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Abstract: Dasgupta and Shulman [1] showed that a two-round variant of
the EM algorithm can learn mixture of Gaussian distributions with near
optimal precision with high probability if the Gaussian distributions are
well separated and if the dimension is sufficiently high. In this paper, we
generalize their theory to learning mixture of high-dimensional Bernoulli
templates. Each template is a binary vector, and a template generates ex-
amples by randomly switching its binary components independently with
a certain probability. In computer vision applications, a binary vector is a
feature map of an image, where each binary component indicates whether a
local feature or structure is present or absent within a certain cell of the im-
age domain. A Bernoulli template can be considered as a statistical model
for images of objects (or parts of objects) from the same category. We show
that the two-round EM algorithm can learn mixture of Bernoulli templates
with near optimal precision with high probability, if the Bernoulli templates
are sufficiently different and if the number of features is sufficiently high.
We illustrate the theoretical results by synthetic and real examples.
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1. Introduction

During the past decades, a large number of theoretical results have been ob-
tained for supervised learning such as classification and regression [9]. For un-
supervised learning, however, relatively few theoretical results are available.
A main difficulty is that the objective functions in unsupervised learning are
usually non-convex and multi-modal, so the optimization algorithms usually
cannot find the global optima. As a result, it is generally difficult to obtain
theoretical guarantees for the performances of the unsupervised learning algo-
rithms. A simple and typical example of unsupervised learning is clustering or
learning mixture models, and a typical algorithm for fitting the mixture models
is the EM algorithm [3], which is a statistical counterpart of the k-means algo-
rithm for clustering. Although the EM algorithm is simple and interpretable,
and is known to converge monotonically to a local mode of the observed-data
log-likelihood, little is known about its theoretical performance in terms of cor-
rectly recovering the mixture components. As such, the EM algorithm is often
considered a heuristic algorithm.
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Fig 1. Left: An alphabet of 18 sketch patterns. These sketch patterns are edge segments
that connect the corners and mid-points of the sides of a squared cell. Middle: The image
domain is partitioned into squared cells. Within each cell, any of the sketch patterns can be
present or absent. The whole feature map can be represented by a binary vector, where each
component is a binary decision on whether a certain sketch pattern in the alphabet is present
or absent within a certain cell. Right: Some examples generated by the template in the middle
by randomly switching the binary components with a certain probability.

A major recent advance in the theoretical understanding of the EM algo-
rithm for fitting mixture models was made by Dasgupta and Shulman [1]. They
proposed a two-round variant of the EM algorithm that consists of only two
iterations of EM: the first iteration is initialized from a number of randomly
selected training examples as the centers of the Gaussian distributions, and the
second iteration is carried out after pruning the clusters learned from the first it-
eration. They showed that the two-round EM can learn the mixture of Gaussian
distributions with near optimal precision with high probability if the Gaussian
distributions are well separated and if the dimensionality of the Gaussian dis-
tributions is sufficiently high. Here near optimal precision means that one can
estimate the parameters of the Gaussian distributions as if the memberships of
the observations are known.

In this paper, we generalize the theory of Dasgupta and Shulman [1] to learn-
ing mixture of Bernoulli templates. Each template is a binary vector, and it
generates examples by independently switching its binary components with a
certain probability. So the observed examples are also binary vectors. This setup
is a version of the latent class model of [5] restricted to binary data. In potential
applications in computer vision, a binary vector is a feature map of an image,
where each binary component indicates whether a local feature or structure is
present or absent within a certain cell of the image domain. Fig. 1 illustrates
the basic idea by a synthetic example. The image domain is equally partitioned
into squared cells (in the example in Fig. 1, there are a total of 9× 9 = 81 cells
in the image domain). There is an alphabet of sketch patterns that can appear
in these cells (Fig. 1 shows an alphabet of 18 types of sketch patterns). Each cell
may contain one or more sketch patterns, so the binary vector for each image
consists of 9 × 9 × 18 binary components, each component indicates whether a
certain sketch pattern is present or not within a certain cell. Specifically, each
component is a binary decision that can be made based on local edge detection,
Gabor filter responses [2], beamlet transformation [6] or a pre-trained classi-
fier. A Gabor filter is a 2D linear filter that has a prefered orientation. Along
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Fig 2. Real images and their binary sketches. Each bar in the sketch image indicates the
existence of a Gabor filter response above a threshold within a local cell of the image.

that orientation the Gabor filter resembles a Gaussian and along the perpen-
dicular direction it resembles the derivative of a Gaussian. It was shown in [2]
that the Gabor filters are a good approximation of the receptive field profiles of
orientation-sensitive neurons in a cat’s visual cortex.

The formulation is very general. One can design any alphabet of local features
or patterns, and one can use any binary detector or classifier to decide the
presence or absence of these features within each cell. The whole feature map
is a composition of local image features and is in the form of a binary vector,
usually high dimensional (on the order of 103−105). A template itself is a binary
vector that is subject to component-wise switching or Bernoulli noise to account
for the variations of the feature maps of individual images. The reason we focus
on binary feature maps in this article is that they are easy to design and we do
not need to make strong assumptions on their distributions such as Gaussianity.

As another illustration, Fig. 2 displays some examples of real images and their
binary sketches based on a simple design of image features and binary decision
rules. We partition the image domain into squared cells of equal size (in these
images, the cells are relatively small, ranging from 5× 5 pixels to 7× 7 pixels).
We convolve the image with Gabor filters [2] at 8 orientations. Within each cell,
at each orientation, we pool a local maximum of the Gabor filter responses (in
absolute values). If the local maximum is above a threshold, we then declare that
there is a sketch within this cell at this orientation, and the sketch is depicted
by a bar in the corresponding binary sketch image in Fig. 2. Clearly the sketch
image captures a lot of information in the corresponding original image.

Now back to the issue of learning mixture models by EM. We assume that
there are k Bernoulli templates, and each observed example is a noisy obser-
vation of one of the k template. The question we want to answer is: given a
number of training examples that are noisy observations of the k templates, can
an EM-type algorithm reliably recover these k templates with high probabil-
ity? The reason we are interested in this question is that it will shed light on
unsupervised learning of templates of objects (or their parts) from real images,
which is a crucial task for object modeling and recognition in computer vision.
Many learning methods are based on fitting mixture models by EM-type algo-
rithms, including the Active Basis model [8]. In the language of the And-Or
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graph [10] for object modeling, each template is an And-node, which is a com-
position of a number of sketches. The mixture of k templates is an Or-node,
with each template being its child node. So the mixture of the templates is an
Or-And structure. The theoretical results in this paper will be useful for us to
understand the learning of the Or-And structure from training images.

To answer the above question, we shall generalize the theory of Dasgupta and
Shulman [1] to Bernoulli distributions, and we shall show that the two-round
EM algorithm can learn mixtures of Bernoulli templates with near optimal
precision with high probability if the templates are sufficiently different and
if the dimensions are sufficiently high.

Generalizing the theory of [1] from Gaussian mixtures to the mixtures of
Bernoulli distributions is far from being straightforward. The sample space is
no longer Euclidean, and some results for Gaussian distributions cannot be
translated directly into those for the Bernoulli models. So we have to establish
a theoretical foundation that is suitable for our purpose. For example, we will
need bounds on the tails of the distribution of distances between a template P

and the mean of m binary vectors obtained by perturbing P by Bernoulli noise.
Similar bounds for the Gaussian case are easy to obtain because the moment
generating function of ‖X‖2 is known when X is an isotropic Gaussian.

The rest of the paper is organized as follows. Section 2 describes the two-
round EM algorithm and states the main theorem. Sections 3 to 4 present the-
oretical results that lead to the proof of the main theorem. Section 5 illustrates
the theoretical results by some experiments on synthetic and real examples. Sec-
tion 6 concludes with a discussion. In the text, we shall only state the theoretical
results. The proofs can be found in the appendix.

2. Two-round EM with performance guarantee

2.1. Model and algorithm

Let P be a template. It is an n-dimensional binary vector, i.e., P ∈ Ω = {0, 1}n.
In the example in Fig. 1, n = 9×9×18 = 1458. Let P(s) be the s-th component
of P, s = 1, . . . , n. An example x generated by P is a noisy version of P, and we
write x ∼ P. Specifically, let x(s) be the s-th component of x. Then x(s) = P(s)
with probability 1 − q, and x(s) = 1 − P(s) with probability q, i.e., q is the
probability of switching a component of P, and it defines the level of Bernoulli
noise. We assume that q ∈ (0, 1/2). We also assume that the components of x
are independent given P. We call P a Bernoulli template because it is binary
and is subject to Bernoulli noise.

Let {Pi, i = 1, . . . , k} be k Bernoulli templates with mixture weights {wi, i =
1, . . . , k}. We assume that k is given. Otherwise, k can be determined by some
model selection criteria such as BIC [4, 7]. Let x1, . . . ,xm be m noisy observa-
tions of these k templates, where the noise level is q. The probability that xj is
generated by Pi is wi, and we let wmin = mini=1,...,k wi. We define µi to be the
expectation of the examples generated by Pi, i.e., µi = E[xi] where xi ∼ Pi.
Let Si be the set of examples coming from the template Pi.
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For two n-dimensional vectors P and Q, let D(P,Q) =
∑n

s=1 |P(s) −Q(s)|
be the ℓ1 distance between P and Q. Let cij be the separation between Pi and
Pj , i.e., D(Pi,Pj) = dij = ncij .

Definition 1. The mixture is called c-separated if minij cij = c.

We shall show that if the separation c is sufficiently large, then the two-round
EM algorithm will reliably recover {Pi, i = 1, . . . , k}.

We use the notation Ti to denote the estimated Pi. In the two-round EM,

the first round initializes {T(0)
i , i = 1, . . . , l} to be l randomly selected training

examples. The initial number of clusters, l, is greater than the true number k.
Specifically, we let l = 4

wmin
ln 2

δwmin
, where δ is the confidence parameter, i.e.,

with probability 1 − δ, the algorithm will succeed in recovering the mixture
components. According to the coupon collector problem, the l examples cover
all the k clusters with high probability. We estimate the Bernoulli noise level q0
so that q0(1 − q0) = minij D(T

(0)
i ,T

(0)
j )/2n based on the statistics of distances

between examples derived in Prop. 3. Then we run one more iteration of EM.

After the first iteration, we prune the clusters by a starvation scheme. The
pruning process consists of two stages. In the first stage, we remove all the tem-

plates {T(1)
i } whose weights are below a threshold 1/4l. In the second stage, we

keep only k templates that are far apart from each other through an inclusion
process. Specifically, we start the inclusion process by randomly picking a tem-
plate. Then in each subsequent step of the inclusion process, we add a template
that is farthest away from the selected templates in terms of the minimum dis-
tance between the candidate template and the selected templates. We repeat
this step until we get k templates. We let i = 1, . . . , k to index the remaining k
templates.

After the pruning process, we run another iteration of EM. The estimated
templates from this second round EM are already near optimal as we will show.

To be more precise, Algorithm 1 describes the two-round EM. In Step 9

the templates {T(2)
i } are to be converted to binary by rounding to the nearest

integer.

2.2. Notation

For the convenience of reference, the following summarizes the notation used in
this paper:

• n is the dimension of Bernoulli templates, which generate examples in
Ω = {0, 1}n.

• m is the number of observations.
• k is the true number of clusters.
• q ∈ (0, 1/2) is the level of noise
• B = 1

2 (1 − 2q) ln 1
(1−q)(4q+

√
q) > 0,

• E = min(14 ,
c(1−2q)2/2

c(1−2q)2+2(1−q)(q+
√
q) ,

3c(1−2q)/4−2q−4
√

6ql/n

c(1−2q)+q+
√
q )



Two-round EM with performance guarantee 3009

Algorithm 1 Two-round EM for Learning Bernoulli Templates

Input: Examples x1, . . . ,xm ∈ Ω, m ≥ l
Output: Templates Ti, i = 1, . . . , k

[1] Initialize T
(0)
i as l random training examples

[2] Initialize w
(0)
i = 1/l and q0 ≤ 1/2 such that

q0(1 − q0) =
1

2n
min
i,j

D(T
(0)
i ,T

(0)
j ).

[3] E-Step: Compute for each i = 1, . . . , l

fi(xj) = q
D(xj ,T

(0)
i

)

0 (1− q0)
n−D(xj ,T

(0)
i

), j = 1, . . . ,m,

p
(1)
i (xj) =

w
(0)
i fi(xj)

∑
i′ w

(0)
i′

fi′ (xj)
, j = 1, . . . ,m

[4] M-Step: Update, for i = 1, . . . , l,

w
(1)
i =

m∑

j=1

p
(1)
i (xj)/m

T
(1)
i =

1

mw
(1)
i

m∑

j=1

p
(1)
i (xj)xj

[5] Pruning: Remove all T
(1)
i with w

(1)
i < wT = 1

4l

[6] Pruning: Keep only k templates T
(1)
i far apart. Let i = 1, . . . , k index the remaining k

templates.

[7] Initialize w
(1)
i = 1/k and q1 = q0.

[8] E-Step: Compute, for i = 1, . . . , k,

fi(xj) = q
D(xj,T

(1)
i

)

1 (1− q1)
n−D(xj ,T

(1)
i

), j = 1, . . . ,m

p
(2)
i (xj) =

w
(1)
i fi(xj)

∑
i′ w

(1)
i′

fi′ (xj)
, j = 1, . . . , m

[9] M-Step: Update, for i = 1, . . . , k,

w
(2)
i =

m∑

j=1

p
(2)
i (xj)/m,

T
(2)
i =

1

mw
(2)
i

m∑

j=1

p
(2)
i (xj)xj

• wmin: the minimum of the mixture weights.
• Pi is the i-th Bernoulli template
• Si is the set of examples coming from the template Pi.
• D(P,Q) =

∑n
s=1 |P(s) − Q(s)| is the ℓ1 distance between P ∈ Ω and

Q ∈ Ω.
• cij is the separation between the Bernoulli templates, D(Pi,Pj) = dij =
ncij

• c = mini,j cij
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• l is the initial number of mixture components l = 4
wmin

ln 2
δwmin

. The
parameter δ is the confidence level in Theorem 1.

• wT = 1
4l is the threshold for pruning the clusters learned by the first

round.
• Ci collects the templates that are initialized from examples in the i-th
cluster Si and survive the pruning process after the first round of EM, i.e.

Ci = {T(1)
i′ ,T

(0)
i′ ∈ Si, w

(1)
i′ ≥ wT }

2.3. Main result

Theorem 1. Let m examples be generated from a mixture of k Bernoulli tem-
plates under Bernoulli noise of level q and mixing weights wi ≥ wmin for all i.
Let ǫ, δ ∈ (0, 1). If the following conditions hold:

1. The initial number of clusters is

l =
4

wmin
ln

2

δwmin
.

2. The number of examples is m ≥ max(8l, 16 lnn, 8
wmin

ln 12k
δ ).

3. The separation is

c > max

(

4

nB
ln

5n

ǫwmin
,
max(3(1− 2q), 2)

3(1− 2q)

(

4q + 8

√

6ql

n

)

,
ln 16l

min(6nq,1)

nB(1− 2q)

)

.

4. The dimension is

n > max

(

3

min(c, 0.5)E2
ln

12(m+ 1)2

δ
,
6k

δ

)

.

Then with probability at least 1 − δ, the estimated templates after the round 2
of EM satisfy:

D(T
(2)
i ,Pi) ≤ D(mean(Si),Pi) + ǫq

The above theorem states that with high probability, the estimated templates
from the two-round EM is nearly as accurate as if we knew the memberships of
the examples.

2.4. Sketch of the proof

The proof follows the steps of the two-round EM. We show that after the ini-
tialization, with high probability, the initial templates cover all the clusters and
the estimated noise level q0 is close to the true noise level q. Then after the first
round, the estimated templates are likely to be close to the true templates of
the same clusters. After the pruning process, we prove that it is very likely that
exactly one template is kept for each cluster. Finally after the second round,
the estimated templates are proved to be near optimal.
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3. Basic facts

We shall first establish some basic facts about the Bernoulli templates perturbed
by Bernoulli noise. They are concerned with the ℓ1 distances among templates
and their examples.

Proposition 1. Let P,Q ∈ Ω be Bernoulli templates with noise level q. We
have:

1. If x ∼ P then

E[D(x,P)] = nq, V ar[D(x,P)] = nq(1 − q)

2. If x ∼ P and y ∈ Ω then

E[D(x,y)] = nq +D(P,y)(1 − 2q)

V ar[D(x,y)] = nq(1 − q)

3. If x,y ∼ P then

E[D(x,y)] = 2nq(1− q)

V ar[D(x,y)] = 2nq(1− q)(1 − 2q + 2q2)

4. If x ∼ P,y ∼ Q 6= P then

E[D(x,y)] = 2nq(1− q) +D(P,Q)(1 − 2q)2

V ar[D(x,y)] = 2nq(1− q)(1 − 2q + 2q2)

Proposition 2. Let P,Q ∈ Ω be Bernoulli templates with noise level q. We
have:

a) If x ∼ P and λ ≥ 1 then

P(D(x,P) > λnq) ≤ e−nq(λ−1)2/3

b) If x ∼ P and ǫ ∈ (0, 1) then

P(|D(x,P) − nq| > ǫn
√
q) ≤ 2e−nǫ2/3

c) If x ∼ P,y ∼ Q and

ν(P,Q) = 2nq(1− q) +D(P,Q)(1− 2q)2

then for any ǫ ∈ (0, 1)

P(|D(x,y) − ν(P,Q)| > ǫν(P,Q)) ≤ 2e−ν(P,Q)ǫ2/3

Prop. 2 states that the ℓ1 distance between an example and its template is
concentrated around nq, while the distance between two examples from two
different templates is concentrated around ν(P,Q). This leads to the following
proposition.
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Proposition 3. Draw m samples from a c-separated mixture of k Bernoulli
templates with mixing weights at least wmin. Let ǫ0 > 0. Then with probability at

least 1−m2e−2n(1−q)ǫ20/3−m2e−nmin(c,0.5)ǫ20/3−2me−nǫ20/3−2me−nmin(c,0.5)ǫ20/3−
ke−mwmin/8

a) For any x,y ∈ Si we have

D(x,y) = 2n(1− q)(q ± ǫ0
√
q)

b) For any x ∈ Si,y ∈ Sj, i 6= j, we have

D(x,y) = n(2q(1− q) + cij(1 − 2q)2)(1± ǫ0)

c) For any x ∈ Si we have

D(x,Pi) = n(q ± ǫ0
√
q)

D(x,Pj) = n(q + cij(1− 2q))(1± ǫ0)

d) Each |Si| ≥ 1
2mwi.

Here we employ the notation that a = b± ǫ means a ∈ (b − ǫ, b+ ǫ).

Lemma 1. Let Zi = 1
m

∑m
j=1 Bij where Bij are Bernoulli random variables

with E[Bij ] = q. Then

P

(

n
∑

i=1

Zi − nq > λ

)

< exp

(

−mλ2

3nq

)

Proposition 4 (Average of subsets). Draw a set S1 of m examples randomly
from template P ∈ {0, 1}n with noise level q < 1/2. Then with probability at
least 1 − δ for any subset of size at least t ≥ n there is no subset of S1 of size
at least t whose average µ has

D(µ,P) ≥ nq +

√

3nq

(

ln
me

t
+

1

t
ln

1

δ

)

Prop. 4 states that the sample average is unlikely to deviate too far from P.

Proposition 5 (Weighted averages). For any finite set of points S ⊂ {0, 1}n
and weights wx ∈ [0, 1],x ∈ S there exists a subset T ⊂ S such that

1. |T | = ⌊∑x∈S wx⌋
2. D(µT ,P) ≥ D(µw,P) where

µT =
1

|T |
∑

x∈T

x and µw =

∑

x∈S wxx
∑

x∈S wx

.

Prop. 5 states that the weighted average can be bounded by unweighted av-
erage. This result is needed because the templates are estimated as the weighted
averages in both rounds of the EM algorithm and from Prop. 4 and 5 we can
bound on the distance to the template.
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4. Key steps of the proof

In this section we state the results that hold for the estimated template parame-
ters after each EM iteration. We assume that the following technical conditions
hold

C1: nc > 1
B(1−2q) ln

16l
min(6nq,1)

C2: m > max(16 lnn, 8l)
C3: c > max(1, 2

3(1−2q) )(4q + 8
√

6ql/n)

These conditions are a subset of the conditions of Theorem 1 that don’t depend
on wmin and δ. They will be referred to in the proofs of the statements of this
section.

We also assume that ǫ0 ≤ E where condition C3 guarantees that E > 0.
Observe that condition C3 imposes an upper bound on the noise level q since
c < 1. In our experiments this upper bound was between 0.2 and 0.3.

4.1. Initialization

This section analyzes the initial estimates for the parameters before the first
round of EM.

Proposition 6. With probability at least 1 − k(l + 1)e−lwmin − kelwmin/4 we
have

1. For each true template Pi, the number of T
(0)
j coming from Pi is at least 2.

2. For each true template Pi, the number of T
(0)
j coming from Pi is at

most 15
8 lwi

3. The noise estimate satisfies

q0(1− q0) = (1 − q)(q ± ǫ0
√
q).

By initializing from more templates than the actual number of clusters, there
is a high probability that the estimated templates cover all the clusters.

4.2. First round of EM

Proposition 7. Suppose T
(0)
i′ ∈ Si and T

(0)
j′ ∈ Sj, i 6= j. In the cases when

the conclusions of Proposition 3 hold, for any x ∈ Si the ratio between the
probabilities pi and pj is

p
(1)
i′ (x)

p
(1)
j′ (x)

≥ exp(ncijB(1 − 2q))

Prop. 7 states that the first round of EM will likely give higher weights to
the templates representing the correct cluster than to a wrong cluster.
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Proposition 8. In the cases when the conclusions of Proposition 3 hold, any

non-starved estimate T
(1)
i′ ∈ Ci satisfies with probability 1− 1/n

D(T
(1)
i′ ,Pi) ≤ nq +

√

6nql

So the estimated template of a cluster is very likely to be close to the true
template of this cluster.

4.3. Pruning

We prove that with high probability the pruning step will keep exactly one
template from each cluster.

Proposition 9. In the cases when Propositions 3, 6 and 8 hold, the set Ci

obeys the following properties:

a) Each Ci is non-empty
b) There exists τ ∈ R such that for any x ∈ Ci and y, z ∈ Cj , j 6= i we have

D(y, z) ≤ τ and D(x,y) > τ .
c) The pruning procedure finds exactly one member of each Ci.

4.4. Second round of EM

We permute the obtained templates T
(1)
i so that T

(1)
i ∈ Si.

Proposition 10. Suppose T
(1)
i ∈ Si and T

(1)
j ∈ Sj, i 6= j. In the cases when

Propositions 3, 6 and 8 hold, for any x ∈ Si the ratio between the probabilities
pi and pj is

p
(2)
i (x)

p
(2)
j (x)

≥ exp

(

1

4
ncij(1− 2q) ln

1

6
√
q

)

= exp(ncijB/2)

Theorem 2. Suppose that l > k, wi > wmin for all i and that conditions C1−
C3 hold. Then with probability at least 1−m2e−2n(1−q)ǫ20/3−m2e−nmin(c,0.5)ǫ20/3−
2me−nǫ20/3 − 2me−nmin(c,0.5)ǫ20/3 − ke−mwmin/8 − k(l+1)e−lwmin − kelwmin/12 −
k/n, the estimated templates after the round 2 of EM satisfy:

D(T
(2)
i ,Pi) ≤ D(mean(Si),Pi) +

5

wmin
e−ncB/4nq

We are now ready to prove Theorem 1.

Proof of Theorem 1. From l = 4
wmin

ln 2
δwmin

, we get ke−lwmin/4 = kδwmin/2 ≤
δ/2. Also

k(l + 1)e−lwmin < 2kle−lwmin/12e−11lwmin/12

≤ δ

2
2l
δ11w11

min

211
= lwminδ

11w10
minδ/2

10
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But

lwmin = 12 ln
2

δwmin
≤ 24

δwmin

so
k(l + 1)e−lwmin < 24δ10w9

minδ/2
10 < δ/12

Take ǫ0 = E > 0 (because of C3). From the dimension condition

n >
3

min(c, 0.5)E2
ln

12(m+ 1)2

δ

we get (m+ 1)2e−nmin(c,0.5)ǫ20/3 ≤ δ/12, so

m2e−2n(1−q)ǫ20/3 + 2me−nǫ20/3 +m2e−nmin(c,0.5)ǫ20/3 + 2me−nmin(c,0.5)ǫ20/3

≤ 2(m+ 1)2e−nmin(c,0.5)ǫ20/3 ≤ δ/6.

From the dimension condition n > 6k/δ we get k/n < δ/6.
From the condition on the number of examples, we get ke−mwmin/8 < δ/12.
From Theorem 2, putting all of the above inequalities together and taking

nc > 4
B ln 5n

ǫwmin
, we obtain that Theorem 1 holds with probability at least 1− δ.

5. Experiments

This section illustrates the theoretical results obtained in the previous sections
by a simulation study as well as experiments on synthetic image sketches and
real images.

5.1. Simulation study

In this section we conduct experiments showing that indeed, the true templates
are found with high probability when the conditions of Theorem 1 hold.

We will work with a mixture of two templates, P1 = 0 and P2 = (1, 1, . . . , 1,
0, 0, . . . , 0) where the number of 1’s is ⌊cn⌋, to obtain a desired separation
c ∈ [0, 1] in dimension n. We experiment with standard EM for 2, 10 and 20
iterations. The standard EM starts from k clusters, instead of l clusters followed
by pruning as in the two-step EM. For the standard EM we also assumed the
noise level q is a known parameter. All results are obtained from 100 runs.

Figs. 3 and 4 show the domains where the two-step EM and the standard
EM find the templates P1,P2 with 90% probability, thus δ = 0.1.

In the two plots of Fig. 3, the horizontal axis is the minimum weight wmin,
and the vertical axis is the separation c. The domain for each algorithm is the
region above and to the right of the corresponding curve. Two version of the
two step EM algorithm were evaluated: the two-step EM, and 10-step version
that does 9 EM steps after the pruning step. Five version of the original EM
were evaluated, with 2 or 10 iterations, and 1, 5 or 10 random initializations
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Fig 3. Domains where the two-round EM and the standard EM find the k = 2 binary templates
correctly 90% of the time when m = 300. The first plot is for q = .01, with n = 2, 000, and the
second plot is for q = .1 with n = 10, 000. Also shown is the domain theoretically guaranteed
by Theorem 1. Each domain is above and to the right of the corresponding curve.

Fig 4. Theoretical and practical domains of validity of the two-step EM algorithm for four
noise levels. From left to right are noise levels: q = 0.0001, q = 0.01 (top) and q = 0.1, q = 0.2
(bottom). In these examples c = 1, k = 2, wmin = 0.5, δ = ǫ = 0.1. Each domain is above and
to the right of the corresponding curve.
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(and selecting from the 5 or 10 obtained results the largest likelihood one as
the final result). The first plot is obtained at the noise level q = .01, while the
second plot is for the noise level q = .1. We take the number of observations
m = 300. For the first plot the dimension is n = 2, 000 and for the second
plot, n = 10, 000. One can see that for low noise, the two-step EM works better
than the original EM. Also displayed is the domain where the conditions of our
theorem are satisfied.

In the four plots from Fig. 4 the horizontal axis is the number m of ob-
servations and the vertical axis is the dimension n. The four plots show the
domain where the two-step EM algorithm finds the templates P1,P2 with 90%
probability for the levels of noise q ∈ {0.0001, 0.01, 0.1, 0.2}. The curves corre-
sponding to conditions 2–4 of Theorem 1 and the technical conditions C1–C3
are also displayed, as well as the domain where all conditions of our theorem
are satisfied.

From the experiments we observe that the domain where the templates are
found with high probability is larger than the domain where the conditions of
Theorem 1 hold. The largest discrepancy is in the dimensionality conditions,
where the gap between theory and experiments is considerable. This gap could
be substantially decreased if tighter bounds could be obtained for Prop. 4 and
consequently for Prop. 8 and Theorem 2.

5.2. Experiments on synthetic image sketches

In this experiment we work with a mixture of two Bernoulli templates, shown
in the bottom row of Fig. 5, in a space of dimension n = 9× 9× 18 = 1458. By
perturbing the entries with Bernoulli noise of level q we obtain images such as
those shown in the top row of Fig. 5.

Fig. 6 shows the success rate of finding the two templates exactly using the
two-round EM algorithm vs. the number of training examples. The experiments
are run for two levels of noise q ∈ {.1, .2} and two mixture weights wmin ∈
{.2, .4}.

Also shown is the bound 1 − δ > 1 − 12ke−mwmin/8 from condition 2 of
Theorem 1.

Fig 5. Top row: Examples of training images. Bottom row: the Bernoulli templates used to
generate the training images.
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Fig 6. Success rates vs. number of training examples for learning from a mixture of two
templates with the two-round EM algorithm for two levels of noise q ∈ {0.1, 0.2} and two
mixture weights wmin = 0.4 (left) and wmin = 0.2 (right).

The separation between the two templates is quite small c = .02, because the
two templates share a lot of zero components. So the separation conditions fail
in this case. Since we are not in the conditions of the Theorem 1, the bound on
the training examples is not expected to hold. We may achieve a better bound
if we reduce the dimension n while increasing c by selecting those features that
differentiate the templates. In any case, we see that in the given scenarios the two
templates can be recovered with 100% certainty with the two-round EM given
sufficiently many examples. So Theorem 1 might hold under milder assumptions
than ours.

5.3. Experiments on real images

We also performed experiments on real images. Each image is first convolved
with Gabor filters tuned to 16 orientations. Then the image domain is parti-
tioned into equal sized squared cells (the size ranges from 5 × 5 pixels to 7× 7
pixels). Within each cell, at each orientation, we pool the maximum of the ab-
solute values of the filter responses. If the maximum is above a threshold, we
declare that there is a sketch within this cell at this orientation. Thus each cell
produces a binary vector of 16 components. We then concatenate the binary
vectors of all the cells into a large binary vector. So each image is transformed
into a binary vector.

Evaluation metrics. To evaluate the clustering quality, we introduce two met-
rics: conditional purity and conditional entropy. Given the underlying ground-
truth category labels X (which are unknown to the algorithm) and the obtained
cluster labels Y , the conditional purity is defined as the mean of the maximum
category probabilities for (X,Y ),

Purity(X |Y ) =
∑

y∈Y

p(y)max
x∈X

p(x|y)
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Table 1

Comparison of the two-step EM algorithm and the original EM for clustering motorcycles,
bicycles and cars. Shown are the mean±std of the conditional purity, conditional entropy
and log-likelihood. #Round is the number of steps of an EM algorithm, and #Init the

number of random initializations used to select the best result (in terms of the log-likelihood).
N is the number of runs (out of 100 total runs) that recover the clusters perfectly

Method
#Round
(×#Init)

Cond. Purity Cond. Entropy Log-Likelihood N

Tow-round
EM

2 (×1) 0.9402 ± 0.1124 0.1098 ± 0.1862 -110625.6 ± 7914.1 61
10 (×1) 0.9822 ± 0.0653 0.0351 ± 0.0937 -108460.3 ± 6491.8 76

Original
EM

2 (×1) 0.8511 ± 0.1500 0.2464 ± 0.2193 -115852.1 ± 11079.3 27
10 (×1) 0.9004 ± 0.1464 0.1555 ± 0.2000 -113476.2 ± 10889.9 43
20 (×1) 0.8722 ± 0.1572 0.1917 ± 0.2144 -115083.1 ± 10828.8 40
100 (×1) 0.9051 ± 0.1460 0.1447 ± 0.2006 -113205.1 ± 10809.3 51
2 (×5) 0.9911 ± 0.0295 0.0260 ± 0.0599 -106268.2 ± 5448.4 77
10 (×5) 0.9987 ± 0.0053 0.0050 ± 0.0198 -106067.0 ± 5122.5 94
20 (×5) 0.9956 ± 0.0336 0.0088 ± 0.0493 -106249.3 ± 5540.3 94
100 (×5) 0.9996 ± 0.0031 0.0017 ± 0.0117 -106045.7 ± 5106.5 98
2 (×10) 0.9991 ± 0.0054 0.0030 ± 0.0179 -107549.1 ± 5366.8 97
10 (×10) 1.0000 ± 0.0000 0.0000 ± 0.0000 -107534.8 ± 5377.5 100
20 (×10) 1.0000 ± 0.0000 0.0000 ± 0.0000 -107534.8 ± 5377.5 100
100 (×10) 0.9998 ± 0.0022 0.0008 ± 0.0083 -107541.0 ± 5390.3 99

and the conditional entropy is defined as,

H(X |Y ) = −
∑

y∈Y

p(y)
∑

x∈X

p(x|y) log p(x|y)

where both p(y) and p(x|y) are estimated on the training set, and we would
expect higher purity and lower entropy for a better clustering algorithm.

We then use the two-round EM algorithm to cluster the images and learn a
binary template for each cluster. We compare with the original EM algorithm
running for different numbers of iterations (2, 10, 20, 100 in the experiments)
and starting with desired number k of clusters (while the two-round EM starts
with l > k clusters and prunes them). A more robust EM could be obtained
by starting with many random initialization and choosing the clustering result
that has the largest log-likelihood. Such robust versions with different number
of initializations are also evaluated in Tables 1, 2 and 3. A ten-round version of
the two-round EM (with eight additional EM iterations after the pruning step)
is also evaluated. The methods are evaluated in terms of conditional purity and
conditional entropy. From the experiments one could see that the two-round EM
algorithm can only be outperformed with a five or ten random initializations of
the standard EM algorithm. All the results are obtained based on 100 runs.

Fig. 7 and 8 show the results of two experiments (vehicles and animal faces).
Table 1 and 2 show the performance comparisons. Table 3 shows the performance
all data combined. In the learned templates, the existence of a sketch at each
cell is represented by a bar at the center of this cell and at the orientation of
the sketch. In each experiment, there are 15 images in each cluster, and the
two-round EM is able to separate the clusters perfectly. For the real images, the
templates are denser than those in Fig. 5 because the numbers of cells are larger.
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Table 2

Performance comparison of our two-round EM algorithm and the original EM algorithm for
clustering cats, wolves and deers

Method
#Round
(×#Init)

Cond. Purity Cond. Entropy Log-Likelihood N

Tow-round
EM

2 (×1) 0.8918 ± 0.1268 0.2450 ± 0.2230 -398033.9 ± 14285.5 17
10 (×1) 0.9222 ± 0.1169 0.1705 ± 0.2016 -396428.5 ± 13583.5 32

Original
EM

2 (×1) 0.6853 ± 0.1472 0.6300 ± 0.2429 -408941.0 ± 16116.3 2
10 (×1) 0.7342 ± 0.1386 0.5151 ± 0.2341 -406125.6 ± 13973.7 2
20 (×1) 0.7489 ± 0.1484 0.4876 ± 0.2534 -405384.8 ± 15374.4 5
100 (×1) 0.7493 ± 0.1426 0.4788 ± 0.2497 -405643.4 ± 16290.6 6
2 (×5) 0.8587 ± 0.1039 0.3459 ± 0.1985 -562506.3 ± 45380.3 6
10 (×5) 0.9276 ± 0.0881 0.1895 ± 0.1795 -556137.0 ± 45076.8 19
20 (×5) 0.9027 ± 0.0985 0.2373 ± 0.1861 -558410.6 ± 45627.2 11
100 (×5) 0.9287 ± 0.0835 0.1834 ± 0.1656 -555971.3 ± 44003.9 20
2 (×10) 0.9242 ± 0.0731 0.2114 ± 0.1688 -395855.2 ± 11914.2 15
10 (×10) 0.9618 ± 0.0423 0.1189 ± 0.1021 -394102.3 ± 11968.6 24
20 (×10) 0.9578 ± 0.0443 0.1344 ± 0.1220 -394252.5 ± 11701.0 25
100 (×10) 0.9651 ± 0.0459 0.1065 ± 0.1136 -394137.2 ± 12224.4 31

Table 3

Performance comparison of our two-round EM algorithm and the original EM algorithm for
clustering cats, wolves, deers, motorcycles, bicycles and cars

Method
#Round
(×#Init)

Cond. Purity Cond. Entropy Log-Likelihood N

Tow-round
EM

2 (×1) 0.8823 ± 0.0982 0.2526 ± 0.1891 -401125.5 ± 28775.3 0
10 (×1) 0.9030 ± 0.0911 0.1841 ± 0.1506 -398672.2 ± 28364.9 6

Original
EM

2 (×1) 0.7389 ± 0.0995 0.5152 ± 0.1775 -416130.8 ± 32791.7 0
10 (×1) 0.7744 ± 0.1160 0.4042 ± 0.2001 -412488.2 ± 32696.2 2
20 (×1) 0.7961 ± 0.1129 0.3669 ± 0.1862 -409443.2 ± 33581.6 2
100 (×1) 0.7883 ± 0.1265 0.3862 ± 0.2196 -410602.3 ± 34139.1 0
2 (×5) 0.8468 ± 0.0769 0.3212 ± 0.1364 -402958.6 ± 28555.4 1
10 (×5) 0.9082 ± 0.0857 0.1793 ± 0.1351 -396123.3 ± 30142.8 9
20 (×5) 0.9158 ± 0.0790 0.1686 ± 0.1263 -395430.3 ± 27609.8 8
100 (×5) 0.9022 ± 0.0854 0.1843 ± 0.1290 -396627.6 ± 29355.7 5
2 (×10) 0.8836 ± 0.0746 0.2669 ± 0.1376 -398549.9 ± 28767.4 1
10 (×10) 0.9483 ± 0.0602 0.1163 ± 0.0937 -392213.1 ± 27651.5 10
20 (×10) 0.9504 ± 0.0633 0.1072 ± 0.0985 -392517.4 ± 29030.8 16
100 (×10) 0.9574 ± 0.0566 0.0992 ± 0.0882 -391457.3 ± 27788.0 10

Currently we use a very simple sketch detector by thresholding the Gabor
filter responses at different orientations. We will design more sophisticated fea-
tures and associated detectors in future work.

6. Discussion

This paper obtains theoretical guarantees on the performance of a two-round
EM algorithm for learning mixture of Bernoulli templates, by generalizing the
theory of [1]. Unlike the theoretical results for supervised learning, results on
unsupervised learning such as clustering are relatively scarce. The results ob-
tained in this paper can be useful for understanding the behavior of EM-type
algorithms for unsupervised learning.
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Fig 7. Clustering motorcycles, bicycles and cars by the two-round EM algorithm. In each
row, the first plot displays the learned template and the rest of the plots show some of the
examples in the corresponding cluster. There are 15 images in each cluster.

Fig 8. Clustering cats, wolves and deers by the two-round EM algorithm. In each row, the
first plot displays the learned template and the rest of the plots show some of the examples in
the corresponding cluster. There are 15 images in each cluster.

In our future work, we shall improve the theoretical results by relaxing the
conditions on the separation between the templates as well as the sample size.
We shall also generalize Bernoulli templates to more general statistical models
for images, such as templates with dependent switching of the binary compo-
nents, as well as other non-Gaussian models such as exponential family models.
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Appendix: Proofs

Proof of Prop. 1. 1. We have

E[D(x,P)] = E

[

n
∑

k=0

Bk

]

=

n
∑

k=0

E[Bk] = nq

and

E[D(x,P)2] = E





(

n
∑

k=0

Bk

)2


 = E





n
∑

i=0

B2
i +

∑

i6=j

BiBj





=

n
∑

i=0

E[Bi] +
∑

i6=j

E[BiBj ] = nq + n(n− 1)q2

V ar(D(x,P)) = E[D(x,P)2]− E[D(x,P)]2

= n(n− 1)q2 + nq − n2q2 = nq(1− q)

2. Let d = D(P,y). Without loss of generality, let P = (A,B),y = (A, 1 −B)
where B ∈ {0, 1}d and x = (u, z),u ∼ A, z ∼ B. Observe that if two random
variables are independent then V ar(A +B) = V ar(A) + V ar(B). Then

E[D(x,y)] = E[D(u,A) +D(z, 1−B)]

= (n− d)q + (d− E[D(z,B)]) = (n− d)q + d− dq

V ar(D(x,y)) = V ar[D(u,A) + d−D(z,B)]

= V ar[D(u,A)] + V ar[d−D(z,B)]

= (n− d)q(1 − q) + dq(1 − q) = nq(1− q)

3. In the case when x,y ∼ P we have

Ex,y[D(x,y)] = Ex[Ey[D(x,y)]] = Ex[nq +D(x,P)(1 − 2q)]

= nq + nq(1− 2q) = 2nq(1− q)

V arx,y(D(x,y)) = Ex,y[D(x,y)2]−(Ex,y[D(x,y)])2

= Ex(Ey[D(x,y)2])− Ex(E
2
y[D(x,y)])

+ Ex(E
2
y[D(x,y)]) − (Ex[Ey(D(x,y))])2

= Ex(V ary[D(x,y)]) + V arx[Ey(D(x,y))]

= Ex(nq(1− q)) + V arx[nq +D(x,P)(1 − 2q)]

= nq(1 − q) + nq(1− q)(1− 2q)2
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4. In the case when x ∼ P,y ∼ Q we have

Ex,y[D(x,y)] = Ex[Ey[D(x,y)]] = Ex[nq +D(x,Q)(1 − 2q)]

= nq + (nq +D(P,Q)(1− 2q))(1 − 2q)

= 2nq(1− q) +D(P,Q)(1 − 2q)2

V arx,y(D(x,y)) = Ex(V ary[D(x,y)]) + V arx[Ey(D(x,y))]

= Ex(nq(1− q)) + V arx[nq +D(x,Q)(1 − 2q)]

= nq(1− q) + nq(1− q)(1− 2q)2.

Proof of Prop. 2. Statements a), b) follow directly from the Chernoff inequality.
c) Let C be indices of the n − d common elements of P and Q. Let Bi

be the Bernoulli event that the i-th element of x and y are different. Then
E(Bi) = 2q(1 − q) if i ∈ C and E(Bi) = q2 + (1 − q)2 if i 6∈ C. Observe that
D(x,y) =

∑n
i=1 Bi. Thus by the Chernoff inequality, since ν = E[D(x,y)] =

2nq(1− q) + d(1− 2q)2 we get

P(|D(x,y) − ν| > ǫν) ≤ 2e−νǫ2/3.

Proof of Prop. 3. a) From point c) of Prop. 2 with P = Q, we have ν =
ν(P,P) = 2nq(1− q) so for any two points x,y ∈ Si we have P(|D(x,y)− ν| >
νǫ0/

√
q) ≤ 2e−νǫ20/3q. Thus for all m(m − 1)/2 combinations of two points we

have

P(|D(x,y) − ν| > νǫ0/
√
q) ≤ m(m− 1)e−νǫ20/3q < m2e−2n(1−q)ǫ20/3

b) Similar to the proof of a), with ν = ν(P,Q) = 2nq(1−q)+d(P,Q)(1−2q)2 =
2nq(1− q) + ncij(1 − 2q)2 ≥ nmin(c, 0.5). We obtain

P(|D(x,y) − ν| > νǫ0) < m2e−nmin(c,0.5)ǫ20/3

c) From point b) of Prop. 2 we have P(|D(x,Pi)− nq| > ǫ0n
√
q) ≤ 2e−nǫ20/3 so

for all m points we have

P(|D(x,Pi)− nq| > ǫ0n
√
q) ≤ 2me−nǫ20/3

Similarly, we have

P(|D(x,Pj)−n(q + cij(1− 2q))| > ǫ0n(q + cij(1 − 2q)))

≤ 2e−n(q+cij(1−2q))ǫ20/3 ≤ 2e−nmin(c,0.5)ǫ20/3

so for all m points we have

P(|D(x,Pj)−n(q + cij(1− 2q))| > ǫ0n(q + cij(1− 2q)))

≤ 2me−nmin(c,0.5)ǫ20/3



3024 A. Barbu et al.

d) Let Bj be Bernoulli event that sample j is drawn from template Pi. Then
E[Bj ] = wi and from the Chernoff bound

P

(

|Si| <
1

2
mwi

)

= P

(

∑m
j=1 Bj

m
< wi

(

1− 1

2

)

)

< e−mwi(1/2)
2/2 < e−mwmin/8.

Proof of Lemma 1. The mean of mn Bernoullis Bij with E[Bij ] = q (the coor-
dinates of the Zi) satisfies

P

(∑

Bij

mn
− q > ǫq

)

< e−mnqǫ2/3

So

P

(

n
∑

i=1

Zi − nq > ǫnq

)

≤ e−mnqǫ2/3

and we take ǫ = λ/nq.

Proof of Prop. 4. First, it is sufficient to prove it for subsets of size exactly t,
otherwise we increase t. Without loss of generality, we can assume P = 0. From
Lemma 1 we have

P(D(µ,P)− nq > λ) ≤ e−tλ2/3nq

The number of t-point subsets of S1 is
(

m
t

)

< (me/t)t, thus

P(∃ subset of t points s.t. D(µ,P)− nq > λ) ≤
(me

t

)k

e−tλ2/3nq

Solving for (me
t )ke−tλ2/3nq = δ we get

λ =

√

3nq

t

(

t ln
me

t
+ ln

1

δ

)

therefore

P

[

∃ subset of t points s.t. D(µ,P)− nq >

√

3nq

t

(

t ln
me

t
+ ln

1

δ

)]

≤ δ.

Proof of Prop 5. Sort the points x ∈ S by D(x,P) =
∑n

i=1 |xi − Pi| and take
T as the ones with |T | = ⌊∑x∈S wx⌋ largest values. Then

∑

x∈T

n
∑

i=1

|xi −Pi| ≥
∑

x∈S

wx

n
∑

i=1

|xi −Pi|

so

D(µT ,P) =

n
∑

i=1

∑

x∈T |xi −Pi|
|T |
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≥
n
∑

i=1

∑

x∈S wx|xi −Pi|
|T |

≥
n
∑

i=1

∑

x∈S wx|xi −Pi|
∑

x∈S wx

= D(µw,P).

Proof of Prop. 6. Let Bi be the Bernoulli event that a random sample from
the mixture comes from the i-th true template Pi. Then E[Bi] = wi. Having l
random samples Bij from the Bernoulli event Bi, then

P





l
∑

j=1

Bij ≤ 1



 = (1− wi)
l + lwi(1− wi)

l−1

≤ (1 + l)(1− wmin)
l ≤ (l + 1)e−lwmin

so P(
∑l

j=1 Bij ≥ 2) ≥ 1−(l+1)e−lwmin . Thus P(Pi is represented twice) ≥ 1−
(l+1)e−lwmin , so P(Pi is represented twice, ∀i = 1, k) ≥ (1−(l+1)e−lwmin)k ≥
1− k(l + 1)e−lwmin .

2. From Chernoff bound we have P(
∑l

j=1 Bij > 15/8lwi) < e−lwi(7/8)
2/3 <

e−lwi/4, which implies the results.
3. As there exist T′

i,T
′
j representing the same cluster, then 2nq0(1 − q0) ≤

D(T′
i,T

′
j) ≤ 2n(1 − q)(q + ǫ0

√
q) (from Prop. 3, a). Also from Prop. 3, if the

minimum is attained for two centers T′
i,T

′
j representing the same cluster, we

are done. Otherwise

2nq0(1− q0) = (2nq(1− q) + ncij(1− 2q)2)(1 ± ǫ0)

≥ 2nq(1− q)(1− ǫ0) ≥ 2n(1− q)(q − ǫ0
√
q)

so both parts of the inequality are proved.

Proof of Prop 7. We have

p
(1)
i′ (x)

p
(1)
j′ (x)

=
q
D(x,T

(0)

i′
)

0 (1− q0)
n−D(x,T

(0)

i′
)

q
D(x,T

(0)

j′
)

0 (1− q0)
n−D(x,T

(0)

j′
)
= a

D(x,T
(0)

j′
)−D(x,T

(0)

i′
)
,

with a = 1−q0
q0

> 1. But from Prop. 3

D(x,T
(0)
j′ )−D(x,T

(0)
i′ ) > (2nq(1− q) + ncij(1− 2q)2)(1 − ǫ0)

− 2n(1− q)(q + ǫ0
√
q)

= −2n(q +
√
q)(1 − q)ǫ0 + ncij(1− 2q)2(1− ǫ0)

> ncij(1− 2q)2/2

since we have the following condition

c(1− 2q)2
(

1

2
− ǫ0

)

≥ 2ǫ0(1− q)(q +
√
q)
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obtained from ǫ0 ≤ E. We also have since ǫ0 < 1/4

a =
(1− q0)

2

q0(1− q0)
≥ 1/4

(1 − q)(q + ǫ0
√
q)

≥ 1

4(1− q)(q + 1/4
√
q)

=
1

4(1− q)(4q +
√
q)

So

p
(1)
i′ (x)

p
(1)
j′ (x)

≥ exp

(

n

2
cij(1 − 2q)2 ln

1

4(1− q)(4q +
√
q)

)

= exp(ncijB(1− 2q)).

Proof of Prop. 8. Without loss of generality we can assume Pi = 0.

D(T
(1)
i′ ,Pi) =

∑n
k=1

∑

x p
(1)
i′ (x)xk

∑

x p
(1)
i′ (x)

≤
∑n

k=1

∑

x∈Si
p
(1)
i′ (x)xk

∑

x p
(1)
i′ (x)

+

∑n
k=1

∑

x 6∈Si
p
(1)
i′ (x)xk

∑

x p
(1)
i′ (x)

≤
∑n

k=1

∑

x∈Si
p
(1)
i′ (x)xk

∑

x∈Si
p
(1)
i′ (x)

+

∑

j 6=i

∑

x∈Sj
p
(1)
i′ (x)D(x, 0)

∑

x p
(1)
i′ (x)

From Prop 7, for any x ∈ Sj , j 6= i we have p
(1)
i′ (x) ≤ e−ncijB(1−2q) ≤ e−ncB(1−2q).

Then
∑

x∈Si

p
(1)
i′ (x) ≥

∑

x

p
(1)
i′ (x)−

∑

j 6=i

∑

x∈Sj

p
(1)
i′ (x)

≥ mwT −me−ncB(1−2q) ≥ mwT /4 + 1

from wT = 1/4l and conditions m ≥ 8l (C2) and ncB(1− 2q) ≥ ln(16l) (C1).
From Prop. 5 there exists T ⊂ Si with |T | = ⌊mwT /4 + 1⌋ such that

D(µT , 0) ≥ D(µw, 0). From Prop 4, with probability 1− 1/n

∑n
j=1

∑

x∈Si
p
(1)
i′ (x)xj

∑

x∈Si
p
(1)
i′ (x)

≤ D(µT , 0) ≤ nq +

√

3nq

(

ln
4|Si|e
mwT

+
4

mwT
lnn

)

(A.1)

Then since 1/wT = 4l we have

∑n
j=1

∑

x∈Si
p
(1)
i′ (x)xj

∑

x∈Si
p
(1)
i′ (x)

≤ nq +

√

3nq

(

ln 16el+
16l

m
lnn

)

≤ nq +
√

6nql

(A.2)

from condition m > 16 lnn (C2) and ln 16el < l (which holds for l ≥ 9).
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For the second term, from Prop. 3 we have, for x ∈ Sj

D(x,Pi) ≤ (nq + ncij(1− 2q))(1 + ǫ0)

where since ǫ0 ≤ 0.5 we have

pi′D(x,Pi) ≤ e−ncijB(1−2q)(nq + ncij(1− 2q))(1 + ǫ0)

≤ e−ncijB(1−2q)/2 ≤ e−ncB(1−2q)/2

so
∑

j 6=i

∑

x∈Sj
p
(1)
i′ (x)D(x,Pi)

∑

x p
(1)
i′ (x)

≤ 1

mwT

∑

j 6=i

∑

x∈Sj

p
(1)
i′ (x)D(x,Pi)

≤ 1

wT
e−ncB(1−2q)/2 <

√

6nql

(A.3)

using condition ncB(1 − 2q) ≥ ln(8l/3nq) (C1). Putting together (A.2) and
(A.3) we get the result.

Proof of Prop. 9. a). From Proposition 3 and 6 we have that |Si| > mwi/2 and
at most 15lwi/8 initial centers are from Si.

Let i′ be such that T
(0)
i′ ∈ Si and x ∈ Si. For any j such that T

(0)
j 6∈ Si we

have from Prop 7 p
(1)
i′ (x)/p

(1)
j (x) ≥ encijB(1−2q) ≥ encB(1−2q). Then p

(1)
j (x) ≤

e−ncB(1−2q) and thus
∑

k,T
(1)
k

∈Si
p
(1)
k (x) ≥ 1− le−ncB(1−2q). But then

∑

k,T
(1)
k

∈Si

w
(1)
k =

∑

x∈S

∑

k,T
(1)
k

∈Si
p
(1)
k (x)

m

≥ |Si|(1− le−ncB(1−2q))

m
≥ wi

2
(1 − le−ncB(1−2q))

But |{j,T(1)
j ∈ Si}| ≤ 15lwi/8 so there is a j,T

(1)
j ∈ Si such that

w
(1)
j ≥ wi(1− le−ncB)/2

15lwi/8
=

1− le−ncB(1−2q)

15l/4

≥ 1

4l
= wT

using condition ncB(1− 2q) ≥ ln(16l) (C1), thus Ci is not empty.

b) Pick any T
(1)
i′ ∈ Ci and T

(1)
j′ ,T

(1)
j′′ ∈ Cj for i 6= j. Then from Proposition 8

we have
D(T

(1)
j′ ,T

(1)
j′′ ) ≤ 2nq + 4

√

6nql

while using Proposition 8 and the triangle inequality we get

D(T
(1)
i′ ,T

(1)
j′ ) ≥ D(Pi,Pj)− 2nq − 4

√

6nql

≥ nc− 2nq − 4
√

6nql > 2nq + 4
√

6nql

from condition c ≥ 4q + 8
√

6ql/n (C3), so we can take τ = 1
2nc.
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c) There are k true clusters, exactly as many as selected templates. If two
selected templates were from the same cluster, there should be a cluster that
has no selected templates. But the two templates from the same cluster are at
distance at most τ while the distance of a template from the unselected cluster
has distance more than τ , we get a contradiction.

Proof of Prop. 10. Using the triangle inequality, Prop. 3 and Prop. 8 we have

D(x,T
(1)
i ) ≤ D(x,Pi) +D(T

(1)
i ,Pi) ≤ n(q + ǫ0

√
q) + nq + 2

√

6nql

and

D(x,T
(1)
j ) ≥ D(x,Pj)−D(T

(1)
j ,Pj)

≥ n(q + cij(1 − 2q))(1− ǫ0)− nq − 2
√

6nql,

so

p
(2)
i (x)

p
(2)
j (x)

=
q
D(x,T

(1)
i

)
0 (1− q0)

n−D(x,T
(1)
i

)

q
D(x,T

(1)
j

)

0 (1− q0)
n−D(x,T

(1)
j

)
= aD(x,T

(1)
j

)−D(x,T
(1)
i

),

where a = 1−q0
q0

> 1, and therefore

p
(2)
i (x)

p
(2)
j (x)

≥ exp([n(q + cij(1− 2q))(1− ǫ0)− n(q + ǫ0
√
q)− −2nq − 4

√

6nql] ln a)

= exp

(

n

[

cij(1 − 2q)(1− ǫ0)− 2q − ǫ0(q +
√
q)− 4

√

6ql

n

]

ln a

)

≥ exp

(

ncij
1

4
(1− 2q) ln

1

6
√
q

)

using the condition

c(1− 2q)

(

3

4
− ǫ0

)

≥ 2q + ǫ0(q +
√
q) + 4

√

6ql

n

obtained from ǫ0 ≤ t.

Proof of Theorem 2. First we compute the probability that the theorem holds.
Proposition 3 holds with probability at least 1 − m2e−2n(1−q)ǫ20/3 −

m2e−nmin(c,0.5)ǫ20/3 − 2me−nǫ20/3 − 2me−nmin(c,0.5)ǫ20/3 − ke−mwmin/8. Proposi-
tion 6 holds with probability at least 1 − k(l + 1)e−lwmin − kelwmin/4. Propo-
sition 8 holds with probability at least 1 − 1/n for each of the k clusters. All
other propositions hold if these three propositions hold.

Thus with probability 1−m2e−2n(1−q)ǫ20/3−m2e−nmin(c,0.5)ǫ20/3−2me−nǫ20/3−
2me−nmin(c,0.5)ǫ20/3−ke−mwmin/8−k(l+1)e−lwmin −kelwmin/4−k/n all propo-
sitions hold for all clusters.

Now we prove the distance inequality. Similar to the proof of Proposition 7
we have
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D(T
(2)
i ,Pi) = D

(

∑

x p
(2)
i (x)x

∑

x p
(2)
i (x)

,Pi

)

=

∑

x p
(2)
i (x)D(x,Pi)
∑

x p
(2)
i (x)

≤
∑

x∈Si
p
(2)
i (x)D(x,Pi)

∑

x∈Si
p
(2)
i (x)

+

∑

j 6=i

∑

x∈Sj
p
(2)
i (x)D(x,Pi)

∑

x∈Si
p
(2)
i (x)

From Proposition 10 we have for x ∈ Si, p
(2)
j (x) ≤ p

(2)
i (x)e−ncB/2 ≤ e−ncB/2

so
p
(2)
i (x) = 1−

∑

j 6=i

p
(2)
j (x) ≥ 1− ke−ncB/2

So the first term is bounded as:
∑

x∈Si
p
(2)
i (x)D(x,Pi)

∑

x∈Si
p
(2)
i (x)

≤
∑

x∈Si
(1− ke−ncB/2)D(x,Pi)

|Si|(1 − ke−ncB/2)

+

∑

x∈Si
(p

(2)
i (x)− (1 − ke−ncB/2))D(x,Pi)

∑

x∈Si
p
(2)
i (x)

≤ D(mean(Si),Pi) +

∑

x∈Si
ke−ncB/2D(x,Pi)

|Si|(1 − ke−ncB/2)

≤ D(mean(Si),Pi) +
|Si|ke−ncB/2n(q + ǫ

√
q)

|Si|(1− ke−ncB/2)

≤ D(mean(Si),Pi) + 2ke−ncB/2nq

when ǫ <
√
q(1− 2ke−ncB/2).

The second term is bounded as:
∑

j 6=i

∑

x∈Sj
p
(2)
i (x)D(x,Pi)

∑

x∈Si
p
(2)
i (x)

≤ mne−ncB/2

|Si|(1− ke−ncB/2)
≤ 2nqe−ncB/4

wi(1− ke−ncB/2)
≤ 3

wi
nqe−ncB/4

when e−ncB/8 < q and ke−ncB/2 < 1/3.
From the inequality

ke−ncB/4 ≤ 1 ≤ 1

wmin

we get the result.

References

[1] Dasgupta, S. and Shulman, L. J., A Two-round variant of EM for Gaus-
sian mixtures. Proceedings of 16th Conference on Uncertainty in Artificial
Intelligence (UAI-2000), 152–159, 2000.

[2] Daugman, J. G., Complete discrete 2-D Gabor transforms by neural
networks for image analysis and compression. IEEE Trans. on Acoustics,
Speech and Signal Processing, 36, 1169–1179, 1988.



3030 A. Barbu et al.

[3] Dempster, A. P., Laird, N. M., andRubin, D. B., Maximum likelihood
from incomplete data via the EM algorithm (with discussion). Journal of
the Royal Statistical Society, B, 39, 1–38, 1977. MR0501537

[4] Fraley, C. and Raftery, A. E., Model-based clustering, discriminant
analysis, and density estimation. Journal of the American Statistical Asso-
ciation, 97, 611–631, 2002. MR1951635

[5] Goodman, L. A., Exploratory latent structure analysis using both identifi-
able and unidentifiable models. Biometrika, 61, 215–231, 1974. MR0370936

[6] Huo, X. and Donoho, D. L., Applications of beamlets to detection and
extraction of lines, curves and objects in very noisy images. Nonlinear Sig-
nal and Image Processing, 2001.

[7] Schwarz, G. E., Estimating the dimension of a model. Annals of Statis-
tics, 6, 461–464, 1978. MR0468014

[8] Si, Z., Gong, H., Zhu, S. C., and Wu, Y. N., Learning active ba-
sis models by EM-type algorithms. Statistical Science, 25, 458–475, 2010.
MR2807764

[9] Vapnik, V. N., The Nature of Statistical Learning Theory. Springer, 2000.
MR1719582

[10] Zhu, S. C. and Mumford, D. B., A stochastic grammar of images.
Foundations and Trends in Computer Graphics and Vision, 2, 259–362,
2006.

http://www.ams.org/mathscinet-getitem?mr=0501537
http://www.ams.org/mathscinet-getitem?mr=1951635
http://www.ams.org/mathscinet-getitem?mr=0370936
http://www.ams.org/mathscinet-getitem?mr=0468014
http://www.ams.org/mathscinet-getitem?mr=2807764
http://www.ams.org/mathscinet-getitem?mr=1719582

	Introduction
	Two-round EM with performance guarantee
	Model and algorithm
	Notation
	Main result
	Sketch of the proof

	Basic facts
	Key steps of the proof
	Initialization
	First round of EM
	Pruning
	Second round of EM

	Experiments
	Simulation study
	Experiments on synthetic image sketches
	Experiments on real images

	Discussion
	Acknowledgments
	Appendix: Proofs
	References

