third
clause of Lemma 16 Am is ε-dense in [minAm,minAn] and in [maxAn,maxAm]. Thus we can apply Lemma 15 to
get

sup
|x|≥maxa∈Am |a|

Px(TAn
< TAm\An

)

≤ Cn( 2
α−1 +ε)(1+ε)

(
m

2
α−1 −ε

)1−α ≤ Cn
2

α−1 +4εm−2+2ε.

Let Wm0,n be the number of points added to [minAn,maxAn] after time m0. Then

E(Wm0,n) ≤
∑

m≥m0

Cn
2

α−1 +4εm−2+2ε ≤ Cn
2

α−1 +4εm2ε−1
0 ≤ Cn

2
α−1 −1+9ε.

Since our bounds are uniform in the history for all m > m0, and they are all indicator variables, the variance of
their sum is less then the expectation, and by Chebyshev’s inequality

P
(
Wm0,n > 2Cn

2
α−1 −1+9ε

) ≤ C

n
2

α−1 −1+9ε

and therefore there is some N0 such that this does not happen for any n > N0. Thus for any n > N0 we add at most
m0 = 8n1+3ε points until time m0, and Cn

2
α−1 −1+9ε after time m0. Since ε was arbitrary, we are done. �

4. The aggregation tree

We start by giving the definition of the aggregation trees promised in the Introduction

Definition 17. Given a 1-DLA process {An,�1, . . .�n}n≥0 we define the nth aggregation tree Tn as the graph whose
vertices are the points in An, and whose edge set is {(�i(0),�i(−1))}i≤n. The limit aggregation tree is defined by
T∞ = ⋃

n≥0 Tn. These trees can be given a directed structure by directing each edge from �i(0) to �i(1).

Note that by the definition of the aggregation tree, the probability of adding an edge from a vertex n ∈ Tk at time
k + 1 is P∞(R(0) = n) = HAk

(n) – the harmonic measure of n with respect to Ak .
We will be interested in two types of properties on T∞ – the degrees of its vertices and the number of ends it

possesses.
The number of ends in a tree is the maximal cardinality of the number of vertex-almost-disjoint infinite simple

paths in the tree. ( Almost disjoint meaning every pair of paths sharing only finitely many vertices).
This can also be thought of in terms of a coexistence of different species in a competition model: Start by choosing

n and colouring the points of Tn with different colours and then grow the aggregation tree using the DLA dynamics,
colouring each new point by the colour of the point to which it was glued. A colour is said to survive if its component
in T∞ is infinite. It is not hard to see that the maximal colours that can coexist is ≥ n if and only if the number of ends
in T∞ is ≥ n.

The renewal structure for α > 3 easily implies the number of ends.

Lemma 18. If P(ξ > t) � t−α for α > 3 then a.s. T∞ has 2 ends.

Proof. Let τi be the right strong renewal times. Any path P in T∞ which is not bounded above (|P ∩ Z+| = ∞ has
to include all aτi

for all large enough i. Therefore there cannot be 2 almost disjoint such paths. The renewal times also
ensure that there are two disjoint paths one going to +∞ and one to −∞, so T∞ has 2 ends. �
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Remark. To understand the difficulties in finding the number of ends without the renewal structure, we take another
look at the competition model. At each stage, the point to which the next particle is glued is distributed according to
the harmonic measure on the aggregate. Thus the colour of the next particle is distributed proportional to the harmonic
measure of each colour with respect to the aggregate. When a Red particle is added, the harmonic measure the red
part of the aggregate increases, while the harmonic measure of all other colours decreases. Thus the colours can
be thought of as competing for harmonic measure. For Red to die out, its harmonic measure must decrease so that∑

n≥0 HAn(Red) is finite, otherwise red points will occur infinitely often almost surely. The problem is that a small
number of points added to the aggregate can make a big difference in the harmonic measure on the aggregate. Consider
a random walk R with finite variance. Take the competition process between Red and Blue, and assume that at time
n a new red point is added to the right of An−1. The harmonic measure of that point is at least a constant. Therefore
even if Red started to die out, one point is enough to increase its harmonic measure to at least a constant.

In light of the above we ask

Question 1. How many ends does T∞ have for walks with 2 < α < 3?

Two other natural questions which hold in many models of random trees are the following:

Question 2. Is the number of ends in T∞ a.s. constant (or infinite) for any random walk R?

Question 3. Is the number of ends in T∞ always in {1,2,∞}?

The difficulty comes from the high dependency structure between particles added at different steps to the aggregate.
We now go on to study some properties of the degrees of the vertices in T∞.
The first lemma shows that for walks with finite variance the degrees are not uniformly bounded.

Lemma 19. If E(|ξ |2) < ∞ then supv∈T∞ deg(v) = ∞.

Proof. Every time a particle ak is added to the right of the aggregate, there is a positive probability depending only
on n (and not on Ak) that the next n particles will all come from +∞ and glue to ak without ever jumping over ak .
Since particles glue on the right i.o., we will almost surely have vertices with degree > n for any n. �

We now show that under general conditions, having a vertex with infinite degree implies A∞ = Z:

Proposition 20. Assume E(|ξ |) < ∞ and for every k ∈ Z there exist constants ck,Ck > 0 such that ck <
px,k

px,0
< Ck

for all x �= 0, k.
Then for any n0 ∈ T∞ P({degT∞(n0) = ∞} ∩ {n1 /∈ A∞ or degT∞(n1) < ∞}) = 0. And in particular if there a.s.

exists some n0 ∈ T∞ with infinite degree then a.s. all vertices in T∞ have infinite degree and A∞ = Z a.s.

Proof. We will use Levy’s extension to the Borell–Cantelli Lemma (see e.g. [5], Thm 12.15)

Lemma 21. Let En be a sequence of events. And let Gn = σ {E1, . . . ,En}. Then

P

(
{lim supEi}�

{∑
n≥0

P(Ei | Gn−1)

})
= 0.

Assume the degree of n0 in T∞ is infinite. Let to be the time at which it was added to the aggregate. Let Ik be the
indicator of the event that an edge is connected to n0 at step k + 1. Then P(Ik = 1 | Gk−1) = HAk

(n0), and the degree
of n0 in T∞ is just 1 + ∑

k≥t0
Ik .

By Levy’s extension to the Borell–Cantelli P({degT∞(n0) = ∞}�{∑k≥t0
HAk

(n0) = ∞}) = 0. Fix any n1 ∈ Z,
and let t1 be a time at which both n0 and n1 are in At1 . Decomposing paths from ±∞ to n1 by the position from



One dimensional DLA – Not for circulation 1527

which they jumped, we get, by (2) that for any set A with n0, n1 ∈ A

HA(n1) = P∞
(
R(0) = n1

) =
∑
x /∈A

P∞
(
R(0) = n1,R(−1) = x

)

=
∑
x /∈A

P∞(Tx < TA)

Px(TA < Tx)
px,n1 ≈

∑
x /∈A

P∞(Tx < TA)

Px(TA < Tx)
px,n0 = HA(n0),

where the constants in the ≈ come from the condition on the walk (and do not depend on A). We deduce
P({degT∞(n0) = ∞}�{∑k≥t1

HAk
(n1) = ∞}) = 0 which implies, using again Levy’s extension to the Borell–Cantelli

Lemma, that P({degT∞(n0) = ∞}�{degT∞(n1) = ∞}) = 0.
To show that P(degT∞(n0) = ∞}�{A∞ = Z}) = 0, we use a similar argument: Fix any n1 ∈ Z, by (2)

HA(n0) = P∞
(
R(0) = n0

) =
∑
x /∈A

P∞
(
R(0) = n0,R(−1) = x

)

=
∑
x /∈A

P∞(Tx < TA)

Px(TA < Tx)
px,n1pn1,n0 ≥

∑
x /∈A

P∞(Tx < TA)

Px(TA < Tx)
px,n1pn1,A = P∞

(
R(−1) = n1

)
.

We therefore conclude P({degT∞(n0) = ∞}�{∑k≥t0
P

Ak∞ (R(−1) = n1) = ∞}) = 0 and by another use of Levy’s
extension P({degT∞(n0) = ∞}�{n1 ∈ A∞}) = 0 �

Remark.

(1) Since only finitely many points in A∞ can be close to any point n0, with some extra work the condition on the
walk can be weakened to lim inf|n|→∞ pn,0

pn,k
> ck and lim sup|n|→∞

pn,0
pn,k

< Ck for any k ∈ Z.
(2) A similar theorem holds for transient random walks (E(|ξ |) = ∞) using the gluing formula for transient walk

([1], Section 7).

Using the above we get that for nice walks with finite variance, all degrees in T∞ are a.s. finite

Corollary 22. If P(ξ > t) � t−α for α > 3, or P(ξ > t) ≈ t−α for 3 > α > 2 then all degrees in T∞ are a.s. finite.

Proof. For the α > 3 this follows from the renewal structure, since after the first left and right renewal times, only
points within a renewal interval can connect to points in that interval (with the exception the renewal points themselves
which have one connection to the previous interval). For 2 < α < 3 Theorem 2 implies A∞ �= Z a.s. and therefore by
Proposition 20 all degrees in T∞ are a.s. finite. �
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