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Abstract. We study a symmetric diffusion X on Rd in divergence form in a stationary and ergodic environment, with measurable
unbounded and degenerate coefficients aω. The diffusion is formally associated with Lωu = ∇ · (aω∇u), and we make sense
of it through Dirichlet forms theory. We prove for X a quenched invariance principle, under some moment conditions on the
environment; the key tool is the sublinearity of the corrector obtained by Moser’s iteration scheme.

Résumé. Nous étudions une diffusion symétrique X sur Rd en forme de divergence dans un environnement aléatoire station-
naire et ergodique, dont les coefficients aω sont mesurables et dégénérés. Cette diffusion qui est formellement engendrée par
l’opérateur Lωu = ∇ · (aω∇u), peut être définie à l’aide de la théorie des formes de Dirichlet. Nous démontrons pour X un prin-
cipe d’invariance presque sûr sous des conditions de moment de l’environnement; l’outil crucial est la sous-linéarité du correcteur
obtenu à l’aide de l’itération introduite par J. Moser.
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1. Description of the main result

We are interested in the study of reversible diffusions in a random environment. Namely, we are given an infinitesimal
generator Lω in divergence form

Lωu(x) = ∇ · (aω(x)∇u(x)
)
, x ∈Rd , (1.1)

where aω(x) is a symmetric d-dimensional matrix depending on a parameter ω which describes a random realization
of the environment.

We model the environment as a probability space (Ω,G,μ) on which a measurable group of transformations
{τx}x∈Rd is defined. One may think of τxω as a translation of the environment ω ∈ Ω in the direction x ∈Rd . The ran-
dom field {aω(x)}x∈Rd will then be constructed simply by taking a random variable a : Ω → Rd×d and by defining
aω(x) := a(τxω), we will often use the notation a(x;ω) for aω(x) as well. We assume that the random environment
(Ω,G,μ), {τx}x∈Rd is stationary and ergodic. A precise formulation of the setup is given in Section 3.

It is well known that when x → aω(x) is bounded and uniformly elliptic, uniformly in ω, then a quenched invari-
ance principle holds for the diffusion process Xω

t associated with Lω. This means that, for μ-almost all ω ∈ Ω , the
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scaled process X
ε,ω
t := εXω

t/ε2 converges in distribution to a Brownian motion with a non-trivial covariance structure
as ε goes to zero; this is known as diffusive limit. See for example the classic result of Papanicolau and Varadhan
[29] where the coefficients are assumed to be differentiable, and [28] for measurable coefficients and more general
operators.

Recently, a lot of efforts has been put into extending this result beyond the uniform elliptic case. For example
[14] consider a non-symmetric situation with uniformly elliptic symmetric part and unbounded antisymmetric part
and the recent paper [3] proves an invariance principle for divergence form operators Lu = eV ∇ · (e−V ∇u) where
V is periodic and measurable. They only assume that eV + e−V is locally integrable. For what concerns ergodic and
stationary environment a recent result has been achieved in the case of random walk in random environment in [1,2].
In these works moments of order greater than one are needed to get an invariance principle in the diffusive limit; [2]
and the techniques therein are the main inspiration for our paper.

The aim of our work is to prove a quenched invariance principle for an operator Lω of the form (1.1) with a random
field aω(x) which is ergodic, stationary and possibly unbounded and degenerate. Denote by a : Ω → Rd×d the G-
measurable random variable which describes the field through aω(x) = a(τxω). We assume that a is symmetric and
that there exist Λ,λ, G-measurable, positive and finite, such that:

(a.1) for μ-almost all ω ∈ Ω and all ξ ∈ Rd

λ(ω)|ξ |2 ≤ 〈
a(ω)ξ, ξ

〉 ≤ Λ(ω)|ξ |2;
(a.2) there exist p,q ∈ [1,∞] satisfying 1/p + 1/q < 2/d such that

Eμ

[
λ−q

]
< ∞, Eμ

[
Λp

]
< ∞,

(a.3) as functions of x, λ−1(τxω),Λ(τxω) ∈ L∞
loc(R

d) for μ-almost all ω ∈ Ω .

Since aω(x) is meant to model a random field, it is not natural to assume its differentiability in x ∈ Rd . Accordingly,
the operator defined in (1.1) does not make any sense, and the techniques coming from stochastic differential equations
and Itô calculus are not very helpful neither in constructing the diffusion process, nor in performing the relevant
computation.

The theory of Dirichlet forms is the right tool to approach the problem of constructing a diffusion. Instead of the
operator Lω we shall consider the bilinear form obtained by Lω, formally integrating by parts, namely

Eω(u, v) :=
∑
i,j

∫
Rd

aω
ij (x)∂iu(x)∂j v(x) dx (1.2)

for a proper class of functions u,v ∈ Fω ⊂ L2(Rd , dx), more precisely Fω is the closure of C∞
0 (Rd) in L2(Rd, dx)

with respect to E + (·, ·)L2 . It is a classical result of Fukushima [16, Theorem 7.2.2] and [31, Chapter II, Example
3b] that it is possible to associate to (1.2) a diffusion process {Xω,Pω

x , x ∈ Rd} as soon as (λω)−1 and Λω are locally
integrable. It is well known that there is a properly exceptional2 set Nω ⊂ Rd of Xω such that the associated process
is uniquely determined up to the ambiguity of starting points in Nω, in our situation the set of exceptional points
may depend on the realization of the environment. Assumption (a.3) is designed to remove the ambiguity about the
properly exceptional set Nω. We will then prove that assumption (a.2) and ergodicity of the environment are enough
to grant that the process Xω starting from any x ∈Rd does not explode for almost all realization of the environment.

Remark 1.1. Moment conditions on the environment are a very natural assumption in order to achieve a quenched
invariance principle for symmetric diffusions, indeed at least the first moment of Λ and λ−1 is required to obtain the
result. As a counterexample one can consider a periodic environment, namely the d-dimensional torus Td , and the
following generator in divergence form

Lf (x) := 1

ϕ(x)
∇ · (ϕ(x)∇f (x)

)
,

2A set N ⊂ Rd is called properly exceptional if N is Borel, it has Lebesgue measure zero, and Px(Xt ∈ N or Xt− ∈ N for some t ≥ 0) = 0 for

all x ∈ Rd \N .
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where ϕ : Td → R is defined by ϕ(x) := 1B(x)|x|−d + 1Bc(x) being B ⊂ Td a ball of radius one centered in the
origin. It is clear that ϕα ∈ L1(Td) for all α < 1 but not for α = 1. If we look for example to d = 2, then the radial
part of the process associated to L, for the radius less than one, will be a Bessel process with parameter δ = 0 which
is known to have a trap in the origin.

Remark 1.2. As observed in the previous remark, if we want to prove an invariance principle, dealing with symmetric
diffusions forces the degeneracy of the diffusion coefficient not to be too strong. Namely, the diffusion coefficient can
eventually be zero only on a set of null Lebesgue measure. On the other hand, in the case of non-symmetric diffusions
the diffusion coefficient is allowed to vanish in open sets, as was proved in the periodic environment by [19] and further
extended and generalized in [9,30,33]. In these works the strong degeneracy of the diffusion coefficient is compensated
by the drift through the Hörmander’s condition; as a result and in contrast with our setting, the coefficients need to be
smooth enough.

Once the diffusion process Xω is constructed, the standard approach to diffusive limit theorems consists in show-
ing the weak compactness of the rescaled process and in the identification of the limit. In the case of bounded and
uniformly elliptic coefficients the compactness is readily obtained by the Aronson–Nash estimates for the heat kernel.
In order to identify the limit, we use the standard technique used in [14,23] and [28]; namely, we decompose the
process Xε

t into a martingale part, called the harmonic coordinates and a fluctuation part, called the correctors. The
martingale part is supposed to capture the long time asymptotic of Xε

t , and will characterize the diffusive limit.
The challenging part is to show that the correctors are uniformly small for almost all realization of the environment,

this is attained generalizing Moser’s arguments [25] to get a maximal inequality for positive subsolutions of uniformly
elliptic, divergence form equations. In this sense the relation 1/p + 1/q < 2/d is designed to let the Moser’s iteration
scheme work. This integrability assumption firstly appeared in [10] in order to extend the results of De Giorgi and
Nash to degenerate elliptic equations. A similar condition was also recently exploited in [37] to obtain estimates
of Nash–Aronson type for solutions to degenerate parabolic equations. They look to generator of the form Lu =
∂tu − e−V ∇ · (eV ∇u), with the assumption that supr≥1 |r|−d

∫
|x|≤r

epV + e−qV dx < ∞.
We want to stress out that condition (a.3) is needed to prove neither the sublinearity of the corrector nor its exis-

tence, we used it only to have a more regular density of the semigroup associated to Xω and avoid some technicalities
due to exceptional sets in the framework of Dirichlet form theory.

Once the correctors are shown to be sublinear, the standard invariance principle for martingales [21] gives the
almost sure convergence to the Wiener measure.

Theorem 1.1. Assume (a.1), (a.2) and (a.3) are satisfied. Let Mω := (Xω
t ,Pω

x ), x ∈ Rd , be the minimal diffusion
process associated to (Eω,Fω) on L2(Rd , dx). Then the following hold

(i) For μ-almost all ω ∈ Ω the limits

lim
t→∞

1

t
Eω

0

[
Xω

t (i)Xω
t (j)

] = dij i, j = 1, . . . , d

exist and are deterministic constants.
(ii) For μ-almost all ω ∈ Ω , the laws of the processes X

ω,ε
t := εXω

t/ε2 , ε > 0 over C([0,+∞),Rd) converge weakly

as ε → 0 to a Wiener measure having the covariance matrix equal to D = [dij ]. Moreover D is a positive definite
matrix.

Description of the method. One of the main objective of the paper is to show that the correctors χ = (χ1, . . . , χd) :
Rd × Ω → Rd are locally sublinear, namely that

lim sup
ε→0

sup
|x|≤R

ε
∣∣χ(x/ε,ω)

∣∣ = 0 ∀R > 0,μ-a.s.

To obtain a priori estimates on the correctors χ we exploit the fact that they are constructed in such a way that they
are solutions of a Poisson’s equation, which is formally given by

∇ · (aω(x)∇χk(x,ω)
) = ∇ · (aω(x)∇πk(x)

)
, (1.3)
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where πk(x) := xk is the projection to the kth-coordinate.
The equation above has been studied extensively and generalized in many directions, also beyond the linear case,

for an introduction, see for example the monographs [12,17] and for recent developments in the theory see [20]. When
the matrix aω is uniformly elliptic and bounded, uniformly in ω ∈ Ω , namely if

c−1|ξ |2 ≤ 〈
aω(x)ξ, ξ

〉 ≤ c|ξ |2

for some c ≥ 1, it is natural to look for weak solutions to (1.3) in the classical Sobolev space of square integrable
functions with square integrable weak derivatives. It is a classical result due to Moser [25] that an elliptic Harnack
inequality holds and a result from Nash [27] and De Giorgi [8] that solutions are Hölder continuous.

The situation changes dramatically when the coefficients are degenerate. In the most typical situation there is a
positive weight θ :Rd → R and a constant c > 1 such that

θ(x)|ξ |2 ≤ 〈
aω(x)ξ, ξ

〉 ≤ cθ(x)|ξ |2.
In this setting one looks for solutions to equation (1.3) in the weighted Sobolev space W 1,2(Rd , θ) which is the set of
weakly differentiable functions u : Rd → R such that

∫
Rd

|u|2θ dx < ∞, and
∫
Rd

|∇u|2θ dx < ∞,

we refer to [20,36] for more information on weighted Sobolev spaces. It was shown in [13] that in order to have local
regularity of solutions to (1.3) it is enough to have weights which are volume doubling, namely such that there exists
a constant C > 0 for which∫

B2R(x)

θ(y) dy ≤ C

∫
BR(x)

θ(y) dy ∀R > 0,∀x ∈ Rd,

and which satisfy weighted Sobolev and Poincaré inequalities. This weights are known in general as p-admissible
(see [20]), but for our discussion of the linear operator Lω = ∇ · (aω∇) it is enough to look at 2-admissible weights.

Remark 1.3. In our setting it is not possible to expect the volume doubling property for small balls. The ergodic
theorem ensures only that for all x ∈ Rd and μ-almost all ω ∈ Ω there exist Rω

0 (x) > 0 and a dimensional constant
C > 0 such that for all R > Rω

0 (x)

∫
B2R(x)

Λω(y)dy ≤ C

∫
BR(x)

Λω(y)dy,

being BR(x) the ball of center x and radius R. We remark that the constant Rω
0 (x) cannot be taken uniformly in

x ∈ Rd , and supx∈Rd Rω
0 (x) may be infinite.

Examples of 2-admissible weights are the functions in the Muckenhaupt’s class A2, we refer to [13,20,35] and to
the original research paper [26] for an exhaustive treatment on the subject. Here we briefly recall that the class A2 is
the set of all non-negative functions θ : Rd → [0,∞] for which there exists a constant C > 0 such that

sup
R>0

sup
x∈Rd

(
1

|BR(x)|
∫

BR(x)

θ(y) dy

)(
1

|BR(x)|
∫

BR(x)

θ−1(y) dy

)
≤ C. (1.4)

It is well known that weights in the class A2 are volume doubling and satisfy a weighted Sobolev inequality. To be
more precise, denote by θ(B) := ∫

B
θ dx, then there exist constants C,δ > 0 such that for all 1 ≤ k ≤ d/(d − 1) + δ

(
1

θ(B)

∫
B

|u|2kθ dx

)1/k

≤ C|B|2/d 1

θ(B)

∫
B

|∇u|2θ dx

(
≤ C|B|2/d E(u,u)

θ(B)

)
(1.5)

being B any ball in Rd and u ∈ C∞
0 (B).



Invariance principle for diffusions in degenerate ergodic environment 1539

Working with admissible weights has the advantage of being able to state Hölder continuity results for weak
solutions to (1.3). It is still an open problem to identify the optimal conditions that a weight has to satisfy in order to
grant continuity of weak solutions, see the survey paper [5] for details.

Many authors relied on Muckenhaupt’s classes and weighted Sobolev spaces to prove homogenization results. We
quote [7] for the periodic case and [11] for the ergodic case. In the latter the weights are assumed to belong to a
Muckenhaupt class for almost all the realizations of the environment.

In our paper, to prove the sublinearity of the corrector, we assume that the coefficient aω(x) satisfies

λω(x)|ξ |2 ≤ 〈
aω(x)ξ, ξ

〉 ≤ Λω(x)|ξ |2, μ-a.s.

and Eμ[λ−q ], Eμ[λ−q ] < ∞ with 1/p + 1/q < 2/d . In this case, the weights λω(x) := λ(τxω) and Λω(x) := Λ(τxω)

do not belong to any of the classes mentioned above, since, as explained in Remark 1.3, in general the measures
λω(x)dx and Λω(x)dx are not volume doubling. The ergodicity of the environment and the fact that Eμ[λ−1],Eμ[Λ]
are finite ensure only that

sup
x∈Rd

lim sup
R→∞

1

|BR(x)|
∫

BR(x)

1

λω(y)
dy < ∞, sup

x∈Rd

lim sup
R→∞

1

|BR(x)|
∫

BR(x)

Λω(y)dy < ∞,

μ-almost surely, and, contrary to (1.4), it is not possible to interchange the supremum and the limit staying finite.
Another characterizing feature of our model is that we don’t assume Λω ≤ cλω. We cannot expect regularity for

solutions to (1.3), however, we show that the ergodicity of the environment and the moment conditions (a.2) are
enough to obtain the sublinearity of the correctors; this is done in the same spirit of [14] where an unbounded but
uniformly bounded away from zero non-symmetric case is considered.

Moser’s method to derive a maximal inequality for solutions to (1.3) is based on two steps. One wants first to get
a Sobolev inequality to control some Lρ -norm in terms of the Dirichlet form and then control the Dirichlet form of
any solution by a lower moment. This sets up an iteration which leads to control the supremum of the solution on a
ball by a lower norm on a slightly bigger ball. In the uniform elliptic and bounded case this is rather standard and it
is possible to control the L2d/(d−2)-norm of a solution by its L2-norm through the classical Sobolev inequality. In the
case of Muckenhaupt’s weights the iteration can be set using the Sobolev inequality (1.5) on the weighted Sobolev
space.

In our paper we are able to control locally on balls the ρ-norm of a solution by its 2p∗-norm, with ρ =
2qd/(q(d − 2) + d) and p∗ = p/(p − 1). For the Moser iteration we need ρ > 2p∗ which is equivalent to con-
dition 1/p + 1/q < 2/d . Indeed, by means of Hölder’s inequality and the standard Sobolev inequality, for a ball B of
radius R > 0 and center x ∈Rd , we can write

(
1

|BR(x)|
∫

BR(x)

|u|ρ/p∗
Λω dy

)(2p∗)/ρ
≤ C(λ,Λ,x,R)|BR(x)|2/d E(u,u)

|BR(x)| ,

where

C(λ,Λ,x,R) := C(d)

(
1

|BR(x)|
∫

BR(x)

(
λω(y)

)−q
dy

)1/q(
1

|BR(x)|
∫

BR(x)

(
Λω(y)

)p
dy

)2/(ρ(p−1))

,

being C(d) > 0 a constant depending only on the dimension. The Sobolev inequality above must be compared with
(1.5). In opposition to (1.5), the constant in front of the inequality is strongly dependent on x ∈ Rd and R > 0.
Therefore, the estimates we derive in Section 2 to control the Dirichlet form of a solution by its 2p/(p − 1)-norm,
although following from very well established arguments, are a necessary step in order to clarify the dependence of
the constants on

1

|BR(x)|
∫

BR(x)

(
λω(y)

)−q
dy,

1

|BR(x)|
∫

BR(x)

(
Λω(y)

)p
dy.

The maximal inequality which we obtain in Section 2.3 behaves nicely in the scaling limit, due to the ergodic theorem,
and is enough to state the sublinearity of the corrector.
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Remark 1.4. It is believed that the optimal condition for a quenched invariance principle to hold is Eμ[λ−1],
Eμ[Λ] < ∞. In periodic environment this has been proven recently in [3] using ideas coming from harmonic analysis
and Muckenhaupt’s weights. The authors consider a generator in divergence form given by Lu = eV ∇ · (e−V ∇u),
where V : Rd → R is periodic and measurable such that eV + e−V is locally integrable. Their argument relies on a
time change and on the Sobolev inequality

(∫
Td

|u|rw dx

)2/r

≤ C

∫
Td

|∇u|2e−V dx,

where Td is the d-dimensional torus, u ∈ C1(Td) centered, r > 2 and w is expressed as an Hardy–Littlewood maximal
function.

In this setting it is not possible to use Moser’s iteration technique to prove the sublinearity of the corrector on
balls, since to bound the right hand side by the Ls(Td ,w) norm for some s < r would require further assumptions
on the integrability of eV + e−V . In fact, they don’t prove sublinearity of the correctors on balls but along the path
of the process. This approach relies on a global uniform upper bound for the density of the process, which can be
established due to the compactness of the periodic environment, and the fact that the process of the environment seen
from the particle is just the projection of the diffusion on the torus Td .

Remark 1.5. Under the conditions (a.1), (a.2) and that a quenched invariance principle holds, Moser’s method can
be successfully applied to obtain a quenched local central limit theorem for the process associated to (Eω,FΛ,ω)

on L2(Rd ,Λωdx), being FΛ,ω the closure of (Eω,C∞
0 (Rd)) in L2(Rd ,Λωdx), see [1,6]. In these papers, the proof

relies on a parabolic Harnack inequality, whose constant depends strongly on the space–time cylinder considered.
Thus, it cannot be applied to obtain Hölder continuity of the density. Nevertheless, it is shown that in the diffusive
limit it is possible to control oscillations by means of the ergodic theorem.

Despite the fact that a quenched invariance principle is believed to hold for Eμ[λ−1], Eμ[Λ] < ∞, it was shown
in [1] that the condition Eμ[λ−q ], Eμ[Λp] < ∞, with 1/p + 1/q < 2/d is sharp, for general stationary and ergodic
random environment, for a quenched local central limit theorem to hold.

A summary of the paper is the following. In Section 2 we develop a priori estimates for solutions to elliptic
equations, following Moser’s scheme. In this section the random environment plays no role, and accordingly we have
deterministic inequalities in a fairly general framework. Also, we construct a minimal diffusion process associated to
the deterministic version of (1.2) and we discuss its properties.

In Section 3 we apply the results obtained in Section 2 to construct a diffusion process for almost all ω ∈ Ω , we
define the environment process, and we show how to use it in order to prove that the diffusion is non-explosive.

In Section 4 we prove the existence of the harmonic coordinates and of the corrector. In particular we prove that we
can decompose our process in the sum of a martingale part, of which we can compute exactly the quadratic variation,
and a fluctuation part.

In Section 5 we use the results of the previous Sections in order to prove the sublinearity of the correctors and,
given that, Theorem 1.1.

2. Sobolev’s inequality and Moser’s iteration scheme

2.1. Notation and basic definitions

In this section we forget about the random environment. With a slight abuse of notation we will note with a(x), λ(x)

and Λ(x) the deterministic versions of a(τxω), λ(τxω) and Λ(τxω).
We are given a symmetric matrix a : Rd → Rd×d such that

(b.1) there exist λ,Λ : Rd → R non-negative such that for almost all x ∈Rd and ξ ∈ Rd

λ(x)|ξ |2 ≤ 〈
a(x)ξ, ξ

〉 ≤ Λ(x)|ξ |2,
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(b.2) there exist p,q ∈ [1,∞] satisfying 1/p + 1/q < 2/d such that

sup
r≥1

1

|Br |
∫

Br

Λp + λ−q dx < ∞.

Remark 2.1. By means of the ergodic theorem, (a.1) and (a.2) imply that the function x → a(τxω) satisfies (b.1) and
(b.2) for μ-almost all ω ∈ Ω .

Remark 2.2. Let B ⊂Rd be a ball. Assumptions (b.1) and (b.2) imply that, for u ∈ C∞
0 (B),

∥∥1Bλ−1
∥∥−1

q
‖∇u‖2

2q/q+1 ≤
∫
Rd

〈a∇u,∇u〉dx ≤ ‖1BΛ‖p‖∇u‖2
2p∗ ,

where p∗ = p/(p − 1). The relation 1/p + 1/q < 2/d is designed in such a way that the Sobolev’s conjugate of
2q/(q + 1) in Rd , which is given by

ρ(q, d) := 2qd

q(d − 2) + d
, (2.1)

satisfies ρ(q, d) > 2p∗, which implies that the Sobolev space W 1,2q/(q+1)(B) is compactly embedded in L2p∗
(B), see

for example Chapter 7 in [17].

Since the generator given in (1.1) is not well defined, in order to construct a process formally associated to it, we
must exploit Dirichlet forms theory. We shall here present some basic definitions coming from the Dirichlet forms
theory; for a complete treatment on the subject see [16].

Let X be a locally compact metric separable space, and m a positive Radon measure on X such that supp[m] = X.
Consider the Hilbert space L2(X,m) with scalar product 〈·, ·〉. We call a symmetric form, a non-negative definite
bilinear form E defined on a dense subset D(E) ⊂ L2(X,m). Given a symmetric form (E,D(E)) on L2(X,m), the
form Eβ := E + β〈·, ·〉 defines itself a symmetric form on L2(X,m) for each β > 0. Note that D(E) is a pre-Hilbert
space with inner product Eβ . If D(E) is complete with respect to Eβ , then E is said to be closed.

A closed symmetric form (E,D(E)) on L2(X,m) is called a Dirichlet form if it is Markovian, namely if for any
given u ∈ D(E), then v = (0 ∨ u) ∧ 1 belongs to D(E) and E(v, v) ≤ E(u,u).

We say that the Dirichlet form (E,D(E)) on L2(X,m) is regular if there is a subset H of D(E) ∩ C0(X) dense in
D(E) with respect to E1 and dense in C0(X) with respect to the uniform norm. H is called a core for D(E).

We say that the Dirichlet form (E,D(E)) is local if for all u,v ∈ D(E) with disjoint compact support E(u, v) = 0.
E is said strongly local if u,v ∈ D(E) with compact support and v constant on a neighborhood of suppu implies
E(u, v) = 0.

Let θ : Rd → R be a non-negative function such that θ−1, θ are locally integrable on Rd . Consider the symmetric
form E on L2(Rd , θdx) with domain C∞

0 (Rd) defined by

E(u, v) :=
∑
i,j

∫
Rd

aij (x)∂iu(x)∂j v(x) dx. (2.2)

Then, (E,C∞
0 (Rd)) is closable in L2(Rd , θdx) thanks to [31, Chapter II, Example 3b], since λ−1,Λ ∈ L1

loc(R
d) by

(b.2). We shall denote by (E,Fθ ) such a closure; it is clear that Fθ is the completion of C∞
0 (Rd) in L2(Rd , θdx) with

respect to E1. If u ∈ Fθ , then u is weakly differentiable with derivatives in L1
loc(R

d) and E(u,u) takes the form (2.2)
with ∂iu, i = 1, . . . , d being the weak derivative of u in direction i. Observe that (E,Fθ ) is a strongly local regular
Dirichlet form, having C∞

0 (Rd) as a core. In the case that θ ≡ 1 we will simply write F .
The Dirichlet forms theory [16, Theorem 7.2.2] allows to construct a diffusion process Mθ := (Xθ

t ,Pθ
x, ζ

θ ), asso-
ciated to (E,Fθ ), starting from all points outside a properly exceptional set. Since we shall work with random media,
the set of exceptional points may depend on the particular realization of the environment. In Section 2.4 we shall
construct a diffusion process starting for all x ∈ Rd at the price of local boundedness of the coefficients.
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Fix a ball B ⊂ Rd and consider E as defined in (2.2) but on L2(B, θdx), and with domain C∞
0 (B), then clearly

(E,C∞
0 (B)) is closable in L2(B, θdx). We denote by (E,Fθ

B) the closure, which also in this case is a strongly local
regular Dirichlet form.

2.2. Sobolev’s inequalities

Let us introduce some notation. Let B ⊂Rd be an open bounded set. For a function u :Rd →R and for r ≥ 1 we note

‖u‖r :=
(∫

Rd

∣∣u(x)
∣∣r dx

)1/r

, ‖u‖r,Λ :=
(∫

Rd

∣∣u(x)
∣∣rΛ(x)dx

)1/r

,

‖u‖B,r :=
(

1

|B|
∫

B

∣∣u(x)
∣∣r dx

)1/r

.

In the next proposition it is enough to assume the local integrability of Λ and the q-local integrability of λ−1.

Proposition 2.1 (Local Sobolev inequality). Fix a ball B ⊂ Rd . Then there exists a constant Csob > 0, depending
only on the dimension d ≥ 2, such that for all u ∈FB

‖u‖2
ρ ≤ Csob

∥∥1Bλ−1
∥∥

q
E(u,u). (2.3)

Proof. We start proving (2.3) for u ∈ C∞
0 (B). Since ρ as defined in (2.1) is the Sobolev conjugate of 2q/(q + 1)

in Rd , by the classical Sobolev’s inequality there exists Csob > 0 depending only on d such that

‖u‖ρ ≤ Csob‖∇u‖2q/(q+1),

where it is clear that we are integrating over B . By Hölder’s inequality and (b.1) we can estimate the right-hand side
as follows

‖∇u‖2
2q/(q+1) =

(∫
B

|∇u|2q/(q+1)λq/(q+1)λ−q/(q+1) dx

)(q+1)/q

≤ ∥∥1Bλ−1
∥∥

q
E(u,u),

which leads to (2.3) for u ∈ C∞
0 (B). By approximation, the inequality is easily extended to u ∈FB . �

Proposition 2.2 (Local weighted Sobolev inequality). Fix a ball B ⊂ Rd . Then there exists a constant Csob > 0,
depending only on the dimension d ≥ 2, such that for all u ∈FΛ

B

‖u‖2
ρ/p∗,Λ ≤ Csob

∥∥1Bλ−1
∥∥

q
‖1BΛ‖2p∗/ρ

p E(u,u). (2.4)

Proof. The proof easily follows from Hölder’s inequality

‖u‖2
ρ/p∗,Λ ≤ ‖u‖2

ρ‖1BΛ‖2p∗/ρ
p

and the previous proposition. �

Remark 2.3. From these two Sobolev’s inequalities it follows that the domains FB and FΛ
B coincide for all balls

B ⊂ Rd . Indeed, from (2.3) and (2.4), since ρ,ρ/p∗ > 2, we get that (FB,E) and (FΛ
B ,E) are two Hilbert spaces;

therefore FB,FΛ
B coincide with their extended Dirichlet space which by [15, page 324] is the same, hence FB =FΛ

B .
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Cutoffs
Since we want to get apriori estimates for solutions to elliptic partial differential equations in the spirit of the classical
theory, we will need to work with functions that are locally in F or FΛ and with cutoffs.

Let B ⊂ Rd be a ball, a cutoff on B is a function η ∈ C∞
0 (B), such that 0 ≤ η ≤ 1. Given θ : Rd → R as before,

we say that u ∈Fθ
loc, if for all balls B ⊂Rd there exists uB ∈Fθ such that u = uB almost surely on B .

In view of these notations, for u,v ∈ Fθ
loc we define the bilinear form

Eη(u, v) =
∑
i,j

∫
Rd

aij (x)∂iu(x)∂j v(x)η2(x) dx. (2.5)

Lemma 2.1. Let B ⊂Rd and consider a cutoff η ∈ C∞
0 (B) as above. Then, u ∈ Floc ∪FΛ

loc implies ηu ∈FB .

Proof. Take u ∈ FΛ
loc, then there exists ū ∈ FΛ such that u = ū on 2B . Let {fn}N ⊂ C∞

0 (Rd) be such that fn → ū

with respect to E + 〈·, ·〉Λ. Clearly ηfn ∈ FΛ
B and ηfn → ηū = ηu in L2(B,Λdx). Moreover

E(ηfn − ηfm) ≤ 2E(fn − fm) + ‖∇η‖2∞
∫

B

|fn − fm|2Λdx.

Hence ηfn is Cauchy in L2(B,Λdx) with respect to E + 〈·, ·〉Λ, which implies that ηu ∈ FΛ
B = FB . If u ∈ Floc the

proof is similar, and one has only to observe that {fn} is Cauchy in W 2q/(q+1)(B), which by Sobolev’s embedding
theorem implies that {fn} is Cauchy in L2(B,Λdx). �

Proposition 2.3 (Local Sobolev inequality with cutoff). Fix a ball B ⊂ Rd and a cutoff function η ∈ C∞
0 (B) as

above. Then there exists a constant Csob > 0, depending only on the dimension d ≥ 2, such that for all u ∈ FΛ
loc ∪Floc

‖ηu‖2
ρ ≤ 2Csob

∥∥1Bλ−1
∥∥

q

[
Eη(u,u) + ‖∇η‖2∞‖1Bu‖2

2,Λ

]
, (2.6)

and

‖ηu‖2
ρ/p∗,Λ ≤ 2Csob

∥∥1Bλ−1
∥∥

q
‖1BΛ‖2p∗/ρ

p

[
Eη(u,u) + ‖∇η‖2∞‖1Bu‖2

2,Λ

]
. (2.7)

Proof. We prove only (2.6), being (2.7) analogous. Take u ∈ Floc ∪FΛ
loc, by Lemma 2.1, ηu ∈ FB , therefore we can

apply (2.3) and get

‖ηu‖2
ρ ≤ Csob

∥∥1Bλ−1
∥∥

q
E(ηu,ηu).

To get (2.6) we compute ∇(ηu) = u∇η + η∇u and we easily estimate

E(ηu,ηu) =
∫
Rd

〈
a∇(ηu),∇(ηu)

〉
dx

≤ 2
∫
Rd

〈a∇u,∇u〉η2 dx + 2
∫
Rd

〈a∇η,∇η〉|u|2 dx

≤ 2Eη(u,u) + 2‖∇η‖2∞‖1Bu‖2
2,Λ. �

2.3. Maximal inequality for Poisson’s equation

Let f : Rd → R be some function with essentially bounded weak derivatives. We say that u ∈ Floc is a solution
(subsolution or supersolution) of the Poisson equation, if

E(u,ϕ) = −
∫
Rd

〈a∇f,∇ϕ〉dx (≤ or ≥) (2.8)
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for all ϕ ∈ C∞
0 (Rd), ϕ ≥ 0. For a ball B ⊂Rd , we say that u ∈Floc is a solution (subsolution or supersolution) of the

Poisson equation in B if (2.8) is satisfied for all ϕ ∈FB , ϕ ≥ 0.
Given a positive subsolution u ∈ Floc of (2.8), we would like to test for ϕ = u2α−1η2 with α > 1 and η a cutoff

function in B . The aim is to get a priori estimates for u. One must be careful with powers of the function u. Indeed,
in general u2α−1 is not a weakly differentiable function, and therefore it is not clear that ϕ ∈F . The following lemma
is needed to address such a problem.

Lemma 2.2. Let G : (0,∞) → (0,∞) be a Lipschitz function with Lipschitz constant LG > 0. Assume also that
G(0+) = 0. Take u ∈F , u ≥ ε, for some ε > 0 then G(u) ∈F .

Proof. The result follows observing that G(u)/LG is a normal contraction of u ∈ F , and by standard Dirichlet form
theory, see [16, Chapter 1] for details. �

Proposition 2.4. Let u ∈ Floc be a subsolution of (2.8) in B . Let η ∈ C∞
0 (B) be a cutoff function, 0 ≤ η ≤ 1. Then

there exists a constant C1 > 0 such that for all α ≥ 1

∥∥ηu+∥∥2α

B,αρ
≤ α2C1

∥∥λ−1
∥∥

B,q
‖Λ‖B,p|B|2/d

[‖∇η‖2∞
∥∥u+∥∥2α

B,2αp∗ + ‖∇f ‖2∞
∥∥u+∥∥2α−2

B,2αp∗
]
. (2.9)

Proof. We can assume u ∈ F2B since we shall look only inside B and u ∈ Floc. We build here a function G to be a
prototype for a power function. Let G : (0,∞) → (0,∞) be a piecewise C1 function such that G′(s) is bounded by a
constant say C > 0. Assume also that G has a non-negative, non-decreasing derivative G′(x) and G(0+) = 0. Define
H(s) ≥ 0 by H ′(s) = √

G′(s), H(0+) = 0. Observe that we have G(s) ≤ sG′(s), H(s) ≤ sH ′(s). Let η be a cutoff
in B as above. Then, we have by Lemmas 2.2 and 2.1 that

ϕ = η2(G(
u+ + ε

) − G(ε)
) ∈ FB.

In particular, ϕ is a proper test function. In order to lighten the notation we denote Gε(x) := G(x+ + ε) − G(ε) and
Hε(x) := H(x+ + ε) − H(ε). Since u is a subsolution to (2.8) in B , we have

Eω
(
u,η2Gε(u)

) ≤ −
∫
Rd

〈
a∇f,∇(

η2Gε(u)
)〉

dx. (2.10)

Consider first the left-hand side and observe that

E
(
u,η2Gε(u)

) =
∫
Rd

〈
a∇u+,∇u+〉

G′
ε(u)η2 dx + 2

∫
Rd

〈a∇u,∇η〉Gε(u)η dx.

Since ∫
Rd

〈
a∇u+,∇u+〉

G′
ε(u)η2 dx = Eη

(
Hε(u),Hε(u)

)
,

moving everything on the right-hand side of (2.10), and taking the absolute value, we have

Eη

(
Hε(u),Hε(u)

) ≤ 2
∫
Rd

∣∣〈a∇u,∇η〉Gε(u)η
∣∣dx +

∫
Rd

∣∣〈a∇f,∇(
Gε(u)η2)〉∣∣dx. (2.11)

The first term is estimated using Gε(u) ≤ u+G′
ε(u) and by Cauchy–Schwartz inequality (we use also the fact that

u+∇u = u+∇u+)
∫
Rd

∣∣〈a∇u,∇η〉Gε(u)η
∣∣dx ≤

∫
Rd

∣∣〈a∇u+,∇η
〉
G′

ε(u)u+η
∣∣dx

≤ Eη

(
Hε(u),Hε(u)

)1/2∥∥G′
ε(u)

(
u+)2∥∥1/2

1,Λ
‖∇η‖∞.
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The second term, after using Leibniz rule, is controlled by
∫
Rd

∣∣〈a∇f,∇u+〉
G′

ε(u)η2
∣∣dx + 2

∫
Rd

∣∣〈a∇f,Gε(u)η∇η
〉∣∣dx

whose terms can be estimated by
∫
Rd

∣∣〈a∇f,∇u+〉
G′

ε(u)η2
∣∣dx ≤ ‖∇f ‖∞

∥∥1BG′
ε(u)

∥∥1/2
1,Λ

Eη

(
Hε(u),Hε(u)

)1/2

and by
∫
Rd

∣∣〈a∇f,∇η〉Gε(u)η
∣∣dx ≤ ‖∇η‖∞‖∇f ‖∞

∥∥Gε(u)1B

∥∥
1,Λ

.

Putting everything together in (2.11) we end up with the estimate

Eη

(
Hε(u),Hε(u)

) ≤ 2
∥∥G′

ε(u)
(
u+)2∥∥1/2

1,Λ
‖∇η‖∞Eη

(
Hε(u),Hε(u)

)1/2

+ ‖∇f ‖∞
∥∥1BG′

ε(u)
∥∥1/2

1,Λ
Eη

(
Hε(u),Hε(u)

)1/2

+ 2‖∇η‖∞‖∇f ‖∞
∥∥Gε(u)1B

∥∥
1,Λ

,

which finally gives, up to a universal constant c > 0,

Eη

(
Hε(u),Hε(u)

) ≤ c
[∥∥G′

ε(u)
(
u+)2∥∥

1,Λ
‖∇η‖2∞ + ‖∇f ‖2∞

∥∥1BG′
ε(u)

∥∥
1,Λ

+ ‖∇η‖∞‖∇f ‖∞
∥∥Gε(u)1B

∥∥
1,Λ

]
.

At this point, it is important to observe that Hε(u) ∈F so that we can apply the Sobolev’s inequality (2.6) with cut-off
function η, namely

∥∥ηHε(u)
∥∥2

ρ
≤ 2Csob

∥∥1Bλ−1
∥∥

q

[
Eω

η

(
Hε(u),Hε(u)

) + ‖∇η‖2∞
∥∥1BHε(u)

∥∥2
2,Λ

]
.

Concatenating the two inequalities yields

∥∥ηHε(u)
∥∥2

ρ
≤ 2C1

∥∥1Bλ−1
∥∥

q

[∥∥H ′
ε(u)2u2

∥∥
1,Λ

‖∇η‖2∞ + ‖∇f ‖2∞
∥∥1BH ′

ε(u)2
∥∥

1,Λ

+ ‖∇η‖∞‖∇f ‖∞
∥∥Gε(u)1B

∥∥
1,Λ

+ ‖∇η‖2∞
∥∥1BHε(u)

∥∥2
2,Λ

]
.

Finally it is time to fix a H,G as power-like function. Namely we take, for α > 1

HN(x) :=
{

xα, x ≤ N ,
αNα−1x + (1 − α)Nα, x > N ,

which corresponds in taking

GN(x) =
∫ x

0
H ′

N(s)2 ds.

The function GN(x) has the right properties, moreover HN(x) ↑ xα and GN(x) ↑ α2

2α−1x2α−1 as N goes to infinity.
Therefore, letting N → ∞, and using the monotone convergence theorem, we obtain

∥∥η
(
u+ + ε

)α∥∥2
ρ

≤ 2C1
∥∥1Bλ−1

∥∥
q

[(
α2 + 1

)∥∥1B

(
u+ + ε

)2α∥∥
1,Λ

‖∇η‖2∞

+ ‖∇f ‖2∞α2
∥∥1B

(
u+ + ε

)2α−2∥∥
1,Λ

+ α2

2α − 1
‖∇η‖∞‖∇f ‖∞

∥∥u2α−11B

∥∥
1,Λ

]
.
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Taking the limit as ε → 0 and averaging over balls we get

∥∥η
(
u+)α∥∥2

B,ρ
≤ 2C1

∥∥λ−1
∥∥

B,q
‖Λ‖B,p|B|2/d

[(
α2 + 1

)∥∥(
u+)2α∥∥

B,p∗‖∇η‖2∞

+ ‖∇f ‖2∞α2
∥∥(

u+)2α−2∥∥
B,p∗ + α2

2α − 1
‖∇η‖∞‖∇f ‖∞

∥∥(
u+)2α−1∥∥

B,p∗

]
.

By Jensen’s inequality it holds

∥∥u+∥∥
B,(2α−2)p∗ ≤ ∥∥u+∥∥

B,2αp∗ ,
∥∥u+∥∥

B,(2α−1)p∗ ≤ ∥∥u+∥∥
B,2αp∗ ,

therefore we can rewrite and get the desired result

∥∥ηu+∥∥2α

B,αρ
≤ 2C1

∥∥λ−1
∥∥

B,q
‖Λ‖B,p|B|2/d

[(
α2 + 1

)∥∥u+∥∥2α

B,2αp∗‖∇η‖2∞

+ ‖∇f ‖2∞α2
∥∥u+∥∥2α−2

B,2αp∗ + α2

2α − 1
‖∇η‖∞‖∇f ‖∞

∥∥u+∥∥2α−1
B,2αp∗

]
.

Finally, absorbing the mixed product in the two squares we obtain (2.9). �

Clearly the same result holds, with the same constant, also for supersolutions with u+ replaced by u−. It is then clear
that we can get the same type of inequality for solutions to (2.8). This is the content of the next corollary.

Corollary 2.1. Let u ∈ Floc be a solution of (2.8) in B . Let η ∈ C∞
0 (B) be a cut-off function. Then there exists a

constant C1 > 0 such that for all α ≥ 1

‖ηu‖2α
B,αρ ≤ α2C1

∥∥λ−1
∥∥

B,q
‖Λ‖B,p|B|2/d

[‖∇η‖2∞‖u‖2α
B,2αp∗ + ‖∇f ‖2∞‖u‖2α−2

B,2αp∗
]
. (2.12)

Proof. The proof is trivial, since u is both a subsolution and a supersolution of (2.8). Moreover, u = u+ − u− and
‖u+‖r ∨ ‖u−‖r ≤ ‖u‖r . �

Theorem 2.1. Fix a point x0 ∈ Rd and R > 0. Denote by B(R) the ball of center x0 and radius R. Suppose that u is
a solution in B(R) of (2.8), and assume that |∇f | ≤ cf /R. Then for any p,q ∈ (1,∞] such that 1/p + 1/q < 2/d ,
d ≥ 2, there exist κ := κ(q,p, d) ∈ (1,∞), γ := γ (q,p, d) ∈ (0,1] and C2 := C2(q,p, d, cf ) > 0 such that

‖u‖B(σ ′R),∞ ≤ C2

(
1 ∨ ‖λ−1‖B(R),q‖Λ‖B(R),p

(σ − σ ′)2

)κ

‖u‖γ

B(σR),ρ ∨ ‖u‖B(σR),ρ, (2.13)

for any fixed 1/2 ≤ σ ′ < σ ≤ 1.

Proof. We are going to apply inequality (2.12) iteratively. For fixed 1/2 ≤ σ ′ < σ ≤ 1, and k ∈ N define

σk = σ ′ + 2−k+1(σ − σ ′).
It is immediate that σk − σk+1 = 2−k+1(σ − σ ′) and that σ1 = σ , furthermore σk ↓ σ ′. We have already observed that
ρ > 2p∗, where p∗ is the Hölder’s conjugate of p. Set αk := (ρ/2p∗)k , k ≥ 1, clearly αk > 1 for all k ≥ 1. Finally
consider a cutoff ηk which is identically 1 on B(σk+1R) and ηk = 0 on ∂B(σkR), assume that ηk has a linear decay
on B(σkR) \ B(σk+1R), i.e. chose ηk in such a way that ‖∇ηk‖∞ ≤ 2k/(σ − σ ′)R.
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An application of Corollary 2.1 and of the relation αkρ = 2αk+1p
∗, yields

‖u‖B(σk+1R),2αk+1p
∗

≤
(

C
22kα2

k |B(σkR)|2/d

(σ − σ ′)2R2

∥∥λ−1
∥∥

B(σkR),q
‖Λ‖B(σkR),p

)1/(2αk)

‖u‖γk

B(σkR),2αkp∗

≤
(

C
22kα2

k

(σ − σ ′)2

∥∥λ−1
∥∥

B(R),q
‖Λ‖B(R),p

)1/(2αk)

‖u‖γk

B(σkR),2αkp
∗ ,

where γk = 1 if ‖u‖B(σkR),2αkp
∗ ≥ 1 and γk = 1 − 1/αk otherwise. We can iterate the inequality above and stop at

k = 1, so that we get

‖u‖B(σj+1R),2αj+1p
∗ ≤

j∏
k=1

(
C

(ρ/p∗)2k

(σ − σ ′)2

∥∥λ−1
∥∥

B(R),q
‖Λ‖B(R),p

)1/(2αk)

‖u‖
∏j

k=1 γk

B(σR),ρ.

Observe that κ := 1
2

∑
1/αk < ∞,

∑
k/αk < ∞ and that

‖u‖B(σ ′R),2αj p∗ ≤
( |B(σkR)|

|B(σ ′R)|
)1/(2αj p∗)

‖u‖B(σj R),2αj p∗ ≤ K‖u‖B(σj R),2αj p∗ ,

for some K and all j ≥ 1. Hence, taking the limit as j → ∞, gives the inequality

‖u‖B(σ ′R),∞ ≤ C2

(
1 ∨ ‖λ−1‖B(R),q‖Λ‖B(R),p

(σ − σ ′)2

)κ

‖u‖
∏∞

k=1 γk

B(σR),ρ.

Define γ := ∏∞
k=1(1 − 1/αk) ∈ (0,1]. Then, 0 < γ ≤ ∏∞

k=1 γk ≤ 1 and the above inequality can be written as

‖u‖B(σ ′R),∞ ≤ C2

(
1 ∨ ‖λ−1‖B(R),q‖Λ‖B(R),p

(σ − σ ′)2

)κ

‖u‖γ

B(σR),ρ ∨ ‖u‖B(σR),ρ,

which is the desired inequality. �

The previous inequality can be improved. This is what the next corollary is about. For the proof we follow the
argument of [32, Theorem 2.2.3].

Corollary 2.2. Suppose that u satisfies the assumptions of Theorem 2.1. Then, for all α ∈ (0,∞) and for any 1/2 ≤
σ ′ < σ < 1 there exist C3 := C3(q,p, d, cf ) > 0, γ ′ := γ ′(γ,α,ρ) and κ ′ := κ ′(κ,α,ρ), such that

‖u‖B(σ ′R),∞ ≤ C3

(
1 ∨ ‖λ−1‖B(R),q‖Λ‖B(R),p

(σ − σ ′)2

)κ ′

‖u‖γ ′
B(σR),α

∨ ‖u‖B(σR),α. (2.14)

Proof. From inequality (2.13) we get

‖u‖B(σ ′R),∞ ≤ C2

(
1 ∨ ‖λ−1‖B(R),q‖Λ‖B(R),p

(σ − σ ′)2

)κ

‖u‖γ

B(σR),ρ ∨ ‖u‖B(σR),ρ.

Hence, the result follows immediately for α > ρ by means of Jensen’s inequality. For α ∈ (0, ρ) we use again an
iteration argument. Consider σk = σ − 2−k(σ − σ ′). By Hölder’s inequality we get

‖u‖B(σkR),ρ ≤ ‖u‖θ
B(σkR),α‖u‖1−θ

B(σkR),∞
with θ = α/ρ. An application of inequality (2.13) gives

‖u‖B(σk−1R),∞ ≤ 22κkJ‖u‖γkθ

B(σR),α
‖u‖γk−γkθ

B(σkR),∞,



1548 A. Chiarini and J.-D. Deuschel

here γk = 1 if ‖u‖B(σkR),ρ ≥ 1, γk = γ otherwise and J = c(1 ∨ ‖λ−1‖B(R),q‖Λ‖B(R),p/(σ − σ ′)2)κ , where c is a
constant that can be taken greater than one.

By iteration from k = 1 up to i > 1, via similar computations as the Theorem 2.1, we get

‖u‖B(σ ′R),∞ ≤ (
J22κ

)∑i
k=1 k(1−θ)k−1(‖u‖γ θ

∑i
k=1(γ−γ θ)k−1

B(σR),α ∨ ‖u‖θ
∑i

k=1(1−θ)k−1

B(σR),α

)‖u‖βi

B(σR),∞,

where βi → 0 as i → ∞, which gives the desired result taking the limit as i → ∞. In particular we get γ ′ = γ θ/

(1 − γ + γ θ). �

2.4. Existence of the minimal diffusion

In the context of diffusions in random environment we would like to be able to fix a common starting position for
almost all realizations of the environment, or alternatively to start the process from all possible positions x ∈ Rd . To
achieve this aim we assume the following:

(b.3) λ−1(x),Λ(x) ∈ L∞
loc(R

d).

Recall that the resolvent GB,θ
α restricted to B of a diffusion process Mθ := (Xθ

t ,Pθ
x, ζ

θ ) is defined by

GB,θ
α f (x) := Eθ

x

[∫ τB

0
e−αtf

(
Xθ

t

)
dt

]
, f ≥ 0

being τB = inf{t > 0 : Xθ
t ∈ Bc}. When θ ≡ 1 we will drop it from the notation.

Theorem 2.2. Assume (b.1), (b.2), (b.3), and θ, θ−1 ∈ L∞
loc(R

d). Denote by C∞(B) the set of continuous functions
vanishing at the boundary. Then, there exists a unique standard diffusion process Mθ := (Xθ

t ,Pθ
x, ζ

θ ), x ∈ Rd whose
resolvent GB,θ

α restricted to any open bounded set B satisfies

GB,θ
α f ∈ C∞(B), f ∈ Lp(B, θdx),p > d

and GB,θ
α C∞(B) is dense in C∞(B).

Proof. For a proof see for example [22,24,34]. �

We will consider from now on only the process Mθ constructed in Theorem 2.2. Fix a ball B ⊂ Rd and consider
the semigroup associated to the process above killed when exiting from B , then its semigroup is given by

PB,θ
t f (x) := Ex

[
f

(
Xθ

t

)
, t < τB

]
.

By Theorem 2.2 and Hille–Yoshida’s theorem, PB,θ
t C∞(B) ⊂ C∞(B). Such a property turns out to be very handy to

remove all the ambiguities about exceptional sets and to construct a transition kernel p
B,θ
t (x, y) for PB,θ

t which is
jointly continuous in x, y. This is the content of the next theorem whose proof is a slight variation of [4, Theorem 2.1]
since we assume to have a Feller semigroup.

Theorem 2.3. Let B ⊂Rd a ball and Pt be a Feller semigroup on L2(B,m), i.e. PtC∞(B) ⊂ C∞(B). Assume that

‖Pt f ‖∞ ≤ M(t)‖f ‖1, (2.15)

for all f ∈ L1(B,m) and t > 0 and some lower semicontinuous function M(t) on (0,∞). Then there exists a positive
symmetric kernel pt(x, y) defined on (0,∞) × B × B such that

(i) Pt (x, dy) = pt (x, y)m(dy), for all x ∈ B , t > 0,
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(ii) for every t, s > 0 and x, y ∈ B

pt+s(x, y) =
∫

B

pt (x, z)ps(z, y)m(dz),

(iii) pt(x, y) ≤ M(t) for every t > 0 and x, y ∈ B ,
(iv) for every fixed t > 0, pt(x, y) is jointly continuous in x, y ∈ B .

We see that if we choose m(dx) = θ(x) dx and we assume (b.1), (b.2), (b.3) we immediately get the existence of a
transition kernel p

B,θ
t (x, y) for the semigroup PB,θ

t , jointly continuous in x, y ∈ B . Indeed assumption (2.15) is easily
satisfied by (b.3). In the next proposition we prove the existence of a transition kernel pθ

t (x, y) for the semigroup Pθ
t

of Mθ by a localization argument.

Proposition 2.5. Assume (b.3) and θ, θ−1 ∈ L∞
loc(R

d). Consider the semigroup Pθ
t associated to the minimal diffu-

sion Mθ . Then, there exists a transition kernel pθ
t (x, y) defined on (0,∞) ×Rd ×Rd associated to Pθ

t ,

Pθ
t f (x) =

∫
Rd

f (y)pθ
t (x, y)θ(y) dy ∀x ∈Rd , t > 0.

Moreover, for all t > 0 and x, y ∈ Rd

p
BR,θ
t (x, y) ↗ pθ

t (x, y), R → ∞,

being the limit increasing in R.

Proof. The proof comes from the fact that for all balls B ⊂Rd the semigroup PB,θ
t satisfies (2.15), which means that

Pθ
t is locally ultracontractive and from Theorem 2.12 of [18]. �

As a further consequence of assumption (b.3), more precisely from the fact that λ is locally bounded from below
we can prove that Mθ is an irreducible process.

Proposition 2.6. Assume (b.3) and assume θ−1, θ ∈ L∞
loc(R

d). Then the process Mθ is irreducible.

Proof. It follows immediately from Corollary 4.6.4. in [16]. �

In the next theorem we clarify the relation between M and Mθ , namely, we show that Mθ can be obtained by M
through a time change.

Theorem 2.4 (Time change). Assume (b.3) and assume θ−1, θ ∈ L∞
loc(R

d). Define M̂ = (X̂t ,Px) by

X̂t := Xτt , τt = inf

{
s > 0;

∫ s

0
θ(Xu)du > t

}
,

then P̂t f (x) = Ex[f (Xτt )] =Pθ
t f (x) for almost all x ∈Rd , t > 0 and f : Rd → R positive and measurable.

Proof. According to Theorem 6.2.1 of [16], P̂t f (x) =Pθ
t f (x) coincide for almost all x ∈ Rd and t > 0. �

There is a natural time change θ : Rd → R≥0 which makes the process Mθ conservative. Namely we pick θ ≡ Λ.
The condition we give will be suitable in the setting of Ergodic environment, and in particular, is a consequence
of (b.2).
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Proposition 2.7. Assume that

lim sup
R→∞

1

|BR|
∫

BR

Λ(x)dx < ∞.

Then the process MΛ is conservative.

Proof. The proof is an application of Theorem 5.7.3 of [16]. �

3. Diffusions in random environment

3.1. Construction of the process in random environment

By a stationary and ergodic random environment (Ω,G,μ, {τx}Rd ), we mean a probability space (Ω,G,μ) on which
is defined a group of transformations {τx}x∈Rd acting on Ω such that

(i) μ(τxA) = μ(A) for all A ∈ G and any x ∈ Rd ;
(ii) if τxA = A for all x ∈Rd , then μ(A) ∈ {0,1};

(iii) the function (x,ω) → τxω is B(Rd) ⊗ G-measurable.

Let us consider the following bilinear form

Eω(u, v) :=
∑
i,j

∫
Rd

aω
ij (x)∂iu(x)∂j v(x) dx, u, v ∈ C∞

0

(
Rd

)
,

where aω
ij (x) satisfies (a.1), (a.2) and (a.3) of Section 1.

Throughout this section we will look at two Dirichlet forms determined by Eω above. One is the Dirichlet form
(Eω,Fω) on L2(Rd, dx) where Fω is the completion of C∞

0 (Rd) in L2(Rd , dx) with respect to Eω
1 := Eω + (·, ·).

The second is the Dirichlet form (Eω,FΛ,ω) on L2(Rd,Λωdx) where FΛ,ω is the completion of C∞
0 (Rd) in

L2(Rd ,Λωdx) with respect to Eω
1 := Eω + (·, ·)Λ.

We have already observed that (a.1), (a.2) and (a.3) imply (b.1), (b.2) and (b.3) of Section 2, for μ-almost all
ω ∈ Ω . In particular, by Theorem 2.2, we have the existence, for μ-almost all ω ∈ Ω , of two minimal diffusion
processes, Mω = (Xω

t ,Pω
x , ζω) and MΛ,ω = (X

Λ,ω
t ,P

Λ,ω
x ), respectively associated to (Eω,Fω) and (Eω,FΛ,ω).

Denote by Pω
t the semigroup associated to Mω and by pω

t (x, y) its transition kernel with respect to dx. Anal-
ogously, denote by Qω

t the semigroup associated to MΛ,ω and by qω
t (x, y) its transition kernel with respect to

Λω(x)dx.

Lemma 3.1 (Translation property for killed process). Fix a ball B ⊂Rd . Then for μ-almost all ω ∈ Ω

p
B−z,τzω
t (x − z, y − z) = p

B,ω
t (x, y),

(3.1)
q

B−z,τzω
t (x − z, y − z) = q

B,ω
t (x, y),

for all t ≥ 0, x, y ∈ B and z ∈Rd .

Proof. We prove property (3.1) only for the semigroup QB,ω
t , being the other equivalent. It is known in [16] that the

resolvent GB,ω
α is uniquely determined by the following equation

Eω
α

(
GB,ω

α f, v
) =

∫
B

f (x)v(x)Λ(x;ω)dx,
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for all f ∈ L2(B), v ∈ W 2
0 (B). On the other hand

Eω
α

(
GB,ω

α f, v
) =

∫
B−z

f (x + z)v(x + z)Λ(x; τzω)dx

= Eτzω
α

([
GB−z,τzω

α f (· + z)
]
, v(· + z)

)
= Eω

α

([
GB−z,τzω

α f (· + z)
]
(· − z), v

)
,

for all f ∈ L2(B), v ∈ W 2
0 (B). Hence, for μ-almost all ω ∈ Ω

[
GB−zτzω

α f (· + z)
]
(x − z) = GB,ω

α f (x), a.a. x ∈ B,∀z ∈Rd .

Moving from the resolvent to the semigroup we get the relation

[
QB−z,τzω

t f (· + z)
]
(x − z) =QB,ω

t f (x),

for all f ∈ C∞(B). The equality is true for all x ∈ B and for all z ∈Rd by the Feller property, μ-almost surely. Finally
it is easy to derive the equality for the transition kernel and get

q
B−z,τzω
t (x − z, y − z) = q

B,ω
t (x, y), (3.2)

for all z ∈ Rd , and almost all x, y ∈ B , μ-almost surely. Using the joint continuity of q
B,ω
t (x, y) in x and y (cf.

Theorem 2.3(iv)) we get (3.2) for all z ∈ Rd , x, y ∈ B , μ-almost surely. �

Lemma 3.2 (Translation property). For μ-almost all ω ∈ Ω

p
τzω
t (x − z, y − z) = pω

t (x, y),

q
τzω
t (x − z, y − z) = qω

t (x, y), (3.3)

for all t ≥ 0 and x, y, z ∈ Rd .

Proof. It follows from the previous lemma, passing to the limit. Namely, take an increasing sequence of balls Bn ↑Rd ,
then we have

p
τzω
t (x − z, y − z) = lim

n→∞p
Bn−z,τzω
t (x − z, y − z)

= lim
n→∞p

Bn,ω
t (x, y) = pω

t (x, y). �

3.2. Environment process

We shall first construct the environment process for MΛ.ω = (X
Λ,ω
t ,P

Λ,ω
x ) =: (Yω

t ,Qω
x ), x ∈ Rd , since we know that

it is conservative μ-almost surely by Proposition 2.7. From this construction and the ergodic theorem we will prove
that also the process Mω is conservative μ-almost surely.

For a fixed ω ∈ Ω , we define a stochastic process on Ω by

ηω
t (ω̃) := τYω

t (ω̃)ω, t ≥ 0,

where ω̃ is a point of the sample space of the diffusion MΛ,ω . The process ηω
t under the measure Qω

x is Ω valued
and it is known as the environment process. First, we describe the semigroup associated to ηω

t under Qω
0 . Take any

positive and bounded G-measurable function f : Ω → R and observe that

Qt f (ω) := Eω
0

[
f (τYω

t
ω)

] =Qω
t f (τ.ω)(0) =

∫
Rd

f (τyω)qω
t (0, y)Λ(τyω)dy.
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Proposition 3.1. {Qt }t≥0 defines a symmetric strongly continuous semigroup on L2(Ω,Λdμ), the process t → ηω
t is

ergodic with respect to μ.

Proof. The proof of the contractivity, the symmetry and the strong continuity of {Qt }t≥0 on L2(Ω,Λdμ) follows
from the stationarity of the environment and by (3.3), it is standard and can be found in [28,38].

The proof of the ergodicity of the process t → ηω
t with respect to Λdμ can also be found in [28] and it is based on

the irreducibility of the process Yω
t , which was proven in Proposition 2.6. �

Proposition 3.2 (Ergodic theorem). For all functions f ∈ Lp(Ω,Λdμ), p ≥ 1, set f (x;ω) = f (τxω), then

lim
t→∞

1

t

∫ t

0
f

(
Yω

s ;ω)
ds = Eμ[f Λ], Qω

x -a.s., a.a. x ∈Rd ,

for μ-almost all ω ∈ Ω .

Proof. In order to have the result stated, observe that the measure Q
τxω
0 induced by Q

τxω
0 through η

τxω
t on the space

of Ω-valued trajectories coincides with the measure Qω
x induced by Qω

x through ηω
t . It is then easy to show that for

any ball B ⊂Rd the two measures
∫

Ω

Qω
0 (·) dμ = 1

|B|
∫

B×Ω

Q
τxω
0 (·) dx dμ = 1

|B|
∫

Ω×B

Qω
x (·) dμdx

coincide; in the first equality we used the stationarity of the environment. The fact that the limiting relation hold∫
Qω

0 (·) dμ-almost surely follows immediately from Proposition 3.1, then the result follows. �

We use Proposition 3.2 to control the explosion time of the process Mω = (Xω
t ,Pω

x , ζω) in terms of the time
changed process MΛ,ω . Indeed consider the time change

τt := inf

{
s > 0 :

∫ s

0

1

Λ(Yω
u ,ω)

du > t

}
,

and define the process Ŷ ω
t = Yω

τt
. We know, by Theorem 2.4 that Ŷ ω

t is a version of Xω
t . It is not difficult to see that

the explosion time of Ŷ ω
t equals

∫ ∞
0

1
Λ(Yω

u ,ω)
du [16, see Chapter 6]. By Proposition 3.2,

lim
t→∞

1

t

∫ t

0

1

Λ(Yω
s ;ω)

ds = Eμ

[
Λ−1Λ

] = 1, Qω
x -a.s., a.a. x ∈Rd ,

for μ-almost all ω ∈ Ω . It follows that Ŷ ω
t is conservative for almost all starting points x ∈Rd , μ-almost surely. This,

together with Theorem 2.4 leads to the following result.

Theorem 3.1. Let Mω = (Xω
t ,Pω

x , ζω), x ∈ Rd , be the minimal diffusion constructed in Section 3.1. Then such a
diffusion is conservative.

Proof. By Theorem 2.4, Pω
t 1(x) = P̂ω

t 1(x) = 1 for almost all x ∈ Rd , and since Mω is our minimal diffusion, then
Pω

t 1(x) = 1 for all x ∈ Rd . We can pass from almost all to all x ∈ Rd since the minimal diffusion satisfies property
(4.2.9) in [16], namely Pω

t (x, dy) is absolutely continuous with respect to the Lebesgue measure for each t > 0 and
each x ∈ Rd (see Theorem 4.5.4 in [16]). �

From now on we will completely forget about the time changed process. Following the construction in this section
it is possible to obtain an environment process for the minimal diffusion Mω = (Xω

t ,Pω
x ), namely the process t →

τXω
t
ω =: ψω

t , with semigroup Pt , which is precisely given by

Pt f (ω) :=
∫
Rd

f (τyω)pω
t (0, y) dy.
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Proposition 3.3. {Pt }t≥0 defines a symmetric strongly continuous semigroup on L2(Ω,dμ), and t → ψω
t is ergodic

with respect to μ.

Proof. Analogous to Proposition 3.1. �

4. Corrector and harmonic coordinates

4.1. Space L2(a) and Weyl’s decomposition

Fix a stationary and ergodic random medium (Ω,G,μ, τx). In this section we rely only on assumption (a.1) and
Eμ[λ−1], Eμ[Λ] finite.

In order to construct the corrector, we introduce the following space

L2(a) := {
V : Ω →Rd : Eμ

[〈aV,V 〉] < ∞}
.

Such a space is clearly a pre-Hilbert space with the scalar product

Θ(U,V ) := Eμ

[〈aU,V 〉].
L2(a) is isometric to L2(Ω,μ)d through the map Ψ : L2(Ω,μ)d → L2(a) given by Ψ (V ) = a−1/2V . In particular
L2(a) is an Hilbert space. Notice that as a consequence of (a.1), Eμ[λ−1],Eμ[Λ] < ∞ and Hölder’s inequality we
have that L2(a) ⊂ L1(Ω,μ).

The group {τx}Rd on Ω defines a group of strongly continuous unitary operators {Tx}Rd on Lr(Ω,μ) for any r > 1,
by the position Tx(V ) = V ◦ τx , see [38, Chapter 7]. Therefore, {Tx}x∈Rd on L2(Ω,μ) defines the closed operators
Di for i = 1, . . . , d , by

DiU := lim
h→0

Thei
U − U

h
,

where the limit is taken in L2(Ω,μ). Denote by D(Di) the domain of Di . We shall consider the following class of
smooth functions

C :=
{∫

Rd

f (τxω)ϕ(x) dx|f ∈ L∞(Ω),ϕ ∈ C∞
0

(
Rd

)}
. (4.1)

It can be proved that if v ∈ C,

v(ω) =
∫
Rd

f (τxω)ϕ(x) dx ⇒ Div(ω) = −
∫
Rd

f (τxω)∂iϕ(x) dx.

In particular, v ∈ ⋂d
i=1 D(Di). It is also clear that ∇v = (D1v, . . . ,Ddv) ∈ L2(a) and that x → v(τxω) ∈ C∞(Rd)

for μ-almost all ω ∈ Ω . We define the space of potential L2
pot to be the closure of {∇v|v ∈ C} in L2(a).

Lemma 4.1. Let U ∈ L2
pot. Then U satisfies the following properties

(i) Eμ[Ui] = 0 for all i = 1, . . . , d .
(ii) For all η ∈ C∞

0 (Rd) and i, j = 1, . . . , d

∫
Rd

Ui(τxω)∂jη(x) dx =
∫
Rd

Uj (τxω)∂iη(x) dx,

for μ-almost all ω ∈ Ω .

Proof. In both cases the proof follows simply by considering functions of the type ∇f such that f ∈ C. Then conclude
by density.
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Let start with (i). Observe that if f ∈ C then

Eμ[Dif ] = lim
h→0

Eμ

[
Thei

f − f

h

]
= lim

h→0

Eμ[Thei
f ] −Eμ[f ]
h

= 0.

If U ∈ L2
pot, we find fn ∈ C such that ∇fn → U in L2(a), hence in L1(Ω,μ)d . It follows

Eμ[U ] = lim
n→∞Eμ[∇fn] = 0.

We now prove (ii). Consider again f ∈ C. Then x → f (x;ω) is infinitely many times differentiable, μ-almost
surely. Integrating by parts we get

∫
Rd

Dif (x;ω)∂jη(x) dx = −
∫
Rd

f (x;ω)∂i∂j η(x) dx,

finally switch the partials and conclude
∫
Rd

Dif (x;ω)∂jη(x) dx =
∫
Rd

Djf (x;ω)∂iη(x) dx.

For a general U ∈ L2
pot take approximations and use the fact that ∇fn → U in L2(a) implies Difn(·;ω) → Ui(·;ω)

in L1
loc(R

d) μ-almost surely. �

Weyl’s decomposition
Since L2(a) is an Hilbert space and L2

pot is by construction a closed subspace, we can write

L2(a) = L2
pot ⊕

(
L2

pot

)⊥
.

We want to decompose the bounded functions {πk}dk=1, where πk is the unit vector in the kth-direction. Since
πk ∈ L2(a), for each k = 1, . . . , d , there exist functions Uk ∈ L2

pot and Rk ∈ (L2
pot)

⊥ such that πk = Uk + Rk . By
definition of orthogonal projection we have

Eμ

[〈
aUk,V

〉] = Eμ

[〈
aπk,V

〉] ∀V ∈ L2
pot.

Remark 4.1. By definition of L2
pot and orthogonal projection it follows in particular that

Eμ

[〈
a
(
Uk − πk

)
,Uk − πk

〉] = inf
f ∈C

Eμ

[〈
a(∇f − πk),∇f − πk

〉]
.

Proposition 4.1. Set dij := 2Eμ[〈a(Ui − πi),U
j − πj 〉]. Then the matrix {dij }i,j is positive definite.

Proof. Take any ξ ∈ Rd , then

∑
i,j

dij ξiξj = 2Eμ

[〈
a

(∑
i

ξiU
i − ξ

)
,
∑
j

ξjU
j − ξ

〉]
.

Since
∑

i ξiU
i ∈ L2

pot is the orthogonal projection of the function πξ : ω → ξ , and πξ ∈ L2(a), we have

∑
i,j

dij ξiξj = inf
ϕ∈C

2Eμ

[〈
a(∇ϕ − ξ),∇ϕ − ξ

〉] ≥
d∑

i=1

inf
ϕ∈C

2Eμ

[
λ|Diϕ − ξi |2

]

=
d∑

i=1

|ξi |2 inf
ϕ∈C

2Eμ

[
λ|Diϕ − 1|2] (4.2)
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we end up with a basic one dimensional problem. Observe that by Hölder’s inequality we have

Eμ

[
λ|Diϕ − 1|2] ≥ E

[
λ−1]−1

Eμ

[
(Diϕ − 1)

]2 = E
[
λ−1]−1

for all ϕ ∈ C∞
b (Ω) since by Lemma 4.1 we have that Eμ[Diϕ] = 0. Therefore (4.2) is bounded from below by∑d

i=1 |ξi |2Eμ[λ−1]−1 = |ξ |2Eμ[λ−1]−1 and we get the bound
∑
i,j

dij ξiξj ≥ 2Eμ

[
λ−1]−1|ξ |2

which is what we wanted to proof. �

At this point we build the corrector starting from the functions Uk ∈ L2
pot. For k = 1, . . . , d we define the corrector

to be the function χk : Rd × Ω → R such that

χk(x,ω) :=
d∑

j=1

∫ 1

0
xjU

k
j (τtxω)dt.

It is not hard to prove that χk is well defined, and taking expectation it follows that Eμ[χk(x,ω)] = 0. The key result
about the corrector is listed here below.

Proposition 4.2 (Weak differentiability). For k = 1, . . . , d the function x → χk(x,ω) is in L1
loc(R

d), weakly differ-
entiable μ-almost surely and ∂iχ

k(x,ω) = Uk
i (τxω).

Proof. Let η ∈ C∞
0 (Rd) be any test function and calculate

∫
Rd

χk(x,ω)∂iη(x) dx =
∫
Rd

d∑
j=1

∫ 1

0
xjU

k
j (τtxω)dt∂iη(x) dx.

By changing the order of integration and applying the change of variables y = tx we get

∫ 1

0

d∑
j=1

∫
Rd

Uk
j (τyω)

yj

td+1
∂iη

(
y

t

)
dx dt.

Next observe that for j �= i,

yj

td+1
∂iη

(
y

t

)
= ∂i

(
yj

td
η

(
y

t

))
,

which together with property (ii) of Lemma 4.1 gives

∫
χk(x,ω)∂iη(x) dx =

∫
Uk

i (τyω)

∫ 1

0

∑
j �=i

∂j

(
yj

td
η

(
y

t

))
+ yi

td+1
∂iη

(
y

t

)
dt dx.

Finally, observe that for y �= 0

∫ 1

0

∑
j �=i

∂j

(
yj

td
η

(
y

t

))
+ yi

td+1
∂iη

(
y

t

)
dt = −

∫ 1

0

d

dt

(
η

(
y

t

)
1

td−1

)
dt = −η(y).

This ends the proof since it follows that∫
Rd

χk(x,ω)∂iη(x) dx = −
∫
Rd

Uk
i (x;ω)η(x) dx. (4.3)
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One may think that the set of ω for which (4.3) holds, depends on η. Since C∞
0 (Rd) is separable we can remove such

ambiguity considering a countable dense subset {ηn}n∈N of C∞
0 (Rd). �

So far we did not need more than the first moment for λ−1 and Λ. To get more regularity and exploit the power of
Sobolev’s embedding theorems, we shall now assume (a.2), namely, for 1/p + 1/q < 2/d we suppose that Eμ[λ−q ],
Eμ[Λp] < ∞. Such an assumption has the following consequence.

Proposition 4.3. Assume (a.1) and (a.2), then the corrector χk(·,ω) ∈Fω
loc for μ-almost all ω ∈ Ω .

Proof. By construction, there exists {fn}N ⊂ C such that ∇fn → Uk in L2(a). This implies that for any ball B ⊂Rd

∫
B

〈
a(x;ω)∇fn(x;ω) − ∇χk(x,ω), fn(x;ω) − ∇χk(x,ω)

〉
dx → 0.

Observe that gn(x,ω) = fn(x;ω) − fn(ω) belongs to C∞(Rd) and satisfies

gn(x,ω) =
d∑

i=1

∫ 1

0
xj ∂jfn(tx;ω)dt.

By means of (a.2) it is immediate to prove that gn → χk in W 1,2q/(q+1)(B) for any ball B ⊂Rd . We claim that ηgn →
ηχk in L2(Rd) with respect to Eω

1 , for any cut-off η and μ-almost surely, which by definition proves χk(·,ω) ∈ Fω
loc.

Indeed
∫
Rd

〈
a∇(ηgn) − ∇(

ηχk
)
,∇(ηgn) − ∇(

ηχk
)〉

dx

≤ 2
∫

B

〈
a∇gn − ∇χk,∇gn − ∇χk

〉
dx + 2‖∇η‖2∞

∫
B

Λ|gn − χk|2 dx → 0,

where the last integral goes to zero by gn → χk in W 1,2q/(q+1)(B), and by means of the Sobolev’s embedding theorem
W 1,2q/(q+1)(B) ↪→ L2p∗

(B). �

4.2. Harmonic coordinates and Poisson equation

Now that we have the corrector we want to construct a weak solution to the Poisson equation Lωu = 0 for μ-
almost all ω. Consider, for k = 1, . . . , d , the harmonic coordinates to be the functions yk : Rd × Ω → R defined
by yk(x,ω) := xk − χk(x,ω).

We say that a function u ∈ Floc is Eω-harmonic if Eω(u,ϕ) = 0, ∀ϕ ∈ C∞
0 (Rd). The next proposition justifies the

name harmonic coordinates.

Proposition 4.4. For k = 1, . . . , d , the harmonic coordinates x → yk(x,ω) are Eω-harmonic μ-almost surely.

Proof. We have to prove that μ-almost surely, for all ϕ ∈ C∞
0 (Rd)

Eω
(
yk,ϕ

) =
∑
i,j

∫
Rd

aij (x;ω)∂iy
k(x,ω)∂jϕ(x) dx = 0.

By construction of the corrector, the stationarity of the environment and the fact that TxC = C, we have that

∑
i,j

Eμ

[
aij (x;ω)∂iy

k(x,ω)Djf (ω)
] = 0 ∀x ∈Rd,∀f ∈ C.
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Now fix ϕ ∈ C∞
0 (Rd) and integrate against it, we get that for all f ∈ C

0 =
∑
i,j

∫
Rd

ϕ(x)Eμ

[
aij (x;ω)∂iy

k(x,ω)Djf (ω)
]
dx

=
∑
i,j

Eμ

[
aij (0;ω)∂iy

k(0,ω)

∫
Rd

Djf (τ−xω)ϕ(x) dx

]

= Eμ

[
f (ω)

∑
i,j

∫
Rd

aij (x;ω)∂iy
k(x,ω)∂jϕ(x) dx

]
.

Since C ⊂ Lp(Ω,μ) for all p ≥ 1 densely, it follows that

∑
i,j

∫
Rd

aij (x;ω)∂iy
k(x,ω)∂jϕ(x) dx = 0, μ-a.s. (4.4)

this ends the proof. To be precise, one should observe that C∞
0 (Rd) is separable, which ensures that (4.4) is satisfied

for all ϕ ∈ C∞
0 (Rd), μ-almost surely. �

Remark 4.2. Observe that neither (a.2) nor (a.3) is used in the construction of the harmonic coordinates.

Remark 4.3. If we define yk
ε (x,ω) := εyk(x/ε,ω), then an application of the ergodic theorem yields

lim
ε→0

∫
BR

〈
a(x/ε;ω)∇xy

k
ε (x;ω),∇xy

k
ε (x;ω)

〉
dx = Eμ

[〈
a
(
πk − Uk

)
,πk − Uk

〉]|BR| < ∞, (4.5)

which in view of (a.2) and the Sobolev’s embedding theorem implies that

lim sup
ε→0

∥∥1BR
yk
ε

∥∥
ρ

< ∞, (4.6)

where both limits hold μ-almost surely.

4.3. Martingales and harmonic coordinates

We will assume as usual (a.1), (a.2) and (a.3).
In a situation where Lω = ∇ · (aω∇) is well defined and associated to the process Xω

t , the fact that Lωy(x,ω) = 0,
would imply that y(Xω

t ,ω) is a martingale by Itô’s formula. In our case we lack the regularity to use the theory
coming from stochastic differential equations and we must rely on Dirichlet forms technique. We know that yk(x,ω)

is Eω-harmonic, which in a weaker sense, is analogous to say that yk is Lω-harmonic.
We will use the following theorem due to Fukushima [15, Theorem 3.1].

Theorem 4.1. Fix a point x0 and assume the following conditions for a process N = (Zt ,Px) associated to (E,F) on
L2(Rd , dx), and for a function u : Rd →R.

(i) For all t > 0 the transition semigroup Pt of N satisfies Pt1A(x0) = 0 whenever Cap(A) = 0.
(ii) u ∈ Floc, u is continuous and E -harmonic.

(iii) Let ν〈u〉 be the energy measure of u, namely the only measure such that

∫
Rd

v(x) dν〈u〉(dx) = 2E(uv, v) − E
(
u2, v

)
, v ∈ C∞

0

(
Rd

)
.
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We assume that ν〈u〉 is absolutely continuous with respect to the Lebesgue measure ν〈u〉 = f dx and that the
density function f satisfies

Ex0

[∫ t

0
f (Zs) ds

]
< ∞, t > 0.

Then Mt = u(Zt ) − u(Z0) is a Px0 -square integrable martingale with

〈M〉t =
∫ t

0
f (Zs) ds, t > 0,Px0 -a.s.

We want to apply Theorem 4.1 to the function u(x,ω) = ∑
k λky

k(x,ω), being an Eω-harmonic function, and to
the minimal process Mω = (Xω

t ,Pω
x ), x ∈ Rd . We fix the starting point to be x0 = 0. Some attention is required to

check that every assumption of Theorem 4.1 is satisfied for μ-almost all ω ∈ Ω .
By construction, since Mω = (Xω

t ,Pω
x ), x ∈ Rd is the minimal diffusion for almost all ω ∈ Ω , it follows that

Pt1A(0) = ∫
A

pω
t (0, y) dy = 0 whenever Cap(A) = 0, so that (i) is satisfied. Indeed Cap(A) = 0 implies that the

Lebesgue measure of A is zero [16, page 68].
Assumption (ii) is satisfied for almost all ω in view of Propositions 4.4, 4.3 and (a.3) which assures the continuity

of x → yk(x,ω) for μ-almost all ω ∈ Ω by classical results in elliptic partial differential equations with locally
uniformly elliptic coefficients [17, Gilbarg and Trudinger].

In order to check assumption (iii) we have first to understand ν〈u〉. According to [16, Theorem 3.2.2] and using the
fact that yk are weakly differentiable, the density f (x,ω) of ν〈u〉 with respect to the Lebesgue measure is given by

f (x,ω) = 2
∑
i,j

∂iu(x;ω)∂ju(x;ω)aij (x;ω) = 2
∑
k,h

λkλh

(∑
i,j

∂iy
k(x;ω)∂jy

h(x;ω)aij (x;ω)

)

which we can rewrite as f (x,ω) = 2〈q(x,ω)λ,λ〉, with

qhk(ω) :=
∑
i,j

∂iy
k(0;ω)∂jy

h(0;ω)aij (ω) =
∑
i,j

(
Uk

i (ω) − δik

)(
Uh

j (ω) − δjh

)
aij (ω).

Next we compute, using the stationarity of the environment process

∫
Ω

Eω
0

[∫ t

0
f

(
Xω

s ;ω)
ds

]
dμ = 2

∫
Ω

Eω
0

[∫ t

0

〈
q
(
ψω

s

)
λ,λ

〉
ds

]
dμ = 2t

∫
Ω

〈
q(ω)λ,λ

〉
dμ,

which is finite by construction, since U ∈ L2(a). In particular (iii) is satisfied. It follows the following theorem:

Theorem 4.2. Assume (a.1),(a.2) and (a.3). Then y(Xω
t ,ω) is a Pω

0 -square integrable martingale with covariation
given by

〈
yk

(
Xω

t ,ω
)
, yh

(
Xω

t ,ω
)〉

t
= 2

∫ t

0

∑
i,j

aij

(
Xω

s ,ω
)(

∂iχ
k
(
Xω

s ,ω
) − δik

)(
∂jχ

h
(
Xω

s ,ω
) − δjh

)
ds,

for μ-almost all ω ∈ Ω .

Proof. Above. �

5. Proof of the invariance principle

In Section 4 we constructed the function χ,y :Rd × Ω →Rd in a way that we can decompose the process Xω as

Xω
t = y

(
Xω

t ,ω
) + χ

(
Xω

t ,ω
)
,
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in particular, we proved in Theorem 4.2 that y(Xω
t ,ω) is a martingale. In order to get a quenched invariance principle

for the process X
ε,ω
t = εXω

t/ε2 we will need to prove that εχ(X
ε,ω
t /ε,ω) is converging to zero in law and that the

quadratic variation of the martingale is converging to a constant.
As first result on the decay of the corrector as ε → 0 we have the following lemma.

Lemma 5.1. For all R > 0 and for μ-almost all ω ∈ Ω

lim
ε→0

∥∥yk
ε (x;ω) − xk

∥∥
2p∗,BR

= lim
ε→0

∥∥χk
ε (x;ω)

∥∥
2p∗,BR

= 0.

Proof. It is enough to show that for any η ∈ C∞
0 (BR) we have

lim
ε→0

∫
Rd

yk
ε (x;ω)η(x) dx =

∫
Rd

xkη(x) dx.

Indeed the above property implies the weak convergence yk
ε ⇀ xk in L2(BR). This gives the strong convergence in

L2p∗
(BR), because W 1,2q/(q+1)(BR) is compactly embedded in L2p∗

(BR) and the sequence {yε}ε>0 is bounded in
W 1,2q/(q+1)(BR) by (4.5).

Since ∂j y
k(x;ω) = δjk − Uk

j (τxω) and Eμ[Uk
j ] = 0, the ergodic theorem implies that for each δ > 0 arbitrary,

μ-almost surely, there exists ε(ω) > 0 such that for all ε, s > 0 with s > ε/ε(ω)

∣∣∣∣
∑
j

∫
BR

∂jy
k
ε (sx;ω)xjη(x) dx −

∫
Rd

xkη(x) dx

∣∣∣∣ ≤ δ. (5.1)

Notice that
∫
Rd

yk
ε (x;ω)η(x) dx =

∑
j

∫
BR

∫ 1

0
∂j y

k
ε (tx;ω)xjη(x) dt dx

=
∑
j

∫ 1

0

∫
BR

∂j y
k
ε (tx;ω)xjη(x) dx dt. (5.2)

We split the integral in (5.2) as the sum

∑
j

∫ ε/ε(ω)

0

∫
BR

∂j y
k
ε (tx)xjη(x) dx dt +

∑
j

∫ 1

ε/ε(ω)

∫
BR

∂jy
k
ε (tx)xjη(x) dx dt,

now we estimate each of the two terms. We can rewrite the second term as

(
1 − ε/ε(ω)

)∫
BR

xjη(x) dx +
∫ 1

ε/ε(ω)

rε/t dt,

where the second integral is bounded by δ, in view of (5.1). For what concerns the first part, we can easily compute

∑
j

∫ ε/ε(ω)

0

∫
BR

∂j y
k
ε (tx)xjη(x) dx = ε/ε(ω)

∫
BR

ε(ω)yk(x/ε(ω))η(x) dx.

Hence the first part is bounded by c · (ε/ε(ω)) for a constant c > 0. Finally this yields

lim sup
ε→0

∣∣∣∣
∫
Rd

yk
ε (x;ω)η(x) dx −

∫
Rd

xkη(x) dx

∣∣∣∣ ≤ δ

with δ arbitrarily chosen. �
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Proposition 5.1. For all R > 0,

lim
ε→0

sup
|x|≤R

ε
∣∣χ(x/ε,ω)

∣∣ = 0, μ-a. s. (5.3)

Proof. Observe that χk
ε (x,ω) := εχ(x/ε,ω) is a solution on B = B(R) for all ε > 0 of

∑
i,j

∫
B

aω
ij (x/ε)∂iχ

k
ε (x;ω)∂jϕ(x) dx =

∑
i,j

∫
B

aω
ij (x/ε)∂ifk(x)∂jϕ(x) dx,

where fk(x) = xk and ϕ ∈ C∞
0 (B). Clearly |∇fk(x)| ≤ 1 for all x ∈Rd and ε > 0. By Lemma 5.1, we get that

lim
ε→0

∥∥χk
ε (x;ω)

∥∥
2p∗,BR

= 0.

Therefore, we can obtain 5.3 applying (2.14) with α = 2p∗

∥∥χk
ε

∥∥
B(R),∞ ≤ C3

(
1 ∨ ∥∥(

λω
)−1∥∥

B(2R/ε),q

∥∥Λω
∥∥

B(2R/ε),p

)κ ′∥∥χk
ε

∥∥γ ′
B(2R),2p∗ ∨ ∥∥χk

ε

∥∥
B(2R),2p∗

which goes to zero as ε → 0 by Lemma 5.1. Notice that we can bound ‖λ−1‖B(2R/ε),q‖Λ‖B(2R/ε),p by a constant, by
means of (a.2) and the ergodic theorem. �

We can now turn to the proof of Theorem 1.1, namely the quenched invariance principle for the diffusions εXω
t/ε2 .

Proof Theorem 1.1. With the help of Proposition 5.1 the proof of this theorem is identical to [14, Theorem 1], with
only a minor difference, namely, the limiting matrix D = [dij ] is given by

dij = 2Eμ

[〈
a(ω)∇yi(0,ω),∇yj (0,ω)

〉]

being yi(x,ω) the harmonic coordinates as constructed in Section 4.
For completeness we put her the proof of part (ii) of the theorem and we refer to [14] for the first part. We make

use of the decomposition

εXω
t/ε2 = εy

(
Xω

t/ε2,ω
) + εχ

(
Xω

t/ε2,ω
)

and the fact that Mε,ω = εy(Xω
t/ε2,ω) is a Pω

0 -square integrable continuous martingale μ-almost surely by Theo-
rem 4.1. Its quadratic variation is given by

〈
M

ε,ω
h ,M

ε,ω
k

〉
t
= ε

∫ t/ε2

0
2
∑
i,j

aij

(
Xω

s ,ω
)(

∂iχ
k
(
Xω

s ,ω
) − δik

)(
∂jχ

h
(
Xω

s ,ω
) − δjh

)
ds.

An application of the ergodic theorem for the environmental process shows that

lim
ε→0

〈
M

ε,ω
h ,M

ε,ω
k

〉
t
= dhkt,

Pω
0 -almost surely, but also in the L1 sense for almost all ω ∈ Ω . We can now apply the central limit for martingales

[21, Theorem 5.4] to conclude that the martingale Mε,ω converges in distribution over C([0,∞),Rd) under Pω
0 to a

Wiener measure with covariances given by D. The matrix is non-degenerate by Proposition 4.1.
It remains to show that the correctors εχ(Xω

t/ε2 ,ω) converge to zero in distribution. For that the sublinearity of the
corrector will play a major role.

Let T > 0 be a fixed time horizon. We claim that for all δ > 0

lim
ε→0

Pω
0

(
sup

0≤t≤T

∣∣εχ(
Xω

t/ε2,ω
)∣∣ > δ

)
= 0. (5.4)
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Denote by τ
ε,ω
R the exit time of εXω

t/ε2 from the ball B of radius R > 1 centered at the origin. Observe that

lim sup
ε→0

Pω
0

(
sup

0≤t≤T

∣∣εχ(
Xω

t/ε2,ω
)∣∣ > δ

)

≤ lim sup
ε→0

Pω
0

(
sup

0≤t≤τ
ε,ω
R

∣∣εχ(
Xω

t/ε2,ω
)∣∣ > δ

)
+ lim sup

ε→0
Pω

0

(
sup

0≤t≤T

∣∣εXω
t/ε2

∣∣ > R
)
.

First addendum: By Proposition 5.1

lim
ε→0

sup
0≤t≤τ

ε,ω
R

∣∣εχ(
Xω

t/ε2,ω
)∣∣ = 0

and therefore μ-almost surely

lim sup
ε→0

Pω
0

(
sup

0≤t≤τ
ε,ω
R

∣∣εχ(
Xω

t/ε2,ω
)∣∣ > δ

)
= 0.

Second addendum: We use again Proposition 5.1 to say that there exists ε̄(ω) > 0, which may depend on ω such that
for all ε < ε̄(ω) we have sup0≤t≤τ

ε,ω
R

|εχ(Xω
t/ε2 ,ω)| < 1. For such ε we have μ-almost surely

Pω
0

(
sup

0≤t≤T

∣∣εXω
t/ε2

∣∣ ≥ R
)

= Pω
0

(
τ

ε,ω
R ≤ T

)

= Pω
0

(
τ

ε,ω
R ≤ T , sup

0≤t≤τ
ε,ω
R

∣∣εy(
Xω

t/ε2,ω
)∣∣ > R − 1

)

≤ Pω
0

(
sup

0≤t≤T

∣∣εy(
Xω

t/ε2,ω
)∣∣ > R − 1

)
.

Since εy(Xω
·/ε2 ,ω) converges in distribution under Pω

0 to a non-degenerate Brownian motion with deterministic co-
variance matrix given by D we have that there exists positive constants c1, c2 independent on ε and ω such that

lim sup
ε→0

Pω
0

(
sup

0≤t≤T

∣∣εy(
Xω

t/ε2,ω
)∣∣ > R − 1

)
≤ c1e

−c2R,

from which it follows

lim sup
ε→0

Pω
0

(
sup

0≤t≤T

∣∣εXω
t/ε2

∣∣ > r
)

≤ c1e
−c2R.

Therefore

lim sup
ε→0

Pω
0

(
sup

0≤t≤T

∣∣εχ(
Xω

t/ε2,ω
)∣∣ > δ

)
≤ c1e

−c2R

and since R > 1 was arbitrary, the claim (5.4) follows, namely the corrector converges to zero in law under Pω
0 ,

μ-almost surely.
The convergence to zero in law of the correctors εχ(X·/ε2,ω), combined with the fact that εy(X·/ε2 ,ω) satisfies

an invariance principle μ-almost surely and that εXω
·/ε2 = εχ(X·/ε2,ω) + εy(X·/ε2 ,ω), implies that also the family

εXω
·/ε2 under Pω

0 over C([0,∞),Rd) satisfies an invariance principle μ-almost surely with the same limiting law. �

Corollary 5.1. Let θ : Ω → R be a G-measurable function and assume that θ(τ.ω), θ(τ.ω)−1 ∈ L∞
loc(R

d) for μ-

almost all ω ∈ Ω and that Eμ[θ ],Eμ[θ−1] < ∞. Let Mθ,ω := (X
θ,ω
t ,P

θ,ω
x ), x ∈ Rd the minimal diffusion process

associated to (Eω,Fθ,ω) on L2(Rd , θdx). Then, for μ-almost all ω ∈ Ω , the laws of the processes εX
θ,ω

t/ε2 over

C([0,∞),Rd) converge weakly as ε → 0 to a Wiener measure with covariance matrix given by D/Eμ[θ ], where D
was given in Theorem 1.1.
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Proof. Let us define the time change

X̂ω
t := Xω

τω
t
, τω

t = inf

{
s > 0;Aω

s :=
∫ s

0
θ
(
Xω

u ,ω
)
du > t

}
.

To get asymptotic for ε2At/ε2 it is easy by means of the ergodic theorem for the environmental process. We can prove
as in [3, Lemma 15] that

lim
ε→0

sup
s∈[0,t]

∣∣ε2Aω
s/ε2 − sEμ[θ ]∣∣ = 0, Pω

x -a.s, a.a. x ∈ Rd, (5.5)

for μ-almost all ω ∈ Ω . Observe that εX̂ω
Aω(t/ε2)

= εXω
t/ε2 , then the convergence for εX̂ω

t/ε2 Pω
x -a.s., for almost all

x ∈ Rd , for μ-almost all ω ∈ Ω follows from Theorem 1.1 and (5.5). On the other hand the processes X̂ω
t and X

θ,ω
t

are equivalent, since they possess the same Dirichlet form, see Theorem 6.2.1 in [16]. Hence the same convergence
holds for εX

θ,ω

t/ε2 . �
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