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ASYMPTOTICALLY OPTIMAL PRIORITY POLICIES FOR
INDEXABLE AND NONINDEXABLE RESTLESS BANDITS
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We study the asymptotic optimal control of multi-class restless bandits.
A restless bandit is a controllable stochastic process whose state evolution
depends on whether or not the bandit is made active. Since finding the optimal
control is typically intractable, we propose a class of priority policies that are
proved to be asymptotically optimal under a global attractor property and a
technical condition. We consider both a fixed population of bandits as well
as a dynamic population where bandits can depart and arrive. As an example
of a dynamic population of bandits, we analyze a multi-class M/M/S + M
queue for which we show asymptotic optimality of an index policy.

We combine fluid-scaling techniques with linear programming results to
prove that when bandits are indexable, Whittle’s index policy is included in
our class of priority policies. We thereby generalize a result of Weber and
Weiss [J. Appl. Probab. 27 (1990) 637–648] about asymptotic optimality of
Whittle’s index policy to settings with (i) several classes of bandits, (ii) ar-
rivals of new bandits and (iii) multiple actions.

Indexability of the bandits is not required for our results to hold. For non-
indexable bandits, we describe how to select priority policies from the class
of asymptotically optimal policies and present numerical evidence that, out-
side the asymptotic regime, the performance of our proposed priority policies
is nearly optimal.

1. Introduction. Multi-armed bandit problems are concerned with the opti-
mal dynamic activation of several competing bandits, taking into account that at
each moment in time α bandits can be made active. A bandit is a controllable
stochastic process whose state evolution depends on whether or not the bandit is
made active. The aim is to find a control that determines at each decision epoch
which bandits to activate in order to minimize the overall cost associated to the
states the bandits are in. In the by now classical multi-armed bandit model, [18],
it is assumed that only active bandits can change state. In [50], Whittle introduced
the so-called restless bandits, where a bandit can also change its state while being
passive (i.e., not active), possibly according to a different law from the one that
applies when it is active. The multi-armed restless bandit problem is a stochastic
optimization problem that has gained popularity due to its multiple applications in,
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for example, sequential selection trials in medicine, sensor management, manufac-
turing systems, queueing and communication networks, control theory, economics,
etc. We refer to [19, 31, 51] for further references, applications, and possible ex-
tensions that have been studied in the literature.

In 1979, Gittins [17] introduced index-based policies for the nonrestless bandit
problem. He associated to each bandit an index, which is a function of the state
of the bandit, and defined the policy that activates α bandits with currently the
largest indices. This policy is known as the Gittins index policy. It was first proved
by Gittins that this policy is optimal in the case α = 1 [17] for the time-average
and discounted cost criteria. In the presence of restless bandits, finding an optimal
control is typically intractable. In 1988, Whittle [50] proposed therefore to solve a
relaxed optimization problem where the constraint of having at most α bandits ac-
tive at a time is relaxed to a time-average or discounted version of the constraint. In
addition, he defined the so-called indexability property, which requires to establish
that as one increases the Lagrange multiplier of the relaxed optimization problem,
the collection of states in which the optimal action is passive increases. Under this
property, Whittle showed that an optimal solution to the relaxed optimization prob-
lem can be described by index values. The latter, in turn, provide a heuristic for
the original restless bandit problem, which is referred to as Whittle’s index policy
in the literature. It reduces to Gittins index policy when passive bandits are static
(the nonrestless case). Whittle’s index policy is in general not an optimal solution
for the original problem. In [46], Weber and Weiss proved Whittle’s index policy
to be asymptotically optimal.

In this paper, we study the asymptotic optimal control of a general multi-class
restless bandit problem. We consider both a fixed population of bandits as well
as a dynamic scenario where bandits can arrive and depart from the system. The
asymptotic regime is obtained by letting the number of bandits that can be simul-
taneously made active grow proportionally with the population of bandits.

In one of our main results, we derive a set of priority policies that are asymp-
totically optimal when certain technical conditions are satisfied. In another main
result, we then prove that if the bandits are indexable, Whittle’s index policy is
contained in our set of priority policies. We thereby generalize the asymptotic
optimality result of Weber and Weiss [46] to settings with (i) several classes of
bandits, and (ii) arrivals of new bandits. Another extension presented in the paper
is the possibility of choosing among multiple actions per bandit. This is referred
to as “super-process” in the literature [19]. Throughout the paper, we discuss how
our asymptotic optimality results extend to that scenario.

Efficient control of nonindexable restless bandits has so far received little at-
tention in the literature. Nonindexable settings can however arise in problems of
practical interest; see, for example, [25] in the context of a make-to-stock sys-
tem. The definition of our set of priority policies does not rely on indexability of
the system, and hence, provides asymptotically optimal heuristics for nonindex-
able settings. We describe how to select priority policies from this set and present
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numerical evidence that, outside the asymptotic regime, the performance of our
proposed priority policies is nearly optimal.

The asymptotic optimality results obtained in this paper hold under certain tech-
nical conditions. For a fixed population of bandits, these conditions reduce to a
differential equation having a global attractor, which coincides with the condition
as needed by Weber and Weiss [46]. For a dynamic population of bandits, addi-
tional technical conditions are needed due to the infinite state space. To illustrate
the applicability of the results, we present a large class of restless bandit prob-
lems for which we show the additional technical conditions to hold. This class is
characterized by the fact that a bandit that is kept passive will eventually leave the
system. This can represent many practical situations such as impatient customers,
companies that go bankrupt, perishable items, etc. We then present a multi-class
M/M/S + M queue, which is a very particular example of the above described
class. We describe a priority policy that satisfies the global attractor property, and
hence asymptotic optimality follows.

In this paper, we consider a generalization of the standard restless bandit formu-
lation: Instead of having at each moment in time exactly α bandits active, we allow
strictly less than α bandits to be active at a time. We handle this by introducing so-
called dummy bandits. In particular, we show that it is asymptotically optimal to
activate those bandits having currently the largest, but strictly positive, Whittle’s
indices. Hence, whenever a bandit is in a state having a negative Whittle’s index,
this bandit will never be activated.

Our proof technique relies on a combination of fluid-scaling techniques and lin-
ear programming results: First, we describe the fluid dynamics of the restless ban-
dit problem, taking only into account the average behavior of the original stochas-
tic system. The optimal equilibrium points of the fluid dynamics are described
by an LP problem. We prove that the optimal value of the LP provides a lower
bound on the cost of the original stochastic system. The optimal fluid equilibrium
point is then used to describe priority policies for the original system whose fluid-
scaled cost coincides with the lower bound, and are hence referred to as asymp-
totically optimal policies. In order to prove that Whittle’s index policy is one of
these asymptotically optimal policies, we then reformulate the relaxed optimiza-
tion problem into an LP problem. An optimal solution of this LP problem is proved
to coincide with that of the LP problem corresponding to the fluid problem as de-
scribed above. This is a different proof approach than that taken in [46] and allows
to include arrivals of bandits to the system, whereas the approach of [46] does not.

To summarize, the main contributions of this paper are the following:

• For a multi-class restless bandit problem (possibly nonindexable) with either
a fixed or dynamic population of bandits, we determine a set of priority poli-
cies that are asymptotically optimal if the corresponding ODE has a global at-
tractor and certain technical conditions (Condition 4.12) are satisfied (Proposi-
tion 4.14).
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• We show that Condition 4.12 is satisfied for a large class of restless bandit prob-
lems. In particular, for a fixed population of bandits under a unichain assump-
tion and for a dynamic population when passive bandits will eventually leave
the system (Proposition 4.13).

• In the case the bandits are indexable, we show that Whittle’s index policy is
inside our set of priority policies, both for a fixed population of bandits (Propo-
sition 5.6) and for a dynamic population of bandits (Proposition 5.9).

• For nonindexable bandits, we describe how to select priority policies from the
class of asymptotically optimal policies (Section 8.1) and for a particular exam-
ple we numerically show that outside the asymptotic regime their sub-optimality
gap is very small (Section 8.2).

The remainder of the paper is organized as follows. In Section 2, we give an
overview of related work and in Section 3 we define the multi-class restless bandit
problem. In Section 4, we define our set of priority policies and state the asymp-
totic optimality result, both for a fixed population as well as for a dynamic popu-
lation of bandits. In Section 5, we define Whittle’s index policy and prove it to be
asymptotically optimal. In Section 6, we discuss the global attractor property re-
quired in order to prove the asymptotic optimality result. In Section 7, we present
the M/M/S + M queue as an example of an indexable restless bandit and derive
a robust priority policy that is asymptotically optimal. Section 8 focuses on the
selection of asymptotically optimal priority policies for nonindexable bandits and
numerically evaluates the performance.

2. Related work. For the nonrestless bandit problem, optimality of Gittins
index policy has been proved in [17], for the case α = 1 and a time-average or
discounted cost criteria. In [48, 49], the optimality result was extended to a dy-
namic population of bandits where new bandits may arrive over time, for example,
Poisson arrivals or Bernouilli arrivals. For α > 1, the optimality results do not nec-
essarily go through. In [38], sufficient conditions on the reward processes were
given in order to guarantee optimality of the Gittins policy for the discounted cost
criterion, when α > 1.

For the restless bandit problem, the authors of [20] have extended Whittle’s
index heuristic to the setting where each restless bandit may choose from multiple
actions, that is, representing a divisible resource to a collection of bandits. Over
the years, Whittle’s index policy has been extensively applied and numerically
evaluated in various application areas such as wireless downlink scheduling [5,
37], systems with delayed state observation [14], broadcast systems [40], multi-
channel access models [1, 30], stochastic scheduling problems [2, 22, 34] and
scheduling in the presence of impatient customers [7, 21, 29, 35].

As opposed to Gittins policy, Whittle’s index policy is in general not an opti-
mal solution for the original problem. For a fixed population of bandits, optimality
has been proved though for certain settings. For example, in [1, 30] this has been
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proved for a restless bandit problem modeling a multi-channel access system. For a
general restless bandit model, in [27] Whittle’s index policy has been shown to be
optimal for α = 1 when (i) there is one dominant bandit or when (ii) all bandits im-
mediately reinitialize when made passive. Other results on optimality of Whittle’s
index policy for a fixed population of bandits exist for asymptotic regimes. In [50],
Whittle conjectured that Whittle’s index policy is nearly optimal as the number of
bandits that can be simultaneously made active grows proportionally with the total
number of bandits in the system. In the case of symmetric bandits, that is, all ban-
dits are governed by the same transition rules, this conjecture was proved by Weber
and Weiss [46] assuming that the differential equation describing the fluid approx-
imation of the system has a global attractor. They further presented an example
for which the conjecture does not hold. In [26], the approaches of [46] were set
forth and extended to problems for which multiple activation levels are permitted
at any bandit. Another recent result on asymptotic optimality can be found in [37]
where the authors considered a specific model, as studied in [30], with two classes
of bandits. They proved asymptotic optimality of Whittle’s index policy under a
recurrence condition. The latter condition replaces the global attractor condition
needed in [46] and was numerically verified to hold for their model.

For a dynamic population of restless bandits, that is, when new bandits can ar-
rive to the system, there exist few papers on the performance of index policies. We
refer to [5, 6] and [7] where this has been studied in the context of wireless down-
link channels and queues with impatient customers, respectively. In particular, in
[5, 7], Whittle’s index policy was obtained under the discounted cost criterion and
numerically shown to perform well. In [6], it was shown that this heuristic is in
fact maximum stable and asymptotically fluid optimal. We note that the asymp-
totic regime studied in [6] is different than the one as proposed by Whittle [46].
More precisely, in [6] at most one bandit can be made active at a time (the fluid
scaling is obtained by scaling both space and time), while in [46] (as well as in this
paper) the number of active bandits scales.

Arrivals of new “entities” to the system can also be modelled by a fixed popu-
lation of restless bandits. In that case, a bandit represents a certain type of entities,
and the state of a bandit represents the number of this type of entities that are
present in the system. Hence, a new arrival of an entity will change the state of
the bandit. In the context of queueing systems this has been studied, for example,
in [2, 21, 29]. A Whittle’s index obtained from the relaxation of this problem for-
mulation can depend both on the arrival characteristics and on the state, that is,
the number of entities present in the system. This in contrast to the dynamic pop-
ulation formulation of the problem, as discussed in the previous paragraph, where
the index will be independent of the arrival characteristics or number of bandits
present. Asymptotic optimality results for a fixed population of bandits modeling
arrivals of new “entities” have been obtained in, for example, [21] where Whittle’s
index was shown to be optimal both in the light-traffic and the heavy-traffic limit.
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This paper presents heuristics for nonindexable bandits that are asymptotically
optimal. Other heuristics proposed for nonindexable problems can be found in [9,
25]. In [9], the primal–dual index heuristic was defined and proved to have a sub-
optimality guarantee. In Remark 4.8, we will see that an adapted version of the
primal–dual index heuristic is included in the set of priority policies for which
we obtain asymptotic optimality results. Using fair charges, the authors of [25]
proposed heuristics for nonindexable bandits in the context of a make-to-stock
system. Numerically, the heuristic was shown to perform well. It can be checked
that their heuristic is not inside the set of priority policies for which we show
asymptotic optimality results.

We conclude this related work section with a discussion on the use of LP tech-
niques in the context of restless bandits. An LP-based proof approach was previ-
ously used in, for example, [9, 33, 36]. In [33, 36], it allowed to characterize and
compute indexability of restless bandits. In [9], a set of LP relaxations was pre-
sented, providing performance bounds for the restless bandit problem under the
discounted-cost criterion.

3. Model description. We consider a multi-class restless bandit problem in
continuous time. There are K classes of bandits. New class-k bandits arrive ac-
cording to a Poisson process with arrival rate λk ≥ 0, k = 1, . . . ,K . At any mo-
ment in time, a class-k bandit is in a certain state j ∈ {1,2, . . . , Jk}, with Jk < ∞.
When a class-k bandit arrives, with probability pk(j) this bandit starts in state
j ∈ {1, . . . , Jk}.

At any moment in time, a bandit can either be kept passive or active, denoted
by a = 0 and a = 1, respectively. When action a is performed on a class-k ban-
dit in state i, i = 1, . . . , Jk , it makes a transition to state j after an exponen-
tially distributed amount of time with rate qk(j |i, a), j = 0,1, . . . , Jk , j �= i.
Here, j = 0 is interpreted as a departure of the bandit from the system. We fur-
ther define qk(j |j, a) := −∑Jk

i=0,i �=j qk(i|j, a). The fact that the state of a bandit
might evolve even under the passive action explains the term of a restless ban-
dit.

Decision epochs are defined as the moments when an event takes place, that
is, an arrival of a new bandit, a change in the state of a bandit, or a departure
of a bandit. A policy determines at each decision epoch which bandits are made
active, with the restriction that at most α bandits can be made active at a time.
This is a generalization of the standard restless bandit formulation where at each
moment in time exactly α bandits need to be activated, as will be explained in
Remark 3.1.

Throughout this paper, we will consider both a fixed population of bandits and
a dynamic population of bandits:
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• Fixed population: In this case, there are no new arrivals of bandits, that is, λk =
0, for all k = 1, . . . ,K , and there are no departures, that is, qk(0|j, a) = 0, for
all j, k, a.

• Dynamic population: In this case, there are new arrivals of bandits, that is, λk >

0, for all k = 1, . . . ,K , and each bandit can depart from the system, that is, for
each class k there is at least one state j and one action a such that qk(0|j, a) > 0.

For a given policy π , we define Xπ(t) := (X
π,a
j,k (t); k = 1, . . . ,K, j = 1, . . . ,

Jk, a = 0,1), with X
π,a
j,k (t) the number of class-k bandits at time t that are in

state j and on which action a is performed. We further denote by Xπ
j,k(t) :=∑1

a=0 X
π,a
j,k (t) the total number of class-k bandits in state j and Xπ

k (t) :=∑Jk

j=1 Xπ
j,k(t) the total number of class-k bandits.

Our performance criteria are stability and long-run average holding cost.
Stability. For a given policy π , we will call the system stable if the process

Xπ(t) has a unique invariant probability distribution. We further use the follow-

ing weaker notions of stability: a policy is rate-stable if limt→∞
∑

j,k

Xπ
j,k(t)

t
= 0

almost surely and mean rate-stable if limt→∞
∑

j,k

E(Xπ
j,k(t))

t
= 0. For a fixed pop-

ulation of bandits the state space is finite, hence the process Xπ(t) being unichain
is a sufficient condition for stability of the policy π . In the case of a dynamic
population of bandits, the stability condition is more involved. Whether or not the
system is stable can depend strongly on the employed policy. In Section 4, we will
state necessary stability conditions for the dynamic restless bandit problem.

Long-run average holding cost. Besides stability, another important perfor-
mance measure is the average holding cost. We denote by Ck(j, a) ∈ R, j =
1, . . . , Jk , the holding cost per unit of time for having a class-k customer in state
j under action a. We note that Ck(j, a) can be negative, that is, representing a
reward. We further introduce the following notation for long-run average holding
costs under policy π and initial state x := (xj,k;k = 1, . . . ,K, j = 1, . . . , Jk):

V π− (x) := lim inf
T →∞

1

T
Ex

(∫ T

t=0

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)X
π,a
j,k (t)dt

)

and

V π+ (x) := lim sup
T →∞

1

T
Ex

(∫ T

t=0

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)X
π,a
j,k (t)dt

)
.

If V π− (x) = V π+ (x), for all x, then we define V π(x) := V π+ (x). We focus on Marko-
vian policies, which base their decisions on the current state and time. Our objec-
tive is to find a policy π∗ that is average optimal, that is,

V π∗
+ (x) ≤ V π− (x) for all x and for all policies π ,(1)
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under the constraint that at any moment in time at most α bandits can be made
active, that is,

K∑
k=1

Jk∑
j=1

X
π,1
j,k (t) ≤ α for all t.(2)

REMARK 3.1. The standard formulation for the restless bandit problem with
a fixed population of bandits is to make exactly α bandits active at any moment
in time. This setting can be retrieved from our formulation by replacing Ck(j,0)

with Ck(j,0) + C, for all j, k, where C represents an additional cost of having a
passive bandit. The average additional cost for having passive bandits in the system
is equal to (N − A)C, with N the total number of bandits in the system and A

the average number of active bandits in the system. When C is large enough, an
optimal policy will set A maximal, that is A = α. Hence, we retrieve the standard
formulation.

REMARK 3.2 (Multi actions). In the model description, we assumed there
are only two possible actions per bandit: a = 0 (passive bandit) and a = 1 (ac-
tive bandit). A natural generalization is to consider multiple actions per bandit,
that is, for a class-k bandit in state j the scheduler can chose from any action
a ∈ {0, . . . ,Ak(j)} and at most α bandits can be made active at a time, that is,∑K

k=1
∑Jk

j=1
∑Ak(j)

a=1 Xa
j,k(t) ≤ α. This is referred to as “super-process” in the lit-

erature [19]. For the nonrestless bandit problem with α = 1, an index policy is
known to be optimal in the case each state has a dominant action, that is, if an op-
timal policy selects a class-k bandit in state j to be made active, it always chooses
the same action ak(j), with ak(j) ∈ {1, . . . ,Ak(j)}. A less strict condition is given
in [19], Condition D.

In this paper, we focus on the setting Ak(j) = 1, however, all results obtained
will go through in the multi-action context when the definition of the policies are
modified accordingly; see Remarks 4.7 and 5.4.

4. Fluid analysis and asymptotic optimality. In this section, we present a
fluid formulation of the restless bandit problem and show that its optimal fluid
cost provides a lower bound on the cost in the original stochastic model. Based on
the optimal fluid solution, we then derive a set of priority policies for the original
stochastic model that we prove to be asymptotically optimal.

In Section 4.1, we introduce the fluid control problem. In Section 4.2, we define
the set of priority policies and the asymptotic optimality results can be found in
Section 4.3.

4.1. Fluid control problem and lower bound. The fluid control problem arises
from the original stochastic model by taking into account only the mean drifts. For
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a given control u(t), let x
u,a
j,k (t) denote the amount of class-k fluid in state j under

action a at time t and let xu
j,k(t) = x

u,0
j,k (t) + x

u,1
j,k (t) be the amount of class-k fluid

in state j . The dynamics is then given by

dxu
j,k(t)

dt
= λkpk(j) +

1∑
a=0

Jk∑
i=1,i �=j

x
u,a
i,k (t)qk(j |i, a)

−
1∑

a=0

Jk∑
i=0,i �=j

x
u,a
j,k (t)qk(i|j, a)(3)

= λkpk(j) +
1∑

a=0

Jk∑
i=1

x
u,a
i,k (t)qk(j |i, a),

where the last step follows from qk(j |j, a) := −∑Jk

i=0,i �=j qk(i|j, a). The con-
straint on the total amount of active fluid is given by

K∑
k=1

Jk∑
j=1

x
u,1
j,k (t) ≤ α for all t ≥ 0.

We are interested in finding an optimal equilibrium point of the fluid dynamics
that minimizes the holding cost. Hence, we pose the following linear optimization
problem:

(LP) min
(xa

j,k)

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)xa
j,k

s.t. 0 = λkpk(j) +
1∑

a=0

Jk∑
i=1

xa
i,kqk(j |i, a) ∀j, k,(4)

K∑
k=1

Jk∑
j=1

x1
j,k ≤ α,(5)

Jk∑
j=1

1∑
a=0

xa
j,k = xk(0) if λk = 0,∀k,(6)

xa
j,k ≥ 0 ∀j, k, a,(7)

where the constraint (6) can be seen as follows: if λk = 0, then qk(0|i, a) = 0 for
all i. Hence, from (3) we obtain

∑Jk

j=1
d
dt

xu
j,k(t) = 0.

We denote by x∗ an optimal solution of the above problem (LP), assuming it
exists. For a fixed population, an optimal solution depends on xk(0). However, for
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ease of notation, this dependency is not stated explicitly. We further denote the
optimal value of the (LP) by

v∗(
x(0)

) :=
K∑

k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)x
∗,a
j,k .

We can now state some results concerning the optimization problem (LP). The
proof of the first lemma may be found in Appendix A.

LEMMA 4.1. If there exists a policy π such that the process Xπ(t) has a
unique invariant probability distribution with finite first moments, then the feasible
set of (LP) is nonempty and v∗(x) < ∞, for any x.

As a consequence of Lemma 4.1, we get a necessary condition under which
there exists a policy that makes the system stable and has finite first moments.

COROLLARY 4.2. If there exists a policy π such that the system is stable with
finite first moments, then

K∑
k=1

Jk∑
j=1

y∗1
j,k ≤ α,

with y∗ := arg min{∑K
k=1

∑Jk

j=1 x1
j,k : x satisfies (4), (6) and (7)}.

PROOF. Assume there exists a policy π such that the process Xπ(t) has a
unique invariant probability distribution with finite first moments. By Lemma 4.1,
the feasible set of (LP) is nonempty. That is, there exists an (xa

j,k) such that (4), (6)

and (7) hold and
∑K

k=1
∑Jk

j=1 x1
j,k ≤ α. Hence, by definition of the optimal solution

y∗ we obtain
∑K

k=1
∑Jk

j=1 y∗1
j,k ≤ ∑K

k=1
∑Jk

j=1 x1
j,k ≤ α. This completes the proof.

�

The optimal solution of the fluid control problem (LP) serves as a lower bound
on the cost of the original stochastic optimization problem, see the following
lemma. The proof can be found in Appendix B.

LEMMA 4.3. For a fixed population of bandits, we have that for any policy π ,

V π− (x) ≥ v∗(x).(8)

For a dynamic population of bandits, relation (8) holds if

• policy π is stable, or,
• policy π is (mean) rate-stable and Ck(j, a) > 0, for all j, k, a.
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4.2. Priority policies. A priority policy is defined as follows. There is a prede-
fined priority ordering on the states each bandit can be in. At any moment in time,
a priority policy makes active a maximum number of bandits being in the states
having the highest priority among all the bandits present. In addition, the policy
can prescribe that certain states are never made active.

We now define a set of priority policies �∗ that will play a key role in the
paper. The priority policies are derived from (the) optimal equilibrium point(s)
x∗ of the (LP) problem: for a given equilibrium point x∗, we consider all priority
orderings such that the states that in equilibrium are never passive (x∗,0

j,k = 0) are of

higher priority than states that receive some passive action (x∗,0
j,k > 0). In addition,

states that in equilibrium are both active and passive (x∗,0
j,k ·x∗,1

j,k > 0) receive higher

priority than states that are never active (x∗,1
j,k = 0). Further, if the full capacity

is not used in equilibrium (i.e.,
∑

k

∑
j x

∗,1
j,k < α), then the states that are never

active in equilibrium are never activated in the priority ordering. The set of priority
policies �∗ is formalized in the definition below.

DEFINITION 4.4 (Set of priority policies). We define

X∗ := {
x∗ : x∗ is an optimal solution of (LP) with xk(0) = Xk(0)

}
.

The set of priority policies �∗ is defined as

�∗ := ⋃
x∗∈X∗

�
(
x∗)

,

where �(x∗) is the set of all priority policies that satisfy the following rules:

1. A class-k bandit in state j with x
∗,1
j,k > 0 and x

∗,0
j,k = 0 is given higher priority

than a class-k̃ bandit in state j̃ with x
∗,0
j̃ ,k̃

> 0.

2. A class-k bandit in state j with x
∗,0
j,k > 0 and x

∗,1
j,k > 0 is given higher priority

than a class-k̃ bandit in state j̃ with x
∗,0
j̃ ,k̃

> 0 and x
∗,1
j̃ ,k̃

= 0.

3. If
∑K

k=1
∑Jk

j=1 x
∗,1
j,k < α, then any class-k bandit in state j with x

∗,1
j,k = 0 and

x
∗,0
j,k > 0 will never be made active.

We emphasize that in order to define the set of priority policies �∗, we do not
require the bandits to be indexable, as defined in Definition 5.2. This is in contrast
to the definition of Whittle’s index policy, which is only well defined in the case
the system is indexable. We note that Whittle’s index policy is included in �∗ for
indexable systems as will be proved in Section 5.3.

If there exists a policy such that the system is stable and has finite first mo-
ments, then the feasible set of (LP) is nonempty (Lemma 4.1), and hence the set
�∗ is nonempty. Note that the set �∗ can consist of more than one policy. When
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selecting a policy it might be of practical importance to aim for a policy that is
robust in the arrival characteristics, the number of bandits that can be made active
and the number of bandits in each class.

DEFINITION 4.5 (Robust policy). A priority policy is called robust if the pri-
ority ordering does not depend on α, λk and Xk(0), k = 1, . . . ,K .

In the case the system is indexable, Whittle’s index policy is a robust element
of �∗; see Section 5.1.2. For a nonindexable system, the set �∗ might no longer
contain a robust policy. In Section 8, we explain how to select in that case priority
policies from the set �∗.

Before continuing, we first give an example of Definition 4.4.

EXAMPLE 4.6. Assume K = 2 and Jk = 2. Let x∗ be such that for class 1 we
have x

∗,0
1,1 = 0, x∗,0

2,1 = 4, x∗,1
1,1 = 3, x∗,1

2,1 = 1 and for class 2 we have x
∗,0
1,2 = 2, x∗,0

2,2 =
0, x

∗,1
1,2 = 0, x

∗,1
2,2 = 5 and α = 10. The priority policies associated to x∗ in the set

�(x∗), as defined in Definition 4.4, satisfy the following rules: By point 1: class-1
bandits in state 1 and class-2 bandits in state 2 are given the highest priority. By
point 3: since x

∗,1
1,1 +x

∗,1
2,1 +x

∗,1
1,2 +x

∗,1
2,2 = 9 < α, class-2 bandits in state 1 are never

made active. Let the pair (j, k) denote a class-k bandit in state j . The set �(x∗)
contains two policies: either give priority according to (1,1) 
 (2,2) 
 (2,1) or
give priority according to (2,2) 
 (1,1) 
 (2,1). In neither policy, state (1,2) is
never made active.

REMARK 4.7 (Multi actions). In this remark, we explain how to define the set
of priority policies �∗ in the case of multiple actions per bandit. Similar to the
nonrestless bandit problem (see Remark 3.2), we are interested in priority policies
such that if a class-k bandit in state j is chosen to be active, it will always be
made active in a fixed mode ak(j) ∈ {0,1,2, . . . ,Ak(j)}. We therefore need to
restrict the set X∗ to optimal solutions of (LP) that satisfy x

∗,a
j,k x

∗,ã
j,k = 0, for all

a, ã ∈ {1, . . . ,Ak(j)}. The latter condition implies that for all activation modes
a = 1, . . . ,Ak(j) one has x

∗,a
j.k = 0, with the exception of at most one active mode,

denoted by ak(j). The set �(x∗) is then defined as in Definition 4.4, replacing the
action a = 1 by a = ak(j). All results obtained in Section 4 remain valid [replacing
a = 1 by a = ak(j)].

REMARK 4.8. In [9], a heuristic is proposed for the multi-class restless ban-
dit problem for a fixed population of bandits: the so-called primal–dual heuristic.
This is defined based on the optimal (primal and dual) solution of an LP problem
corresponding to the discounted-cost criterion. In fact, if the primal–dual heuristic
would have been defined based on the problem (LP), it can be checked that it sat-
isfies the properties of Definition 4.4, and hence is included in the set of priority
policies �∗.
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In order to prove asymptotic optimality of a policy π∗ ∈ �∗, as will be done in
Section 4.3, we investigate its fluid dynamics. Denote by Sπ∗

k (j) the set of pairs
(i, l), i = 1, . . . , Jl, l = 1, . . . ,K , such that class-l bandits in state i have higher
priority than class-k bandits in state j under policy π∗. Denote by Iπ∗

the set of
all states that will never be made active under policy π∗. The fluid dynamics under
policy π∗ can now be written as follows:

dxπ∗
j,k(t)

dt
= λkpk(j) +

1∑
a=0

Jk∑
i=1

x
π∗,a
i,k (t)qk(j |i, a),

with x
π∗,1
j,k (t) = min

((
α − ∑

(i,l)∈Sπ∗
k (j)

xπ∗
i,l (t)

)+
, xπ∗

j,k(t)

)
if (j, k) /∈ Iπ∗

,

(9)
x

π∗,1
j,k (t) = 0 if (j, k) ∈ Iπ∗

,

x
π∗,0
j,k (t) = xπ∗

j,k(t) − x
π∗,1
j,k (t).

It follows directly that an optimal solution x∗ of (LP) is an equilibrium point of
the process xπ∗

(t).

LEMMA 4.9. Let π∗ ∈ �∗ and let x∗ be a point such that π∗ ∈ �(x∗). Then
x∗ is an equilibrium point of the process xπ∗

(t) as defined in (9).

PROOF. Since x∗ is an optimal solution of (LP), it follows directly from the
definition of �(x∗) that x∗ is an equilibrium point of the process xπ∗

(t). �

In order to prove asymptotic optimality of a policy π∗, we will need that the
equilibrium point x∗ is in fact a global attractor of the process xπ∗

(t), that is, all
trajectories converge to x∗. This is not true in general, which is why we state it as
a condition for a policy to satisfy. In Section 6, we will further comment on this
condition.

CONDITION 4.10. Given an equilibrium point x∗ ∈ X∗ and a policy π∗ ∈
�(x∗) ⊂ �∗. The point x∗ is a global attractor of the process xπ∗

(t). That is, for
any initial point, the process xπ∗

(t) converges to x∗.

4.3. Asymptotic optimality of priority policies. In this section, we present the
asymptotic optimality results for the set of priority policies �∗. In particular, we
obtain that the priority policies minimize the fluid-scaled average holding cost.

We will consider the restless bandit problem in the following fluid-scaling
regime: we scale by r both the arrival rates and the number of bandits that can
be made active. That is, class-k bandits arrive at rate λk · r , k = 1, . . . ,K , and
α · r bandits can be made active at any moment in time. We let Xr

j,k(0) = xj,k · r ,
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with xj,k ≥ 0. For a given policy π , we denote by X
r,π,a
j,k (t) the number of class-k

bandits in state j experiencing action a at time t under scaling parameter r .
We make the important observation that the set of policies �∗ is invariant to

the scaling parameter. This follows since an optimal solution of (LP) scales with
the parameter r : if x∗ is an optimal solution, then so is x∗r for the (LP) with
parameters α · r , x(0) · r and λk · r . By Definition 4.4, the set of priority policies
does therefore not depend on r .

We will be interested in the process after the fluid scaling, that is, space is scaled

linearly with the parameter r ,
X

r,π,a
j,k (t)

r
. We further define for a given initial state x,

V
r,π
− (x) := lim inf

T →∞
1

T
Er·x

(∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)
X

r,π,a
j,k (t)

r
dt

)

and

V
r,π
+ (x) := lim sup

T →∞
1

T
Er·x

(∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)
X

r,π,a
j,k (t)

r
dt

)
.

If V
r,π
− (x) = V

r,π
+ (x) for all x, then we define V r,π (x) := V

r,π
+ (x).

Our goal is to find policies that minimize the cost of the stochastic model after
fluid scaling. We therefore call a policy π∗ asymptotically optimal when the fluid-
scaled version of (1) holds.

DEFINITION 4.11 (Asymptotic optimality). A policy π∗ is asymptotically op-
timal if

lim sup
r→∞

V
r,π∗
+ (x) ≤ lim inf

r→∞ V
r,π
− (x) for all x and all policies π ∈ G,

where G is a set of admissible policies.

In our asymptotic optimality result, the set G will consist of all policies for the
fixed population of bandits, while it will consists of all policies that are stable,
rate-stable or mean rate-stable for the dynamic population of bandits; see Proposi-
tion 4.14.

In order to prove asymptotic optimality of priority policies in the set �∗, we
need the following technical condition.

CONDITION 4.12. Given a policy π∗ ∈ �∗.

(a) The process Xr,π∗
(t)

r
has a unique invariant probability distribution pr,π∗

,
which has a finite first moment, for all r .

(b) The family {pr,π∗
, r} is tight.

(c) The family {pr,π∗
, r} is uniform integrable.
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For a fixed population of bandits, the state space of Xr,π∗
(t) is finite, hence

conditions (b) and (c) are satisfied. A sufficient condition for Condition 4.12(a) to
hold is the Markov process Xr,π∗

(t) to be unichain, for any r , [43].
For a dynamic population of bandits, we present a large class of restless bandit

problems for which Condition 4.12 is satisfied. More precisely, we consider prob-
lems in which bandits that are kept passive will eventually leave the system. For
many real-life situations, this assumption arises naturally. For example, customers
that become impatient and abandon the queue/system, companies that go bankrupt,
perishable items, etc. The proof of the proposition may be found in Appendix C.

PROPOSITION 4.13. Assume that the state 0 is positive recurrent for a class-
k bandit that is kept passive. For any priority policy π for which Xr,π (t) is irre-
ducible, Condition 4.12 is satisfied.

Another class of problems satisfying Condition 4.12 would be those in which
only active bandits are allowed in the system, that is, qk(0|i,0) = ∞, for all k, i.
This could describe for example the hiring process where new candidates are mod-
eled by new arriving bandits, room occupation in a casualty departments where
patients require direct attention, or a loss network. When qk(0|i,0) = ∞, for all
k, i, at most α bandits are present in the system, hence due to the finite state space,
Condition 4.12 follows directly from a unichain assumption.

We can now state the asymptotic optimality result.

PROPOSITION 4.14. For a given policy π∗ ∈ �(x∗) ⊂ �∗, assume Condi-
tions 4.10 and 4.12 are satisfied. Then

lim
r→∞V r,π∗

(x) = v∗(x) for any x.

In particular, we have

lim inf
r→∞ V

r,π
− (x) ≥ lim

r→∞V r,π∗
(x) for any x and any policy π ∈ G,

where for the fixed population of bandits G consists of all policies, and for the
dynamic population of bandits

• G is the set of all stable policies π , or,
• Ck(j, a) > 0, for all j, k, a and G is the set of all rate-stable and mean rate-

stable policies.

The proof may be found in Appendix D and consists of the following steps:
Given a policy π∗ ∈ �(x∗), we show that the fluid-scaled steady-state queue
length vector converges to x∗. Since x∗ is an optimal solution of the fluid control
problem (LP) with x(0) = x and has cost value v∗(x), this implies that the fluid-
scaled cost under policy π∗ converges to v∗(x). Since v∗(x) serves as a lower
bound on the average cost, this allows us to conclude for asymptotic optimality of
the priority policy π∗.
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5. Whittle’s index policy. In Section 4.3, we showed that priority policies
inside the set �∗ are asymptotically optimal. In this section, we will derive that
Whittle’s index policy is included in this set of policies �∗.

In Section 5.1, we first define Whittle’s index policy. In Sections 5.2 and 5.3,
we then give sufficient conditions under which Whittle’s index policy is asymptot-
ically optimal, both in the case of a fixed population of bandits, and in the case of
a dynamic population of bandits, respectively.

5.1. Relaxed-constraint optimization problem and Whittle’s indices. Whittle’s
index policy was proposed by Whittle [50] as an efficient heuristic for the multi-
class restless bandit problem. Each bandit is assigned a Whittle’s index, which is a
function of the state the bandit is in. Whittle’s index policy activates those bandits
having currently the highest indices. In this section, we will describe how these
Whittle’s indices are derived.

In order to define Whittle’s indices, we consider the following optimization
problem: Find a stationary and Markovian policy that minimizes

C
f
x

(
K∑

k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)X
π,a
j,k (·)

)
with f ∈ {av, β},(10)

under the constraint (2), where

C
av
x

(
Y(·)) := lim sup

T →∞
1

T
Ex

(∫ T

0
Y(t)dt

)
,(11)

represents the average-cost criterion and

C
β
x

(
Y(·)) := Ex

(∫ ∞
0

e−βtY (t)dt

)
,

β > 0, represents the discounted-cost criterion. The objective as stated in Section 3
is the average-cost criterion. In Section 5.3, it will become clear why we need to
introduce here the discounted-cost criterion as well.

5.1.1. Relaxed-constraint optimization problem. The restless property of the
bandits makes the above described optimization problem often infeasible to solve.
Instead, Whittle [50] proposed to study the so-called relaxed-constraint optimiza-
tion problem, which is defined as follows: find a policy that minimizes (10) under
the relaxed constraint

C
f
x

(
K∑

k=1

Jk∑
j=1

X
π,1
j,k (·)

)
≤ α(f ),(12)

with α(av) = α and α(β) = ∫ ∞
0 αe−βt dt = α/β for β > 0. That is, the constraint

that at most α bandits can be made active at any moment in time is replaced by its



ASYMPTOTIC OPTIMAL CONTROL OF RESTLESS BANDITS 1963

time-average or discounted version, (12). Hence, the cost under the optimal policy
of the relaxed-constraint optimization problem provides a lower bound on the cost
for any policy that satisfies the original constraint.

In standard restless bandit problems, the constraint (12) needs to be satisfied in
the strict sense, that is, with an “=” sign. In this paper, we allow however strictly
less than α bandits to be active at a time. In order to define Whittle’s indices, we
therefore introduce so-called dummy bandits. That is, besides the initial population
of bandits, we assume there are α(f ) additional bandits that will never change
state. We denote the state these bandits are in by B and the cost of having a dummy
bandit in state B is CB(a) = 0, a = 0,1. The introduction of these α(f ) dummy
bandits allows to reformulate the relaxed-constraint problem as follows: minimize
(10) under the relaxed constraint

C
f
x

(
X

π,1
B (·)) +C

f
x

(
K∑

k=1

Jk∑
j=1

X
π,1
j,k (·)

)
= α(f ).(13)

This constraint is equivalent to (12) since, for a given set of active bandits, activat-
ing additional dummy bandits does not modify the behavior of the system.

Using the Lagrangian approach, we write the relaxed-constraint problem [min-
imize (10) under constraint (13)] as the problem of finding a policy π that mini-
mizes

K∑
k=1

Jk∑
j=1

C
f
x

(
Ck(j,0)X

π,0
j,k (·) + Ck(j,1)X

π,1
j,k (·) + νX

π,1
j,k (·))

(14)
+C

f
x

(
νX

π,1
B (·)).

The Lagrange multiplier ν can be viewed as the cost to be paid per active ban-
dit. From Lagrangian relaxation theory, we have that there exists a value of the
Lagrange multiplier ν such that the constraint (13) is satisfied.

Since there is no longer a common constraint for the bandits, problem (14) can
be decomposed into several subproblems, one for each bandit: for each class-k
bandit the subproblem is to minimize

C
f (

Ck

(
Jk(·),Aπ

k (·)) + ν1(Aπ
k (·)=1)

)
,(15)

where Jk(t) denotes the state of a class-k bandit at time t and Aπ
k (t) denotes the

action chosen for the class-k bandit under policy π . We take as convention that
Jk(t) = 0 and Ak(t) = 0 if the bandit is not present (or no longer present) in the
system at time t and set Ck(0,0) = 0. For each dummy bandit, the problem is to
minimize

νCf (1(Aπ
B(·)=1)),(16)

with Aπ
B(t) the action chosen for the dummy bandit at time t under policy π .

We can now define Whittle’s index.
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DEFINITION 5.1 (Whittle’s index). For a given optimization criterion f , we
define Whittle’s index ν

f
k (j) as the least value of ν for which it is optimal in (15)

to make the class-k bandit in state j passive.
Similarly, we define the index ν

f
B as the least value of ν for which it is optimal

in (16) to make a dummy bandit passive.

Indexability is the property that allows to characterize an optimal policy for the
relaxed optimization problem.

DEFINITION 5.2 (Indexability). A bandit is indexable if the set of states in
which passive is an optimal action in (15), denoted by D(ν), increases in ν. That
is, ν ′ < ν implies D(ν′) ⊂ D(ν).

We note that the dynamics of a bandit in state B is independent of the action
chosen. Since ν represents the cost to be paid when active, it will be optimal in
(16) to make a bandit in state B passive if and only if ν ≥ 0. As a consequence,
a dummy bandit is always indexable and ν

f
B = 0.

We call the problem indexable if all bandits are indexable. Note that whether
or not a problem is indexable can depend on the choice for f (and β). We refer
to [34] for a survey on indexability results. In particular, [34] presents sufficient
conditions for a restless bandit to be indexable and provides a method to calculate
Whittle’s indices. Sufficient conditions for indexability can also be found in [30,
45].

If the bandit problem is indexable, an optimal policy for the subproblem (15)
is then such that the class-k bandit in state j is made active if ν

f
k (j) > ν, is made

passive if ν
f
k (j) < ν, and any action is optimal if ν

f
k (j) = ν, [50].

An optimal solution to (10) under the relaxed constraint (13) is obtained by
setting ν at the appropriate level ν∗ such that (13) is satisfied. A class-k bandit in
state j is then made active if ν

f
k (j) > ν∗, and kept passive if ν

f
k (j) < ν∗. When

a class-k bandit is in a state j such that ν
f
k (j) = ν∗, one needs to appropriately

randomize the action in this state such that the relaxed constraint (13) is satisfied,
[46, 50]. In the case ν∗ = 0, we take the convention that the randomization is
done among the bandits in state B [possible since there are exactly α(f ) dummy
bandits], while any class-k bandit in a state j with ν

f
k (j) = 0 is kept passive.

Since ν
f
B = 0, a dummy bandit has higher priority than a class-k bandit in state

j with ν
f
k (j) ≤ 0. Together with constraint (13) and the fact that there are α(f )

dummy bandits, we conclude that any class-k bandit in state j with ν
f
k (j) ≤ 0 is

kept passive in the relaxed optimization problem. In particular, this implies that
ν∗ ≥ 0.
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5.1.2. Whittle’s index policy as heuristic. The optimal control for the relaxed
problem is not feasible for the original optimization problem having as constraint
that at most α bandits can be made active at any moment in time. Whittle [50]
therefore proposed the following heuristic:

DEFINITION 5.3 (Whittle’s index policy). For a given optimization crite-
rion f , Whittle’s index policy activates the α bandits having currently the highest
nonnegative Whittle’s index value v

f
k (j). In case different states have the same

value for the Whittle index, an arbitrary fixed priority rule is used. We denote
Whittle’s index policy by νf .

If ν
f
k (j) < ν

f
l (i), then a class-l bandit in state i is given higher priority than

a class-k bandit in state j under Whittle’s index policy. Analogously to the opti-
mal solution of the relaxed optimization problem, a class-k bandit in state j with
ν

f
k (j) ≤ 0 will never be made active under Whittle’s index policy. It can therefore

happen that strictly less than α bandits are made active, even though there are more
than α bandits present.

Whittle’s indices result from solving (15). Since the latter does not depend on α,
λk , and Xk(0), we can conclude that Whittle’s index policy is a robust policy; see
Definition 4.5. In the next two sections, we will prove that Whittle’s index policy
is asymptotically optimal, both for the static and dynamic population.

REMARK 5.4 (Multi-actions). In this remark, we define Whittle’s index pol-
icy in the case of multiple actions. For that we need to assume a stronger form
of indexability: There is an index v

f
k (j) and an activation mode a

f
k (j) such that

an optimal solution of (15) is to make a class-k bandit in state j active in mode
a

f
k (j) if ν < ν

f
k (j) and to keep it passive if ν > ν

f
k (j). Whittle’s index rule is then

defined as in Section 5.1.1, replacing the action a = 1 by a = a
f
k (j).

If the restless bandit problem satisfies this stronger form of indexability, then
one can reduce the multi-action problem to the single-action problem and hence
all asymptotic optimality results as obtained in Sections 5.2 and 5.3 will be valid
[replacing action a = 1 by a = ak(j)].

5.2. Asymptotic optimality for a fixed population of bandits. In this section,
we consider a fixed population of indexable bandits and show that Whittle’s in-
dex policy, defined for the time-average cost criterion f = av, is asymptotically
optimal.

We will need the following assumption, which was also made in [46].

ASSUMPTION 5.5. For every k, the process describing the state of a class-k
bandit is unichain, regardless of the policy employed.
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The next proposition shows that Whittle’s index policy is included in the set of
priority policies �∗. The proof can be found in Appendix E.

PROPOSITION 5.6. Consider a fixed population of bandits. If Assumption 5.5
holds and if the restless bandit problem is indexable for the average-cost criterion,
then there is an x∗ ∈ X∗ such that Whittle’s index policy νav is included in the set
�(x∗) ⊂ �∗.

We can now conclude that Whittle’s index policy is asymptotically optimal.

COROLLARY 5.7. Consider a fixed population of bandits. If the assumptions
of Proposition 5.6 are satisfied and if Condition 4.10 holds for Whittle’s index
policy νav, then

lim
r→∞V r,νav

(x) ≤ lim inf
r→∞ V

r,π
− (x),

for any x and any policy π .

PROOF. From Propositions 4.14 and 5.6, we obtain the desired result. �

The above corollary was previously proved by Weber and Weiss in [46] for the
case of symmetric bandits, that is, K = 1. We note that the assumptions made
in [46] in order to prove the asymptotic optimality result are the same as the ones
in Corollary 5.7.

The proof technique used in Weber and Weiss [46] is different from the one
used here. In [46], the cost under an optimal policy is lower bounded by the op-
timal cost in the relaxed problem and upper bounded by the cost under Whittle’s
index policy. By showing that both bounds converge to the same value, the fluid
approximation, the asymptotic optimality of Whittle’s index policy is concluded.
Obtaining a lower bound for a dynamic population does not seem straightforward.
This is why we undertook in this paper a different proof approach that applies as
well for a dynamic population; see Section 5.3.

5.3. Asymptotic optimality for a dynamic population of bandits. In this sec-
tion, we will introduce an index policy for the dynamic population of bandits,
based on Whittle’s indices, and show it to be asymptotically optimal. More pre-
cisely, we show the index policy to be included in the set of asymptotically optimal
policies �∗, as obtained in Section 4.3.

Recall that our objective is to find a policy that asymptotically minimizes the
average-cost criterion (11). We do however not make use of Whittle’s index policy
νav for the following reason: Consider a class-k bandit and the relaxed optimization
problem (15), with f = av. Any policy that makes sure that the class-k bandit
leaves after a finite amount of time has an average cost equal to zero and is hence
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an optimal solution. In order to derive a nontrivial index rule, the authors of [5, 7]
consider instead the Whittle indices corresponding to the discounted-cost criterion
(f = β , β > 0). An index rule for the average-cost criterion is then obtained by
considering the limiting values as β ↓ 0. We propose here the same. For a given
class k, let βl ↓ 0 be some subsequence such that the limit

νlim
k (j) := lim

l→∞ν
βl

k (j)

exists, for all j = 1, . . . , Jk . The limit can possibly be equal to ∞. The index policy
νlim activates the α bandits having currently the highest nonnegative index value
νlim
k (j). In this section, we will show asymptotic optimality of νlim. In order to do

so, we will need that class-k bandits are indexable under the βl-discounted cost
criterion, for l large enough. In addition, we will need the following assumption
on the model parameters.

ASSUMPTION 5.8. For all k = 1, . . . ,K , the set of optimal solutions of the
linear program

min
x

Jk∑
j=1

(
C0

j,kx
0
j,k + C1

j,kx
1
j,k + νx1

j,k

)

s.t. 0 = λkpk(0, j) +
1∑

a=0

Jk∑
i=1

xa
i,kqk(j |i, a) ∀j,

xa
j,k ≥ 0 ∀j, a,

is bounded when ν > 0.

We note that this assumption is always satisfied if Ck(j,0) > 0 and Ck(j,1) ≥
0, for all j, k, since x

∗,1
j,k and x

∗,0
j,k are upper bounded by the cost value of a feasible

solution divided by ν + Ck(j,1) > 0 and Ck(j,0) > 0, respectively.
The proposition below shows that Whittle’s index policy νlim is included in the

set of priority policies �∗. The proof can be found in Appendix E.

PROPOSITION 5.9. Consider a dynamic population of bandits. For a given
class k, let βl ↓ 0 be some subsequence such that the limit

νlim
k (j) := lim

l→∞ν
βl

k (j)

exists, for all j = 1, . . . , Jk . If Assumption 5.8 holds and if the discounted restless
bandit problem is indexable for βl ≤ β , with 0 < β < 1, then there is an x∗ ∈ X∗
such that Whittle’s index policy νlim is included in the set �(x∗) ⊂ �∗.

We can now conclude for asymptotic optimality of Whittle’s index policy νlim.
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COROLLARY 5.10. Consider a dynamic population of bandits. If the assump-
tions of Proposition 5.9 are satisfied and if Conditions 4.10 and 4.12 hold for
Whittle’s index policy νlim, then

lim
r→∞V r,νlim

(x) ≤ lim inf
r→∞ V

r,π
− (x) for all x and any policy π ∈ G,(17)

where

• G consists of all stable policies, or
• Ck(j, a) > 0, for all j, k, a and G consists of all rate-stable and mean rate-

stable policies.

PROOF. The result follows directly from Propositions 4.14 and 5.9. �

The above result for the dynamic population shows that the heuristic νlim, which
is based on a model without arrivals, is in fact nearly optimal in the presence of
arrivals. In addition, Whittle’s index policy νlim is robust, that is, it does not depend
on the arrival characteristics of new bandits or on the exact number of bandits that
can be made active.

REMARK 5.11 (Multi-actions). In order to define νlim in the case of multiple
actions per bandit, we need to assume that, for βl small enough, the stronger form
of indexability (defined in Remark 5.4) holds. In addition, the optimal activation
mode for a class-k bandit in state j , denoted by a

βl

k (j), cannot depend on βl , that

is, a
βl

k (j) = ak(j).

6. On the global attractor property. In Proposition 4.14, asymptotic opti-
mality of priority policies in the set �∗ was proved under the global attractor
property (Condition 4.10) and a technical condition (Condition 4.12). In this sec-
tion, we further discuss the global attractor property. The latter is concerned with
the process x∗(t), defined by the ODE (9), to have a global attractor. We recall that
in [46] the same global attractor property was required in order to prove asymptotic
optimality of Whittle’s index policy for a fixed population of symmetric bandits
(K = 1). In addition, the authors of [46] presented an example for which Whittle’s
index policy is not asymptotically optimal (and hence, does not satisfy the global
attractor property).

For a fixed population of symmetric indexable bandits, the global attractor prop-
erty was proved to always hold under Whittle’s index policy if a bandit can be in at
most three states (J = 3); see [47]. However, in general no sufficient conditions are
available in order for x∗ to be a global attractor of xπ∗

(t). A necessary condition
was provided in [46], Lemma 2, where for a fixed population of symmetric bandits
it was proved that indexability is necessary in order for Whittle’s index policy to
satisfy the global attractor property, for any value of α and x(0). We emphasize
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that when the system is nonindexable, there can still exist priority policies in �∗
(possibly nonrobust) that satisfy the global attractor property.

The asymptotic optimality result of Whittle’s index policy for the case K = 1,
[46], has been cited extensively. The global attractor property is often verified only
numerically. Note that in the context of mean field interaction models, convergence
of the stationary measure also relies on a global attractor assumption of the corre-
sponding ODE; see, for example, [8]. In a recent paper, the authors of [37] proved
asymptotic optimality of Whittle’s index policy for a very specific model with only
two classes of bandits (fixed population of bandits) under a recurrence condition.
The latter condition replaced the global attractor condition, however, the authors
needed as well to resort to numerical experiments in order to verify this recurrence
condition.

In the remainder of this section, we describe the necessity of the global attractor
property and the technical challenges in the case this condition is not satisfied.

Optimal fluid control problems have been widely studied in the literature in
order to obtain asymptotically optimal policies for the stochastic model. In the
context of this paper, the fluid control problem related to our results would be to
find the optimal control u∗(t) that minimizes

lim
T →∞

1

T

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)x
u,a
j,k (t)dt,(18)

where the dynamics of x
u,a
j,k (t) is described by (3). The optimal control u∗(t) is then

to be translated back to the stochastic model in such a way that it is asymptotically
optimal. When stating the global attractor property, the above is exactly what we
have in mind. In fact, instead of solving this transient fluid control problem, we
directly consider an optimal equilibrium point of the fluid model and propose a
priority policy based on this equilibrium point. When the global attractor property
is satisfied, this implies that the optimal equilibrium point is indeed reached by the
associated strict priority control, and hence this priority control solves (18).

When for any π∗ ∈ ⋃
x∗∈X∗ �(x∗) = �∗ the global attractor property is not sat-

isfied, this means that there does not exist a priority control u(t) = π∗ ∈ �(x∗)
such that the fluid process xπ∗

(t) converges to x∗. In that case, we can be in ei-
ther one of the following two situations: (1) There exists a control u∗(t) for which
the process xu∗

(t) does have as global attractor x∗ ∈ X∗, where X∗ was defined
as the set of optimal equilibrium points. This control u∗(t) might not be of prior-
ity type. (2) There does not exist any control that has a global attractor x∗ ∈ X∗.
In the latter case, the optimal control u∗(t) can be such that the process xu∗

(t)

behaves cyclically or shows chaotic behavior, or the process converges to a nonop-
timal equilibrium point. Hence, in the case Condition 4.10 is not satisfied, in both
situations (1) and (2), one needs to determine the exact transient behaviour of the
optimal control of (18), u∗(t), which in its turn needs to be translated back to the
stochastic model. We leave this as subject for future research.
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7. Case study: A multi-server queue with abandonments. In this section,
we study a multi-class multi-server system with impatient customers, the multi-
class M/M/S + M system. This is an example of a restless bandit problem with a
dynamic population. We will derive a robust priority policy that is in the set �∗ and
show that it satisfies the two conditions needed in order to conclude for asymptotic
optimality.

The impact of abandonments has attracted considerable interest from the re-
search community, with a surge in recent years. To illustrate the latter, we can
mention the recent Special Issue on abandonments in Queueing Systems [24] and
the survey paper [13] on abandonments in a many-server setting

We consider a multi-class system with S servers working in parallel. At any
moment in time, each server can serve at most one customer. Class-k customers
arrive according to a Poisson process with rate λk > 0 and require an exponentially
distributed service with mean 1/μk < ∞. Server s, s = 1, . . . , S works at speed 1.
Customers waiting (being served) abandon the queue after an exponentially dis-
tributed amount of time with mean 1/θk (1/θ̃k), with θk > 0, θ̃k ≥ 0, for all k.
Having one class-k customers waiting in the queue (in service) costs ck (c̃k) per
unit of time. Each abandonment of a waiting class-k customer (class-k customer
being served) costs dk (d̃k). We are interested in finding a policy π that minimizes
the long-run average cost

lim sup
T →∞

1

T

K∑
k=1

Ex

(∫ T

0

(
ckX

π,0
k (t) + c̃kX

π,1
k (t)

)
dt + dkR

π
k (T ) + d̃kR̃

π
k (T )

)
,

where X
π,0
k (t) [Xπ,1

k (t)] denotes the number of class-k customers in the queue
(in service) at time t and Rπ

k (t) [R̃π
k (t)] denotes the number of abandonments of

waiting class-k customers (class-k customers being served) in the interval [0, t].
Representing each customer in the queue (in service) by a passive (active)

bandit, the problem can be addressed within the framework of a restless bandit
model with the following parameters: Jk = 1, qk(0|1,0) = θk > 0, qk(0|1,1) =
μk + θ̃k , Ck(1,0) = ck + dkθk , Ck(1,1) = c̃k + d̃kθ̃k , k = 1, . . . ,K , and α =
S, where we used that Ex(R

π
k (T )) = θkEx(

∫ T
0 X

π,0
k (t)dt) and Ex(R̃

π
k (T )) =

θ̃kEx(
∫ T

0 X
π,1
k (t)dt). A bandit can only be in two states (state 0 or state 1), hence

indexability follows directly (for any choice of β).
We now define an index policy that we will prove to be included in the set �∗.

For each class k, we set

ιk := qk(0|1,1)

(
Ck(1,0)

qk(0|1,0)
− Ck(1,1)

qk(0|1,1)

)
.

The index policy ι is then defined as follows: At any moment in time serve (at
most) S customers present in the system that have the highest, strictly positive,
index values, ιk . If a customer belongs to a class that has a negative index value,
then this customer will never be served.
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Before continuing, we first give an interpretation of the index ιk . The term
1/qk(0|1, a) is the time it takes until a bandit under action a leaves the system.
Hence, Ck(1, a)/qk(0|1, a) is the cost for applying action a on a class-k bandit
until it leaves the system. The difference Ck(1,0)

qk(0|1,0)
− Ck(1,1)

qk(0|1,1)
is the reduction in

cost when making a class-k bandit active (instead of keeping him passive), so that
the index ιk represents the reduction in cost per time unit when class k is made
active. Also note that the index rule ι does not depend on the arrival rate of the
customers or the number of servers present in the system, hence it is a robust rule;
see Definition 4.5.

By solving the LP problem corresponding to the multi-server queue with aban-
donments, we obtain in Proposition 7.1 that the index policy ι is included in �∗.

PROPOSITION 7.1. Policy ι is contained in the set �∗.
In addition, when ι1 > ι2 > · · · > ιK , policy ι coincides with Whittle’s index

policy νlim.

PROOF. For the multi-class multi-server system with abandonments, the linear
program (LP) is given by

min
x

∑
k

(
ckx

0
k + c̃kx

1
k + dkθkx

0
k + d̃kθ̃kx

1
k

)
,

s.t. 0 = λk − μkx
1
k − θkx

0
k − θ̃kx

1
k ,(19)

K∑
k=1

x1
k ≤ S and x0

k , x1
k ≥ 0.

Equation (19) implies x0
k = λk−(μk+θ̃k)x

1
k

θk
. Hence, the above linear program is

equivalent to solving

max
x

∑
k

(
(ck + dkθk)

μk + θ̃k

θk

− c̃k − d̃kθ̃k

)
x1
k ,

s.t.
K∑

k=1

x1
k ≤ S and 0 ≤ x1

k ≤ λk

μk + θ̃k

.

The optimal solution is to assign maximum values to those x1
k having the highest

values for ιk = (ck + dkθk)
μk+θ̃k

θk
− c̃k − d̃kθ̃k , with ιk > 0, until the constraint∑

k x1
k ≤ S is saturated. Denote this optimal solution by x∗. Assume the classes are

ordered such that ι1 ≥ ι2 ≥ · · · ≥ ιK . Hence, one can find an l such that: (1) for all
k < l it holds that x

∗,1
k = λk

μk+θ̃k
, and hence x

∗,0
k = 0, (2) for k = l it holds that 0 ≤

x
∗,1
l ≤ λl

μl+θ̃l
, and hence x

∗,0
l ≥ 0, (3) and for all k > l it holds that x

∗,1
k = 0. This

gives that the index policy ι is included in the set �(x∗) ⊂ �∗; see Definition 4.4.
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When ι1 > ι2 > · · · > ιK , it follows directly that ι is the unique policy that is in
the set �∗ for any value of S or λk . Since Whittle’s index policy is by definition
robust and is in the set �∗ (Proposition 5.9), we obtain that ι and Whittle’s index
policy have the same priority ordering. �

Note that the M/M/S + M system belongs to the class of problems as described
in Proposition 4.13. Hence, Condition 4.12 is satisfied. The global attractor prop-
erty follows from [3], where this property was proved for a slightly different model.
We therefore have the following optimality result for the index policy ι.

PROPOSITION 7.2. Consider a system with Sr servers working in parallel
and arrival rates λkr , k = 1, . . . ,K . The index policy ι is asymptotically optimal
as r → ∞, that is, for any x and any policy π ,

lim
r→∞ lim

T →∞
1

T
Ex

(∫ T

0

K∑
k=1

(
(ck + dkθk)

X
r,ι,0
k (t)

r
+ (c̃k + d̃kθ̃k)

X
r,ι,1
k (t)

r

)
dt

)

≤ lim inf
r→∞ lim inf

T →∞
1

T
Ex

(∫ T

0

K∑
k=1

(
(ck + dkθk)

X
r,π,0
k (t)

r

+ (c̃k + d̃kθ̃k)
X

r,π,1
k (t)

r

)
dt

)
.

PROOF. In Proposition 7.1, we showed that ι is included in �(x∗), with x∗
as given in the proof of Proposition 7.1. In Appendix H, we prove that the pro-
cess xι(t), as defined in (9), has the point x∗ as a unique global attractor, that is,
Condition 4.10 is satisfied. From Proposition 4.13, we obtain that Condition 4.12
is satisfied. Further, note that any policy π gives a stable system, since θk > 0 for
all k. Together with Proposition 4.14, we then obtain that the index policy ι is
asymptotically optimal. �

REMARK 7.3 (Existing results in literature). In [29], a single-server queue
with abandonments has been studied. Whittle’s index policy was there derived by
modeling the system as a fixed population of restless bandits: each bandit repre-
senting a class and the state of a bandit representing the number of customers in
the queue. The latter implies that Jk = ∞, for all k, hence it does not fall inside
the framework of this paper. The results obtained in [29] apply to general holding
cost functions. In the case of linear holding costs, as considered in this section,
the index rule as derived in [29] coincides with policy ι. We further note that even
though in [29] the arrival characteristics are taken into account when calculating
Whittle’s indices, the final result is independent on the arrival characteristics. For
nonlinear holding cost, this is no longer the case.
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For the case c̃k = 0, θ̃k = 0 and ck + dkθk > 0, the asymptotic optimality of the
policy ι in a multi-server setting has previously been proved in [3, 4]. Note that in
this setting the performance criterion is the weighted number of customers present
in the queue. If

∑
λk/μk > S, that is, the overload situation, the fluid-scaled cost

v∗(S) will be nonzero, and hence the optimality result is useful. This is not the
case when

∑
λk/μk < S, the underload setting, as was also observed in [3, 4]: in

underload we have for any nonidling policy x
∗,0
k = 0, ∀k, see equation (46), which

together with c̃k = 0 implies v∗(S) = 0, that is, in equilibrium the cost is zero for
any nonidling policy. In [28], the transient behavior of the fluid model has been
studied for the underload setting. It was shown that the optimal transient fluid
control is in fact a state-dependent strategy and hence no longer a strict priority
policy.

For a discrete-time model with one server and θ̃k = 0, c̃k = ck > 0, Whittle’s
index νlim

k has been derived in [7]. This index νlim
k coincides with the Whittle’s in-

dex ιk for the continuous-time model. In this setting, the fluid-scaled cost is always
strictly positive: v∗(S) = 0 would imply that x∗

k = 0, however, this contradicts with
equation (19), which would read 0 = λk . Hence, the asymptotic optimality result
applies to both the underload and overload regime.

8. Nonindexable restless bandits. The set of priority policies, �∗, consists
of more than one policy, and hence, it is not direct which priority policy to choose.
For an indexable restless bandit problem, Whittle’s index policy is inside the set
�∗ and is robust, that is, it does not depend on α,λk,Xk(0), k = 1, . . . ,K . This
is therefore an obvious choice, and Whittle’s index policy has been extensively
tested numerically for different applications and shown to perform well; see, for
example, [1, 2, 6, 7, 14, 21, 22, 29, 30, 35, 40] and the examples in the book [19]. In
this section, we therefore focus our attention on nonindexable restless bandits. In
Section 8.1, we describe how to select a priority policy from the (possibly large)
set of priority policies �∗ and in Section 8.2 their performance is numerically
evaluated outside the asymptotic regime.

8.1. Policy selection. In this section, we describe how to select priority poli-
cies from the set �∗. In order to do so, we will need the following technical lemma
that gives a characterization of an optimal solution of the (LP) problem. Note that
this lemma is valid for both indexable and nonindexable examples. We refer to
Appendix G for the proof.

LEMMA 8.1. In the case of a dynamic population of bandits, assume that the
set of optimal solutions of (LP) is bounded and either pk(j) > 0, for all j, k, or
Ck(j,0) > 0, for all j, k.

For either a fixed or dynamic population of bandits, there exists at least one
optimal solution of (LP), x∗, such that x

∗,0
j,k x

∗,1
j,k > 0 for at most one pair (j, k).
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The assumption that the set of optimal solutions of (LP) is bounded is al-
ways satisfied if Ck(j,0) > 0, for all j, k. This follows since x

∗,1
j,k ≤ α and

x
∗,0
j,k ≤ (C − ∑

j,k Ck(j,1)x
∗,1
j,k )/Ck(j,0) < ∞, with C < ∞ the cost value of a

feasible solution.
In the remainder of this section, we will write �∗(α) instead of �∗ to emphasize

the dependence on α, that is, the number of bandits that can be simultaneously
made active. In the case of indexable bandits, there exists priority policies that are
inside �∗(α), for all α, for example, Whittle’s index policy. In general, this is not
the case for nonindexable bandits. Below we therefore describe how one can select
priority policies from the set �∗(α) as α changes.

From Lemma 8.1, we have that, for a fixed α, there exists at least one optimal
solution of (LP), x∗(α), such that x

∗,0
j,k (α)x

∗,1
j,k (α) > 0, for at most one pair (j, k).

In particular, we can define 0 = α0 < α1 < α2 < · · · < αM and αM+1 = ∞, such
that for a given interval [αi,αi+1) the binding constraints of the (LP) and the basis
of an optimal solution do not change. Hence, there are pairs (ji, ki) and sets Hi,Li

and L̃i such that, for any α ∈ [αi,αi+1), it holds that

x
∗,0
j,k (α) = 0 and x

∗,1
j,k (α) ≥ 0 for all (j, k) ∈ Hi,

x
∗,0
ji ,ki

(α) ≥ 0 and x
∗,1
ji ,ki

(α) ≥ 0,

x
∗,0
j,k (α) ≥ 0 and x

∗,1
j,k (α) = 0 for all (j, k) ∈ Li,

x
∗,0
j,k (α) = 0 and x

∗,1
j,k (α) = 0 for all (j, k) ∈ L̃i,

and either
∑K

k=1
∑Jk

j=1 x
∗,1
j,k (α) = α or

∑K
k=1

∑Jk

j=1 x
∗,1
j,k (α) < α.

When choosing a priority policy from the set �∗(α), we propose to choose the
same policy for any α ∈ [αi,αi+1). This policy is chosen in the following way:

• Class-k bandits in state j with (j, k) ∈ Hi receive highest priority.
• Class-ki bandits in state ji receive lower priority than class-k bandits in state j

with (j, k) ∈ Hi .
• For class-k bandits in state j with (j, k) ∈ Li , we have to distinguish between

two situations:
(i) if

∑K
k=1

∑Jk

j=1 x
∗,1
j,k (α) < α, that is, there is capacity left unused, then any

class-k bandit in state j , with (j, k) ∈ Li , will never be made active.
(ii) if

∑K
k=1

∑Jk

j=1 x
∗,1
j,k (α) = α, then the capacity constraint is binding. We

will allow bandits in the set Li to be made active only if this would have
happened when there would have been more capacity α available. Hence,
a class-k bandit in state j , (j, k) ∈ Li , receives lower priority than a class-
k̃ bandit in state j̃ , (j̃ , k̃) ∈ Hi ∩ {ji, ki}, if there is an n > i such that
(j, k) ∈ Hn ∩ {jn, kn}. If there does not exist such n, then such bandits are
never made active.

• Class-k bandits in state j with (j, k) ∈ L̃i are never made active.
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It is left open how to set the priority ordering within the high priority states Hi and
the low priority states Li . One way would be to chose the priorities such that the
priority ordering changes minimally as α changes to other intervals.

8.2. Performance evaluation. We now turn our attention to a particular non-
indexable example and numerically evaluate the selection method as explained in
the previous section. We took the continuous-time version of the example given
in [34], Section 2.2. We consider a fixed population of bandits, and each bandit
can be in three states. The cost structure is given by(

C(1,0),C(2,0),C(3,0)
) = (−0.458,−0.5308,−0.6873)

and (
C(1,1),C(2,1),C(3,1)

) = (−0.9631,−0.7963,−0.1057).

The transition matrices Q0 = (q(j |i,0))i,j and Q1 = (q(j |i,1))i,j are given by

Q0 =
⎛
⎝−0.8098 0.4156 0.3942

0.5676 −0.5809 0.0133
0.0191 0.1097 −0.1288

⎞
⎠ and

(20)

Q1 =
⎛
⎝−0.2204 0.0903 0.1301

0.1903 −0.8137 0.6234
0.2901 0.3901 −0.6802

⎞
⎠ .

Our aim in this section is to numerically evaluate the performance of priority
policies in �∗ outside the asymptotic regime. In particular, we evaluate the perfor-
mance when α = 1, that is, at most one bandit can be made active at a time, and
we let the number of bandits, X(0), vary.

For a given value of α and X(0), the set �∗ consists of more than one policy.
Before presenting the numerical results, we will therefore first describe the priority
policies we considered using the selection method as given in the previous section.
In Table 1, one can find the structure of an optimal basic solution of (LP), obtained
numerically, when fixing α = 1 and letting the number of bandits present in the
system, x(0), increase. We note that equivalently we could have taken x(0) = x̄

fixed and let α decrease, simply by a change of variable in the (LP) problem.
We can now characterize the priority policies; see also Table 2. Consider

x(0) = 1 or x(0) = 2. In that case, we derive from Table 1 that a bandit in state 1 re-
ceives priority (by Definition 4.4). Since the constraint (5) is not binding, a bandit
in state 2 or 3 will never be made active (by Definition 4.4). Hence, �(x∗) con-
sists of the policy that only makes bandits active in state 1. This policy is referred
to as “prio1”. Now consider x(0) = 3. Then Definition 4.4 prescribes that, for any
policy in �(x∗), state 1 has strict priority over state 2, and state 3 is either never
made active, or has lowest priority. Note that for smaller values of x(0) (equivalent
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TABLE 1
Optimal basic solutions for the (LP) problem

α = 1 Optimal basic solution

1 ≤ x(0) ≤ 2.4 x
∗,0
1 = 0, x

∗,1
1 > 0 x

∗,0
2 > 0, x

∗,1
2 = 0 x

∗,0
3 > 0, x

∗,1
3 = 0 (5) not binding

2.4 ≤ x(0) ≤ 3.6 x
∗,0
1 = 0, x

∗,1
1 > 0 x

∗,0
2 > 0, x

∗,1
2 > 0 x

∗,0
3 > 0, x

∗,1
3 = 0 (5) binding

3.6 ≤ x(0) ≤ 7.36 x
∗,0
1 > 0, x

∗,1
1 > 0 x

∗,0
2 = 0, x

∗,1
2 > 0 x

∗,0
3 > 0, x

∗,1
3 = 0 (5) binding

7.36 ≤ x(0) x
∗,0
1 > 0, x

∗,1
1 = 0 x

∗,0
2 = 0, x

∗,1
2 > 0 x

∗,0
3 > 0, x

∗,1
3 = 0 (5) binding

to considering higher values of α), state 3 is not made active either. Hence, as ex-
plained in the previous section we choose to keep bandits in state 3 passive, that is,
we focus on the policy “prio12”. Now consider 4 ≤ x(0) ≤ 7. Then Definition 4.4
prescribes that, for any policy in �(x∗), state 2 has strict priority over state 1, and
state 3 is either never made active, or has lowest priority. Note that state 3 is never
made active for x(0) < 4. Hence, as explained in the previous section, we chose to
do the same for 4 ≤ x(0) ≤ 7, that is, we focus on policy “prio21”. Now consider
x(0) ≥ 8. Then Definition 4.4 prescribes that, for any policy in �(x∗), state 2 has
strict priority and that states 1 and 3 are either never made active or have lowest
priority. For smaller values of x(0), class 1 is made active, while class 3 is never
made active. Hence, as explained in the previous section, we chose to do the same
for x(0) ≥ 8, that is, we focus on policy “prio21”.

Any policy gives a unichain Markov chain, hence Condition 4.12 is satisfied.
We therefore have that any priority policy in �∗ that satisfies the global attractor
property, as in Condition 4.10, is asymptotically optimal. Numerically, we evalu-
ated the global attractor property and found the following: for x(0) = 1, the policy
prio1 has x∗ as global attractor, while policies prio12 and prio123, which also be-
long to �∗, converge to a nonoptimal equilibrium point. For x(0) = 3, there does
not exist a priority policy that converges to x∗. For example, the fluid dynamics
under prio12 converges to an equilibrium where state 1 is sometimes passive (and
state 2 and 3 are never active), while the optimal point x∗ never makes state 1
passive. For 4 ≤ x(0) ≤ 7, the set �∗ consists of the policies prio21 and prio213,
both of them have x∗ as global attractor. For x(0) ≥ 8, the set �∗ consists of prio2,
prio21 and prio213, all of them have x∗ as global attractor.

TABLE 2
Selected priority policies

Priority ordering Always passive Name of policy

x(0) = 1,2 1 2, 3 prio1
x(0) = 3 1 
 2 3 prio12
x(0) ≥ 4 2 
 1 3 prio21
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FIG. 1. Sub-optimality gap of priority policies for nonindexable example.

We have numerically evaluated the performance of the priority policies as de-
scribed in Table 2 against both the optimal policy (obtained numerically by value
iteration) and against other priority policies. In Figure 1, we plot the relative sub-
optimality gap (in %) for the different policies when α = 1 and let the number
of bandits, X(0) = x(0), vary on the horizontal axis. The line referred to as “se-
lected” plots for each given x(0) the selected priority policy as given in Table 2.
We observe that these selected policies always have the smallest sub-optimality
gap.

Prio123 and prio213 are inside the class of asymptotically optimal policies,
�∗, for X(0) = 3 and X(0) ≥ 4, respectively, however, the selection process, as
described in Section 8.1, does not select these policies. In fact, we observe that
prio123 and prio213 are outperformed by our selected priority policies. Below we
will see that this sub-optimality gap can be made arbitrarily large.

The difference in performance between different priority policies is not that
large in this example. For other instances of nonindexable bandits, including dy-
namic populations, the differences can be larger though. For this particular exam-
ple, we note however that the sub-optimality gap can be made arbitrarily large by
adequately changing the values for C(3,1), q(1|3,1) and q(2|3,1). These param-
eters do not affect the performance of policies that never activate state 3 (including
the priority policies in Table 2), but do influence the performance of prio123 and
prio213. By making the cost of being active in state 3, C(3,1), larger, and the
transition rates when being active in state 3 smaller, the performance of these poli-
cies degrades. As an example, in Figure 2 we plot the sub-optimality gaps when
taking C(3,1) = 5 and q(1|3,1) = q(2|3,1) = 0.001 and we observe larger opti-
mality gaps. Furthermore, note that for a fixed X(0), the gap will grow linearly in
C(3,1), and hence can be made arbitrarily large.
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FIG. 2. Sub-optimality gap of priority policies for nonindexable example.

9. Conclusion and further research. In this paper, we studied the general
multi-class restless-bandit problem for both the setting of a fixed population of
bandits as well as a dynamic population of bandits. Using linear-programming
techniques, the paper provided a unified approach to derive a set of asymptotically
optimal priority policies, �∗, which does not rely on indexability of the system.
Under the indexability assumption, Whittle’s index policy was shown to be inside
this class. This is one of the first works that proposes heuristics for nonindexable
settings. As future work, it would therefore be interesting to further understand
their performance outside the asymptotic regime.

The global attractor property is crucial in order to prove asymptotic optimality
of the priority policies �∗, as explained in Section 6. Finding sufficient conditions
under which the global attractor property holds for policies in �∗ is therefore im-
portant on its own. Another interesting research thread is to characterize asymp-
totic optimal policies for models that do not satisfy the global attractor property,
as discussed in Section 6.

In addition, it would be interesting to investigate whether Condition 4.12 holds
in greater generality for restless bandit problems. For example, Condition 4.12(a)
concerns stability of the system under a strict priority policy resulting from the
fluid analysis. In general, care has to be taken when applying a fluid optimal con-
trol directly to the stochastic system, as they might not succeed in making the
system stable; see, for example, [42, 44]. We believe though that the set �∗ con-
tains policies that do provide a stable system, however, this is a subject for future
research. As an example, we refer to [6] where a restless bandit problem was stud-
ied that modeled a system with state-dependent capacity. In that problem, certain
priority policies (e.g., the myopic cμ rule, which is not in �∗) yield an unstable
system, while other priority policies, including Whittle’s index policy, keep the
system stable.
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Another interesting research avenue would be to extend this paper to the general
setting of multi-actions. That is, in each state one can choose from Ak(j) different
actions, given the constraint

∑K
k=1

∑Jk

j=1
∑Ak(j)

a=1 wa
k (j)Xa

j,k(t) ≤ α, with wa
k (j) ≥

0 the weight of action a. This paper discussed the case of wa
k (j) = 1, while in [26]

asymptotic optimality of an index policy has been investigated for wa
k (j) = a.

APPENDIX A: PROOF OF LEMMA 4.1

Set Xk(0) = xk(0). Let π be a policy for which a unique invariant distribution
exists having finite first moment. Stability of policy π implies rate-stability, that
is,

lim
t→∞

Xπ
j,k(t)

t
= 0 for all j, k.(21)

Note that
∫ t

0 X
π,a
j,k (s)ds is the total aggregated amount of time spent on action

a on class-k bandits in state j during the interval (0, t]. Hence, we can write the
following sample-path construction of the process Xπ

j,k(t):

Xπ
j,k(t) = Xπ

j,k(0) + Nλkpk(j)(t) +
1∑

a=0

Jk∑
i=1,i �=j

Nqk(j |i,a)

(∫ t

0
X

π,a
i,k (s)ds

)
(22)

−
1∑

a=0

Jk∑
i=0,i �=j

Nqk(i|j,a)

(∫ t

0
X

π,a
j,k (s)ds

)
,

where Nλkpk(j)(t) and Nqk(j |i,a)(t) are independent Poisson processes having as
rates λkpk(j) and qk(j |i, a), respectively, i, j = 1, . . . , Jk , k = 1, . . . ,K , a = 0,1.
By the ergodic theorem [12], we obtain that 1

t

∫ t
0 X

π,a
j,k (s)ds converges to the mean,

denoted by X
π,a

j,k < ∞, for all j, k, a. Hence, when dividing both sides in (22) by t ,
using that Nθ(at)/t → aθ as t → ∞, and together with (21), we obtain that

0 = λkpk(j) +
1∑

a=0

Jk∑
i=1,i �=j

qk(j |i, a)X
π,a

i,k −
1∑

a=0

Jk∑
i=0,i �=j

X
π,a

j,k qk(i|j, a) a.s.,

that is, X
π

satisfies equation (4). By definition, X
π

satisfies
∑

k,j X
π,1
j,k ≤ α,

X
π,a

j,k ≥ 0 and if λk = 0, then
∑Jk

j=1
∑1

a=0 X
π,a

j,k = xk(0). Hence, X
π

is a feasible
solution of (LP).

Since the feasible set is nonempty and the objective is to minimize the cost, the
optimal value satisfies v∗(x(0)) < ∞.
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APPENDIX B: PROOF OF LEMMA 4.3

By Fatou’s lemma, we have

V π− (x) ≥ Ex

(
lim inf
T →∞

1

T

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)X
π,a
j,k (t)dt

)
.

Hence, it is sufficient to prove that

lim inf
T →∞

1

T

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)X
π,a
j,k (t)dt ≥ v∗(x) almost surely,(23)

with X(0) = x.
Consider a fixed realization ω of the process. We note that equation (23) is triv-

ially true if lim infT →∞ 1
T

∫ T
0

∑K
k=1

∑Jk

j=1
∑1

a=0 Ck(j, a)X
π,a
j,k (t)dt = ∞, since

v∗(x) < ∞ (see Lemma 4.1). Hence, it remains to be verified that (23) holds when
the LHS of (23) is finite.

First, assume either a fixed population of bandits, or a dynamic population of
bandits under a stable policy π . Since the LHS of (23) is finite, we can consider
the subsequence tn corresponding to the liminf sequence. For a fixed population
of bandits, we have 1

T

∫ T
0 X

π,a
j,k (t)dt ≤ Xk(0) = xk . Hence, there is a subsequence

tnl
of tn such that 1

tnl

∫ tnl

0 X
π,a
j,k (t)dt converges to a constant X

π,a

j,k , for all j, k, a.

In the case of a dynamic population, given the policy π is stable, we have by the
ergodicity theorem [12] that 1

T

∫ T
0 X

π,a
j,k (t)dt converges to the mean, here denoted

by X
π,a

j,k .
In addition, it holds that limt→∞ X

π,a
j,k (t)/t = 0, for all j, k, a. For the fixed

population, this follows since limt→∞ X
π,a
j,k (t)/t ≤ limt→∞ Xk(0)/t = 0, and for

the dynamic population this follows since any stable policy is rate stable.
When studying (22) in the point tnl

, dividing both sides by tnl
and us-

ing that Nθ(t)/t → θ as t → ∞, we can now conclude that 0 = λkpk(j) +∑1
a=0

∑Jk

i=1 qk(j |i, a)X
π,a

i,k . By (2) we also have that
∑K

k=1
∑Jk

j=1 X
π,1
j,k ≤ α. In ad-

dition, if λk = 0, then
∑

j,a X
π,a

j,k = Xk(0) = xk . Hence X
π

is a feasible solution of
(LP) with x(0) = x. We conclude that

lim inf
T →∞

1

T

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)X
π,a
j,k (t)dt

= lim
l→∞

1

tnl

∫ tnl

0

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)X
π,a
j,k (t)dt

=
K∑

k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)X
π,a

j,k ≥ v∗(x),
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which proves V π− (x) ≥ v∗(x).
We now consider a dynamic population of bandits and take π to be rate-stable.

In addition, assume Ck(j, a) > 0, for all j, k, a. Again we consider the subse-
quence tn corresponding to the liminf sequence of (23). So

lim
n→∞

1

tn

∫ tn

0

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)X
π,a
j,k (t)dt < ∞.(24)

Since Ck(j, a) > 0, this implies that the sequence 1
tn

∫ tn
0 X

π,a
j,k (t)dt is bounded, for

all j, k, a. By the Bolzano–Weierstrass theorem, there exists a subsubsequence

tnl
of tn and values X

π,a

j,k ’s such that liml→∞ 1
tnl

∫ tnl

0 X
π,a
j,k (t)dt = X

π,a

j,k , for all

j, k, a. In addition, by rate stability we have that limt→∞ X
π,a
j,k (t)/t = 0, a.s., for

all j, k, a. The proof follows now in the same way as above.
The proof in the case of mean-rate stability goes along similar lines as that for

rate stability and is therefore not included here.

APPENDIX C: PROOF OF PROPOSITION 4.13

Consider an arbitrary priority policy π for which Xr,π (t) is irreducible. We first
prove stability and then show the tightness and uniform integrability.

Stability: The Markov process Xr,π (t) has unbounded transition rates, however,
it does not die in finite time (upward jumps are of the order 1). Hence, once we
prove the multi-step drift criterion [32, 41], we can conclude that there is a unique
invariant distribution measure. The multi-step drift criterion will consist here in
proving that there are δ > 0, T < ∞, d > 0 and a stopping time τ , such that
Ex(τ ) ≤ T for all x and

Ex

(
K∑

k=1

Jk∑
j=1

X
r,π,0
k (τ )

)
−

K∑
k=1

Jk∑
j=1

x0
j,k ≤ −δ,

for any x ∈ Dc, with D := {x : ∑K
k=1

∑Jk

j=1 x0
j,k ≤ d}. In other words, for any

initial state x outside the compact set D, there is a negative drift (lower bounded
by −δ) toward the set D.

We define the stopping time τ as the first moment that an active bandit is made
passive. Hence, during the interval [0, τ ] the collection of passive bandits does not
change.

First, assume there exists an x such that Ex(τ ) = ∞. This implies that when
starting in state x, the collection of passive and active bandits remains fixed. Hence,
each passive class-k bandit evolves according to the transition rates qk(j |i,0). The
number of passive class-k bandits is therefore equivalent to that in an M/G/∞
queue with arrival rate λkr and phase-type distributed service requirements as de-
scribed by the transitions of a passive class-k bandit. We note that the M/G/∞
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queue is stable. By irreducibility, for any starting point, the process will be in state
x after a finite expected amount of time, hence, stability follows.

We now assume Ex(τ ) < ∞, for all x. Since there is a finite number of states
Jk < ∞ and the state transitions are exponential, it follows directly that there ex-
ists a T < ∞ such that Ex(τ ) < T , for all x. Note that the passive bandits behave
independently during the interval [0, τ ]. The probability that a passive bandit de-
parts in the interval [0, τ ] can be lower bounded by p0 with p0 > 0. This follows
from the assumption that state 0 is positive recurrent under the policy that always
keeps the class-k bandit passive. Hence, the mean number of passive bandits that
leave during the interval [0, τ ] is larger than or equal to p0

∑K
k=1

∑Jk

j=1 x0
j,k . We

therefore have as mean drift

Ex

(
K∑

k=1

Jk∑
j=1

X
r,π,0
k (τ )

)
−

K∑
k=1

Jk∑
j=1

x0
j,k

≤ λrEx(τ ) + 1 − p0

K∑
k

Jk∑
j=1

x0
j,k < λrT + 1 − p0d,

for all x ∈ Dc. The +1 in the mean drift is due to the active bandit that be-
comes passive at time τ . Choosing d = (λrT + 1 + δ)/p0, we conclude that
Ex(

∑K
k=1

∑Jk

j=1 X
r,π,0
k (τ ))−∑K

k=1
∑Jk

j=1 x0
j,k ≤ −δ. Hence, by the multi-step drift

criterion we obtain that there is a unique invariant probability distribution for the
process Xr,π (t), for any r . Recall that we denote this distribution by pr,π .

Tightness and uniform integrability: In order to prove tightness and uniform
integrability, we will define a process that serves as a stochastic upper bound on
X

r,π,0
k (t). First, note that maxi qk(j |i,1)α is the maximum rate at which active

bandits go to state j . Hence, λk := λk + ∑Jk

j=1 maxi qk(j |i,1)α is an upper bound
on the arrival rate of new passive class-k bandits. For the upper bound process, we
assume that once a bandit is passive, it will never be made active again. Hence,
the time such a passive bandit stays in the system can be described by the state
transitions of a passive class-k bandit. We define Bk as the distribution described by
the state transition rates qk(j |i,0), with a certain initial probability p̃0. Choosing
an appropriate value for p̃0, the Bk describes the time a passive class-k bandit
stays in the system. Let Y r

k (t) be the number of customers in a M/G/∞ queue
with arrival rate λk and service requirement Bk . This process is an upper bound on
X

r,π,0
k (t).
The stationary distribution of the process {Y r

k (t)} is given by a Poisson dis-
tribution with parameter λkrE(Bk) [41]. It can be checked that this distribution
converges to the Dirac measure in the point λkE(Bk), as r → ∞. By Prohorov’s
theorem, it then follows that the family {Y r

k /r} is tight [41]. Furthermore, since
E(Y r

k /r) = λkE(Bk) and E(limr→∞ Y r
k /r) = λkE(Bk), a.s., we obtain from [10],

Theorem 3.6, that the family {Y r
k /r} is uniform integrable.
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At most α bandits are active, hence
∑

k Y r
k (t)/r + α represents a stochastic

upper bound on the queue length process
∑K

k=1 X
r,π
k (t)/r . This implies that the

family {pr,π } is tight and uniform integrable as well.

APPENDIX D: PROOF OF PROPOSITION 4.14

We denote by Sπ∗
k (j) the set of all combinations (i, l), i = 1, . . . , Jl, l =

1, . . . ,K , such that class-l bandits in state i have higher priority than class-k ban-
dits in state j under policy π∗, and Iπ∗

is the set of all states that will never be
made active under policy π∗. The transition rates of the process Xr,π∗

(t)/r are
then defined as follows:

x → x + ej,k

r
at rate rλkpk(j), k = 1, . . . ,K, j = 1, . . . , Jk,(25)

x → x − ej,k

r(26)

at rate r

1∑
a=0

xa
j,kqk(0|j, a), k = 1, . . . ,K, j = 1, . . . , Jk,

x → x − ej,k

r
+ ei,k

r(27)

at rate r

1∑
a=0

xa
j,kqk(i|j, a), k = 1, . . . ,K, i, j = 1, . . . , Jk, i �= j,

where x1
j,k = min((α − ∑

(i,l)∈Sπ∗
k (j)

xi,l)
+, xj,k), if (j, k) /∈ Iπ∗

, and x1
j,k = 0 oth-

erwise, x0
j,k = xj,k − x1

j,k , and ej,k is a vector composed of all zeros except for
component (j, k) which is one.

From (25)–(27), it follows that there exists a continuous function bl(x), with
l ∈ L and L composed of a finite number of vectors in N

∑
k Jk , such that the tran-

sition rates of the process xr,π∗
(t) from x to x + l/r have the form rbl(x). Hence,

the process X
r,π∗
j,k (t)/r belongs to the family of density dependent population pro-

cesses as defined in [15], Chapter 11.
Note that the process xπ∗

(t) as defined in (9) can equivalently be written as
dxπ∗

(t)
dt

= F(xπ∗
(t)), with F(x∗) = ∑

l∈L lbl(x
∗), where F(·) is Lipschitz con-

tinuous. From Condition 4.10, we have that x∗ is the unique global attractor of
xπ∗

(t).
Together with the fact that the family {pr,π∗} is tight, we then obtain from [16],

Theorem 4, that pr,π∗
(x) converges to the Dirac measure in x∗, the global attractor

of xπ∗
(t). Hence, we can write

lim
r→∞V

r,π∗
+ (x) =

K∑
k=1

Jk∑
j=1

1∑
a=0

lim
r→∞

∑
x

pr,π∗
(x)Ck(j, a)xa

j,k

=
K∑

k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)x
∗,a
j,k = v∗(x),
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where the first step follows from the ergodicity theorem [12, 43] (applicable since
the first moment of pr,π∗

is finite), the second step (interchange of limit and sum-
mation) follows from uniform integrability of {pr,π∗} and the fact that pr,π∗

con-
verges to the Dirac measure in x∗, and the last step follows since x∗ is an optimal
solution of (LP).

We conclude the proof by noting that v∗(x) is a lower bound on the steady-state
cost, as shown in Lemma 4.3.

APPENDIX E: PROOF OF PROPOSITION 5.6

Recall that the relaxed optimization problem for f = av consists in finding a
stationary and Markovian policy that minimizes

lim
T →∞

1

T
Ex

(∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)X
π,a
j,k (t)dt

)
,(28)

under the relaxed constraint

lim
T →∞

1

T
Ex

(∫ T

0

K∑
k=1

Jk∑
j=1

X
π,1
j,k (t)dt

)
≤ α.(29)

For a given policy π , we denote by x
π,a
j,k the (stationary) state-action frequen-

cies, that is, the average fraction of time the class-k bandit is in state j and action
a is chosen. Assumption 5.5 implies that these frequencies exist and satisfy the
balance equations, that is, they satisfy

0 =
1∑

a=0

Jk∑
i=0,i �=j

qk(i|j, a)x
π,a
j,k −

1∑
a=0

Jk∑
i=1,i �=j

qk(j |i, a)x
π,a
i,k ∀j,

or, by definition of qk(j |j, a) = −∑Jk

i=0,i �=j qk(i|j, a), this can be written as

0 =
1∑

a=0

Jk∑
i=1

qk(j |i, a)x
π,a
i,k ∀j.

We will restrict ourselves to the class of policies that are symmetric for ban-
dits in the same class. We can do this without loss of generality, since an optimal
solution of the relaxed problem, given by Whittle’s indices, is symmetric. Having
Xk(0) bandits in class k, equations (28) and (29) can now equivalently be written
as

K∑
k=1

Xk(0)

Jk∑
j=1

(
Ck(j,0)x

π,0
j,k + Ck(j,1)x

π,1
j,k

)
and

K∑
k=1

Xk(0)

Jk∑
j=1

x
π,1
j,k ≤ α,

respectively.
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The relaxed optimization problem can now be formulated as the following linear
program (D):

(D) min
x

K∑
k=1

Xk(0)

Jk∑
j=1

(
Ck(j,0)x0

j,k + Ck(j,1)x1
j,k

)

s.t. 0 =
1∑

a=0

Jk∑
i=1

qk(j |i, a)xa
i,k ∀j, k,

(30)
K∑

k=1

Xk(0)

Jk∑
j=1

x1
j,k ≤ α,

Jk∑
j=1

1∑
a=0

xa
j,k = 1 ∀k, xa

j,k ≥ 0 ∀k, j, a.

We have that for any feasible solution (xa
j,k) of (D) there is a stationary policy π

such that the state-action frequencies x
π,a
j,k coincide with the value of the feasible

solution xa
j,k [39], Theorem 8.8.2(b). Hence, for any optimal (symmetric) policy

π∗ of the relaxed optimization problem, the state-action frequencies x
π∗,a
j,k provide

an optimal solution of (D). We further note that (xπ∗
j,kXk(0)) is an optimal solution

of (LP) with x(0) = X(0).
We assume the restless bandit problem is indexable. Hence, an optimal policy of

the relaxed optimization problem is described in Section 5.1, and will be denoted
here by π̃∗. We recall that policy π̃∗ is described by a value ν∗ ≥ 0 and is such
that a class-k bandit in state j is made active if νav

k (j) > ν∗ and is kept passive if
νav
k (j) < ν∗. Hence, the state-action frequencies under π̃∗ satisfy

x
π̃∗,0
j,k = 0 when νav

k (j) > ν∗,
(31)

x
π̃∗,1
j,k = 0 when νav

k (j) < ν∗.

By definition of policy π̃∗, for states (ĵ , k̂) with νav
k̂

(ĵ , ) = ν∗ a class-k̂ bandit in

state ĵ is made active with a certain probability, hence x
π̃∗,0
ĵ ,k̂

≥ 0 and x
π̃∗,1
ĵ ,k̂

≥ 0.

Since Whittle’s index policy gives priority to bandits having highest index value,
we directly obtain that Whittle’s index policy νav satisfies points 1 and 2 of Defi-
nition 4.4 when setting x∗ = (xπ̃∗

j,kXk(0)). We now treat point 3 of Definition 4.4:

Assume
∑K

k=1
∑Jk

j=1 x
π̃∗,1
j,k Xk(0) < α. Hence, under the optimal policy, on aver-

age, strictly less than α bandits are made active. This implies that the remaining
fraction of the time the policy makes dummy bandits in state B active. Hence,
νav
B ≥ ν∗. Since ν∗ ≥ 0 and νav

B = 0, we necessarily have ν∗ = 0. A policy satisfies
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point 3 of Definition 4.4 if it never makes a class-k bandit in state j active that
satisfies

x
π̃∗,1
j,k = 0 and x

π̃∗,0
j,k > 0.(32)

From (31) (with ν∗ = 0), we obtain that (32) implies νav
k (j) ≤ 0. By definition of

Whittle’s index policy, a bandit in a state such that νav
k (j) ≤ 0 will never be made

active, hence point 3 is satisfied. We therefore conclude that Whittle’s index policy
νav is included in the set of priority policies �(x∗) ⊂ �∗, with x∗ = (xπ̃∗

j,kXk(0)).

APPENDIX F: PROOF OF PROPOSITION 5.9

Let β ≤ β and β > 0. Whittle’s index ν
β
k (j) results from solving the following

problem for a class-k bandit:

min
π

Ex

(∫ ∞
0

e−βt (Ck

(
Jk(t),A

π
k (t)

) + ν1(Aπ
k (t)=1)

)
dt

)
,(33)

see (15), where Aπ
k (t) ∈ {0,1} and Jk(t) denotes the state of the class-k bandit.

This is a continuous-time discounted Markov decision problem in a finite state
space. After uniformization ([23], Remark 3.1, [39], Section 11.5.2), this is equiv-
alent to a discrete-time discounted Markov decision problem with discount fac-
tor β̃ = q

β+q
, cost function C̃k(j, a) = Ck(j,a)+ν1(a=1)

β+q
, and transition probabilities

p̃a
k (i, j) = qk(j |i,a)

q
+ 1(i=j) [recall that qk(i|i, a) = −∑Jk

j=0,i �=j qa
k (i, j)], where

q := maxi,k,a −qk(i|i, a) < ∞. In LP formulation the discrete-time MDP for the
class-k bandit is then as follows (see [39], Section 6.9):

max
v

Jk∑
j=1

γj,kv(j)

s.t. v(i) − β̃

Jk∑
j=0

p̃a
k (i, j)v(j) ≤ C̃k(i, a) ∀i = 1, . . . , Jk, a = 0,1,

with γj,k > 0 arbitrary. In fact, we will make the choice γj,k = λk(p
k
0j + ε), with

ε > 0. The dual of the above LP is

(
Dk(β, ε)

)
min

x

Jk∑
j=1

Ck(j,0)x0
j,k + Ck(j,1)x1

j,k + νx1
j,k

β + q

s.t. 0 = λk

(
pk(0, j) + ε

)
(34)

+
1∑

a=0

Jk∑
i=1

qk(j |i, a)

β + q
xa
i,k − β

β + q

1∑
a=0

xa
j,k ∀j,

xa
j,k ≥ 0 ∀j, a.
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As stated in Section 5.1.1, indexability implies that an optimal policy for the
subproblem (33) is described by a priority ordering according to the indices ν

β
k (j):

an optimal action in state j is a = 1 if ν
β
k (j) > ν and a = 0 if ν

β
k (j) < ν. Recall

that a class-k bandit is indexable for each βl (subsequence can depend on the
class). Hence, by [39], Theorem 6.9.4, this implies that there exists an optimal
solution to [Dk(βl, ε)], denoted by x∗

k (βl, ε), such that

x
∗,0
j,k (βl, ε) = 0 when ν

βl

k (j) > ν,

x
∗,1
j,k (βl, ε) = 0 when ν

βl

k (j) < ν.

Since liml→∞ ν
βl

k (j) = νlim
k (j), we obtain that there exists an L(ν) such that for

all l > L(ν) it holds that

x
∗,0
j,k (βl, ε) = 0 when νlim

k (j) > ν,(35)

x
∗,1
j,k (βl, ε) = 0 when νlim

k (j) < ν.(36)

By change of variable x̃a
j,k = xa

j,k/(β +q) we obtain that x̃∗
k (βl, ε) satisfies (35)

and (36) and is an optimal solution of [D̃k(βl, ε)] defined as

(
D̃k(β, ε)

)
min

x̃

Jk∑
j=1

(
Ck(j,0)x̃0

j,k + Ck(j,1)x̃1
j,k + νx̃1

j,k

)

s.t. 0 = λk

(
pk(j) + ε

)
(37)

+
1∑

a=0

Jk∑
i=1,i �=j

qk(j |i, a)x̃a
i,k − β

1∑
a=0

x̃a
j,k ∀j,

x̃a
j,k ≥ 0 ∀j, a.

By Assumption 5.8, we have that the set of optimal solutions of (D̃k(0,0))

is bounded and nonempty when ν > 0. Hence, from [11], Corollary 1, we ob-
tain that the correspondence that gives for each (β, ε) the set of optimal solu-
tions of (D̃k(β, ε)) is upper semi-continuous in the point (β, ε) = (0,0). It is
a compact-valued correspondence [after summing (37) over all j , we have that
x̃k = λk(1+εJk)/β , β > 0]. Hence, it follows that there exists a sequence (βln, εn)

(with βln a subsequence of βl and εn → 0) such that x̃
∗,a
j,k (βln, εn) → x̃

∗,a
j,k , as

n → ∞, and with x̃∗
k an optimal solution of (D̃k(0,0)). For a fixed ν, the com-

ponents of x̃∗
k (βl, ε) that are zero are independent of the exact values for ε > 0,

and l > L(ν); see (35) and (36). Hence, the limit x̃∗
k , which is an optimal solution

of(D̃k(0,0)), has the same components equal to zero, that is, (35) and (36) are
satisfied for x̃∗

k .
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Below we will show that there exists a value ν∗ such that there is a vector ỹ∗ that
satisfies the following: (i) ỹ∗

k is an optimal solution of (D̃k(0,0)), for all k, with
ν = ν∗, (ii) ỹ∗ is an optimal solution of (LP), and (iii) the Whittle index policy νlim

is included in the set �(ỹ∗) ∈ �∗. The latter then completes the proof.
In the remainder of the proof, we denote by x̃∗

k (ν) the above described optimal
solution x̃∗

k of (D̃k(0,0)) for a given value ν. We have the following properties:

• Property 1:

K∑
k=1

Jk∑
j=1

x̃
∗,1
j,k (∞) ≤ α.(38)

This can be seen as follows. As ν → ∞, the objective of (D̃k(0,0)) is to min-
imize

∑Jk

j=1 x̃1
j,k . For any feasible solution x of (LP), xk is in the feasible set

of D̃k(0,0). Hence,
∑Jk

j=1 x̃
∗,1
j,k (∞) ≤ ∑Jk

j=1 x1
j,k with x a feasible solution of

(LP). In addition, we have that
∑K

k=1
∑Jk

j=1 x1
j,k ≤ α with x a feasible solution

of (LP). This proves (38).
• Property 2:

Jk∑
j=1

x̃
∗,1
j,k (ν) ≥

Jk∑
j=1

x̃
∗,1
j,k (ν̃) for ν < ν̃.(39)

This can be seen as follows: By definition, we have
∑Jk

j=1
∑1

a=0 Ck(j, a) ×
x̃

∗,a
j,k (ν) + ν

∑Jk

j=1 x̃
∗,1
j,k (ν) ≤ ∑Jk

j=1
∑1

a=0 Ck(j, a)x̃
∗,a
j,k (ν̃) + ν

∑Jk

j=1 x̃
∗,1
j,k (ν̃) and∑Jk

j=1
∑1

a=0 Ck(j, a)x̃
∗,a
j,k (ν̃)+ ν̃

∑Jk

j=1 x̃
∗,1
j,k (ν̃) ≤ ∑Jk

j=1
∑1

a=0 Ck(j, a)x̃
∗,a
j,k (ν)+

ν̃
∑Jk

j=1 x̃
∗,1
j,k (ν). Subtracting the latter inequality from the first, we obtain equa-

tion (39).
• Property 3:

Jk∑
j=1

x̃
∗,1
j,k (ν) < ∞ for ν > 0.(40)

This follows since by Assumption 5.8 the set of optimal solutions of (D̃k(0,0))

is bounded for ν > 0.

We define α := ∑K
k=1

∑Jk

j=1 x̃
∗,1
j,k (0). Equations (38)–(40) imply that there exists a

ν∗ ≥ 0 such that

K∑
k=1

Jk∑
j=1

x̃
∗,1
j,k

((
ν∗)−) ≥ min(α,α) and

K∑
k=1

Jk∑
j=1

x̃
∗,1
j,k

((
ν∗)+) ≤ min(α,α).(41)
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From standard LP theory, we know that there exists a ν < ∞ such that x̃∗
k (ν) is

an optimal solution of (Dk(0,0)) for all ν ≥ ν, that is x̃∗
k (ν) = x̃∗

k (ν) for ν ≥ ν.
Hence, we can take ν∗ < ∞.

From (39) and (41), we obtain that there exists a ỹ∗ = (ỹ
∗,a
j,k ) with y∗

k̃
being a

convex combination of x̃∗
k̃
((ν∗)−) and x̃∗

k̃
((ν∗)+) and for k �= k̃, ỹ∗

k being equal

to either x̃∗
k ((ν∗)−) or x̃∗

k ((ν∗)+), such that
∑K

k=1
∑Jk

j=1 ỹ
∗,1
j,k = min(α,α). Note

that ỹ∗
k is still a solution of (D̃k(0,0)), for all k. Now, if α = min(α,α), it fol-

lows directly that ỹ∗ is also an optimal solution of (LP). If instead α = min(α,α),
then ν∗ = 0, and hence ỹ∗

k is an optimal solution of (D̃k(0,0)) with ν = 0. After
summing over k, the latter has the same objective function as (LP). Together with∑K

k=1
∑Jk

j=1 ỹ
∗,1
j,k = α ≤ α, it follows that ỹ∗ is also an optimal solution of (LP).

It remains to be proved that the Whittle index policy is included in the set
�(ỹ∗) ⊂ �∗. Assume for class k̃ the states are ordered such that νlim

k̃
(j1) ≤

νlim
k̃

(j2) < · · · ≤ · · · ≤ νlim
k̃

(jJ
k̃
). From ν∗ < ∞ and properties (35)–(36) [which

hold for x̃∗(ν)], we have that there are n∗ and ñ∗, n∗ ≤ ñ∗, such that ν
k̃
(jn∗) =

· · · = ν
k̃
(jñ∗) = ν∗ and

x̃
∗,1
jm,k̃

((
ν∗)−) = 0 for all m = 1, . . . , n∗,

x̃
∗,0
jm,k̃

((
ν∗)−) = 0 for all m = n∗ + 1, . . . , J,

and

x̃
∗,1
jm,k̃

((
ν∗)+) = 0 for all m = 1, . . . , ñ∗,

x̃
∗,0
jm,k̃

((
ν∗)+) = 0 for all m = ñ∗ + 1, . . . , J.

The vector ỹ∗
k̃

is a convex combination of x̃∗
k̃
((ν∗)−) and x̃∗

k̃
((ν∗)+), hence ỹ

∗,1
jm,k̃

=
0 for all m ≤ n∗ and ỹ

∗,0
jm,k̃

= 0 for all m ≥ ñ∗ + 1. Hence, Whittle’s index policy

νlim satisfies items 1 and 2 of Definition 4.4 with x∗ = ỹ∗.
If

∑K
k=1

∑Jk

j=1 ỹ
∗,1
j,k < α, then since

∑K
k=1

∑Jk

j=1 ỹ
∗,1
j,k = min(α,α) we have ᾱ <

α, so ν∗ = 0. This implies that for any state (j, k) with ỹ
∗,1
j,k = 0 and ỹ

∗,0
j,k > 0

it follows from property (35) that νlim
k (j) < (ν∗)+ = 0+. Hence, by definition of

Whittle’s index policy νlim, a bandit in this state will never be made active, which
implies that item 3 in Definition 4.4 is satisfied for x∗ = ỹ∗. It hence follows that
Whittle’s index policy νlim is included in the set of priority policies �(ỹ∗) ⊂ �∗.

APPENDIX G: PROOF OF LEMMA 8.1

For the fixed population, the total number of constraints in (LP) is
∑K

k=1 Jk +
1 + K . However, since

∑K
k=1 λk = 0, one of the constraints in (4) is redundant for

each k. Hence, the number of independent constraints in (LP) is
∑K

k=1 Jk + 1.
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Since the feasible set of (LP) is bounded, from standard LP theory (see
[39], Theorem D.1a), we obtain that there exists an optimal basic feasible so-
lution x∗ to (LP). Hence, x∗ has

∑K
k=1 Jk + 1 basic terms and all other terms

are equal to zero. If x∗
j,k > 0 for all j, k, then for any j, k there is an action

a such that x
∗,a
j,k = 0, and in at most one combination (j, k) the components

x
∗,a
j,k can be positive in both actions. Hence, x∗ satisfies the property in Defini-

tion 4.4.
Otherwise, let S denote the set of pairs (i, l) such that x∗

i,l = 0. By (4), if

(j, k) ∈ S, then
∑1

a=0
∑

i �=j x
∗,a
i,k qk(j |i, a) = 0. That is, x

∗,a
i,k qk(j |i, a) = 0 for all

i = 1, . . . , Jk , a = 0,1, if (j, k) ∈ S. Hence, for (j, k) /∈ S, equation (4) in the point
x∗ can be rewritten as

0 =
1∑

a=0

Jk∑
i=1,(i,k)∈Sc

x
∗,a
i,k qk(j |i, a) ∀j, k,

where qk(j |j, a) = ∑Jk

i=0,i �=j,(i,k)∈Sc qk(i|j, a). Hence, x∗ [restricted to the states
(j, k) ∈ Sc] is an optimal solution of (LP) restricted to the set of states Sc. Similar
as above, the latter has an optimal basic solution with |Sc| + 1 basic terms (and all
other terms equal to zero). Let y∗ denote such an optimal basic solution. Note that
y∗ is also an optimal solution of (LP) when setting y∗

j,k = 0 for all states (j, k) ∈ S.
If y∗

j,k > 0 for all (j, k) /∈ S, then since it has |Sc| + 1 basic terms, it satisfies
that for any (j, k) there is an action a such that y

∗,a
j,k = 0, and in at most one

combination (j, k) the components y
∗,a
j,k can be positive in both actions. Hence, y∗

satisfies the property in Definition 4.4.
If y∗

j,k = 0 for some (j, k) /∈ S, the above procedure can be repeated until one
ends up with an optimal basic solution that satisfies the properties as given in
Definition 4.4.

Now assume a dynamic population of bandits. First, assume pk(j) > 0 for all
k, j . By (4), we have that any feasible solution of (LP) has xj,k > 0. Hence, for
each (j, k) there exists at least one action a such that xa

j,k > 0. Since the set of
optimal solutions of (LP) is nonempty and bounded, from standard LP theory, see
[39], Theorem D.1a, we obtain that there exists a bounded optimal basic feasible
solution x∗ to (LP). We know that x∗ has

∑K
k=1 Jk + 1 basic terms (the number of

constraints), and all other terms are equal to zero. Since x∗
j,k > 0 for all j, k, this

implies that for any (j, k) there is one action a such that x
∗,a
j,k = 0, and in at most

one combination (j, k) the components x
∗,a
j,k can be positive in both actions a = 0

and a = 1.
Now assume Ck(j,0) > 0 for all j, k. This implies that for all ε > 0 small

enough the set of optimal solutions of the (LP(ε)) problem is bounded and
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nonempty, where (LP(ε)) is defined by

(
LP(ε)

)
min

x

K∑
k=1

Jk∑
j=1

Ak(j)∑
a=0

Ck(j, a)xa
j,k

s.t. 0 = λk

(
pk(j) + ε

) +
1∑

a=0

Jk∑
i=1

xa
i,kqk(j |i, a) ∀j, k,

(42)
K∑

k=1

Jk∑
j=1

x1
j,k ≤ α,

xa
j,k ≥ 0 ∀j, k, a.

We note that the assumption Ck(j,0) > 0 for all j, k as stated in Lemma 8.1 could
have been replaced by the weaker assumption that the set of optimal solutions
of (LP(ε) is bounded and nonempty. By sensitivity results of linear programming
theory, we have that for ε̄ > 0 small enough, the same basis provides an optimal
solution for (LP(ε)) for all 0 ≤ ε < ε̄. We denote the corresponding optimal so-
lution by x∗(ε). By (42), we have that x∗

j,k(ε) > 0 for all ε > 0. Since for any
0 < ε < ε̄ the basis of x∗(ε) is the same, we conclude that for any state (j, k) there
is one action a (independent on ε) such that x

∗,a
j,k (ε) = 0 and for at most one state

(j, k) (independent of ε) the components x
∗,a
j,k (ε) can be strictly positive for both

actions a = 0 and a = 1.
Note that (LP(0)) = (LP). Hence, using [11], Corollary 1, we obtain that the

correspondence that gives for each ε the set of optimal solutions of (LP(ε)) is up-
per semi-continuous in the point ε = 0. Being a compact-valued correspondence,
it follows that there exists a sequence εl such that εl → 0 and x∗(εl) → x∗, with
x∗ being an optimal solution of (LP). Being the limit, x∗ has the same components
equal to zero (and maybe even more) as x∗(ε) (with ε < ε̄). Hence, x∗ has the
property as stated in the lemma.

APPENDIX H: CONDITION 4.10 FOR AN M/M/S + M QUEUE

Assume the classes are reordered such that ι1 ≥ ι2 ≥ · · · ≥ ιK . We further define
l̂ := arg min{l : ιl ≤ 0}, so that {l̂, . . . ,K} is the set of classes that will never be
served. Under policy ι, the ODE as defined in (9) is given by

dxι
k(t)

dt
= λk − x

ι,0
k (t)θk − x

ι,1
k (t)(μk + θ̃k) ∀k,(43)

with x
ι,1
k (t) = min

((
S −

k−1∑
l=1

xι
l (t)

)+
, xι

k(t)

)
if k < l̂, ∀k,(44)

x
ι,1
k (t) = 0 if k ≥ l̂, ∀k,(45)

x
ι,0
k (t) = xι

k(t) − x
ι,1
k (t) ∀k.
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This ODE has a unique equilibrium point, which is given by

x
∗,0
k = 0, x

∗,1
k = λk

μk + θ̃k

for k = 1, . . . , k̂,(46)

x
∗,0
k̂+1

= λk − (μk + θ̃k)(S − ∑k̂
l=1(λl/(μl + θ̃l)))

θk

,

(47)

x
∗,1
k̂+1

= S −
k̂∑

l=1

λl

μl + θ̃l

if k̂ + 1 < l̂,

x
∗,0
k = λk

θk

, x
∗,1
k = 0 for k ≥ min(k̂ + 2, l̂),(48)

where k̂ = arg max{k = 0,1, . . . , l̂ − 1 : ∑k
l=1

λl

μl+θ̃l
≤ S}. This can be seen as fol-

lows. If x∗ is an equilibrium point, it follows from (43) that

λk

μk + θ̃k

= x
∗,1
k + x

∗,0
k

θk

μk + θ̃k

.(49)

We first prove (46). Let k = 1 and assume 1 ≤ k̂. Hence, we have λ1
μ1+θ̃1

< S.

By (49) we obtain x
∗,1
1 < S. Together with (44), that is, x

∗,1
1 = min(S, x∗

1 ), we
obtain x

∗,1
1 = x∗

1 , and hence x
∗,0
1 = 0. From (49), we obtain that x

∗,1
1 = λ1

μ1+θ̃1
. The

proof of (46) continues by induction. Assume (46) holds for k ≤ l − 1, and let
l ≤ k̂. For k ≤ l − 1 we have that x

∗,1
k = λk

μk+θ̃k
. Since

∑l
k=1

λk

μk+θ̃k
≤ S, by (44)

we obtain that x
∗,1
l = x∗

l , and hence x
∗,0
l = 0. From (49), we then obtain that (46)

holds for k = l as well.
We now prove (47). Let k̂ + 1 < l̂. From (46) and (47), we obtain that S −∑k̂
l=1 x∗

l < x∗
k̂+1

. So by (44) we obtain x
∗,1
k̂+1

= S − ∑k̂
l=1

λl

μl+θ̃l
as stated in (47).

We now prove (48). From (46) and (47), we obtain that S ≤ ∑k̂+1
l=1 x∗

l , hence

x
∗,1
k = 0 for k such that k̂ + 1 < k < l̂. Equation (48) for k ≥ l̂ follows directly

from (45).
In addition, x∗ is a global attractor, as was shown in [3], Appendix. This can be

seen by replacing the μi in [3] by μi + θ̃i , making the ODE in [3] coincide with
our ODE (43).
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