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Abstract. We continue the study of a stochastic system of interacting neurons introduced in De Masi, Galves, Löcherbach and
Presutti (J. Stat. Phys. 158 (2015) 866–902). The system consists of N neurons, each spiking randomly with rate depending on
its membrane potential. At its spiking time, the neuron potential is reset to 0 and all other neurons receive an additional amount
1/N of potential. Moreover, electrical synapses induce a deterministic drift of the system towards its average potential. We prove
propagation of chaos of the system, as N → ∞, to a limit nonlinear jumping stochastic differential equation. We consequently
improve on the results of (J. Stat. Phys. 158 (2015) 866–902), since (i) we remove the compact support condition on the initial
datum, (ii) we get a rate of convergence in 1/

√
N . Finally, we study the limit equation: we describe the shape of its time-marginals,

we prove the existence of a unique nontrivial invariant distribution, we show that the trivial invariant distribution is not attractive,
and in a special case, we establish the convergence to equilibrium.

Résumé. Cet article continue l’étude du système stochastique de neurones en interaction introduit par De Masi, Galves, Löcher-
bach et Presutti (J. Stat. Phys. 158 (2015) 866–902). Le système est composé de N neurones. Chaque neurone décharge un potentiel
d’action à des instants aléatoires, à un taux qui dépend de son potentiel de membrane. Ce potentiel est alors remis à 0, et tous les
autres neurones reçoivent une charge supplémentaire de 1/N . De plus, des synapses électriques induisent une dérive déterministe
qui attire le système vers sa valeur moyenne. Nous établissons la propriété de propagation du chaos lorsque N → ∞, vers la
solution d’une équation différentielle stochastique non-linéaire à sauts. Nous améliorons les résultats obtenus dans (J. Stat. Phys.
158 (2015) 866–902) puisque (i) nous levons la condition de support compact imposée aux données initiales, (ii) nous obtenons
une vitesse de convergence en 1/

√
N . Enfin, nous proposons une étude de l’équation limite : nous décrivons la forme de ses lois

marginales (en temps), nous démontrons l’existence d’une unique loi invariante non-triviale et montrons que la mesure invariante
triviale n’est pas attractive. Enfin, nous obtenons la convergence vers l’équilibre dans un cas particulier.
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1. Introduction and main results

1.1. The model

We consider, for each N ≥ 1, a family of i.i.d. Poisson measures (Ni (ds, dz))i=1,...,N on R+ × R+ having inten-
sity measure ds dz, as well as a family (X

N,i
0 )i=1,...,N of R+-valued random variables independent of the Poisson

measures. The object of this paper is to study the Markov process XN
t = (X

N,1
t , . . . ,X

N,N
t ) taking values in R

N+ and
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solving, for i = 1, . . . ,N , for t ≥ 0,

X
N,i
t = X

N,i
0 − λ

∫ t

0

(
XN,i

s − X̄N
s

)
ds −

∫ t

0

∫ ∞

0
X

N,i
s− 1{z≤f (X

N,i
s− )}N

i (ds, dz)

+ 1

N

∑
j �=i

∫ t

0

∫ ∞

0
1{z≤f (X

N,j
s− )}N

j (ds, dz), (1)

where X̄N
t = N−1 ∑N

j=1 X
N,j
t . The coefficients of this system are λ ≥ 0 and a function f : R+ �→ R+ satisfying (at

least) the following assumption.

Assumption 1. f is nondecreasing, f (0) = 0, f (x) > 0 for all x > 0, lim∞ f = ∞ and f ∈ C1(R+).

Proposition 2. Grant Assumption 1, let λ ≥ 0 and N ≥ 1 be fixed. Then there exists a unique càdlàg adapted strong
solution (XN

t )t≥0 to (1) taking values in R
N+ .

1.2. Formal description and goals

This paper continues a study started in De Masi, Galves, Löcherbach and Presutti [6]. The particle system (1) is the
model of interacting neurons considered in [6], inspired by a work of Galves and Löcherbach [13]. The system is made
of N neurons. Each X

N,i
t models the membrane potential at time t of the ith neuron. Interactions between neurons are

due to two types of synapses, chemical and electrical synapses. Chemical synapses are characterized through spiking
of the neurons, i.e. a fast trans-membrane current. Spiking occurs randomly following a point process of rate f (x) for
a neuron of which the membrane potential equals x. At its spiking time, the membrane potential of the neuron is reset
to a resting potential which we choose to be equal to 0. At the same time, the action of the chemical synapses induces
an increase of the membrane potentials of the other neurons: they receive an additional amount 1/N of potential.
Our model does not take into account a refractory period. Electrical synapses, which are due to gap junctions, work
constantly over time and tend to synchronize the membrane potentials of the neurons. Such electrical synapses are
typical for systems requiring fast responses to stimuli, often found in animals. They induce a constant drift of the
system towards the average membrane potential of the system, at speed λ.

It is well known that neuronal interactions can exhibit very complicated interaction structures. Our model only
takes into account the average effect of the interactions. We are thus working with a toy model where interactions are
of mean-field type.

Concerning f , we think of functions of the type f (x) = (x/x0)
ξ with ξ large and some soft threshold x0. In this

case, for x the membrane potential of the neuron, spiking occurs at very low rate if x < x0 and with very high rate
if x > x0. Note that in the biological literature it is often assumed that spiking occurs when the membrane potential
reaches a fixed threshold x0, which would correspond to f (x) = ∞1[x0,∞). However, a well-defined fixed threshold
does not seem to exist in in vivo neurons, see e.g. Jahn, Berg, Hounsgaard and Ditlevsen [18] who propose a statistical
study showing that a point process model in which the jump intensity depends on the membrane potential is well
adapted. We therefore propose a smooth firing rate depending on the membrane potential of the form f (x) = cxξ

with ξ quite large and c > 0.
We are interested in the evolution of a large system of neurons, i.e. in the limit N → ∞. We prove a weak law of

large numbers for the empirical measure of the system (propagation of chaos): we show that the empirical distribution
of the system becomes deterministic as N → ∞ and tends to the law of a limit process (Yt )t≥0 which solves a
nonlinear jumping SDE.

Such a result has already been achieved in [6] in the case of a compact support, i.e. when the initial conditions
X

N,i
0 are uniformly bounded. It is then possible to control the evolution of the support of the law of the process over

time. Consequently, the propagation of chaos can be shown for any locally Lipschitz continuous function f , exactly
as if it was globally Lipschitz continuous and bounded.

The case where the initial conditions are not compactly supported is more delicate, at least when f is not globally
Lipschitz continuous. Our results work under quite weak moment conditions on the initial datum, for quite general
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functions f . We obtain a rate of convergence in 1/
√

N , as one expects. These results should remain true when adding
a diffusive component to the dynamics of individual neurons, at the cost of a higher level of technicality.

Finally, we propose a short study of the limit equation. We describe the shape of its time-marginals, we prove the
existence of a unique nontrivial invariant distribution, we show that the trivial invariant distribution is not attractive,
and when λ = 0, we establish the convergence to equilibrium for a class of initial conditions.

Let us mention that all the results and proofs below have been elaborated thinking of the case where f (x) = xξ

with ξ ≥ 2, which thus satisfies all the conditions of the paper.

1.3. References

Using a mean-field approach in order to describe the typical behavior of a neuron within a large population of similarly
behaving neurons from a macroscopic point of view is by now classical in neuromathematics. A lot of effort has been
spent by the neuromathematical community focussing on the study of leaky integrate-and-fire models and their mean-
field limits; in these models the membrane potential of a neuron is described by a (finite or infinite dimensional)
diffusion process, and spiking occurs when reaching a threshold.

Recent interesting papers using a fixed threshold are those of Delarue, Inglis, Rubenthaler and Tanré [4] and [5],
see also Cáceres, Carrillo and Perthame [3]. Here, the membrane potential is described by a one dimensional diffusion
process. The existence of a fixed threshold may lead to severe mathematical problems related to a possible blow-up
of the limit nonlinear equation. Such a blow-up appears when a macroscopically large proportion of neurons spike at
the same time. Avalanches and synchronization are phenomena which are related to such a blow-up.

Notice that on the contrary, our model does not include a diffusive part in the evolution of each neuron’s membrane
potential. As indicated above, we expect our result on propagation of chaos to remain true when adding such a diffusive
component. But of course none of the above mentioned phenomena such as blow-up or avalanches appear in our model
since spiking occurs at a smooth rate which is finite all over the state space. As we have already mentioned, this choice
of modeling is motivated by biological considerations. Consequently, we do not have to face the same difficulties. The
problems we have to deal with are linked to the jump part of the equation, more specifically to the fact that the spiking
rate is not globally Lipschitz.

Recently, Inglis and Talay [16] have proposed a model of the integrate and fire type where neurons do spike when
hitting a fixed threshold but where the effect of a spike is not instantaneously transmitted to the other neurons. As a
consequence, their model does not present blow-up phenomena neither.

For an excellent overview of the mean-field approach in integrate-and-fire models with a strong modeling point
of view, we refer the reader to Faugeras, Touboul and Cessac [8]. They specifically deal with the case where several
big populations of neurons interact through their neural efficacities which are chosen to be i.i.d. Gaussian random
variables. In particular, they also deal with negative synaptic weights. Actually the extension of our model to the
multi-population case, including also inhibitory synapses, seems to be quite straightforward and is part of a future
work.

Finally, in a recent article, Luçon and Stannat [20] consider a population of mean field interacting diffusions which
are attached to spatial positions and evolve within a random environment. Here, the spiking is encoded within the
diffusion model (as in the Fitzhugh–Nagumo model). The interaction strength between two neurons depends on their
spatial distance and may show singularities. Moreover, the coefficients of the underlying diffusion are of polynomial
growth and therefore not globally Lipschitz neither. However, the techniques and results obtained in this article are
clearly far from the considerations we are interested in the present paper.

To summarize, our aim is not to build a model which describes the full neurophysiological reality, but to study
a simple model describing some basic biological features and to concentrate on the randomness hidden behind the
spike times. It is inspired by integrate-and-fire models, but spiking occurs randomly, with state-dependent intensity
and the system does not contain any other source of randomness. Let us finally mention that this model can also be
interpreted in terms of an associated nonlinear Hawkes process including a variable memory structure. We refer to
Hansen, Reynaud-Bouret and Rivoirard [14] for an interesting statistical study of the neuronal interaction graph using
Hawkes processes.

From the purely probabilistic point of view, propagation of chaos is a popular topic since the seminal works of
Kac [19], McKean [21,22] and Sznitman [25,26]. Generally, one tries to prove that the time-evolution of a particle,
interacting with a large number of other particles, can be approximated by a nonlinear process. By nonlinear, in the
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sense of McKean, we mean that the law of the process itself is involved in its dynamics. There exist essentially two
kinds of proofs.

• The first one, based on coupling and often used in [26], provides a (often optimal) rate of convergence but works
mainly when all the parameters of the model are globally Lipschitz continuous. However, it sometimes happens
that the non-Lipschitz terms are not really a problem, when they have, roughly, the good sign: see Malrieu [23],
who studies some McKean–Vlasov equation with, roughly, a convex interaction potential. More recently, it has been
shown in Bolley, Cañizo and Carrillo [1] that the coupling method can also apply to the case of nonglobally Lipschitz
parameters, under some very restrictive exponential moment conditions. They also get a (almost optimal) rate of
convergence. This idea has also been exploited for the Boltzmann equation in [12].

• The second method, elaborated in [25] when studying the Boltzmann equation, is based on tightness/consisten-
cy/uniqueness of the nonlinear process. It applies much more generally (it requires only some a priori bounds and
some continuity of the parameters), but does not provide any rate of convergence.

In the present paper we make use of the two methods and investigate to which extent they can be applied. Roughly,
the tightness/consistency/uniqueness works very well, under some very light assumptions on f and on the initial
conditions. But the most important point of the paper is that, still for quite a general class of functions f (as xξ with
ξ ≥ 2), we show that the coupling method also works, without imposing some exponential moment conditions. This
is very specific to the model under study, relies on quite fine computations, and on the use of an ad hoc distance. As
previously mentioned we get an optimal rate of convergence.

Finding an ad hoc distance is a classical strategy to prove uniqueness of the solution or to study its large time
behavior, in all fields of differential equations. It is a good approach, in the sense that it often allows for many
developments, such as stability and convergence of approximate models. But each model requires its own study and
the good distance often looks mysterious. The distance may or may not depend on the precise parameters of the model.
Let us quote a few papers. For example, Tanaka [27,28] discovered, using a specific nonlinear jumping SDE, that the
Wasserstein distance with quadratic cost between two solutions of the homogeneous Boltzmann equation for Maxwell
molecules is decreasing, providing the first uniqueness result for the Boltzmann equation in the physically reasonable
case without cutoff. Bolley, Guillin and Malrieu [2] were able to precisely study, using a nonlinear Brownian SDE,
the large-time behavior of solutions to a Vlasov–Fokker–Planck equation by introducing an ad hoc modification of
the Wasserstein distance depending on the parameters of the equation. They also quantified, with similar tools, the
convergence of some particle systems. In [9,11], we introduced an ad hoc distance to prove uniqueness of some
infinite stochastic interacting particle systems undergoing coalescence. Here also, the distance was depending on the
interaction kernel.

However, the study proposed in the present paper, and in particular the proof of the uniqueness of the limit equation,
is situated in a completely different mathematical framework compared to the above mentioned papers, and the specific
choice of an ad hoc distance that we propose is a new feature.

1.4. The limit equation

Assume that the X
N,i
0 are i.i.d. with common law g0 on R+. Simple considerations show that the solution (XN

t )t≥0

should behave, for N large, as N independent copies of the solution to the following nonlinear, in the sense of
McKean, SDE. Let Y0 be a g0-distributed random variable, independent of a Poisson measure N(ds, dz) on R+ ×R+
having intensity measure ds dz. An R+-valued càdlàg adapted process (Yt )t≥0 is said to solve the nonlinear SDE if

Yt = Y0 − λ

∫ t

0

(
Ys −E[Ys]

)
ds −

∫ t

0

∫ ∞

0
Ys−1{z≤f (Ys−)}N(ds, dz) +

∫ t

0
E

[
f (Ys)

]
ds. (2)

For PDE specialists, let us mention that for (Yt )t≥0 a solution to (2), g(t) = L(Yt ) solves the following nonlinear
PDE in weak form: for any φ ∈ C1

b(R+), the set of C1-functions on [0,∞) such that φ and φ′ are bounded, for any
t ≥ 0,∫ ∞

0
φ(x)g(t, dx) =

∫ ∞

0
φ(x)g(0, dx) +

∫ t

0

∫ ∞

0

([
φ(0) − φ(x)

]
f (x) + φ′(x)[as − λx])g(s, dx) ds,
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where at = ∫ ∞
0 [f (x) + λx]g(t, dx). Setting also pt = ∫ ∞

0 f (x)g(t, x) dx, the strong equation writes

∀t > 0,∀x > 0, ∂tg(t, x) = [λx − at ]∂xg(t, x) + [
λ − f (x)

]
g(t, x) and ∀t > 0, g(t,0) = pt/at ,

with g(0, x) a given probability density on [0,∞).
The nonlinear SDE (2) is not clearly well posed, unless one assumes e.g. that f is globally Lipschitz-continuous

and bounded. Under Assumption 1, we are generally only able to check the weak existence, that is existence of a
filtered probability space on which there is a Poisson measure N and a càdlàg adapted process (Yt )t≥0 such that (2)
holds true for all t ≥ 0.

Assumption 3. f ∈ C2(R+) is convex increasing and supx≥1[f ′(x)/f (x) + f ′′(x)/f ′(x)] < ∞.

Theorem 4. Grant Assumption 1 and suppose that λ ≥ 0.

(i) Assume only that E[Y0] < ∞. Then there is weak existence of a solution (Yt )t≥0 to (2) satisfying∫ t

0 E[Ysf (Ys)]ds < ∞ for all t ≥ 0.
(ii) Assume now that the law of Y0 is compactly supported. Then there exists a path-wise unique solution (Yt )t≥0

to (2) such that there is a deterministic locally bounded function A : R+ �→R+ such that a.s., sup[0,∞)(Yt/A(t)) < ∞.
(iii) Grant now Assumption 3 and assume that E[f (Y0)] < ∞. Then there is a path-wise unique solution to (2)

satisfying sup[0,t] E[f (Ys)] < ∞ for all t ≥ 0.

Let us mention that Assumption 3 can be slightly relaxed: if for example f = f1 + f2 with f1 satisfying Assump-
tions 1 and 3 and f2(x) = ∫ x

0 ψ(y)dy with ψ ∈ C1
c ([0,∞)) nonnegative, then Theorem 4(iii) still holds true. In fact,

what we really need is that the conclusions of Lemma 18 below are satisfied.
Let us comment on the results of Theorem 4. Point (i) is not hard: it is checked by compactness and is actually

a consequence of Theorem 5(i)–(ii) below. The only noticeable point is that the condition E[Y0] < ∞ is sufficient
to guarantee that indeed,

∫ t

0 E[Ysf (Ys)]ds < ∞ for all t ≥ 0, which is sufficient to handle a proof by compactness.
Point (ii) is not very complicated and has already been proven in [6]. The only difficult point is to check that if
Y0 is bounded, then Yt is a priori bounded for all t . Once this is seen, the function f can be considered as if it
was bounded and globally Lipschitz continuous. Finally, (iii) is much more delicate and goes clearly beyond the
results of [6]. Indeed, when computing the time derivative of E[|Xt − Yt |], for X and Y two solutions to (2), some
nonlinear terms appear: there is no hope to conclude uniqueness by the Gronwall lemma. One possibility is to use
the famous x| logx| extension of the Gronwall lemma, but this requires to have some bounds for something like
sup[0,T ]E[exp(f (Yt ))] < ∞, see Bolley, Cañizo and Carrillo [1] or [12] for such considerations, but this is not very
satisfying, since it requires the strong condition that E[exp(f (Y0))] < ∞. We thus search for a more convenient
“distance.” We first observe that when time-differentiating E[|f (Xt )−f (Yt )|], the contribution of the most unpleasant
term (the Poisson integral) is nonpositive: it gives exactly −E[|f (Xt )−f (Yt )|2], which is a very good point. However,
the other terms cause problems for small values of X, Y , if f vanishes too fast at 0 (e.g. f (x) = xξ with ξ ≥ 2). To
overcome this difficulty, it actually suffices to work with E[|H(Xt)−H(Yt )|], where H(x) � f (x)+x ∧1. Of course,
it is more convenient to use a smooth version of x ∧ 1, so that we will work with H(x) = arctanx + f (x). It is likely
that we could also use H(x) = �(x) + f (x), with any smooth increasing function �(x) behaving like ax near 0 (for
some a > 0) and tending to some constant b > 0 as x → ∞.

1.5. Propagation of chaos

We start with a general weak result. The set D(R+) of càdlàg functions on R+ is endowed with the topology of the
Skorokhod convergence on compact time intervals, see Jacod and Shiryaev [17].

Theorem 5. Grant Assumption 1 and suppose that λ ≥ 0. Consider a probability distribution g0 on R+ such that∫ ∞
0 yg0(dy) < ∞. For each N ≥ 1, consider the unique solution (XN

t )t≥0 to (1) starting from some i.i.d. g0-

distributed initial conditions X
N,i
0 .

(i) The sequence of processes (X
N,1
t )t≥0 is tight in D(R+).
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(ii) The sequence of empirical measures μN = N−1 ∑N
i=1 δ

(X
N,i
t )t≥0

is tight in P(D(R+)).
(iii) Any limit point μ of μN a.s. belongs to S := {L((Yt )t≥0) : (Yt )t≥0 solution to (2) with L(Y0) = g0 and satis-

fying
∫ t

0 E[Ysf (Ys)]ds < ∞ for all t ≥ 0}.
(iv) If moreover (a) g0 is compactly supported or (b)

∫ ∞
0 f (y)g0(dy) < ∞ and f satisfies Assumption 3, then μN

goes in probability to L((Yt )t≥0), where (Yt )t≥0 is the unique solution to (2).

Points (i), (ii) and (iii) are not very difficult. The fact that f is not globally Lipschitz continuous is not really a
problem when working by compactness. And of course, point (iv), which is usually called propagation of chaos, is a
consequence of points (ii) and (iii) and of the uniqueness results of Theorem 4. Again, the above theorem has already
been proven in the case of compact support in [6]; but the techniques employed in [6] cannot be used in the general
case where g0 is not compactly supported. Under a few additional conditions, we get a quantified version of the above
convergence, at least concerning the time marginals.

Assumption 6. There is a constant C such that for all x, y ∈ R+, f (x + y) ≤ C(1 + f (x) + f (y)).

Theorem 7. Grant Assumptions 1, 3 and 6 and suppose that λ ≥ 0 and that
∫ ∞

0 f 2(y)g0(dy) < ∞. Consider, for
each N ≥ 1, the unique solution (XN

t )t≥0 to (1) starting from some i.i.d. g0-distributed initial conditions X
N,i
0 .

Consider also the unique solution (Y
N,1
t )t≥0 to (2) starting from Y0 = X

N,1
0 and driven by the Poisson random

measure N1(ds, dz). The law of (Y
N,1
t )t≥0 does not depend on N , and we denote by g(t) := L(Y

N,1
t ). Introduce

H(x) = f (x)+arctan(x). Then for all T > 0, there is a constant CT , depending only on T , λ, f and
∫ ∞

0 f 2(y)g0(dy)

such that

sup
[0,T ]

(
E

[∣∣XN,1
t − Y

N,1
t

∣∣] +E
[∣∣H (

X
N,1
t

) − H
(
Y

N,1
t

)∣∣]) ≤ CT√
N

.

Assume furthermore that
∫ ∞

0 y2+εg0(dy) < ∞ for some ε > 0. Then for all T > 0, there is a constant CT , depending
only on T , λ, f , ε and

∫ ∞
0 [f 2(y) + y2+ε]g0(dy) such that

sup
[0,T ]

E

[
W1

(
1

N

N∑
i=1

δ
X

N,i
t

, g(t)

)]
≤ CT√

N
.

The Monge–Kantorovich–Wasserstein distance between two probability measures μ and ν on R+ with fi-
nite expectations is defined by W1(μ, ν) = inf{E[|U − V |], L(U) = μ and L(V ) = ν}. The moment condition∫ ∞

0 f 2(y)g0(dy) < ∞ is very reasonable: somewhere in the proof, we will have to study the convergence of

N−1 ∑N
j=1 f (Y

N,j
t ) to E[f (Y

N,1
t )]. If we want a rate of convergence of order 1/

√
N , such an assumption is needed.

1.6. Large time behavior of the limit process

First, we study the possible invariant measures.

Theorem 8. Grant Assumption 1 and let λ ≥ 0. Then the nonlinear equation (2) has exactly two invariant probability
measures supported in R+. The first one is δ0. The second one is of the form g(dx) = g(x)dx, with g : [0,∞) �→
[0,∞) defined as follows.

(i) If λ > 0, then

g(x) = p

p + λm − λx
exp

(
−

∫ x

0

f (y)

p + λ(m − y)
dy

)
1{0≤x<m+p/λ},

where p > 0 and m > 0 are uniquely determined by the constraints
∫ ∞

0 g(dx) = 1,
∫ ∞

0 xg(dx) = m. Furthermore,
we have

∫ ∞
0 f (x)g(dx) = p and m + p/λ > 1.
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(ii) If λ = 0, then

g(x) = exp

(
− 1

p

∫ x

0
f (y)dy

)
,

where p > 0 is uniquely determined by the constraint
∫ ∞

0 g(x)dx = 1. Furthermore, it holds that
∫ ∞

0 f (x) ×
g(x)dx = p.

Starting from a (reasonable) nontrivial initial condition, it is likely that Yt goes in law to g as t → ∞. When λ = 0,
we can prove such a result under a few assumptions.

Proposition 9. Grant Assumptions 1 and 3 and assume that λ = 0. Suppose moreover that the solution (Yt )t≥0 to (2)
starts from Y0 ∼ g0(x) dx where g0 ∈ C1

b([0,∞)) satisfies g0(0) = 1,
∫ ∞

0 f 2(x)g0(x) dx < ∞ and
∫ ∞

0 |g′
0(x)|dx <

∞. Denote by g(t) the law of Yt and write g for the invariant probability measure defined in Theorem 8(ii). Then we
have limt→∞ ‖g(t) − g‖TV = 0, where ‖ · ‖TV denotes the total variation distance. If furthermore there are c > 0 and
ξ ≥ 1 such that f (x) ≥ cxξ for all x ∈ [0,1], then we have the estimate ‖g(t) − g‖TV ≤ C(1 + t)−1/ξ .

Our proof, which is probably not optimal, relies on the use of the strong version of the PDE satisfied by g(t).
The regularity conditions on g0, as well as the structure condition g0(0) = 1, will imply that g(t) has a sufficiently
regular density. As can be seen in the next subsection (see also (20) in Section 7.3), if g0(0) �= 1, then g(t, y) will be
discontinuous for all t > 0 (it will have one jump at some value yt ∈ (0,∞) depending on t ).

When λ > 0, the situation is more intricate and we have not been able to prove the convergence to equilibrium. One
reason is that the nondegenerate invariant probability measure is more complicated, compactly supported and possibly
not continuous at the right extremity of its support. In any case, the computation handled to treat the case λ = 0 does
not extend. A natural approach would be to show first that limt→∞ E[λYt + f (Yt )] exists. However, E[λYt + f (Yt )]
does not solve a closed equation, and we did not succeed. The only result we are able to prove is that Yt cannot go
in law to the invariant measure δ0. Our proof, which was as usual elaborated in the case where f (x) = xξ , actually
extends to the following situation.

Assumption 10.

(i) It holds that lim supx→∞[f ′(x)/f (x)] < 1.
(ii) There are ξ ≥ 1, ζ ≥ ξ − 1 and some constants 0 < c < C such that cxξ ≤ f (x) ≤ C(xξ−1 + xζ ).

Proposition 11. Let λ ≥ 0 and grant Assumptions 1 and 3. Assume that P(Y0 = 0) < 1 and that E[f 2(Y0)] < ∞ and
consider the unique solution (Yt )t≥0 to (2). If λ > 0, grant moreover Assumption 10 and suppose that E[Y ζ+1

0 ] < ∞.
Then Yt does not go to 0 in law as t → ∞.

1.7. Shape of the time-marginals of the nonlinear SDE

The next theorem shows that random spiking creates density near 0, even if the system starts from a singular initial
condition (see also Theorem 2 of [6] in the case of a smooth initial condition).

Theorem 12. Let λ ≥ 0, grant Assumptions 1 and 3 and suppose that E[f 2(Y0)] < ∞ and that P(Y0 = 0) < 1.
Consider the unique solution (Yt )t≥0 to (2), set pt = E[f (Yt )], at = λE[Yt ] + E[f (Yt )] and denote by g(t) the law
of Yt . The functions t �→ at and t �→ pt are continuous and positive on [0,∞). Introduce the deterministic flow as
follows: for x ∈ [0,∞) and 0 ≤ s ≤ t ,

ϕs,t (x) = e−λ(t−s)x +
∫ t

s

e−λ(t−u)au du.
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For t > 0 fixed and y ∈ [0, ϕ0,t (0)], let βt (y) ∈ [0, t] be uniquely determined by ϕβt (y),t (0) = y. For y ≥ ϕ0,t (0), let
γt (y) = (y − ϕ0,t (0))eλt , which satisfies ϕ0,t (γt (y)) = y. It holds that for any t > 0,

(t, dy) = pβt (y)

aβt (y)

exp

(∫ t

βt (y)

(
λ − f

(
ϕβt (y),s(0)

))
ds

)
1{y∈[0,ϕ0,t (0))} dy

+ exp

(
−

∫ t

0
f

(
ϕ0,s

(
γt (y)

))
ds

)
1{y∈[ϕ0,t (0),∞)}

(
g0 ◦ γ −1

t

)
(dy).

In particular, since βt (0) = t , the density of g(t) at 0 is given by g(t,0) = pt/at .

1.8. Plan of the paper

Section 2 consists of collecting some useful a priori bounds for the particle system and the limit process. In Section 3,
we check the path-wise uniqueness of the limit process. Section 4 is devoted to the proof of Theorem 4, the propagation
of chaos without rate of convergence. Section 5 shows the quantified propagation of chaos result. In Section 6, we
investigate the possible invariant distributions of the limit process. The shape of the time-marginals is studied in
Section 7, in which we also prove the nonextinction result (Proposition 11) and the trend to equilibrium when λ = 0
(Proposition 9).

1.9. Constants

In the whole paper, C stands for a (large) finite constant and c stands for a (small) positive constant. Their values may
change from line to line. They are allowed to depend only on f , λ and g0, any other dependence will be indicated in
subscript. For example, CT is a finite constant depending only on f , λ, g0 and T .

2. A priori bounds

The aim of this section is to establish some fundamental bounds for the particle system and for the limit process.
Before that, we proceed to some elementary considerations.

Remark 13. Grant Assumptions 1 and 3 and additionally Assumption 6 for point (iv).

(i) There is c > 0 such that f (x) ≥ cx for all x ≥ 1.
(ii) For all A > 0, there is CA > 0 such that for all x ≥ 0, f (x + A) ≤ CA(1 + f (x)).

(iii) There is C > 0 such that f (x) ≤ C exp(Cx) for all x ≥ 0.
(iv) For all A > 0, there is CA > 0, f (A(x + y)) ≤ CA(1 + f (x) + f (y)) for all x, y ≥ 0.

Proof. Point (i) is obvious since f is convex increasing and since f (0) = 0. Point (iii) is easily checked using that
f is increasing as well as point (ii) with A = 1. Point (iv) is an immediate consequence of Assumption 6. To check
(ii), we will prove that there is a > 0 such that f (x + a) ≤ 2f (x) + 1 for all x ≥ 0, which clearly suffices. By
Assumption 3, there is B > 0 such that f ′(x) ≤ B(1 + f (x)) for all x ≥ 0. Fix a := 1/(2B) and write f (x + a) =
f (x) + ∫ x+a

x
f ′(y) dy ≤ f (x) + aB(1 + sup[x,x+a] f ) = f (x) + aB(1 + f (x + a)) = f (x) + (1 + f (x + a))/2,

whence f (x + a) ≤ 2f (x) + 1 as desired. �

We now study the limit equation.

Proposition 14. Grant Assumption 1, suppose that λ ≥ 0 and that E[Y0] < ∞. There is a constant C > 0 depending
only on λ, f and E[Y0] such that a solution (Yt )t≥0 to (2) a priori satisfies

a.s., for all t ≥ 0, Yt ≤ Y0 + C(1 + t), (3)

for all t ≥ 0,
∫ t

0
E

[
Ysf (Ys)

]
ds ≤ 2E[Y0] + 2f (2)t. (4)
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Proof. Taking expectations in (2), we see that

E[Yt ] = E[Y0] +
∫ t

0
E

[
f (Ys)(1 − Ys)

]
ds ≤ E[Y0] + f (2)t − 1

2

∫ t

0
E

[
Ysf (Ys)

]
ds,

because f (x)(1 − x) = −xf (x)/2 + f (x)(1 − x/2) ≤ −xf (x)/2 + f (2) for x ≥ 0, since f is nonnegative and
nondecreasing. Inequality (4) then follows from the fact that E[Yt ] ≥ 0. Recalling the nonlinear SDE (2), we see
that Yt ≤ Y0 + ∫ t

0 E[λYs + f (Ys)]ds for all t ≥ 0 a.s. But there exists a constant C, depending on f and λ, such
that λy + f (y) ≤ C(1 + yf (y)) for all y ≥ 0: it suffices to use that f is positive and nondecreasing. Consequently,
E[λYs + f (Ys)] ≤ C(1 +E[Ysf (Ys)]) for all s ≥ 0 and (3) follows from (4). �

We now turn to the particle system.

Proposition 15. Grant Assumption 1 and suppose that λ ≥ 0. Any solution (XN
t )t≥0 to (1) a.s. satisfies that for all

t ≥ 0, all i = 1, . . . ,N ,

X
N,i
t ≤ X

N,i
0 + (4λt + 4)

(
X̄N

0 + ZN
t

)
, (5)

1

N

N∑
j=1

∫ t

0

∫ ∞

0

(
1 + X

N,j
s−

)
1{z≤f (X

N,j
s− )}N

j (ds, dz) ≤ 3X̄N
0 + 4ZN

t , (6)

where ZN
t := N−1 ∑N

j=1

∫ t

0

∫ ∞
0 1{z≤f (2)}Nj (ds, dz). Furthermore, it holds that for any T ≥ 0,

P

(
∀i = 1, . . . ,N, sup

[0,T ]
X

N,i
t ≤ X

N,i
0 + (4λT + 4)

(
X̄N

0 + 2f (2)T
)) ≥ 1 − e−NTf (2)(3−e). (7)

Proof. We start with the following observation: taking the (empirical) mean of (1), we find

X̄N
t = X̄N

0 + 1

N

N∑
i=1

∫ t

0

∫ ∞

0

(
N − 1

N
− X

N,i
s−

)
1{z≤f (X

N,i
s− )}N

i (ds, dz) (8)

which implies, since X̄N
t ≥ 0 and (N − 1)/N ≤ 1, that

1

N

N∑
i=1

∫ t

0

∫ ∞

0

(
X

N,i
s− − 1

)
1{z≤f (X

N,i
s− )}N

i (ds, dz) ≤ X̄N
0 .

Using that x − 1 ≥ (x + 1)/3 − (4/3)1{x≤2} for all x ≥ 0 and that f is nondecreasing, we deduce that

1

N

N∑
i=1

∫ t

0

∫ ∞

0

(
1 + X

N,i
s−

)
1{z≤f (X

N,i
s− )}N

i (ds, dz)

≤ 3X̄N
0 + 4

N

N∑
i=1

∫ t

0

∫ ∞

0
1{XN,i

s− ≤2}1{z≤f (X
N,i
s− )}N

i (ds, dz).

Since f is nondecreasing, (6) follows. Recalling (8) and using (6), we realize that

X̄N
t ≤ X̄N

0 + 1

N

N∑
i=1

∫ t

0

∫ ∞

0
1{z≤f (X

N,i
s− )}N

i (ds, dz) ≤ 4X̄N
0 + 4ZN

t .
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Now, for all 1 ≤ i ≤ N , starting from (1),

X
N,i
t ≤ X

N,i
0 + λ

∫ t

0
X̄N

s ds + 1

N

N∑
j=1

∫ t

0

∫ ∞

0
1{z≤f (X

N,j
s− )}N

j (ds, dz)

≤ X
N,i
0 + λ

∫ t

0

(
4X̄N

0 + 4ZN
s

)
ds + 3X̄N

0 + 4ZN
t .

Hence (5) follows from the fact that ZN
t is a.s. a nondecreasing function of time. Finally, the deviation estimate (7)

simply relies on (5) and the inequality

P
(
ZN

T ≥ 2f (2)T
) ≤ e−2f (2)NT

E
[
eNZN

T
] = e−NTf (2)(3−e), (9)

which uses that ZN
T is the empirical mean of N i.i.d. Poisson(f (2)T )-random variables. �

The above estimate is largely sufficient to give the

Proof of Proposition 2. Suppose first that f is bounded. Then using only that f is measurable (and nonnegative),
we can apply Theorem 9.1 in Chapter IV of Ikeda and Watanabe [15]: there is a path-wise unique solution (XN

t )t≥0
to (1) defined on [0,∞).

For a general f satisfying Assumption 1 and a fixed truncation level K > 0, we consider the unique solution
(X

N,K
t )t≥0 to (1) with f replaced by f ∧K and we introduce τK = inf{t ≥ 0 : |XN,K

t | ≥ K}. By path-wise uniqueness,
it holds that X

N,K
t = X

N,K+1
t for all K ∈ N and all t ∈ [0, τK ] and that τK < τK+1 for all K ∈N, almost surely. Setting

τ = supK τK , it is not hard to conclude that there is a path-wise unique solution (XN
t )t∈[0,τ ) to (1) defined on [0, τ )

and that lim supt→τ |XN
t | = ∞ on the event {τ < ∞}.

Recall now (5): a.s., XN,i
t ≤ X

N,i
0 +C(1+ t)(X̄N

0 +ZN
t ) for all i = 1, . . . ,N , all t ≥ 0. Observe also that obviously,

sup[0,T ] ZN
t < ∞ a.s. for all T > 0. Hence τ = ∞ a.s., which completes the proof. �

3. Path-wise uniqueness for the nonlinear SDE

Let us first consider the case with compact support.

Proposition 16. Suppose Assumption 1 and that λ ≥ 0. Path-wise uniqueness holds true for the nonlinear SDE (2),
in the class of processes (Yt )t≥0 such that there is a deterministic locally bounded function A : R+ �→ R+ such that
a.s., supt≥0(Yt/A(t)) < ∞.

Note that the above condition is a priori satisfied for g0 compactly supported thanks to (3).

Proof of Proposition 16. Consider two solutions (Yt )t≥0 and (Xt )t≥0 to (2), driven by the same Poisson measure N
and with Y0 = X0. A very rough computation shows that there is a constant C, depending only on λ, such that

E
[|Xt − Yt |

] ≤ C

∫ t

0
E

[|Xs − Ys |
(
1 + f (Xs) + f (Ys)

) + ∣∣f (Xs) − f (Ys)
∣∣(1 + Xs + Ys)

]
ds

+ C

∫ t

0

(∣∣E[Xs] −E[Ys]
∣∣ + ∣∣E[

f (Xs)
] −E

[
f (Ys)

]∣∣)ds. (10)

But we know by assumption that a.s., max{Yt ,Xt } ≤ A(t) for some deterministic locally bounded function A. Since
f is C1 on [0,∞), it is Lipschitz continuous and bounded on compacts. We thus easily check that for all T , there is a
constant CT such that for all t ∈ [0, T ],

E
[|Xt − Yt |

] ≤ CT

∫ t

0
E

[|Xs − Ys |
]
ds.
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Finally, we know by assumption that the function t �→ E[|Xt − Yt |] is locally bounded. We thus may apply the
Gronwall Lemma and deduce that E[|Xt − Yt |] = 0 for all t ≥ 0 as desired. �

Proposition 17. Let λ ≥ 0 and grant Assumptions 1 and 3. Path-wise uniqueness holds true for the nonlinear SDE
(2) in the class of processes (Yt )t≥0 such that sup[0,T ] E[f (Yt )] < ∞ for all T ≥ 0.

More generally, for any pair of solutions (Xt )t≥0 and (Yt )t≥0 to (2), satisfying sup[0,T ](E[f (Xt )]+E[f (Yt )]) < ∞
for all T ≥ 0, driven by the same Poisson measure but with possibly different initial conditions, it holds that for all
T ≥ 0,

sup
[0,T ]

E
[∣∣H(Xt) − H(Yt )

∣∣] ≤ CT E
[∣∣H(X0) − H(Y0)

∣∣], (11)

where H(x) = f (x) + arctanx.

Here again, (3) (and Remark 13(ii)) shows that the condition is a priori satisfied if E[f (Y0)] < ∞. As already
mentioned, a proof based on E[|Xt − Yt |] does not seem to work: one finds an inequality like (10) (even with a finer
computation using the Itô formula), from which it seems difficult to conclude.

The rest of the section is devoted to the proof of Proposition 17.

Lemma 18. Grant Assumptions 1 and 3 and let H(x) = f (x) + arctan(x). There is a constant C such that for all
x, y ∈ R+, we have

(0) |H ′′(x)| ≤ CH ′(x),
(i) x + H ′(x) ≤ C(1 + f (x)),

(ii) |x − y| + |H ′(x) − H ′(y)| + |f (x) − f (y)| ≤ C|H(x) − H(y)|,
(iii) − sg(x − y)(xH ′(x) − yH ′(y)) ≤ C|H(x) − H(y)|,
(iv) −(f (x) ∧ f (y))|H(x) − H(y)| + |f (x) − f (y)|(H(x) ∧ H(y) − |H(x) − H(y)|) ≤ C|H(x) − H(y)|.

Proof. First, |H ′′(x)| ≤ | arctan′′(x)| + f ′′(x) ≤ C + f ′′(x). If x ≤ 1, we deduce that |H ′′(x)| ≤ C ≤ CH ′(x), while
if x ≥ 1, we recall that f ′′(x) ≤ Cf ′(x), whence |H ′′(x)| ≤ C(1 + f ′(x)) ≤ Cf ′(x) ≤ CH ′(x) as desired.

We next check (i). We have x + H ′(x) ≤ x + f ′(x) + 1. If x ≤ 1, we just write x + H ′(x) ≤ C ≤ C(1 + f (x)). If
now x ≥ 1, since f ′(x) ≤ Cf (x) by Assumption 3, we find that x + H ′(x) ≤ 2x + Cf (x) ≤ Cf (x) by Remark 13(i).

In order to prove (ii), it is sufficient to check that 1 + |H ′′(x)| + f ′(x) ≤ CH ′(x) for all x ≥ 0. First, 1 ≤ CH ′(x)

for all x ≥ 0, because H ′(x) ≥ f ′(1) > 0 if x ≥ 1, while H ′(x) ≥ arctan′(x) ≥ 1/2 if x ≤ 1. Next, f ′(x) ≤ H ′(x) is
obvious. Finally, |H ′′(x)| ≤ CH ′(x) has already been seen.

Concerning point (iii),

− sg(x − y)
(
xH ′(x) − yH ′(y)

) = − sg(x − y)
(
xf ′(x) − yf ′(y)

) − sg(x − y)

(
x

1 + x2
− y

1 + y2

)
.

The first term on the RHS is negative, because xf ′(x) is nondecreasing. The second one can be roughly bounded by
C|x − y| which in turn is bounded by C|H(x) − H(y)| due to point (ii).

Finally, we rewrite the LHS of point (iv) as

−(
f (x) ∨ f (y)

)∣∣H(x) − H(y)
∣∣ + (

H(x) ∧ H(y)
)∣∣f (x) − f (y)

∣∣.
Using that |f (x)−f (y)| ≤ |H(x)−H(y)| because H(x) = f (x)+ arctan(x) with both f and arctan nondecreasing,
that f (x) ∨ f (y) ≥ f (x) and H(x) ∧ H(y) ≤ H(x), we get an upper-bound in

−f (x)
∣∣H(x) − H(y)

∣∣ + H(x)
∣∣H(x) − H(y)

∣∣ = (arctanx)
∣∣H(x) − H(y)

∣∣ ≤ π
∣∣H(x) − H(y)

∣∣/2.

This completes the proof. �

Proof of Proposition 17. Let thus (Xt )t≥0 and (Yt )t≥0 be two solutions of (2) driven by the same Poisson measure
and satisfying sup[0,T ]E[f (Xt ) + f (Yt )] < ∞ for all T > 0. We apply the Itô formula for jump processes and take
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expectations to compute E[|H(Xt) − H(Yt )|]. Actually, one has to first consider a regularized version of the absolute
value and then to pass to the limit, but this causes no difficulty. See the proof of Theorem 7 where such a regularization
procedure is handled. We find, using that H is increasing (whence sg(H(x)−H(y)) = sg(x − y)) and that H(0) = 0,

E
[∣∣H(Xt) − H(Yt )

∣∣] = E
[∣∣H(X0) − H(Y0)

∣∣] − λ

∫ t

0
E

[
sg(Xs − Ys)

(
H ′(Xs)Xs − H ′(Ys)Ys

)]
ds

+ λ

∫ t

0
E

[
sg(Xs − Ys)

(
H ′(Xs)E[Xs] − H ′(Ys)E[Ys]

)]
ds

+
∫ t

0
E

[−(
f (Xs) ∧ f (Ys)

)∣∣H(Xs) − H(Ys)
∣∣

+ ∣∣f (Xs) − f (Ys)
∣∣(H(Xs) ∧ H(Ys) − ∣∣H(Xs) − H(Ys)

∣∣)]ds

+
∫ t

0
E

[
sg(Xs − Ys)

(
H ′(Xs)E

[
f (Xs)

] − H ′(Ys)E
[
f (Ys)

])]
ds

=: E[∣∣H(X0) − H(Y0)
∣∣] + It + Jt + Kt + Lt .

First, it follows from Lemma 18(iii)–(iv) that It + Kt ≤ C
∫ t

0 E[|H(Xs) − H(Ys)|]ds. Next we write

Jt + Lt ≤
∫ t

0
E

[∣∣H ′(Xs) − H ′(Ys)
∣∣](λE[Xs] +E

[
f (Xs)

])
ds

+
∫ t

0
E

[
H ′(Ys)

](
λ
∣∣E[Xs − Ys]

∣∣ + ∣∣E[
f (Xs) − f (Ys)

∣∣])ds.

Using Lemma 18(i)–(ii), we thus find

Jt + Lt ≤ C

∫ t

0
E

[∣∣H(Xs) − H(Ys)
∣∣]E[

1 + f (Xs) + f (Ys)
]
ds.

Since sup[0,T ] E[f (Xt )+ f (Yt )] < ∞ by assumption, we conclude that for all T ≥ 0, there is a constant CT such that
for all t ∈ [0, T ],

E
[∣∣H(Xt) − H(Yt )

∣∣] ≤ E
[∣∣H(X0) − H(Y0)

∣∣] + CT

∫ t

0
E

[∣∣H(Xs) − H(Ys)
∣∣]ds.

We know by assumption that t �→ E[|H(Xt) − H(Yt )|] is locally bounded. Hence (11) follows from the Gronwall
Lemma. Path-wise uniqueness is immediately deduced by injectivity of H . �

4. Propagation of chaos without rate

In this section, we prove Theorem 5 and conclude the proof of Theorem 4. We start with tightness.

Proof of Theorem 5(i)–(ii). First, it is well known that point (ii) follows from point (i) and the exchangeability of
the system, see Sznitman [26, Proposition 2.2(ii)]. We thus only prove (i). We consider a probability distribution g0
on R+ such that

∫ ∞
0 xg0(dx) < ∞ and, for each N ≥ 1, the unique solution (XN

t )t≥0 to (1) starting from some i.i.d.
g0-distributed initial conditions X

N,i
0 . To show that the family ((X

N,1
t )t≥0)N≥1 is tight D(R+), we use the criterion of

Aldous, see Jacod and Shiryaev [17, Theorem 4.5, page 356]. It is sufficient to prove that

(a) for all T > 0, all ε > 0, limδ↓0 lim supN→∞ sup(S,S′)∈Aδ,T
P(|XN,1

S′ − X
N,1
S | > ε) = 0, where Aδ,T is the set of

all pairs of stopping times (S,S′) such that 0 ≤ S ≤ S′ ≤ S + δ ≤ T a.s.,
(b) for all T > 0, limK↑∞ supN P(supt∈[0,T ] X

N,1
t ≥ K) = 0.
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Point (b) follows from (5): we know that sup[0,T ] X
N,1
t ≤ X

N,1
0 + (4λT + 4)(X̄N

0 + ZN
T ), with ZN

T the mean of N

i.i.d. Poisson(Tf (2))-distributed random variables. Hence, setting m = ∫ ∞
0 xg0(dx),

sup
N

E

[
sup
[0,T ]

X
N,1
t

]
≤ m + (4λT + 4)

(
m + f (2)T

)
< ∞.

To check (a), we will use several times that for 0 ≤ t ≤ T , all N ≥ 1, all j = 1, . . . ,N ,

∫ t

0
E

[
X

N,j
s f

(
X

N,j
s

)]
ds ≤ 3m + 4f (2)t ≤ CT . (12)

Indeed, take expectations in (6), use exchangeability and recall that E[X̄N
0 ] = m and E[ZN

t ] = tf (2).
We next consider (S,S′) ∈ Aδ,T and write

∣∣XN,1
S′ − X

N,1
S

∣∣ ≤
∫ S′

S

∫ ∞

0
X

N,1
u− 1{z≤f (X

N,1
u− )}N

1(du, dz) + 1

N

N∑
j=2

∫ S′

S

∫ ∞

0
1{z≤f (X

N,j
u− )}N

j (du, dz)

+ λ

∫ S′

S

XN,1
u du + λ

∫ S′

S

X̄N
u du

=: IS,S′ + JS,S′ + KS,S′ + LS,S′ .

We first note that IS,S′ > 0 implies that ĨS,S′ := ∫ S′
S

∫ ∞
0 1{z≤f (X

N,1
u− )}N

i (du, dz) ≥ 1, whence

P(IS,S′ > 0) ≤ P(ĨS,S′ ≥ 1) ≤ E[IS,S′ ] ≤ E

[∫ S+δ

S

f
(
XN,1

u

)
du

]
.

But for all A > 0, f (x) ≤ f (A) + A−1xf (x) because f is nondecreasing. Hence, by (12),

P(IS,S′ > 0) ≤ δf (A) + 1

A

∫ T

0
E

[
XN,1

u f
(
XN,1

u

)]
du ≤ δf (A) + CT

A
.

Choosing A = f −1(δ−1/2) (recall that lim∞ f = ∞ and consider a generalized notion of inverse function if neces-
sary), we end with

P(IS,S′ > 0) ≤ δ1/2 + CT

f −1(δ−1/2)
.

We proceed similarly to check that

E[JS,S′ ] ≤ 1

N

N∑
j=2

E

[∫ S+δ

S

f
(
X

N,j
u

)
du

]
≤ δ1/2 + CT

f −1(δ−1/2)
.

Next, we write, for any A > 0, using that x ≤ A + xf (x)/f (A) and then (12),

E[KS,S′ ] ≤ λE

[∫ S+δ

S

XN,1
u du

]
≤ λδA + λ

f (A)

∫ T

0
E

[
XN,1

u f
(
XN,1

u

)]
du ≤ λδA + λCT

f (A)
.

We choose A = δ−1/2 and get

E[KS,S′ ] ≤ λδ1/2 + λCT

f (δ−1/2)
.
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The same arguments show that

E[LS,S′ ] ≤ λδ1/2 + λCT

f (δ−1/2)
.

We can now conclude that for ε > 0,

P
(∣∣XN,1

S′ − X
N,1
S

∣∣ > ε
) ≤ P(IS,S′ > 0) + P(JS,S′ > ε/4) + P(KS,S′ > ε/4) + P(LS,S′ > ε/4)

≤ δ1/2 + CT

f −1(δ−1/2)
+ 4

ε

(
(1 + 2λ)δ1/2 + CT

f −1(δ−1/2)
+ 2λCT

f (δ−1/2)

)
.

This last quantity does not depend on N ≥ 1 nor on (S,S′) ∈ Aδ,T and tends to 0 as δ → 0. This completes the
proof. �

We now turn to the consistency result.

Proof of Theorem 5(iii). We consider a probability distribution g0 on R+ such that
∫ ∞

0 xg0(dx) < ∞ and, for each
N ≥ 1, the unique solution (XN

t )t≥0 to (1) starting from some i.i.d. g0-distributed initial conditions X
N,i
0 . We introduce

μN = N−1 ∑N
i=1 δ

(X
N,i
t )t≥0

, which is a P(D(R+))-valued random variable. By Theorem 5(ii), this sequence is tight.
We thus consider a (not relabeled) subsequence μN going in law to some P(D(R+))-valued random variable μ.
We want to show that μ a.s. belongs to S := {L((Yt )t≥0) : (Yt )t≥0 solution to (2) with L(Y0) = g0 and satisfying∫ t

0 E[Ysf (Ys)]ds < ∞ for all t ≥ 0}.
Step 1. For t ≥ 0, we introduce πt : D(R+) �→ R+ defined by πt (γ ) = γt . We claim that Q ∈ P(D(R+)) belongs

to S if the following conditions are satisfied:

(a) Q ◦ π−1
0 = g0;

(b) for all t ≥ 0,
∫
D(R+)

∫ t

0 γsf (γs) dsQ(dγ ) < ∞;

(c) for any 0 ≤ s1 < · · · < sk < s < t , any ϕ1, . . . , ϕk ∈ Cb(R+), any ϕ ∈ C2
b(R+),

F(Q) :=
∫
D(R+)

∫
D(R+)

Q(dγ )Q(dγ̃ )ϕ1(γs1) · · ·ϕk(γsk )

×
[
ϕ(γt ) − ϕ(γs) −

∫ t

s

f (γu)
(
ϕ(0) − ϕ(γu)

)
du −

∫ t

s

ϕ′(γu)
[
f (γ̃u) + λ(γ̃u − γu)

]
du

]
= 0.

Indeed, consider a process (Yt )t≥0 of which the law Q satisfies the above three points. By (a), L(Y0) = g0. By (b),∫ t

0 E[Ysf (Ys)]ds < ∞ for all t ≥ 0. Finally, (c) implies that for all ϕ ∈ C2
b(R+),

ϕ(Yt ) −
∫ t

0

[
ϕ(0) − ϕ(Ys)

]
f (Ys) ds −

∫ t

0
ϕ′(Ys)

[
E

[
f (Ys)

] + λ
(
E[Ys] − Ys

)]
ds

is a martingale. By Jacod and Shiryaev [17, Theorem II.2.42, page 86], this implies that Y is a semimartingale with
characteristics (B,C, ν) given by

Bt =
∫ t

0

[
λ
(
E[Ys] − Ys

) +E
[
f (Ys)

] + Ysf (Ys)
]
ds, Ct = 0, ν(ds, dx) = f (Ys−) dsδ−Ys−(dx).

We have chosen the truncation function h(x) = x (i.e. no truncation) since Y possesses only large jumps. Finally, [17,
Theorem III.2.26, page 157] implies that there is a Poisson measure N(ds, dz) on R+ ×R+ with intensity ds dz such
that Y solves (2).

Step 2. Here we check that for any t ≥ 0, a.s., μ({γ : �γ (t) �= 0}) = 0. We assume by contradiction that there
exists t > 0 such that μ({γ : �γ (t) �= 0}) > 0 with positive probability. Hence there are a, b > 0 such that the event
E := {μ({γ : |�γ (t)| > a}) > b} has a positive probability. For every ε > 0, we have E ⊂ {μ(Bε

a) > b}, where Bε
a :=
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{γ : sups∈(t−ε,t+ε) |�γ (s)| > a}, which is an open subset of D(R+). Thus Pε
a,b := {Q ∈ P(D(R+)) : Q(Bε

a) > b} is
an open subset of P(D(R+)). The Portmanteau theorem implies then that for any ε > 0,

lim inf
N→∞ P

(
μN ∈ Pε

a,b

) ≥ P
(
μ ∈Pε

a,b

) ≥ P(E) > 0.

But, for all N > 1/a (so that for each i = 1, . . . ,N , the only jumps of XN,i that may exceed a are those produced by
the Poisson measure Ni ),

{
μN ∈ Pε

a,b

} ⊂
{

1

N

N∑
i=1

1{∫ t+ε
t−ε 1{z≤f (X

N,i
u− )}N

i (du,dz)≥1} ≥ b

}
,

whence, using exchangeability,

P
(
μN ∈ Pε

a,b

) ≤ 1

bN

N∑
i=1

E

(∫ t+ε

t−ε

1{z≤f (X
N,i
u− )}N

i (du, dz)

)
= 1

b

∫ t+ε

t−ε

E
[
f

(
XN,1

u

)]
du.

We now observe that for any A > 0,
∫ t+ε

t−ε
E[f (X

N,1
u )]du ≤ 2εf (A) + A−1

∫ t+ε

t−ε
E[XN,1

u f (X
N,1
u )]du ≤ 2εf (A) +

CA−1 by (12). Choosing A = f −1(ε−1/2), we conclude that
∫ t+ε

t−ε
E[f (X

N,1
u )]du ≤ C(

√
ε + 1/f −1(ε−1/2)), which

does not depend on N and tends to 0 as ε → 0. We thus have the contradiction

0 < P(E) ≤ lim inf
ε→0

lim inf
N→∞ P

(
μN ∈Pε

a,b

) = 0.

Step 3. Our limit μ a.s. satisfies (a), because μ ◦ π−1
0 is the limit in law of μN ◦ π−1

0 = N−1 ∑N
i=1 δ

X
N,i
0

, which

goes to g0 because the X
N,i
0 are i.i.d. with common law g0. It also a.s. satisfies (b) since for all t ≥ 0 and K > 0, using

the Fatou lemma and (12),

E

[∫
D(R+)

∫ t

0

[(
γsf (γs)

) ∧ K
]
dsμ(dγ )

]
≤ lim inf

N
E

[∫
D(R+)

∫ t

0

[(
γsf (γs)

) ∧ K
]
dsμN(dγ )

]

= lim inf
N

N−1
N∑

i=1

∫ t

0
E

[
XN,i

s f
(
XN,i

s

)]
ds < ∞.

The conclusion follows by letting K → ∞.
Step 4. It remains to check that μ a.s. satisfies (c). We thus consider F :D(R+) �→R as in (c).
Step 4.1. Here we prove that limN E[|F(μN)|] = 0. We have

F(μN) = 1

N

N∑
i=1

ϕ1
(
XN,i

s1

) · · ·ϕk

(
XN,i

sk

)

×
[
ϕ
(
X

N,i
t

) − ϕ
(
XN,i

s

) −
∫ t

s

f
(
XN,i

u

)[
ϕ(0) − ϕ

(
XN,i

u

)]
du − λ

∫ t

s

ϕ′(XN,i
u

)(
X̄N

u − XN,i
u

)
du

−
∫ t

s

ϕ′(XN,i
u

) 1

N

N∑
j=1

f
(
X

N,j
u

)
du

]
.

But recalling (1) and using the Itô formula for jump processes,

ϕ
(
X

N,i
t

) = ϕ
(
X

N,i
0

) +
∫ t

0

∫ ∞

0

[
ϕ(0) − ϕ

(
X

N,i
u−

)]
1{z≤f (X

N,i
u− )}N

i (du, dz) + λ

∫ t

0
ϕ′(XN,i

u

)(
X̄N

u − XN,i
u

)
du

+
∑
j �=i

∫ t

0

∫ ∞

0

(
ϕ

(
X

N,i
u− + 1

N

)
− ϕ

(
X

N,i
u−

))
1{z≤f (X

N,j
u− )}N

j (du, dz).
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Consequently, using the notation Ñi (du, dz) = Ni (du, dz) − dudz and setting

M
N,i
t :=

∫ t

0

∫ ∞

0

[
ϕ(0) − ϕ

(
X

N,i
u−

)]
1{z≤f (X

N,i
u− )}Ñ

i (du, dz),

�
N,i
t :=

∑
j �=i

∫ t

0

∫ ∞

0

(
ϕ

(
X

N,i
u− + 1

N

)
− ϕ

(
X

N,i
u−

))
1{z≤f (X

N,j
u− )}N

j (du, dz) −
∫ t

0
ϕ′(XN,i

u

) 1

N

N∑
j=1

f
(
X

N,j
u

)
du,

we see that

F(μN) = 1

N

N∑
i=1

ϕ1
(
XN,i

s1

) · · ·ϕk

(
XN,i

sk

)[(
M

N,i
t − MN,i

s

) + (
�

N,i
t − �N,i

s

)]
.

Since the Poisson measures Ni are i.i.d., the martingales MN,i are orthogonal. Using exchangeability and the bound-
edness of the ϕk , we thus find that

E
[∣∣F(μN)

∣∣] ≤ CF

1√
N
E

[(
M

N,1
t − MN,1

s

)2]1/2 + CFE
[∣∣�N,1

t

∣∣ + ∣∣�N,1
s

∣∣]. (13)

First, since ϕ is bounded and using (12) (recall that f (x) ≤ f (1) + xf (x)),

E
[(

M
N,1
t − MN,1

s

)2] =
∫ t

s

E
[(

ϕ(0) − ϕ
(
XN,1

u

))2
f

(
XN,1

u

)]
du ≤ CF

∫ t

0
E

[
f

(
XN,1

u

)]
du ≤ CF .

Next,

∣∣�N,1
t

∣∣ ≤
∫ t

0

∫ ∞

0

∣∣∣∣ϕ
(

X
N,1
u− + 1

N

)
− ϕ

(
X

N,1
u−

)∣∣∣∣1{z≤f (X
N,1
u− )}N

1(du, dz)

+
∣∣∣∣∣

N∑
j=1

∫ t

0

∫ ∞

0

(
ϕ

(
X

N,1
u− + 1

N

)
− ϕ

(
X

N,1
u−

))
1{z≤f (X

N,j
u− )}Ñ

j (du, dz)

∣∣∣∣∣
+

N∑
j=1

∫ t

0

∣∣∣∣ϕ
(

XN,1
u + 1

N

)
− ϕ

(
XN,1

u

) − 1

N
ϕ′(XN,1

u

)∣∣∣∣f (
X

N,j
u

)
du

=: IN
t + JN

t + KN
t .

Using that ϕ′ is bounded and (12), we find

E
[
IN
t

] ≤ CF

N

∫ t

0
E

[
f

(
XN,1

u

)]
du ≤ CF

N
.

Moreover, since ϕ′′ is bounded and by (12) again,

E
[
KN

t

] ≤ CF

N2

N∑
j=1

∫ t

0
E

[
f

(
X

N,j
u

)]
du ≤ CF

N
.

Finally, using the independence of the Poisson measures Nj , that ϕ′ is bounded and (12),

E
[(

JN
t

)2] =
N∑

j=1

∫ t

0
E

[(
ϕ

(
XN,1

u + 1

N

)
− ϕ

(
XN,1

u

))2

f
(
X

N,j
u

)]
du ≤ CF

N2

N∑
j=1

∫ t

0
E

[
f

(
X

N,j
u

)]
du ≤ CF

N
.
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All this implies that E[|�N,1
t |] ≤ CF /

√
N whence, coming back to (13), E[|F(μN)|] ≤ CF /

√
N .

Step 4.2. Clearly, F is continuous at any point Q ∈P(D(R+)) such that Q(γ : �γ (s1) = · · · = �γ (sk) = �γ (s) =
�γ (t) = 0) = 1 and such that

∫
D(R+)

∫ t

0 [γu + f (γu)]duQ(dγ ) < ∞. Our limit point μ a.s. satisfies these two con-
ditions by Steps 2 and 3 (because x + f (x) ≤ C(1 + xf (x))). Since μ is the limit in law of μN and since F is
a.s. continuous at μ, we thus deduce that for any K > 0, E[|F(μ)| ∧ K] = limN E[|F(μN)| ∧ K]. Consequently,
E[|F(μ)| ∧ K] ≤ lim supN E[|F(μN)|] for all K > 0. Using Step 4.1, we deduce that E[|F(μ)| ∧ K] = 0 for any
K > 0. By the monotone convergence theorem, we conclude that E[|F(μ)|] = 0, whence F(μ) = 0 a.s. �

We can finally study the well posedness of the nonlinear SDE.

Proof of Theorem 4. Point (i) (weak existence assuming only Assumption 1 and that E[Y0] < ∞) follows from
Theorem 5(ii)–(iii): we have built at least one weak solution, passing to the limit in the particle system, and we have
seen that this solution satisfies that

∫ t

0 E[Ysf (Ys)]ds < ∞ for all t ≥ 0.
For point (ii) (strong well posedness under Assumption 1 when g0 = L(Y0) is compactly supported), we only have

to check that the solution built in point (i) satisfies that there is a deterministic locally bounded function A :R+ �→R+
such that a.s., Yt ≤ A(t) for all t ≥ 0. This will conclude the proof, since such a weak existence result, together with the
path-wise uniqueness proven in Proposition 16, will imply the strong well posedness. We thus assume that Supp g0 ⊂
[0,K] and set A(t) := K + ∫ t

0 (λE[Ys] +E[f (Ys)]) ds, which is clearly locally bounded since
∫ t

0 E[Ysf (Ys)]ds < ∞
for all t ≥ 0. Then it is obvious, recalling (2), that a.s., for all t ≥ 0, Yt ≤ A(t).

To check point (iii) (strong well posedness under Assumptions 1 and 3 when E[f (Y0)] < ∞), it suffices to prove
that the solution built in point (i) satisfies sup[0,t] E[f (Ys)] < ∞ for all t ≥ 0. Again, this weak existence, together
with the strong uniqueness of Proposition 17, will complete the proof. Put C(t) := ∫ t

0 (λE[Ys] +E[f (Ys)]) ds, which
is again locally bounded, and observe from (2), that a.s., for all t ≥ 0, Yt ≤ Y0 + C(t). Since E[f (Y0)] < ∞, we
immediately conclude, using Remark 13(ii), that sup[0,t] E[f (Ys)] < ∞ for all t ≥ 0, as desired. �

Finally, we can give the

Proof of Theorem 5(iv). First grant Assumption 1 and assume that g0 is compactly supported. We have seen in
Theorem 5(ii)–(iii) that μN is tight and that any limit point μ a.s. belongs to S = {L((Yt )t≥0) : (Yt )t≥0 solution to (2)
with L(Y0) = g0 and satisfying

∫ t

0 E[Ysf (Ys)]ds < ∞ for all t ≥ 0}. But arguing as in the proof of Theorem 4(ii),
we see that S = S ′, where S ′ = {L((Yt )t≥0) : (Yt )t≥0 solution to (2) with L(Y0) = g0 and such that a.s., for all t ≥ 0,
Yt ≤ A(t) for some deterministic locally bounded function A}. As seen in Theorem 4(ii), S ′ is reduced to one point.
The conclusion follows: μN goes in probability, as N → ∞, to the unique element of S ′.

Next grant Assumptions 1 and 3 and assume that
∫ ∞

0 f (y)g0(dy) < ∞. We have seen in Theorem 5(ii)–(iii)
that μN is tight and that any limit point μ a.s. belongs to S = {L((Yt )t≥0) : (Yt )t≥0 solution to (2) satisfying∫ t

0 E[Ysf (Ys)]ds < ∞ for all t ≥ 0}. But arguing as in the proof of Theorem 4(ii), we see that S = S ′′, where
S ′′ = {L((Yt )t≥0) : (Yt )t≥0 solution to (2) with L(Y0) = g0 and such that sup[0,t] E[f (Ys)] < ∞ for all t ≥ 0}. As seen
in Theorem 4(iii), S ′′ is reduced to one point. The conclusion follows. �

5. Quantified propagation of chaos

The aim of this section is to prove Theorem 7. We thus impose Assumptions 1, 3 and 6 and we fix an initial distribution
g0 such that

∫ ∞
0 f 2(x)g0(dx) < ∞. We consider an i.i.d. family X

N,i
0 of g0-distributed random variables, an i.i.d.

family of Poisson measures Ni (ds, dz) on R+ × R+ with intensity measure ds dz, we denote, for each N ≥ 1, by
(XN

t )t≥0 = (X
N,1
t , . . . ,X

N,N
t )t≥0 the solution to (1). Finally, we denote by (Y

N,i
t )t≥0, for every N ≥ 1, every i =

1, . . . ,N , the path-wise unique (thanks to Theorem 4(iii)) solution to (2) starting from X
N,i
0 and driven by the Poisson

measure Ni . Obviously, for every N ≥ 1, the processes (Y
N,i
t )t≥0, i = 1, . . . ,N , are i.i.d.

To prove Theorem 7, we will essentially mimic the path-wise uniqueness proof of Theorem 4 to control
sup[0,T ]E[|H(X

N,1
t ) − H(Y

N,1
t )|] by CT /

√
N . But there are a number of technical difficulties. First, we need to

work on [0, τ T
N ], for some well-chosen stopping time τT

N that is asymptotically greater than T . Next, we will rather
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study E[(N−1 + (H(X
N,1
t )−H(Y

N,1
t ))2)1/2]: this changes nothing to the result, but allows for a more rigorous proof

(we apply the Itô formula to a true C2 function) and allows for the control of a second derivative, see Lemma 20(i),
that would explode without the additional N−1 term. We start with some more moment estimates.

Lemma 19.

(i) For all T > 0, there is CT depending only on T , λ, g0 and f such that

E

[
sup
[0,T ]

f 2(YN,1
t

)] ≤ CT and sup
N

E

[
sup
[0,T ]

f 2(XN,1
t

)] ≤ CT .

(ii) For all T ≥ 1, we can find a constant RT > 0 such that the stopping time

τT
N := inf

{
t ≥ 0 : N−1

N∑
i=1

(
f

(
X

N,i
t

) + f
(
Y

N,i
t

)) ≥ RT

}

satisfies, for some constants C > 0 (and CT ) depending only on λ, g0 and f (and T ).

P
(
τT
N ≤ T

) ≤ C

N
and E

[
sup
[0,T ]

(
1 + f

(
X

N,1
t

) + f
(
Y

N,1
t

))
1{τT

N ≤T }
]

≤ CT√
N

.

Proof. Recalling (3), it a.s. holds that for all t ≥ 0, Y
N,1
t ≤ X

N,1
0 + C(1 + t). Using Remark 13(ii) and that

E[f 2(X
N,1
0 )] = ∫ ∞

0 f 2(x)g0(dx) < ∞, we immediately deduce that E[sup[0,T ] f 2(Y
N,1
t )] ≤ CT .

Next, (5) tells us that a.s., for all t ≥ 0, X
N,1
t ≤ X

N,1
0 + C(1 + T )(X̄N

0 + ZN
T ). By Remark 13(iv),

sup
[0,T ]

f 2(XN,1
t

) ≤ CT

(
1 + f 2(XN,1

0

) + f 2(X̄N
0

) + f 2(ZN
T

))
.

But f 2 being convex, f 2(X̄N
0 ) ≤ N−1 ∑N

i=1 f 2(X
N,i
0 ). Consequently, E[sup[0,T ] f 2(X

N,1
t )] ≤ CT (1 + ∫ ∞

0 f 2(x) ×
g0(dx) + E[f 2(ZN

T )]). To end the proof of (i), it suffices to recall that ZN
T is the mean of N i.i.d. Poisson(Tf (2))-

distributed random variables: since f (x) ≤ CeCx by Remark 13(iii), a simple computation shows that indeed,
supN E[f 2(ZN

T )] < ∞.

Using again (3) and (5), we see that a.s., for all t ∈ [0, T ], all i = 1, . . . ,N , X
N,i
t ≤ X

N,i
0 + C(1 + T )(X̄N

0 +
ZN

T ) and Y
N,i
t ≤ X

N,i
0 + C(1 + t). Consequently, using Remark 13(iv) and the convexity of f (whence f (X̄N

0 ) ≤
N−1 ∑N

i=1 f (X
N,i
0 )),

sup
[0,T ]

1

N

N∑
i=1

(
f

(
X

N,i
t

) + f
(
Y

N,i
t

)) ≤ CT

(
1 + f

(
ZN

T

) + 1

N

N∑
i=1

f
(
X

N,i
0

))
.

The bounds P(ZN
T ≥ 2f (2)T ) ≤ exp(−NTf (2)(3 − e)), see (9), and

P

(
1

N

N∑
i=1

f
(
X

N,i
0

) ≥
∫ ∞

0
f (x)g0(dx) + 1

)
≤ Var(f (X

N,1
0 ))

N
≤ C

N

imply that, with the choice RT = CT (1 + f (2f (2)T ) + ∫ ∞
0 f (x)g0(dx) + 1),

P
(
τT
N ≤ T

) ≤ exp
(−NTf (2)(3 − e)

) + C/N ≤ C/N

as desired. The last inequality immediately follows, using (i) and the Cauchy–Schwarz inequality. �

We carry on with a technical lemma similar to Lemma 18.
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Lemma 20. Grant Assumptions 1 and 3 and recall that H(x) = f (x) + arctanx. Define, for N ≥ 1, aN(x, y) :=
[N−1 + (H(x) − H(y))2]1/2.

(i) It holds that |∂xaN(x, y)| ≤ H ′(x) and |∂xxaN(x, y)| ≤ |H ′′(x)| + √
N(H ′(x))2.

(ii) We have |∂xaN(x, y) + ∂yaN(x, y)| ≤ |H ′(x) − H ′(y)|.
(iii) There is C > 0 such that −[x∂xaN(x, y) + y∂yaN(x, y)] ≤ CaN(x, y).
(iv) Finally, there is C > 0 such that

�N(x, y) := (
f (x) ∧ f (y)

)[
aN(0,0) − aN(x, y)

] + (
f (x) − f (y)

)
+
[
aN(0, y) − aN(x, y)

]
+ (

f (y) − f (x)
)
+
[
aN(x,0) − aN(x, y)

]
≤ f (x) ∧ f (y)√

N
+ CaN(x, y).

Proof. Points (i) and (ii) follow from direct computations. For (iii), using the expression of H ,

−[
x∂xaN(x, y) + y∂yaN(x, y)

] = −(H(x) − H(y))

[N−1 + (H(x) − H(y))2]1/2

[
xH ′(x) − yH ′(y)

]

= −(H(x) − H(y))

[N−1 + (H(x) − H(y))2]1/2

[
xf ′(x) − yf ′(y)

]

+ −(H(x) − H(y))

[N−1 + (H(x) − H(y))2]1/2

[
x

1 + x2
− y

1 + y2

]
.

The first term on the RHS is nonpositive, because both H(x) and xf ′(x) are nondecreasing. The second one is roughly
bounded by |x/(1 + x2) − y/(1 + y2)| ≤ |x − y| which is bounded, recalling Lemma 18(ii), by C|H(x) − H(y)| ≤
CaN(x, y). To prove (iv), we first observe, since aN is symmetric and f is nondecreasing, that

�N(x, y) = f (x) ∧ f (y)√
N

− (
f (x) ∨ f (y)

)
aN(x, y) + ∣∣f (x) − f (y)

∣∣aN(0, x ∧ y).

Noting that |f (x) − f (y)| ≤ |H(x) − H(y)| ≤ aN(x, y), we deduce that

�N(x, y) ≤ f (x) ∧ f (y)√
N

+ aN(x, y)
(
aN(0, x ∧ y) − f (x) ∨ f (y)

)
.

The conclusion follows, since aN(0, x ∧y)−f (x)∨f (y) ≤ N−1/2 +H(x)∧H(y)−f (x)∨f (y), which is obviously
bounded by 1 + π/2. �

We are now ready to give the

Proof of Theorem 7. We fix T > 0 and define RT and τT
N as in Lemma 19(ii). In the whole proof, we work on the

time interval [0, T ]. Recall that aN and �N were defined in Lemma 20.
Step 1. This is the main step of the proof. We show that there is a constant CT such that for all N ≥ 1,

sup[0,T ]E[aN(X
N,1
t∧τT

N

, Y
N,1
t∧τT

N

)] ≤ CT N−1/2. Applying the Itô formula for jump processes, we find that

E
[
aN

(
X

N,1
t∧τT

N

, Y
N,1
t∧τT

N

)] = N−1/2 + I + J + λK + λL,

where

I = E

[∫ t∧τT
N

0
�N

(
XN,1

s , YN,1
s

)
ds

]
,
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J =
N∑

j=2

E

[∫ t∧τT
N

0
f

(
X

N,j
s

)[
aN

(
XN,1

s + 1

N
,YN,1

s

)
− aN

(
XN,1

s , YN,1
s

)]
ds

]

+E

[∫ t∧τT
N

0
∂yaN

(
XN,1

s , YN,1
s

)
E

[
f

(
YN,1

s

)]
ds

]
,

K = −E

[∫ t∧τT
N

0

(
∂xaN

(
XN,1

s , YN,1
s

)
XN,1

s + ∂yaN

(
XN,1

s , YN,1
s

)
YN,1

s

)
ds

]
,

L = E

[∫ t∧τT
N

0

(
∂xaN

(
XN,1

s , YN,1
s

)
X̄N

s + ∂yaN

(
XN,1

s , YN,1
s

)
E

[
YN,1

s

])
ds

]
.

By Lemma 20(iv) and Lemma 19(i),

I ≤ 1√
N

∫ t

0
E

[
f

(
YN,1

s

)]
ds + CE

[∫ t∧τT
N

0
aN

(
XN,1

s , YN,1
s

)]
ds ≤ CT√

N
+ C

∫ t

0
E

[
aN

(
X

N,1
s∧τT

N

, Y
N,1
s∧τT

N

)]
ds.

Lemma 20(iii) implies that

K ≤ CE

[∫ t∧τT
N

0
aN

(
XN,1

s , YN,1
s

)]
ds ≤ C

∫ t

0
E

[
aN

(
X

N,1
s∧τT

N

, Y
N,1
s∧τT

N

)]
ds.

We next write L = L1 + L2 + L3, with

L1 = E

[∫ t∧τT
N

0
∂xaN

(
XN,1

s , YN,1
s

)[
X̄N

s − Ȳ N
s

]
ds

]
,

L2 = E

[∫ t∧τT
N

0

[
∂xaN

(
XN,1

s , YN,1
s

) + ∂yaN

(
XN,1

s , YN,1
s

)]
Ȳ N

s ds

]
,

L3 = E

[∫ t∧τT
N

0
∂yaN

(
XN,1

s , YN,1
s

)(
E

[
YN,1

s

] − Ȳ N
s

)
ds

]
.

Using the Cauchy–Schwarz inequality, Lemma 20(i) and the fact that the Y
N,i
s are i.i.d.,

L3 ≤ 1√
N

∫ t

0
E

[
H ′(YN,1

s

)2]1/2(VarYN,1
s

)1/2
ds ≤ CT√

N
.

We used Lemma 18(i), which tells us that x + H ′(x) ≤ C(1 + f (x)), whence sup[0,T ]E[H ′(YN,1
s )2] ≤ CT and

sup[0,T ] VarYN,1
s ≤ CT by Lemma 19(i). Next, Lemmas 20(ii) and 18(ii) tell us that |∂xaN(x, y) + ∂yaN(x, y)| ≤

|H ′(x) − H ′(y)| ≤ C|H(x) − H(y)| ≤ CaN(x, y). Consequently,

L2 ≤ CE

[∫ t∧τT
N

0

∣∣Ȳ N
s

∣∣aN

(
XN,1

s , YN,1
s

)
ds

]
≤ CT

∫ t

0
E

[
aN

(
X

N,1
s∧τT

N

, Y
N,1
s∧τT

N

)]
ds.

We used that, by definition of τT
N and since x ≤ C(1+f (x)) (see Lemma 18(i)), |Ȳ N

s | ≤ C(1+N−1 ∑N
i=1 f (X

N,i
s )) ≤

C(1+RT ) for all s ∈ [0, τ T
N ] a.s. Finally, using that τT

N does not break the exchangeability and Lemma 20(i), we write

L1 = 1

N

N∑
j=1

E

[∫ t∧τT
N

0
∂xaN

(
XN,1

s , YN,1
s

)[
X

N,j
s − Y

N,j
s

]
ds

]

= 1

N

N∑
j=1

E

[∫ t∧τT
N

0
∂xaN

(
X

N,j
s , Y

N,j
s

)[
XN,1

s − YN,1
s

]
ds

]
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≤ E

[∫ t∧τT
N

0

(
1

N

N∑
j=1

H ′(XN,j
s

))∣∣XN,1
s − YN,1

s

∣∣ds

]

≤ CT

∫ t

0
E

[
aN

(
X

N,1
s∧τT

N

, Y
N,1
s∧τT

N

)]
ds.

The last inequality uses that, by definition of τT
N and since H ′(x) ≤ C(1 + f (x)) (see Lemma 18(i)), |N−1 ×∑N

j=1 H ′(XN,j
s )| ≤ CT for all s ∈ [0, τ T

N ] a.s. It also uses that |x − y| ≤ C|H(x) − H(y)| ≤ CaN(x, y) by
Lemma 18(ii).

We finally write J = J1 + J2 + J3 + J4, where, using again exchangeability,

J1 = E

[∫ t∧τT
N

0
f

(
XN,2

s

)(
(N − 1)

[
aN

(
XN,1

s + 1

N
,YN,1

s

)
− aN

(
XN,1

s , YN,1
s

)] − ∂xaN

(
XN,1

s , YN,1
s

))
ds

]
,

J2 = E

[∫ t∧τT
N

0
f

(
XN,2

s

)(
∂xaN

(
XN,1

s , YN,1
s

) + ∂yaN

(
XN,1

s , YN,1
s

))
ds

]
,

J3 = E

[∫ t∧τT
N

0
∂yaN

(
XN,1

s , YN,1
s

)[
f

(
YN,2

s

) − f
(
XN,2

s

)]
ds

]
,

J4 = E

[∫ t∧τT
N

0
∂yaN

(
XN,1

s , YN,1
s

)[
E

[
f

(
YN,2

s

)] − f
(
YN,2

s

)]
ds

]
.

We start with J1. Using Lemma 20(i),

∣∣(N − 1)
[
aN(x + 1/N,y) − aN(x, y)

] − ∂xaN(x, y)
∣∣

≤ ∣∣aN(x + 1/N,y) − aN(x, y)
∣∣ + ∣∣N[

aN(x + 1/N,y) − aN(x, y)
] − ∂xaN(x, y)

∣∣
≤ N−1 sup

z∈[x,x+1/N ]
[∣∣∂xaN(z, y)

∣∣ + ∣∣∂xxaN(z, y)
∣∣]

≤ N−1 sup
z∈[x,x+1/N ]

[
H ′(z) + ∣∣H ′′(z)

∣∣ + √
N

(
H ′(z)

)2]
≤ CN−1/2(1 + f 2(x)

)
.

The last inequality uses that |H ′′(x)| ≤ CH ′(x) (see Lemma 18), the fact that H ′(x) ≤ C(1+f (x)) (see Lemma 18(i))
and that sup[x,x+1/N ] f (z) ≤ C(1 + f (x)) (see Remark 13(iv)). Consequently,

J1 ≤ C√
N
E

[∫ t∧τT
N

0
f

(
XN,2

s

)(
1 + f 2(XN,1

s

))
ds

]
.

By Lemmas 20(ii) and 18(ii), |∂xaN(x, y)+ ∂yaN(x, y)| ≤ |H ′(x)−H ′(y)| ≤ C|H(x)−H(y)| ≤ CaN(x, y). Hence

J2 ≤ CE

[∫ t∧τT
N

0
f

(
XN,2

s

)
aN

(
XN,1

s , YN,1
s

)]
.

Lemmas 20(i) and 18(i) imply that |∂yaN(x, y)| ≤ H ′(y) ≤ C(1 + f (y)) and we obviously have |f (x) − f (y)| ≤
|H(x) − H(y)| ≤ aN(x, y). It follows that

J3 ≤ CE

[∫ t∧τT
N

0

(
1 + f

(
YN,1

s

))
aN

(
XN,2

s , YN,2
s

)] = CE

[∫ t∧τT
N

0

(
1 + f

(
YN,2

s

))
aN

(
XN,1

s , YN,1
s

)]
.
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We have checked that

J1 + J2 + J3 ≤ CE

[∫ t∧τT
N

0

(
1 + f

(
XN,2

s

) + f
(
YN,2

s

))(
aN

(
XN,1

s , YN,1
s

) + 1 + f 2(X
N,1
s )√

N

)
ds

]
.

Using exchangeability and then the definition of τT
N , we thus can write

J1 + J2 + J3 ≤ CE

[∫ t∧τT
N

0

(
1

N

N∑
j=1

(
1 + f

(
X

N,j
s

) + f
(
Y

N,j
s

)))(
aN

(
XN,1

s , YN,1
s

) + 1 + f 2(X
N,1
s )√

N

)
ds

]

≤ C(1 + RT )E

[∫ t∧τT
N

0

(
aN

(
XN,1

s , YN,1
s

) + 1 + f 2(X
N,1
s )√

N

)
ds

]

≤ CT

∫ t

0
E

[
aN

(
X

N,1
s∧τT

N

, Y
N,1
s∧τT

N

)]
ds + CT√

N
.

The last inequality uses that supN sup[0,T ] E[f 2(X
N,1
t )] < ∞ by Lemma 19(i). Finally, using again exchangeability,

that |∂yaN(x, y)| ≤ C(1 + f (y)), the Cauchy–Schwarz inequality and that the Y
N,i
s are i.i.d.,

J4 = E

[∫ t∧τT
N

0
∂yaN

(
XN,1

s , YN,1
s

)(
E

[
f

(
YN,2

s

)] − 1

N − 1

N∑
j=2

f
(
Y

N,j
s

))
ds

]

≤ C

∫ t

0
E

[(
1 + f

(
YN,1

s

))2]1/2 [Varf (Y
N,1
s )]1/2

√
N − 1

ds.

Again, we conclude that J4 ≤ CT N−1/2 since sup[0,T ] E[f 2(Y
N,1
t )] < CT , as shown in Lemma 19.

All in all, we have checked that E[aN(X
N,1
t∧τT

N

, Y
N,1
t∧τT

N

)] ≤ CT N−1/2 +CT

∫ t

0 E[aN(X
N,1
s∧τT

N

, Y
N,1
s∧τT

N

)]ds. We conclude
the step using the Gronwall lemma.

Step 2. It is not hard to complete the proof. First, gathering Step 1 (recall that |H(x) − H(y)| ≤ aN(x, y)) and
Lemma 19(ii) (recall that H(x) ≤ π/2 + f (x)), we find, for all t ∈ [0, T ],

E
[∣∣H (

X
N,1
t

) − H
(
Y

N,1
t

)∣∣] ≤ E
[∣∣H (

X
N,1
t∧τT

N

) − H
(
Y

N,1
t∧τT

N

)∣∣] +E
[(

H
(
X

N,1
t

) + H
(
Y

N,1
t

))
1{τT

N ≤T }
] ≤ CT√

N
.

Moreover, |x − y| ≤ C|H(x) − H(y)| by Lemma 18(ii), whence sup[0,T ] E[|XN,1
t − Y

N,1
t |] ≤ CT N−1/2.

We next assume additionally that
∫ ∞

0 y2+εg0(dy) < ∞ for some ε > 0. Recalling (3), this obviously implies

that sup[0,T ] E[(YN,1
t )2+ε] ≤ CT . Since the Y

N,i
t are i.i.d. R-valued random variables, it is well known, see e.g. [10,

Theorem 1 with d = 1, p = 1, q = 2 + ε], that

E

[
W1

(
N−1

N∑
i=1

δ
Y

N,i
t

,L
(
Y

N,1
t

))]
≤ CE[(YN,1

t )2+ε]1/(2+ε)

√
N

≤ CT√
N

.

But it follows from exchangeability that

E

[
W1

(
N−1

N∑
i=1

δ
X

N,i
t

,N−1
N∑

i=1

δ
Y

N,i
t

)]
≤ 1

N

N∑
i=1

E
[∣∣XN,i

t − Y
N,i
t

∣∣] = E
[∣∣XN,1

t − Y
N,1
t

∣∣] ≤ CT√
N

.

Using the triangular inequality for W1, we conclude that for all t ∈ [0, T ],

E

[
W1

(
N−1

N∑
i=1

δ
X

N,i
t

,L
(
Y

N,1
t

))]
≤ CT√

N

as desired. �
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6. Invariant distributions

Here we prove Theorem 7. We thus only impose Assumption 1. We start with the following remark.

Proposition 21. Let N be a Poisson measure on R+ ×R+ with intensity ds dz, let λ ≥ 0 and a ≥ 0.

(i) The R+-valued SDE

Zt = Z0 −
∫ t

0

∫ ∞

0
Zs−1{z≤f (Zs−)}N(ds, dz) +

∫ t

0
(a − λZs) ds (14)

has a path-wise unique solution for every nonnegative initial condition Z0.
(ii) Furthermore, (14) has a unique invariant probability measure ga . It is given by g0 = δ0 if a = 0 and by

ga(dx) = ga(x) dx if a > 0, where (with the convention that a/λ = ∞ if λ = 0),

ga(x) = pa

a − λx
exp

(
−

∫ x

0

f (y)

a − λy
dy

)
1{0≤y<a/λ},

where pa > 0 is such that
∫ ∞

0 ga(x) dx = 1. It automatically holds that
∫ ∞

0 f (x)ga(dx) = pa .

Proof. Point (i) is straightforward. All the coefficients being locally Lipschitz-continuous, we have local strong ex-
istence and uniqueness, i.e. strong existence and uniqueness on [0, τ ), where τ = inf{t ≥ 0 : Zt = ∞}. But having a
look at (14), we see that a.s., for all t ≥ 0, Zt ≤ Z0 + at . Hence τ = ∞ a.s.

Point (ii) is straightforward if a = 0. Indeed, δ0 is clearly an invariant distribution. It is unique, because for any
initial condition, Zt tends a.s. to 0 as t → ∞. Indeed, if λ > 0, then 0 ≤ Zt ≤ e−λtZ0. If now λ = 0, then Zt =
Z01{t<τ0}, where τ0 follows an exponential distribution with parameter f (Z0) (conditionally on Z0).

We next prove (ii) when a > 0. We first claim that the homogeneous Markov process Z has exactly one invariant
probability distribution which is supported in [0, a/λ] (or [0,∞) if λ = 0). This follows from the classical theory
of Markov processes, since 0 is a positive Harris recurrent state of Z. Indeed, let τ0 = inf{t ≥ 0 : Zt = 0}. Then
for any initial condition z > 0, Ez(τ0) < ∞. This can be easily checked, using e.g. that starting from z > 0, Zt =
e−λt z + (1 − e−λt )a/λ ≥ min{z, a/λ} for all t ∈ [0, τ0), so that Z jumps to zero with a rate bounded from below by
min{f (z), f (a/λ)} > 0. As a consequence, the successive jump times of Z to 0 induce a regeneration scheme, and
Z is positive Harris recurrent implying the uniqueness of the invariant probability measure. Moreover, it is clear that
Zt ≤ a/λ for every t ≥ τ0, which implies that the support of the invariant probability is included in [0, a/λ].

It thus only remains to check that ga is indeed an invariant probability measure for (14). The computations below
include the case where λ = 0. It suffices to prove that for all φ ∈ C1

b(R+),∫ ∞

0

[
φ(0) − φ(x)

]
f (x)ga(dx) +

∫ ∞

0
φ′(x)(a − λx)ga(dx) = 0. (15)

Indeed, the infinitesimal generator associated to the SDE (14) is given by Laφ(x) = [φ(0) − φ(x)]f (x) + φ′(x)(a −
λx). First, a direct computation shows that

∫ ∞

0
f (x)ga(dx) = pa

∫ a/λ

0

f (x)

a − λx
exp

(
−

∫ x

0

f (y)

a − λy
dy

)
dx = −pa

[
exp

(
−

∫ x

0

f (y)

a − λy
dy

)]x=a/λ

x=0
= pa.

The last equality uses that f (a/λ) > 0. Hence, (15) reduces to∫ a/λ

0
φ(x)f (x)ga(x) dx −

∫ a/λ

0
φ′(x)(a − λx)ga(x) dx = φ(0)pa.

Proceeding to an integration by parts in the second integral and using that f (x)ga(x) + [(a − λx)ga(x)]′ = 0 for all
x ∈ (0, a/λ), we see that (15) reduces to

−[
φ(x)(a − λx)ga(x)

]x=a/λ

x=0 = φ(0)pa.
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This is easily checked, since aga(0) = pa and since limx↑a/λ(a − λx)ga(x) = 0. �

We now study for which values of a an invariant measure of (14) is an invariant measure of (2).

Lemma 22. Adopt the notation of Proposition 21. When a = 0, we define p0 = 0 = ∫ ∞
0 f (x)g0(dx). We also intro-

duce, for a ≥ 0, ma := ∫ ∞
0 xga(dx). The equation a = λma + pa has the solution a = 0 and exactly one positive

solution a∗. Furthermore, it holds that a∗ > λ.

Proof. The proof below works whenever λ > 0 or λ = 0. Evidently, a = 0 solves a = λma + pa . Let now a > 0.
Since

∫ ∞
0 ga(dx) = 1, we have

1

pa

=
∫ a/λ

0

1

a − λx
exp

(
−

∫ x

0

f (y)

a − λy
dy

)
dx =: �1(a).

Next,

ma = pa

∫ a/λ

0

x

a − λx
exp

(
−

∫ x

0

f (y)

a − λy
dy

)
dx =: pa�2(a).

Hence a solves a = λma + pa if and only if a/pa − λma/pa = 1, i.e. a�1(a) − λ�2(a) = 1, i.e.

�(a) := a�1(a) − λ�2(a) =
∫ a/λ

0
exp

(
−

∫ x

0

f (y)

a − λy
dy

)
dx = 1.

But � is continuous and strictly increasing, �(0) = 0 and �(∞) = ∞, so that the equation �(a) = 1 has exactly one
solution a∗. Finally, we obviously have �(λ) < 1, so that a∗ > λ. �

We are now able to give the

Proof of Theorem 8. Consider an invariant probability measure g, supported by R+, for the nonlinear SDE (2).
Let Y0 ∼ g and consider (Yt )t≥0 solution to (2). Then for all t ≥ 0, Yt ∼ g, so that E[Yt ] = m and E[f (Yt )] = p,
where m = ∫ ∞

0 xg(dx) and p = ∫ ∞
0 f (x)g(dx). Consequently, (Yt )t≥0 solves (14) with a = p + λm. Since (Yt )t≥0

is stationary, we deduce from Proposition 21 that g = ga . But of course we have the constraint that a = pa + λma ,
whence a = 0 or a = a∗ by Lemma 22. Hence either g = δ0 or g = ga∗ .

Consider now Y0 ∼ g, with g = δ0 or g = ga∗ . Then the solution (Yt )t≥0 to (14) (with a = 0 or a = a∗) is stationary
by Proposition 21. Since furthermore E[λYt + f (Yt )] = ∫ ∞

0 [λx + f (x)]g(dx) = λma + pa = a by Lemma 22 since
a = 0 or a = a∗, we conclude that (Yt )t≥0 also solves (2). Consequently, g is an invariant measure for (2).

We thus have checked that (2) has exactly two invariant probability distributions, which are δ0 and ga∗ . Finally
ga∗ is indeed the probability measure g defined in the statement (where p = pa∗ and m = ma∗ ) and we have that
m + p/λ = a∗/λ > 1. �

7. Shape of the time-marginals and large-time behavior

The aim of this section is to prove Theorem 12 and Propositions 11 and 9. We thus consider λ ≥ 0, grant Assumptions
1 and 3 and suppose that E[f 2(Y0)] < ∞ and P(Y0 = 0) < 1. We consider the unique solution (Yt )t≥0 to (2), we set
pt = E[f (Yt )], mt = E[Yt ], at = λmt + pt and denote by g(t) the law of Yt . We also recall that for x ∈ [0,∞) and
0 ≤ s < t , ϕs,t (x) = e−λ(t−s)x + ∫ t

s
e−λ(t−u)au du. We also introduce

κs,t (x) = exp

(
−

∫ t

s

f
(
ϕs,u(x)

)
du

)
. (16)

Notice that ϕ satisfies the flow property: one can directly check that for all 0 ≤ r ≤ s ≤ t , all x ∈ [0,∞), ϕr,t (y) =
ϕs,t (ϕr,s(y)).
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7.1. Time-marginals

Let us first proceed to a few technical considerations.

Lemma 23. Under the above conditions,

(i) t �→ mt , t �→ pt and t �→ at are locally Lipschitz continuous on [0,∞),
(ii) for all t > 0, limh↓0 h−1

E[1 − κt−h,t (Yt−h)] = pt .

Proof. Using Remark 13(ii) and (3), we observe that t �→ E[f 2(Yt )] is locally bounded. We now prove (i). By the
Itô formula, we have mt = m0 + ∫ t

0 E[(1 − Ys)f (Ys)]ds and pt = p0 + ∫ t

0 E[f ′(Ys)(ps + λ(ms − Ys)) − f 2(Ys)]ds.
But under Assumptions 1 and 3, there is C > 0 such that x + f ′(x) ≤ C(1 + f (x)). We easily conclude that s �→
E[(1 − Ys)f (Ys)] and s �→ E[f ′(Ys)(ps + λ(ms − Ys)) − f 2(Ys)] are locally bounded. The conclusion follows.

We next fix t > 0 and prove (ii). We write |pt − h−1
E[1 − κt−h,t (Yt−h)]| ≤ �1

h + �2
h + �3

h, where

�1
h := |pt − pt−h|,

�2
h := h−1

∣∣∣∣E
[
hf (Yt−h) −

∫ t

t−h

f
(
ϕt−h,u(Yt−h)

)
du

]∣∣∣∣,
�3

h := h−1
∣∣∣∣E

[∫ t

t−h

f
(
ϕt−h,u(Yt−h)

)
du − (

1 − κt−h,t (Yt−h)
)]∣∣∣∣.

First, we have limh↓0 �1
h = 0 by point (i). Next, we see that for h ∈ (0, t ∧ 1], for u ∈ [t − h, t] and for x ≥ 0, it holds

that ϕt−h,u(x) ≤ x + Cth and |x − ϕt−h,u(x)| ≤ Ct(1 + x)h, for some constant Ct . Hence |f (x) − f (ϕt−h,u(x))| ≤
(sup[0,x+Cth) f

′) × Ct(1 + x)h. Using Assumption 3 and Remark 13(ii), we get that |f (x) − f (ϕt−h,u(x))| ≤ Ct(1 +
f (x))(1 + x)h. All this implies that �2

h ≤ CthE[(1 + Yt−h)(1 + f (Yt−h))] ≤ Cth (because, as already seen, s �→
E[Ysf (Ys)] is locally bounded), which tends to 0 as h ↓ 0. Finally, since |y − (1 − exp(−y))| ≤ y2 for all y ≥ 0,

�3
h ≤ h−1

E

[(∫ t

t−h

f
(
ϕt−h,u(Yt−h)

)
du

)2]
≤ E

[∫ t

t−h

f 2(ϕt−h,u(Yt−h)
)
du

]
.

As previously, we use Remark 13(ii) to get f 2(ϕt−h,u(x)) ≤ f 2(x +Cth) ≤ Ct(1 + f 2(x)) (if h ∈ (0, t ∧ 1]), whence
�3

h ≤ CthE[1+f 2(Yt−h)] ≤ Cth (since s �→ E[f 2(Ys)] is locally bounded), which tends to 0 as h ↓ 0. This completes
the proof. �

We now introduce, for t ≥ 0, τt := sup{s ∈ [0, t] : �Ys �= 0}, the last jump instant before t . We adopt the convention
that sup∅ = 0: if there is no jump during [0, t], we set τt = 0.

Lemma 24. Under the above conditions,

(i) a.s., for all t ≥ 0, Yt = ϕ0,t (Y0)1{τt=0} + ϕτt ,t (0)1{τt>0},
(ii) for all t > 0, P(τt = 0 | Y0) = κ0,t (Y0),

(iii) for all t > 0, P(Yt = 0) < 1.

Proof. From (2), we have Yr = Y01{τt=0} + ∫ r

τt
(as −λYs) ds for all t ≥ 0 and all r ∈ [τt , t]. Solving this ODE, we find

Yt = e−λtY01{τt=0} + ∫ t

τt
e−λ(t−s)as ds, which proves point (i). But τt = 0 implies that τs = 0 for all s ∈ [0, t], whence

Ys = ϕ0,s(Y0) on [0, t]. As a consequence, {τt = 0} = {∫ t

0

∫ ∞
0 1{z≤f (ϕ0,s (Y0))}N(ds, dz) = 0}, so that P(τt = 0 | Y0) =

exp(− ∫ t

0 f (ϕ0,s (Y0)) ds), as claimed in point (ii). Using that Yt ≥ Y0e
−λt on {τt = 0} and point (ii), we see that

P(Yt > 0) ≥ P(Y0 > 0, τt = 0) = E
[
κ0,t (Y0)1{Y0>0}

]
> 0

since Y0 > 0 occurs with positive probability. This proves (iii). �
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The law of τt is absolutely continuous on (0, t], as shown in the next proposition. This smoothness property will
allow us to show that jumps indeed create a density for Yt .

Proposition 25. Under the above conditions, for all t > 0, the law of τt is given by ht (ds) = E[κ0,t (Y0)]δ0(ds) +
psκs,t (0)1{0<s<t} ds.

Proof. First, P(τt = 0) = E[κ0,t (Y0)] as desired by Lemma 24(ii). We next introduce the filtration Fs = σ({Y0,

N([0, r] × A) : r ∈ [0, s],A ∈ B([0,∞))}) and the process Js = ∑
r∈[0,s] 1{�Yr �=0} = ∫ s

0

∫ ∞
0 1{z≤f (Yr−)}N(dr, dz)

which counts the number of jumps of Y . We consider 0 < s − h < s < t and observe that {τt ∈ (s − h, s]} = {Js >

Js−h}∩ {Jt = Js}. The event {Js > Js−h} is Fs -measurable. When Y does not jump during (s, t], Yr− = Yr = ϕs,r (Ys)

for all r ∈ (s, t]: this follows from Lemma 24(i), from the semi-group property of the flow ϕ, and from the fact that
τr = τs = τt when Y does not jump during (s, t]. Consequently, {Jt = Js} = {∫ t

s

∫ ∞
0 1{z≤f (ϕs,r (Ys ))}N(dr, dz) = 0},

whence

P(Jt = Js | Fs) = P

(∫ t

s

∫ ∞

0
1{z≤f (ϕs,r (Ys ))}N(dr, dz) = 0

∣∣∣Fs

)
= κs,t (Ys).

We conclude that P(τt ∈ (s − h, s]) = E[κs,t (Ys)1{Js>Js−h}]. On the event {Js > Js−h}, the process Y jumps (at least
once) to 0 during (s − h, s], so that Ys ∈ [0, ϕs−h,s(0)] by Lemma 24(i). Hence,∣∣P(

τt ∈ (s − h, s]) −E
[
κs,t (0)1{Js>Js−h}

]∣∣ ≤ sup
x∈[0,ϕs−h,s (0)]

∣∣κs,t (x) − κs,t (0)
∣∣ ×E[Js − Js−h].

Using that E[Js − Js−h] = ∫ s

s−h
pr dr ≤ Ch (by Lemma 23(i)), that ϕs−h,s(0) → 0 as h → 0, and the (obvious)

continuity of x �→ κs,t (x), we conclude that

lim sup
h→0

1

h

∣∣P(
τt ∈ (s − h, s]) − κs,t (0)P(Js > Js−h)

∣∣ = 0. (17)

Next, arguing exactly as in Lemma 24(ii), we get P(Js > Js−h) = 1 − E[κs−h,s(Ys−h)]. Hence, we deduce from
Lemma 23(ii) that

lim
h→0

1

h
P(Js > Js−h) = E

[
f (Ys)

] = ps. (18)

Gathering (17) and (18), we deduce that indeed, the density of the law of τt at point s ∈ (0, t) exists and equals
psκs,t (0). �

We are now able to give the

Proof of Theorem 12. We have already seen that t �→ at and t �→ pt are continuous (by Lemma 23(i)) and positive
(by Lemma 24(iii)). We now fix t > 0. By Lemma 24(i), Yt = ϕ0,t (Y0)1{τt=0} +ϕτt ,t (0)1{τt>0}. Hence for any bounded
measurable φ : [0,∞) �→ R,

E
[
φ(Yt )

] = E
[
φ
(
ϕτt ,t (0)

)
1{τt>0}

] +E
[
φ
(
ϕ0,t (Y0)

)
1{τt=0}

] =: A(φ) + B(φ).

Clearly, ϕτt ,t (0) < ϕ0,t (0) when τt > 0 and ϕ0,t (Y0) ≥ ϕ0,t (0). Using Proposition 25, we can write

A(φ) =
∫ t

0
φ
(
ϕs,t (0)

)
psκs,t (0) ds.

Recall that for y ∈ [0, ϕ0,t (0)], βt (y) ∈ [0, t] is uniquely defined by ϕβt (y),t (0) = y. The change of variables s �→ y =
ϕs,t (0), for which dy = −e−λ(t−s)as ds and s = βt (y), gives us

A(φ) =
∫ ϕ0,t (0)

0
φ(y)

pβt (y)

aβt (y)

κβt (y),t (0)eλ(t−βt (y)) dy.
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Next recall that γt (y) = (y − ϕ0,t (0))eλt for y ≥ ϕ0,t (0). Using Lemma 24(ii) and the change of variables x �→ y =
ϕ0,t (x), for which γt (y) = x, we find

B(φ) = E
[
φ
(
ϕ0,t (Y0)

)
κ0,t (Y0)

] =
∫ ∞

0
φ
(
ϕ0,t (x)

)
κ0,t (x)g0(dx) =

∫ ∞

ϕ0,t (0)

φ(y)κ0,t

(
γt (y)

)(
g0 ◦ γ −1

t

)
(dy).

We have proved that

E
[
φ(Yt )

] =
∫ ∞

0
φ(y)

[
pβt (y)

aβt (y)

κβt (y),t (0)eλ(t−βt (y))1{y<ϕ0,t (0)} dy + κ0,t

(
γt (y)

)
1{y≥ϕ0,t (0)}

(
g0 ◦ γ −1

t

)
(dy)

]
.

Replacing κ by its expression, one finds the formula claimed in the statement. �

7.2. Nonextinction

We first consider the easy case where λ = 0.

Proof of Proposition 11 when λ = 0. Using Theorem 12, we see that the law of Yt has a density bounded by 1, on
[0, ϕ0,t (0)) (because for all x ∈ [0, ϕ0,t (0)), there is s ∈ (0, t] such that ϕs,t (0) = x). For all t > 1, ϕ0,t (0) = ∫ t

0 as ds >∫ 1
0 as ds =: α > 0 by Lemma 24(iii). Hence, for ε := min{α,1/2}, it holds that Pr(Yt ≤ ε) ≤ ε ≤ 1/2 for all t > 1.

Consequently, Yt cannot tend to 0 in probability as t → ∞. �

To study the case where λ > 0, we need the following lemma.

Lemma 26. Grant Assumptions 1, 3, 10(i) and suppose that λ ≥ 0. Assume that E[f (Y0)] < ∞ and consider the
unique solution (Yt )t≥0 to (2) built in Theorem 4(iii). There is q > 1 such that supt≥t0

E[f q(Yt )] < ∞ for all t0 > 0.

Proof. By Assumption 10(i), there exists q > 1 such that q lim supx→∞[f ′(x)/f (x)] < 1. We now divide the proof
into two steps.

Step 1. Here we assume that Y0 has a bounded support, so that Yt is uniformly bounded on each compact time
interval by (3). This ensures that all the computations below are licit. Applying the Itô formula for jump processes
and taking expectations, we easily check that

d

dt
E

[
f q(Yt )

] = −λE
[(

f q
)′
(Yt )

(
Yt −E[Yt ]

)] −E
[
f q+1(Yt )

] +E
[(

f q
)′
(Yt )

]
E

[
f (Yt )

]
.

Now, as shown e.g. in [24], it holds that E[ϕ1(X)]E[ϕ2(X)] ≤ E[ϕ1(X)ϕ2(X)] for any [0,∞)-valued random vari-
able X and any pair of nondecreasing functions ϕ1, ϕ2 : [0,∞) �→ R. Using that f q is convex (since q > 1 and by
Assumption 3), we deduce that E[(f q)′(Yt )(Yt − E[Yt ])] ≥ 0 and that E[(f q)′(Yt )]E[f (Yt )] ≤ E[(f q)′(Yt )f (Yt )].
We thus have

d

dt
E

[
f q(Yt )

] ≤ −E
[
f q+1(Yt ) − (

f q
)′
(Yt )f (Yt )

]
.

Recalling now that q lim supx→∞[f ′(x)/f (x)] < 1, we can find two constants c > 0 and C ≥ 0 such that f q+1(x) −
(f q)′(x)f (x) ≥ cf q+1(x) − C for all x ≥ 0. Indeed, find x0 > 0 such that a := supx≥x0

[f ′(x)/f (x)] < 1/q , observe
that f q+1(x) − (f q)′(x)f (x) = f q+1(x) − qf ′(x)f q(x) ≥ (1 − aq)f q+1(x) for x ≥ x0, and conclude by setting
c = (1 − aq) > 0 and C = sup[0,x0](f

q)′(x)f (x). We deduce that

d

dt
E

[
f q(Yt )

] ≤ C − cE
[
f q+1(Yt )

] ≤ C − cE
[
f q(Yt )

]1+1/q
.

The conclusion classically follows: there is a constant K , not depending on E[f q(Y0)] such that E[f q(Yt )] ≤ K(1 +
t−q).



On a toy model of interacting neurons 1871

Step 2. We next only assume that E[f (Y0)] < ∞. We introduce YA
0 = min{Y0,A} and the unique solution (YA

t )t≥0

to (2) starting from YA
0 . By Step 1, we know that for all t ≥ 0, uniformly in A, E[f q(YA

t )] ≤ K(1 + t−q). But
we also know by Proposition 17 that for each t ≥ 0, YA

t goes in law to Yt as A → ∞ (we have to verify that
E[|H(YA

0 ) − H(Y0)|] → 0, which is not difficult by dominated convergence since E[H(Y0)] ≤ π/2 +E[f (Y0)] < ∞
by assumption). The conclusion follows. �

Proof of Proposition 11 when λ > 0. We work by contradiction and assume that Yt goes in law (and thus in prob-
ability) to 0 as t → ∞. By Lemma 26, we know that there is q > 1 such that supt≥1 E[f q(Yt )] < ∞. This implies
that supt≥1 E[Yq

t ] < ∞ by Remark 13(i). Consequently, Yt and f (Yt ) are uniformly integrable (for t ≥ 1), so that the
Lebesgue theorem tells us, since Yt goes in probability to 0, that at = λE[Yt ] + E[f (Yt )] tends to 0.

We use Lemma 24(i) to write Yt = e−λtY01{τt=0} + ϕτt ,t (0). First, there is t0 > 0 such that

for all t ≥ t0, ϕτt ,t (0) ≤ ϕ0,t (0) ≤ 1/2. (19)

Indeed, we consider t1 > 0 such that at ≤ λ/4 for all t ≥ t1. Then we see that ϕτt ,t (0) ≤ ϕ0,t (0) ≤ e−λt
∫ t1

0 eλuau du +
(λ/4)

∫ t

t1
e−λ(t−u) du ≤ Ce−λt + 1/4, whence the conclusion.

Taking expectations in (2), we see that (d/dt)E[Yt ] = E[(1−Yt )f (Yt )]. But for t ≥ t0 and on the event {τt > 0}, we
have Yt = ϕτt ,t (0) ≤ 1/2 and thus (1−Yt )f (Yt ) ≥ 0. Next on the event {τt = 0}, we have Yt = ϕ0,t (Y0). Consequently,

d

dt
E[Yt ] ≥ E

[(
1 − ϕ0,t (Y0)

)
f

(
ϕ0,t (Y0)

)
1{τt=0}

]
.

Hence, by Lemma 24(ii),

d

dt
E[Yt ] ≥ E

[(
1 − ϕ0,t (Y0)

)
f

(
ϕ0,t (Y0)

)
κ0,t (Y0)

] ≥ It − Jt ,

where

It := E
[(

1 − ϕ0,t (Y0)
)
f

(
ϕ0,t (Y0)

)
κ0,t (Y0)1{ϕ0,t (Y0)<3/4}

]
,

Jt := E
[(

ϕ0,t (Y0) − 1
)
f

(
ϕ0,t (Y0)

)
κ0,t (Y0)1{ϕ0,t (Y0)>1}

]
.

We will now prove that there is t2 > t0 such that It > Jt for all t ≥ t2. This will end the proof, since then (d/dt)E[Yt ] >

0 for all t ≥ t2, so that E[Yt ], and thus a fortiori at , cannot go to 0. To prove that It is eventually greater than Jt , we
will check that, with ξ ≥ 1 defined in Assumption 10(ii),

(a) lim inf
t→∞

eλξt

κ0,t (0)
It > 0, (b) lim sup

t→∞
eλξt

κ0,t (0)
Jt = 0.

Let us first prove (b). It holds that κ0,t (Y0)/κ0,t (0) ≤ 1. Next, recalling that ϕ0,t (Y0) = e−λtY0 + ϕ0,t (0) ≤
e−λtY0 + 1/2 for t ≥ t0 by (19), we see that 1{ϕ0,t (Y0)>1} ≤ 1{e−λt Y0>1/2}. On the set e−λtY0 > 1/2, it holds that
ϕ0,t (Y0) ≤ e−λtY0 + 1/2 ≤ 2e−λtY0. Finally, by Assumption 10(ii), we write that eλξt (ϕ0,t (Y0) − 1)f (ϕ0,t (Y0)) ≤
Ceλξt [(2e−λtY0)

ξ + (2e−λtY0)
ζ+1] ≤ C[Y ξ

0 + Y
ζ+1
0 ] ≤ C(1 + Y

ζ+1
0 ) because ζ ≥ ξ − 1 by assumption. All in all, we

have checked that for t ≥ t0,

eλξt

κ0,t (0)
Jt ≤ CE

[(
1 + Y

ζ+1
0

)
1{Y0>eλt /2}

]
.

Since E[Y ζ+1
0 ] < ∞ by assumption, the monotone convergence theorem shows the validity of (b).

We finally prove (a). We have ϕ0,t (Y0) ≥ e−λtY0. Hence by Assumption 10(ii), we may write, on the event
{ϕ0,t (Y0) < 3/4}, that (1 − ϕ0,t (Y0))f (ϕ0,t (Y0)) ≥ ce−λξtY

ξ
0 . We next recall that, as previously, for t ≥ t0, ϕ0,t (Y0) ≤
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e−λtY0 + 1/2. Consequently, 1{ϕ0,t (Y0)<3/4} ≥ 1{e−λt Y0<1/4}. Finally,

κ0,t (Y0)

κ0,t (0)
= exp

(
−

∫ t

0

[
f

(
ϕ0,s(Y0)

) − f
(
ϕ0,s (0)

)]
ds

)

≥ exp

(
−

∫ t

0
e−λsY0 ×

(
sup

[0,ϕ0,s (Y0)]
f ′)ds

)
,

because ϕ0,s(Y0) = e−λsY0 + ϕ0,s(0). But sups≥0 ϕ0,s (Y0) ≤ Y0 + C: this follows from the expression of ϕ and the
fact that t �→ at is a bounded function, since it is locally bounded and tends to 0. Hence, using Assumptions 1, 3 and
Remark 13(ii), sup[0,ϕ0,s (Y0)] f

′ ≤ C(1 + f (Y0)), and we end with

κ0,t (Y0)

κ0,t (0)
≥ exp

(−CY0
(
1 + f (Y0)

))
.

All in all, we see that for t ≥ t0,

eλξt

κ0,t (0)
It ≥ cE

[
Y

ξ
0 exp

(−CY0
(
1 + f (Y0)

))
1{Y0<eλt /4}

]
.

This last quantity tends, by monotone convergence, to cE[Y ξ
0 exp(−CY0(1 + f (Y0)))] > 0. We have checked (a). �

7.3. Trend to equilibrium when λ = 0

This final part is dedicated to the proof of Proposition 9. We thus work under all the assumptions above and suppose
furthermore that λ = 0 and that the initial condition g0 has a density g0 ∈ C1

b([0,∞)) satisfying g0(0) = 1 and∫ ∞
0 |g′

0(y)|dy < ∞.
Since λ = 0, we simply have ϕs,t (x) = x + At − As , where At = ∫ t

0 as ds. For t ≥ 0 and y ∈ [0,At ], βt (y) ∈ [0, t]
is defined by At − Aβt (y) = y. And for t ≥ 0 and y ≥ At , γt (y) = y − At . We thus know from Theorem 12 that g(t)

has a density on [0,∞) given by

g(t, y) = κβt (y),t (0)1{y<At } + κ0,t (y − At)g0(y − At)1{y≥At }. (20)

Observe that g(t,At−) = g(t,At+) = κ0,t (0). A little study, using our assumptions on g0 and that the map t �→ at is
continuous and positive, shows that g(t, y) is continuous on [0,∞)2, of class C1 on {(t, y) ∈ [0,∞)2 : y �= At } and
that sup[0,T ](‖∂yg(t, ·)‖L∞(R) + ‖∂yg(t, ·)‖L1(R)) < ∞ for all T > 0.

Let φ ∈ C1
b([0,∞)). Applying the Itô formula to compute φ(Yt ), taking expectations and differentiating the ob-

tained formula, we find that

d

dt

∫ ∞

0
φ(x)g(t, x) dx =

∫ ∞

0

[
φ(0) − φ(x) + ptφ

′(x)
]
g(t, x) dx

= −
∫ ∞

0
φ(x)

[
f (x)g(t, x) + pt∂xg(t, x)

]
dx.

The second equality follows from an integration by parts, which is licit because for t fixed, g(t, ·) is continuous,
piece-wise C1 and

∫ ∞
0 |∂yg(t, y)|dy < ∞. The boundary term disappears since g(t,0) = 1.

We introduce now g(x) = exp(−p−1
∫ x

0 f (y)dy) as in Theorem 8(ii), which solves p∂xg(x) + f (x)g(x) = 0.
Hence, for any φ ∈ C1

b ,

d

dt

∫ ∞

0
φ(x)

(
g(t, x) − g(x)

)
dx = −

∫ ∞

0
φ(x)f (x)

(
g(t, x) − g(x)

)
dx − pt

∫ ∞

0
φ(x)(∂x

(
g(t, x) − g(x)

)
dx

+ (p − pt)

∫ ∞

0
φ(x)∂xg(x) dx.



On a toy model of interacting neurons 1873

We thus can apply Lemma 27 below with a(t, x) = g(t, x) − g(x) and b(t, x) = −f (x)(g(t, x) − g(x)) − pt∂x(g(t,

x) − g(x)) + (p − pt )∂xg(x), which both belong to L∞
loc([0, T ],L1([0,∞)) because (1 + f (x))g(x) + |∂xg(x)| is

integrable, because pt is locally bounded, because
∫ ∞

0 f (x)g(t, x) dx = pt and because sup[0,T ] ‖∂xg(t, ·)‖L1(R) < ∞
for all T > 0, to deduce that t �→ ∫ ∞

0 |g(t, x) − g(x)|dx is continuous and satisfies, for a.e. t ≥ 0,

d

dt

∫ ∞

0

∣∣g(t, x) − g(x)
∣∣dx = −

∫ ∞

0
sg

(
g(t, x) − g(x)

)
f (x)

(
g(t, x) − g(x)

)
dx

− pt

∫ ∞

0
sg

(
g(t, x) − g(x)

)
∂x

(
g(t, x) − g(x)

)
dx

+ (p − pt)

∫ ∞

0
sg

(
g(t, x) − g(x)

)
∂xg(x).

The second term on the RHS equals −pt

∫ ∞
0 ∂x[|g(t, x)−g(x)|]dx = pt |g(t,0)−g(0)| = 0. Using that g is decreas-

ing, we easily check that the last term is bounded by

|pt − p|
∫ ∞

0

∣∣∂xg(x)
∣∣dx = |p − pt |g(0) = |p − pt | =

∣∣∣∣
∫ ∞

0
f (x)

(
g(t, x) − g(x)

)
dx

∣∣∣∣.
Thus, for a.e. t ≥ 0,

d

dt

∥∥g(t) − g
∥∥

L1 ≤ −
∫ ∞

0
f (x)

∣∣g(t, x) − g(x)
∣∣dx +

∣∣∣∣
∫ ∞

0
f (x)

(
g(t, x) − g(x)

)
dx

∣∣∣∣
= −2 min

{∫ ∞

0
f (x)

(
g(t, x) − g(x)

)
+ dx,

∫ ∞

0
f (x)

(
g(t, x) − g(x)

)
− dx

}
.

But by (20), g(t, x) ≤ 1 for all t ≥ 1, all x ∈ [0,A1] and A1 = ∫ 1
0 as ds > 0. Consequently, for t ≥ 1, all ε ∈ [0,A1],

since f is nondecreasing,∫ ∞

0
f (x)

(
g(t, x) − g(x)

)
+ dx ≥ f (ε)

∫ ∞

ε

(
g(t, x) − g(x)

)
+ dx ≥ f (ε)

[∫ ∞

0

(
g(t, x) − g(x)

)
+ dx − ε

]
.

But g(t) and g being two probability density functions,
∫ ∞

0 (g(t, x)−g(x))+ dx = ‖g(t)−g‖L1/2. Thus for all t ≥ 1,
all ε ∈ [0,A1],∫ ∞

0
f (x)

(
g(t, x) − g(x)

)
+ dx ≥ f (ε)

[∥∥g(t) − g
∥∥

L1/2 − ε
]
.

Since g(x) ≤ 1 for all x ≥ 0, a similar estimate holds true for
∫ ∞

0 f (x)(g(t, x)−g(x))− dx. All in all, we have proved
that for a.e. t ≥ 1, all ε ∈ [0,A1],

d

dt

∥∥g(t) − g
∥∥

L1 ≤ −f (ε)
[∥∥g(t) − g

∥∥
L1 − 2ε

]
.

Choosing ε = min{A1,‖g(t)− g‖L1/4} and introducing the function �(x) = xf (A1 ∧ (x/4))/2, this implies, still for
a.e. t ≥ 1, that

d

dt

∥∥g(t) − g
∥∥

L1 ≤ −�
(∥∥g(t) − g

∥∥
L1

)
.

Since � is nonnegative increasing on (0,∞) and vanishes only at 0, we easily conclude, using that t �→ ‖g(t) − g‖L1

is continuous, that indeed, limt→∞ ‖g(t)−g‖L1 = 0. Recalling that 2‖g(t)−g‖TV = ‖g(t)−g‖L1 implies the result.
If now f (x) ≥ cxξ on [0,1] for some ξ ≥ 1, there clearly exists another constant c > 0 such that �(x) ≥ cxξ+1

for all x ∈ [0,2] (recall that f is nondecreasing). But ‖g(t) − g‖L1 always belongs to [0,2]. We thus have, for a.e.
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t ≥ 1, (d/dt)‖g(t) − g‖L1 ≤ −c‖g(t) − g‖ξ+1
L1 . It is then not hard to deduce that there is a constant C such that

‖g(t) − g‖L1 ≤ C(1 + t)−1/ξ for all t ≥ 0.
It remains to check the following lemma, which is well-known folklore since the seminal work of DiPerna and

Lions [7]. We unfortunately found no precise reference.

Lemma 27. Let a, b : [0,∞) ×R �→ R belong to L∞
loc([0,∞),L1(R)), that is sup[0,T ]

∫
R
(|a(t, x)| + |b(t, x)|) dx <

∞ for all T > 0. Assume that for all φ ∈ C1
b(R), all t ≥ 0,

d

dt

∫
R

φ(y)a(t, y) dy =
∫
R

φ(y)b(t, y) dy. (21)

Then t �→ ∫
R

|a(t, x)|dx is continuous and for a.e. t ≥ 0,

d

dt

∫
R

∣∣a(t, x)
∣∣dx =

∫
R

sg
(
a(t, x)

)
b(t, x) dx,

where sg(u) = 1{u>0} − 1{u<0}.

Proof. We introduce ρε = (2πε)−1/2 exp(−x2/(2ε)) for ε > 0 and x ∈ R and define aε(t, x) = [a(t, ·) � ρε](x) =∫
R

a(t, y)ρε(x − y)dy and bε(t, x) = [b(t, ·) � ρε](x). It is well known that for all t ≥ 0, limε→0(‖a(t, ·) −
aε(t, ·)‖L1 + ‖b(t, ·) − bε(t, ·)‖L1) = 0. It is also clear that for all t ≥ 0, all ε > 0, ‖aε(t, ·)‖L1 ≤ ‖a(t, ·)‖L1 and
‖bε(t, ·)‖L1 ≤ ‖b(t, ·)‖L1 .

Step 1. Applying (21) with φ(y) = ρε(x − y), we find that for all t ≥ 0, all x ∈ R, ∂taε(t, x) = bε(t, x). Hence for
any ψ ∈ C1

b(R), ∂tψ(aε(t, x)) = ψ ′(aε(t, x))bε(t, x). We conclude that for all t ≥ 0,

∫
R

ψ
(
aε(t, x)

)
dx =

∫
R

ψ
(
aε(0, x)

)
dx +

∫ t

0

∫
R

ψ ′(aε(s, x)
)
bε(s, x) dx ds. (22)

Step 2. We now pass to the limit as ε → 0 in (22) to deduce that for all t ≥ 0, all ψ ∈ C2
b(R),

∫
R

ψ
(
a(t, x)

)
dx =

∫
R

ψ
(
a(0, x)

)
dx +

∫ t

0

∫
R

ψ ′(a(s, x)
)
b(s, x) dx ds. (23)

First, we clearly have that limε→0
∫
R

ψ(aε(t, x)) dx = ∫
R

ψ(a(t, x)) dx because ψ is globally Lipschitz continuous
and because limε→0 ‖a(t, ·) − aε(t, ·)‖L1 = 0. The first term on the RHS is of course treated similarly. We next
introduce �ε = | ∫ t

0

∫
R

ψ ′(aε(s, x))bε(s, x) dx ds − ∫ t

0

∫
R

ψ ′(a(s, x))b(s, x) dx ds| and write

�ε ≤ ∥∥ψ ′∥∥∞
∫ t

0

∫
R

∣∣bε(s, x) − b(s, x)
∣∣dx ds +

∫ t

0

∫
R

∣∣b(s, x)
∣∣∣∣ψ ′(aε(s, x)

) − ψ ′(a(s, x)
)∣∣dx ds = Iε + Jε.

First, limε→0 Iε = 0 by dominated convergence, because
∫
R

|bε(s, x) − b(s, x)|dx is bounded on [0, t] and tends to 0
for each s ≥ 0. Next, we observe that for all (large) K > 0,

Jε ≤ 2
∥∥ψ ′∥∥∞

∫ t

0

∫
R

∣∣b(s, x)
∣∣1{|b(s,x)|>K} dx ds + ∥∥ψ ′′∥∥∞K

∫ t

0

∫
R

∣∣aε(s, x) − a(s, x)
∣∣dx ds.

The second term tends to 0 as ε → 0, for the same reasons as for Iε . We thus conclude that lim supε→0 �ε ≤
2‖ψ ′‖∞

∫ t

0

∫
R

|b(s, x)|1{|b(s,x)|>K} dx ds for all K > 0. But this last quantity tends to 0 as K → ∞, so that finally,
limε→0 �ε = 0 and (23) is verified.

Step 3. Here we verify, and this will conclude the proof, that∫
R

∣∣a(t, x)
∣∣dx =

∫
R

∣∣a(0, x)
∣∣dx +

∫ t

0

∫
R

sg
(
a(s, x)

)
b(s, x) dx ds. (24)
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We consider a sequence of even smooth nonnegative functions ψn ∈ C2
b(R), such that ψn(u) increases to |u|, for

each u ∈ R, as n → ∞, such that ψ ′
n(u) tends to sg(u) for each u ∈ R and such that supn ‖ψ ′

n‖∞ ≤ 2. The choice
ψn(u) = √

x2 + 1/n − √
1/n is possible. By Step 2, we find, for all t ≥ 0, all n ≥ 1,

∫
R

ψn

(
a(t, x)

)
dx =

∫
R

ψn

(
a(0, x)

)
dx +

∫ t

0

∫
R

ψ ′
n

(
a(s, x)

)
b(s, x) dx ds.

By monotone convergence, we have limn

∫
R

ψn(a(t, x)) dx = ∫
R

|a(t, x)|dx and limn

∫
R

ψn(a(0, x)) dx = ∫
R

|a(0,

x)|dx. It also holds true that limn

∫ t

0

∫
R

ψ ′
n(a(s, x))b(s, x) dx ds = ∫ t

0

∫
R

sg(a(s, x))b(s, x) dx ds, by dominated con-
vergence. Indeed, we know that ψ ′

n(a(s, x)) → sg(a(s, x)) for each s, x, and |ψ ′
n(a(s, x))b(s, x)| ≤ 2|b(s, x)|, which

is integrable on [0, t] ×R by assumption. �
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