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Gwennaëlle Mabon

CREST – ENSAE

3 avenue Pierre Larousse
92245 Malakoff, France

&
MAP5, Université Paris Descartes

45 rue des Saints-Pères
75006 Paris, France

e-mail: gwennaelle.mabon@ensae.fr

Abstract: We investigate the data driven choice of the cutoff parame-
ter in density deconvolution problems with unknown error distribution.
To make the target density identifiable, one has to assume that some ad-
ditional information on the noise is available. We consider two different
models: the framework where some additional sample of the pure noise is
available, as well as the model of repeated measurements, where the con-
taminated random variables of interest can be observed repeatedly, with
independent errors. We introduce spectral cutoff estimators and present
upper risk bounds. The focus of this work lies on the optimal choice of
the bandwidth by penalization strategies, leading to non-asymptotic oracle
bounds.

MSC 2010 subject classifications: Primary 62G07; secondary 62G99.
Keywords and phrases: Adaptive estimation, deconvolution, density es-
timation, mean squared risk, nonparametric methods, replicate observa-
tions.

Received December 2013.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2880
2 Statistical model, estimation procedure and risk bounds . . . . . . . 2882

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2882
2.2 Statistical model and estimators . . . . . . . . . . . . . . . . . 2882
2.3 Upper risk bounds . . . . . . . . . . . . . . . . . . . . . . . . . 2885

2879

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/14-EJS976
mailto:johanna.kappus@uni-rostock.de
mailto:gwennaelle.mabon@ensae.fr


2880 J. Kappus and G. Mabon

3 Data driven bandwidth selection and oracle bounds . . . . . . . . . . 2886
4 Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2888

4.1 Practical estimation procedure . . . . . . . . . . . . . . . . . . 2888
4.2 Comparison with [11] and influence of M in the NS-model . . . 2889
4.3 Illustrations in the RD-model . . . . . . . . . . . . . . . . . . . 2891
4.4 Comparison with a kernel estimator . . . . . . . . . . . . . . . 2891

5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 2893
6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2895

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2895
6.2 A technical auxiliary result . . . . . . . . . . . . . . . . . . . . 2896
6.3 Proof of the oracle bounds . . . . . . . . . . . . . . . . . . . . . 2901

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2902
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2902

1. Introduction

This paper addresses the problem of the adaptive bandwidth selection via penal-
ization in deconvolution problems with unknown error distribution. We study
in parallel two different models. In both models, we assume that the random
variables are real-valued.

Model 1. The random variable X of interest is perturbed by some additional
additive error ε, independent of X , so the empirically accessible quantity is
Y = X + ε. The distribution of the noise is assumed to be unknown. One
observes n independent copies of Y :

Yj = Xj + εj , j = 1, . . . , n. (1)

In addition it is assumed that a sample (ε−j)j=1,...,M of the pure noise, inde-
pendent of the Yj , is available.

Model 2. The noisy random variable X can be measured repeatedly, with
independent errors. The observations are then of the form,

Yj,k = Xj + εj,k, j = 1, . . . , n and k = 2. (2)

All the Xj are assumed to be independent and identically distributed and all
the εj,k are independent and identically distributed and independent of the Xj .
Again, it is assumed that the distribution of the εj,k is unknown. In addition,
the error terms are assumed to be centered.

Density deconvolution is a classical topic in nonparametric statistics and a
large amount of literature on this subject has been published since the late 80s.
Rates of convergence and their optimality have been studied, for example, in
[9, 32, 33, 21] and [20]. For the study of sharp asymptotic optimality, see [5, 7, 8].
Adaptive estimation for deconvolution problems has then been investigated by
[31], who apply wavelet techniques, by [13], who consider the adaptive band-
width selection for projection estimators and by [6] for linear functionals. We
can also cite [12] in a multivariate setting.
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However, the above mentioned papers have been working under the assump-
tion that the distribution of the errors is perfectly known, which is clearly not
realistic in most fields of application. The systematic study of deconvolution with
unknown error distribution in presence of an additional noise sample, which cor-
responds to Model 1, dates back to the late 90s. For the study of convergence
rates, see [30, 22] or [27].

The rigorous study of adaptive procedures in a deconvolution model with
unknown errors has only recently been addressed. We are aware of the work by
[11], by [23] who consider a model of circular deconvolution and by [17], who
deal with adaptive quantile estimation via Lespki’s method.

In comparison to the classical deconvolution model with known errors, the
research on the model of repeated measurements has not been so intense. For the
more general model of repeated measurements with skew error densities, rates
of convergence have been studied in [25] and recently been improved in [10].
Consistent estimation under minimal a priori assumptions is investigated in [28].
For repeated measurements with symmetric error density, we refer to [18] and
[16]. This model has various applications in economics, see, for example, [4], but
also in a medical context, see [16].

In the last mentioned paper, as well as in [18], practical strategies for the
adaptive bandwidth selection have been proposed, but a theoretical justifica-
tion is not given which is a motivation for the rigorous study presented in this
paper. Essential tools for our approach rely on considerations presented in [24].
There are also many common points with recent contributions by [17]. In com-
parison to the last mentioned authors, the main difference lies in the fact that
their approach is minimax and asymptotic whereas we are interested in non-
asymptotic oracle bounds, thus following the model selection paradigma in the
sense of [2] and [26].

Model 1 corresponds, in many respects, to the situation which has been inves-
tigated in [11]. Let us clarify the essential differences: in a deconvolution model
with estimated characteristic function of the errors, the risk bounds are deter-
mined by the sizeM of the noise sample, as well as the number n of observations
of Y . For sample sizes M ≥ n the risk bounds correspond to the model with
known error distribution. However, forM < n the bound on the risk gets worse.
The approach by [11] is tailored for the case whereM is, by a polynomial factor,
larger than n, and cannot be extended to M < n. The additional considerations
presented in the present work allow to handle the case of small noise samples.
This seems to be of some practical relevance when one turns away from the
classical measurement error model and regards, in some context of physics or
biology, ε as a signal overlying some other signal X . In such a framework, the
size of the noise sample will be determined by some extraneous influence and
the assumption that M > n may fail to hold true.

We want to emphasize another important difference between our reasoning
and the arguments given in [11], but also in [17]. The last mentioned papers
do always work under the standing assumption that the interesting density and
error density belong to certain prescribed classes of functions. More precisely,
it is assumed therein that the characteristic functions have an exponential or
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polynomial decay behavior. We are able to dispose completely of any of such
semi-parametric assumptions.

This is motivated by arguments given in [2]. From a model selection point of
view, rather than considering a family of parameter sets and aiming at building
an estimator which is simultaneously asymptotically minimax, the target is to
find the best estimator within a collection leading to non-asymptotic oracle
inequalities. It is argued in [2] that these considerations make sense without
specifying any particular family of parameter sets. From this point of view, it is
desirable to avoid, as far as possible, any a priori parametric assumptions and
provide a fully general treatment.

This paper is organized as follows. In Section 2, we fix the notation and as-
sumptions, introduce the estimators and present upper risk bounds. In Section 3,
the data driven choice of the cutoff parameter is investigated. We introduce pe-
nalized criteria and derive non asymptotic oracle bounds for the corresponding
estimators. In Section 4, we present some data examples to illustrate the prac-
tical performance of our estimator. All proofs are postponed to Section 6.

2. Statistical model, estimation procedure and risk bounds

In the present section we fix the statistical model and assumptions, introduce
the estimators and recall, for the readers convenience, the non asymptotic risk
bounds which have been presented in earlier publications on the subject. We
start by introducing some notation which will be used throughout the rest of
the text.

2.1. Notations

For two real numbers a and b, a∨ b := max(a, b) and a∧ b := min(a, b). For two
functions ϕ, ψ : R → C belonging to L1(R) ∩ L2(R), ‖ϕ‖ denotes the L2-norm
of ϕ, defined by ‖ϕ‖2 =

∫
R
|ϕ(x)|2 dx, and 〈ϕ, ψ〉 the scalar product between ϕ

and ψ, defined by 〈ϕ, ψ〉 =
∫
R
ϕ(x)ψ(x) dx. The Fourier transform ϕ∗ is defined

by

ϕ∗(x) =

∫
eixuϕ(u) du.

Besides, if ϕ∗ belongs to L1(R) ∩ L2(R), then the function ϕ is the inverse
Fourier transform of ϕ∗ and can be written ϕ(x) = 1/(2π)

∫
e−ixuϕ∗(u) du. The

convolution product ∗ is defined as (ϕ ∗ ψ)(x) =
∫
ϕ(x − u)ψ(u) du. Lastly, we

abbreviate Model 1 by ns-model, where ns stands for noise sample, and Model
2 by rd-model for replicate data.

2.2. Statistical model and estimators

In the situation of Model 1 and Model 2 defined in the introductory part, the
target is to recover the density f of X from the data. In the sequel, we limit
our considerations to the case where the number k of repeated measurements
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is equal to two. This setting easily generalizes to a higher dimensional model.
However, for sake of clarity, we omit the details.

Throughout the paper, we make the following assumptions:

(A1) X and ε have square integrable densities f and fε w.r.t. Lebesgue measure.
(A2) ∀x ∈ R, f∗

ε (x) 6= 0.
(A3) fε is symmetric around zero.

Let fY denote the density of X + ε. By independence of X and ε, fY =
f ∗ fε. Under (A2), we have the equality f∗ = f∗

Y /f
∗
ε . An estimator f̂∗

Y of
fY can be calculated from the data. If f∗

ε is known, an unbiased plug-in-

estimator of f∗ is then given by f̂∗
Y /f

∗
ε . The inverse Fourier transform is then

applied to get an estimate of f . However, since neither f̂∗
Y nor 1/f∗

ε are inte-
grable, it is necessary to apply some regularization technique, for example, a
spectral cutoff estimator. In this particular case, the estimator of f would be
1/(2π)

∫
|u|≤πm

e−iuxf̂∗
Y (u)/f

∗
ε (u) du. We can notice that this estimator corre-

sponds both to a kernel estimator built with a sinc kernel ([5]) or to a projection
type estimator as in [13].

In the present case, the error distribution is assumed to be unknown. To make
the problem identifiable, some additional information on the noise is required.
In the ns-model, we introduce the empirical characteristic function of ε,

∀u ∈ R, f̂∗
ε,ns(u) =

1

M

M∑

j=1

eiuε−j .

In the same way, f∗
Y is estimated by its empirical version

∀u ∈ R, f̂∗
Y,ns(u) =

1

n

n∑

j=1

eiuYj . (3)

Secondly the identification of f∗
ε is also possible in the model of repeated

observations. Under the symmetry assumption (A3), we have the following
equalities

∀u ∈ R, E
[
eiu(Yn+j,1−Yn+j,2)

]
= E

[
eiu(εn+j,1−εn+j,2)

]
=
∣∣E
[
eiuεn+j,1

]∣∣2

=
(
E
[
eiuεn+j,1

])2
= (f∗

ε (u))
2
. (4)

When (A3) is violated, the model is much more complicated and requires a
completely different approach since f∗

ε is not a real positive function anymore.
For further discussion, see [10]. Formula (4) suggests to define the following
unbiased estimator of (f∗

ε )
2:

∀u ∈ R, f̂∗2
ε,rd(u) =

1

n

n∑

j=1

cos (u(Yj,1 − Yj,2)) . (5)
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Moreover, an unbiased estimator of f∗
Y is given by

∀u ∈ R, f̂∗
Y,rd(u) =

1

2n

n∑

j=1

(
eiuYj,1 + eiuYj,2

)
. (6)

When considering the empirical characteristic functions, one has to be careful
about the fact that the Yj,k are not independent of each other, nor independent
of the εj,k.

Finally, one has to pay attention to the fact that small values of the empirical
characteristic function in the denominator lead to unfavorable effects and a
bad performance of the estimator. This is an immediate consequence of the
fact that a reasonable estimation of the ratio 1/f∗

ε is impossible as soon as
the denominator is smaller than the standard deviation. This phenomenon has
been investigated in [30]. This entails the necessity to consider a regularized
version of the empirical characteristic function in the denominator. [18] propose
a ridge-parameter approach. However, this requires a careful discussion of the
choice of the ridge parameter. For this reason, we prefer the completely data
driven approach proposed in [30], which has also been applied by [11] for the ns-
model and by [16] for the rd-model. This approach corresponds to the following
estimators of the ratio:

1

f̃∗
ε,ns(x)

=
1

{
|f̂∗

ε,ns(x)| ≥M−1/2
}

f̂∗
ε,ns(x)

and
1

f̃∗
ε,rd(x)

:=
1

{
f̂∗2
ε,rd(x) ≥ n−1/2

}

√
f̂∗2
ε,rd(x)

.

These definitions lead to defining the empirical versions of f∗ as follows:

f̌∗
ns(u) :=

f̂∗
Y,ns(u)

f̃∗
ε,ns(u)

and f̌∗
rd(u) :=

f̂∗
Y,rd(u)

f̃∗
ε,rd(u)

.

Finally, the objects to be estimated are characteristic functions, so the absolute
values are bounded by 1. For this reason, one should prefer the regularized
versions

f̂∗
ns(u) :=

f̌∗
ns(u)

max{
∣∣f̌∗

ns(u)
∣∣, 1}

and f̂∗
rd(u) :=

f̌∗
rd(u)

max{
∣∣f̌∗

rd(u)
∣∣, 1}

.

Given any positive, real valued m, the above considerations lead to defining the
spectral cutoff estimators of f as follows:

f̂m,ns(x) :=
1

2π

∫
e−iuxf̂∗

m,ns(u) du and f̂m,rd(x) :=
1

2π

∫
e−iuxf̂∗

m,rd(u) du,

(7)
with

f̂∗
m,ns(u) := f̂∗

ns(u)1[−πm,πm](u) and f̂∗
m,rd(u) := f̂∗

rd(u)1[−πm,πm](u).

Moreover, we use the notation

fm(x) :=
1

2π

∫
e−iuxf∗

m(u) du and f∗
m(u) := f∗(u)1[−πm,πm](u).
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2.3. Upper risk bounds

The following non-asymptotic risk bounds are valid for the estimators defined
in the preceding section.

Proposition 2.1.

(i) In presence of an additional noise sample, under (A1)–(A2), there exists a
universal positive constant C such that

E

∥∥∥f − f̂m,ns

∥∥∥
2

≤ 2 ‖f − fm‖2

+ C

(
1

n

∫ πm

−πm

1

|f∗
ε (u)|2

du+
1

M

∫ πm

−πm

|f∗(u)|2
|f∗

ε (u)|2
du

)
. (8)

(ii) In the model of repeated measurements, under (A1)–(A3), there exists a
universal positive constant C′ such that

E

∥∥∥f − f̂m,rd

∥∥∥
2

≤ 2 ‖f − fm‖2 + C′

n

∫ πm

−πm

1

|f∗
ε (u)|2

du

+
C′

n

∫ πm

−πm

|f∗(u)|2
|f∗

ε (u)|2(|f∗
ε (u)|2 ∨ n−1/2)

du. (9)

Remark 1. The first two terms on the right-hand side of Equations (8) and
(9) correspond to the usual terms when the distribution of the errors is known:
the squared bias term and a bound on the variance. The last term is due to
the estimation of f∗

ε which depends on the considered model. These bounds
have already been established in the literature on deconvolution, see [30, 18] or
[11, 16]. We can hence omit the proof.

In view of the rates of convergence, we observe the following: consider first the
ns-model. IfM ≥ n, there is no loss in the rate in comparison to a deconvolution
problem with known fε. However, a loss in the rate may occur for M < n.
More precisely, if the ratio M/n is small, in comparison to f∗/f∗

ε , the estimator
does not achieve the rates of convergence which are known to be optimal for
deconvolution with known error distribution. This is intuitive, since f can only
be identified through fε and there is no hope to estimate f with high precision
when the information on fε is not reliable. For a detailed discussion and minimax
lower bounds, we refer to [30]. Next, consider the rd-model. From Equation (9),
one derives immediately, that there is no loss in the rate, in comparison to
deconvolution with known error distribution, if the decay of f∗ outbalances the
decay of f∗

ε . If this is no longer true, the following holds: the smoother fε is,
in comparison to f , the worse are the resulting rates of convergence. It can be
shown that a loss in the rate is unavoidable in this context (Alexander Meister,
personal communication), but to the best of our knowledge, minimax lower
bounds have not been published for this particular case.
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3. Data driven bandwidth selection and oracle bounds

The goal of this section is to provide a strategy for the optimal data driven
choice of the smoothing parameter. Given a collection M of cutoff parameters,
which may vary with M and n, the bandwidth m̂ should ideally outbalance
the bias and variance term displayed in Equations (8) and (9). This trade-off is
easier to realize when the variance term is assumed to be known, which is often
the case in the literature on model selection. In a deconvolution problem with
perfectly known error distribution m̂ should mimic the oracle choice

mth = argmin
m∈M

{
−‖fm‖2 + 1

n

1

2π

∫ πm

−πm

(1− |f∗
Y (u)|2)

|f∗
ε (u)|2

du

}
.

In the present framework, the considerations are even more involved since the
characteristic function in the denominator is unknown and the variance is hence
not feasible to actually compute. Following the model selection paradigm, see
[3, 2] or [26], we select m̂ as the minimizer of a penalized criterion such that

m̂ = argmin
m∈M

{
−‖f̂m‖2 + p̂en(m)

}
.

The penalty term should be chosen large enough to annihilate the fluctuation
of f̂m around its target, for all m in the model collection M simultaneously, but
on the other hand, should ideally be as close as possible to the variance term in
order to preserve the non-asymptotic risk bounds. In a model selection problem
with known variance, the penalty term is deterministic, which is no longer the
case in the present situation.

Before introducing the stochastic penalty terms, we shall need the following
definitions: for δ > 0 and u ∈ R,

w(u) := (log(e+ |u|))− 1
2
−δ.

Moreover

kN (u) := N−1/2(logN)1/2w(u)−1, N = n,M.

The weight function w has been introduced in [29] and the considerations pre-
sented in that paper, combined with ideas given in [24] play an important role
for our arguments. Since the penalty terms will involve an empirical version of
the characteristic function in the denominator, the oracle inequalities depend
on a precise control of the deviation of f̂∗

ε from fε, simultaneously on the real
line. It is shown in [29] that the distance between both object, weighted by w,
is simultaneously small on the real axes. In the penalty terms, there will hence
occur a loss of logarithmic order, in comparison to the variance term.

Let us now introduce the stochastic penalty terms. In the ns-model,

p̂enns(m) := p̂en1,ns(m) + p̂en2,ns(m),
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:=
16

3π

∫ πm

−πm

τ2Y k
2
n(u)

|f̃∗
ε,ns(u)|2

du +
2

3π

∫ πm

−πm

τ2ε k
2
M (u)|f̂∗

Y,ns(u)|2

|f̃∗
ε,ns(u)|4

du, (10)

with τY = τε =
√
6.

In the rd-model,

p̂enrd(m) := p̂en1,rd(m) + p̂en2,rd(m),

:=
16

3π

∫ πm

−πm

τ2Y k
2
n(u)

|f̃∗
ε,rd(u)|2

du+
4

9π

∫ πm

−πm

τ2ε k
2
n(u)|f̂∗

Y,rd(u)|2

|f̃∗
ε,rd(u)|6

du, (11)

with τY as previously and τε =
√
3.

The cutoff parameters are selected as the minimizers of the following penal-
ized criteria.

m̂ns = argmin
m∈M

{
−
∥∥∥f̂m,ns

∥∥∥
2

+ p̂enns(m)

}
(12)

m̂rd = argmin
m∈M

{
−
∥∥∥f̂m,rd

∥∥∥
2

+ p̂enrd(m)

}
. (13)

Before formulating the oracle bound for the corresponding estimators, let us
introduce the deterministic counterparts of the stochastic penalty terms:

penns(m) := pen1,ns(m) + pen2,ns(m)

:=
16

3π

∫ πm

−πm

τ2Y k
2
n(u)

|f∗
ε (u)|2

du+
2

3π

∫ πm

−πm

τ2ε k
2
M (u)|f∗(u)|2
|f∗

ε (u)|4
du (14)

and

penrd(m) := pen1,rd(m) + pen2,rd(m)

:=
16

3π

∫ πm

−πm

τ2Y k
2
n(u)

|f∗
ε (u)|2

du+
4

9π

∫ πm

−πm

τ2ε k
2
n(u)|f∗(u)|2
|f∗

ε (u)|4
du. (15)

We are now ready to formulate the oracle bounds and hence the main result of
this paper:

Theorem 3.1.

(i) Let M be a collection of cutoff parameters, with maxM ≤
√
M ∧ n. Assume

that (A1) and (A2) are satisfied. Let m̂ns be defined by (12) and f̂m̂ns,ns accord-
ing to (7). Then there exists a universal positive constant Cad and a positive
constant C depending on the particular choice of τ and δ, but not on any of the
underlying distributions, such that

E‖f − f̂m̂ns,ns‖2 ≤ Cad inf
m∈M

{
‖f − fm‖2 + penns(m)

}
+

C

M ∧ n. (16)
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(ii) Let M be a collection of cutoff parameters with maxM ≤ √
n. Assume

that (A1)–(A3) are satisfied. Let m̂rd and f̂m̂rd,rd be defined according to (13)
and (7). Then there is a universal positive constant Cad and a positive constant
C depending on the choice of γ and δ, but not on the underlying distributions,
such that

E‖f − f̂m̂rd,rd‖2 ≤ Cad inf
m∈M

{
‖f − fm‖2 + penrd(m)

}
+
C

n
. (17)

Remark 2. It is remarkable that we are able to establish non-parametric ora-
cle bounds which make sense without specifying any particular semi-parametric
model. Related problems are frequently discussed under specific a priori as-
sumptions on the decay behavior of f∗ and f∗

ε , see for example [13] or [11]. In
the present work, we can completely dispose of any such assumptions, so our
approach is as general as possible.

Another interesting point about our considerations is the following: the only
assumption imposed on the collection M of cutoff parameters is some upper
bound on the largest index. No further specification is necessary and we may
work with an arbitrarily fine grid, allowing good approximation properties. This
is a consequence of the fact that our proofs rely on one sole application of the
Talagrand inequality. Additional applications of the Bernstein inequality and
sums over M are not required.

Finally, it is worth emphasizing that, to the best of our knowledge, the non-
asymptotic oracle bounds for the rd-model are completely new and the same is
true for the bounds in the ns model with M < n.

We have considered the problem from a non-asymptotic perspective, but The-
orem 3.1 entails, from the asymptotic and minimax point of view, the following
observation: in those cases where minimax rates of convergence are known, the
procedure achieves, up to a logarithmic loss, automatic adaptation over pre-
scribed non-parametric function classes, typically Sobolev-spaces or classes of
super-smooth functions.

4. Illustrations

4.1. Practical estimation procedure

Let us describe first the adaptive procedures as it is implemented for the both
models:

⊲ For m ∈ M = {m1, . . . ,mn}, compute −‖f̂m‖2 + p̂en(m).

⊲ Choose m̂ such as m̂ = argminm∈M{−‖f̂m‖2 + p̂en(m)}.
⊲ Compute f̂m̂(x) = 1

2π

∫ πm̂

−πm̂ e−ixu f̂∗

Y (u)

f̃∗

ε (u)
du.

As often in model selection methods, the values of the constants in the penalty,
here denoted by τY and τε, which are obtained from the theory are too large
in practice. Therefore a calibration step is required and done: for a small set of
densities and different sample sizes the mean integrated squared error (MISE) is
computed in order to determine admissible range for the values of the constants
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(see [1] for a description of this step). Finally, the penalties are chosen according
to Equations (10) and (11) with τY replaced by 0.6 and τε by 0.3 for the ns-
model and rd-model. Besides we consider the model collection M = {m =
k/10, 1 ≤ k ≤ 25}. In practice, one can take k in a much larger set and propose
larger values for m; the first selected value can be followed by another run of
the estimation algorithm with a thinner grid of proposals around the selected
value. We limited the set here because the proposed values seemed adequate
and allowed less time-consuming repeated experiments.

In the sequel we also use the notations r̂or and r̂ad define as follows

r̂or = min
m∈M

Ê‖f − f̂m‖2 and r̂ad = Ê‖f − f̂m̂‖2,

where Ê is the approximation of theoretical expectation computed via Monte-
Carlo repetitions.

The whole implementation is conducted using R software. The integrated
squared error (ISE) ‖f − f̂m̂‖2 is computed via a standard approximation and
discretization (over 300 points) of the integral on an interval of R denoted by I.

Then the MISE E‖f − f̂m̂‖2 is computed as the empirical mean of the approxi-
mated ISE over 500 simulation samples.

4.2. Comparison with [11] and influence of M in the NS-model

We compute different estimators of the signal for different values of M and
consider different signal densities and two noises. Following [13], we study the
following densities on the interval I:

⊲ Laplace distribution, f(x) = e−
√
2|x|/

√
2, I = [−5, 5].

⊲ Mixed Gamma distribution: X = W/
√
5.48, with W ∼ 0.4Γ(5, 1) +

0.6Γ(13, 1), I = [−1.5, 26].
⊲ Cauchy distribution: f(x) = (π(1 + x2))−1, I = [−10, 10].
⊲ Standard Gaussian distribution, I = [−4, 4].

All the densities are normalized with unit variance except the Cauchy density.

We consider the two following noise densities with same variance 1/10.

⊲ Gaussian noise: fε(x) =
1

σε

√
2π

exp(− x2

2σ2
ε
), f∗

ε (x) = exp(−σ2
εx

2

2 ).

⊲ Laplace noise: fε(x) =
1

2σε
exp(− |x|

σε
), f∗

ε (x) =
1

1+σ2
εx

2 .

We want to study the influence of the relationship of n and M on the esti-
mation of f in the ns-model. We then consider different values of n and values
of M =

√
n and M = n.

Results. The results of the simulations are given in Table 1. Table 1 illustrates
the case where we can recover a preliminary sample of the noise ε (our so-called
ns-model). First we see that the risk decreases when the sample size increases.
Likewise the risk increases when the variance increases. Secondly the results are
very close to those of [11]. Nevertheless our procedure is equivalent or better.
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Table 1

Values of approximated MISE E(‖f − f̂m̂ns,ns‖2)× 100 averaged over 500 samples with a

Laplace and Gaussian noise of variance 1/10, r̂ad is the risk of the adaptive estimator, r̂or

is the risk of the oracle estimator, M is the size of the noise and n is the size of the Yi’s

n = 100 n = 250 n = 500
f fε Lap. Gaus. Lap. Gaus. Lap. Gaus.

Laplace M = ⌊√n⌋ r̂ad 2.779 2.714 1.790 1.933 1.304 1.403
r̂or (2.223) (1.370) (1.342) (0.828) (0.988) (0.544)

M = n r̂ad 2.606 2.620 1.543 1.626 1.136 1.339
r̂or (1.848) (1.357) (1.107) (0.786) (0.796) (0.539)

Mixed M = ⌊√n⌋ r̂ad 0.787 0.777 0.377 0.385 0.247 0.247
Gamma r̂or (0.671) (0.710) (0.331) (0.337) (0.205) (0.209)

M = n r̂ad 0.751 0.725 0.360 0.365 0.232 0.234
r̂or (0.642) (0.682) (0.325) (0.319) (0.194) (0.197)

Cauchy M = ⌊√n⌋ r̂ad 0.891 0.888 0.433 0.465 0.311 0.325
r̂or (0.721) (0.731) (0.386) (0.418) (0.361) (0.275)

M = n r̂ad 0.817 0.806 0.402 0.416 0.285 0.301
r̂or (0.687) (0.687) (0.361) (0.379) (0.232) (0.254)

Gaussian M = ⌊√n⌋ r̂ad 0.774 0.777 0.450 0.446 0.275 0.303
r̂or (0.657) (0.655) (0.388) (0.415) (0.190) (0.211)

M = n r̂ad 0.666 0.644 0.406 0.392 0.247 0.272
r̂or (0.512) (0.540) (0.345) (0.325) (0.127) (0.126)

The main improvement is that our procedure has better performances when the
size of the preliminary sample is small. Moreover we show that the procedure
does not need big M since we reach the same performances as [11] for M = n
when they take M = n2. Indeed if we consider the mixed Gamma distribution
for n =M = 500, our risk is 0.232 with a Laplace noise, while [11] with M = n2

have 0.382. We can make the same remarks for the other distributions (except
for the Laplace distribution) with a sample size 100 or 250 and with the two
noise distributions. For the Laplace distribution, the results of [11] are better
but they do not outperform ours. Nonetheless, in our model, the risk decreases
more rapidly when M and n increase.

Effect of the variance

We also test how our procedure behaves when the variance is increased. In
Table 2, we present the results of simulations where the variance takes the values
1/4, 1/2 and 1. We only report the case of a Gaussian error distribution since the
results of the Laplace error are very similar. Moreover a Gaussian distribution
is a case less favorable. Indeed its Fourier transform decays exponentially and
it is known to imply possibly slower asymptotic rates. Thus it is more difficult
to recover the target density f .

Results. The results are reported in Table 2. As before the risk decreases when
n andM increase. Similarly when we increase the contamination of the variable
of interest by increasing the variance of the error distribution, the risk increases.
The procedure performs still well since the adaptive risk is close to the oracle
risk around twice bigger.



Adaptive density estimation in deconvolution problems 2891

Table 2

Values of approximated MISE E(‖f − f̂m̂ns,ns‖2) × 100 averaged over 500 samples with a

Gaussian noise, r̂ad is the risk of the adaptive estimator, r̂or is the risk of the oracle
estimator, M is the size of the noise and n is the size of the Yi’s

σ2
ε = 1/4

f M n 100 250 500

Mixed ⌊√n⌋ r̂ad 1.767 0.889 0.471
Gamma r̂or (0.808) (0.473) (0.299)

n r̂ad 1.231 0.620 0.387
r̂or (0.791) (0.439) (0.265)

Gaussian ⌊√n⌋ r̂ad 1.663 0.920 0.543
r̂or (0.913) (0.531) (0.397)

n r̂ad 1.245 0.669 0.522
r̂or (0.578) (0.280) (0.180)

σ2
ε = 1/2

Mixed ⌊√n⌋ r̂ad 2.170 1.229 0.673
Gamma r̂or (0.940) (0.652) (0.456)

Gaussian ⌊√n⌋ r̂ad 1.951 1.185 0.867
r̂or (1.489) (0.988) (0.747)

n r̂ad 1.884 1.053 0.690

σ2
ε = 1

Mixed ⌊√n⌋ r̂ad 2.798 1.973 1.232
Gamma r̂or (1.042) (0.865) (0.692)

n r̂ad 1.594 1.135 0.951
r̂or (0.979) (0.776) (0.585)

Gaussian ⌊√n⌋ r̂ad 3.163 2.139 1.898
r̂or (2.621) (1.988) (1.542)

n r̂ad 2.458 1.432 0.982
r̂or (1.400) (0.848) (0.613)

4.3. Illustrations in the RD-model

For this model, we use the same signal and error distributions as described in 4.2.
We consider different values of n: 200 and 2000, with variance 1/10 and 1/2.

Results. The results are reported in Table 3. We note that the values of the
MISE are very close for both error distributions. Moreover the adaptive risk
is also close to the oracle risk. It is multiplied by approximately 1.5 when the
variance of the error distribution is 1/10 and 2 when the variance equals 1/2.
Again the risk decreases when n and M increase. And the risk increases when
the variance increases.

4.4. Comparison with a kernel estimator

Recently, some papers as [14] have investigated the necessity of inversion in
statistical inverse problem. The idea is to compare the performances of a simple
kernel estimator directly applied to the data Yi with the adaptive estimator
of the ns-model. This model allows us to choose a non symmetric noise which
makes the estimation with a kernel estimator more difficult. That is why we
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Table 3

Values of approximated MISE E(‖f − f̂m̂rd,rd‖2) × 100 averaged over 500 samples, r̂ad is
the risk of the adaptive estimator, r̂or is the risk of the oracle estimator, M is the size of

the noise and n is the size of the Yi’s

σ2
ε = 1/10

n = 200 n = 2000
f fε Lap. Gaus. Lap. Gaus.

Laplace r̂ad 1.706 1.683 0.655 0.725
r̂or (1.163) (1.216) (0.369) (0.438)

Mixed r̂ad 0.558 0.548 0.075 0.076
Gamma r̂or (0.381) (0.391) (0.061) (0.060)

Cauchy r̂ad 0.535 0.595 0.127 0.127
r̂or (0.358) (0.377) (0.068) (0.069)

Gaussian r̂ad 0.338 0.335 0.045 0.050
r̂or (0.231) (0.235) (0.034) (0.035)

σ2
ε = 1/2

Laplace r̂ad 3.901 3.539 1.938 2.007
r̂or (2.904) (2.710) (1.234) (1.536)

Mixed r̂ad 0.857 0.799 0.248 0.226
Gamma r̂or (0.583) (0.550) (0.144) (0.133)

Cauchy r̂ad 1.172 1.027 0.312 0.242
r̂or (0.599) (0.617) (0.181) (0.174)

Gaussian r̂ad 0.703 0.586 0168 0.155
r̂or (0.441) (0.399) (0.092) (0.076)

compare our estimator with a kernel in two contexts: one with a symmetric
noise and another one with an asymmetric noise.

First, for the symmetric noise, we take the results of Table 2 with variance
1/2 for a Gaussian noise with M = n and compute the kernel estimator for this
design.

Secondly we compute the estimator of the signal in the ns-model with M =
⌊√n⌋ with an asymmetric noise. We consider two densities defined in the be-
ginning of this section: mixed Gamma and Gaussian. We choose the error dis-
tribution as follows

⊲ Gamma noise: fε(x) = xα−1 βαe−βx

Γ(α) 1x≥0

with parameters α = 1 and β = 2. The variance of the error distribution is then
1/4. For the kernel estimator, we use the function density of R with a Gaussian
kernel where the bandwidth is selected by cross-validation.

Results. The results are reported in Tables 4 and 5. In Table 4, we see that
the results are very close. For the mixed Gamma of the kernel the results are
a little bit better but the risk of our estimator decreases more rapidly. For the
Gaussian distribution our results are better and the risk decreases also more
rapidly when the sample size increases.

For the non symmetric noise the results are reported in Table 5. We see that
for the mixed Gamma, the kernel estimator performs unexpectedly well. For n =
100, the risks are practically the same as those of the adaptive estimator. When
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Table 4

Comparison of the method with the results of a Gaussian kernel estimator with a symmetric
noise (MISE×100 averaged over 500 simulations), r̂ker is the risk of the kernel estimator,
r̂ad is the risk of the adaptive estimator, r̂or is the risk of the oracle estimator, M is the

size of the noise and n is the size of the Yi’s

f n = 100 n = 250 n = 500

Mixed r̂ker 0.849 0.648 0.526
Gamma M = n r̂ad 1.483 0.835 0.554

r̂or (0.895) (0.581) (0.386)

Gaussian r̂ker 1.673 1.333 1.145
M = n r̂ad 1.884 1.053 0.690

r̂or (0.832) (0.444) (0.292)

Table 5

Comparison of the method with the results of a Gaussian kernel estimator with an
asymmetric noise (MISE×100 averaged over 500 simulations), r̂ker is the risk of the kernel
estimator, r̂ad is the risk of the adaptive estimator, r̂or is the risk of the oracle estimator,

M is the size of the noise and n is the size of the Yi’s

f n = 100 n = 250 n = 500

Mixed r̂ker 1.086 0.881 0.785
Gamma M = ⌊√n⌋ r̂ad 1.063 0.573 0.332

r̂or (0.714) (0.428) (0.258)

Gaussian r̂ker 3.181 3.052 2.807
M = ⌊√n⌋ r̂ad 1.364 0.677 0.449

r̂or (0.844) (0.449) (0.329)

n increases the adaptive estimator performs better but the kernel estimator still
gives satisfying results.

On the other hand, the results of the Gaussian distribution illustrate well
the importance of inversion in statistical inverse problem. Indeed the risk with
a kernel estimator is around 3.10−2 for the diverse values of n while for the
adaptive estimator the risk is divided by 3. More precisely for n = 100 the risk of
the kernel estimator is multiplied by 2 compared to the adaptive estimator, by 5
for n = 250 and by 7 for n = 500. So when the error distribution is unknown and
the signal to noise ratio (named s2n) is not too large, our procedure is worthy of
interest. When the s2n gets larger, we only expect the deconvolution procedure
not to deteriorate the results compared to direct estimation. It has been checked
to be true for known noise density by [14] see section 4.7 and 4.9. As in practice
the value of the s2n is unknown, our procedure is always recommended.

Figures 1 and 2 illustrate the estimation of a mixed Gamma using both
penalized estimators in the cases for n = M = 200 and n = M = 500. The
estimation is made with additional Gaussian and Laplace noises with a variance
of 1/10. The bimodal specificity of the density is well described. Moreover the
precision increases with the sample size.

5. Concluding remarks

This paper deals with adaptive deconvolution estimation of a density when the
noise density is unknown. We have considered two cases: one where a preliminary
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(a) Laplace noise (b) Gaussian noise

Fig 1. Estimations for n = M = 200 of a mixed Gamma (bold black line), in blue dashed line
for the ns estimator and in red longdashed for the rd estimator.

(a) Laplace noise (b) Gaussian noise

Fig 2. Estimations for n = M = 500 of a mixed Gamma (bold black line), in blue dashed line
for the ns estimator and in red longdashed for the rd estimator.

sample of the noise can be observed and another one where the variable of
interestX can be observed repeatedly with independent errors. For both models,
we have proposed a theoretical adaptive procedure which automatically makes a
data driven bias-variance compromise. Moreover it allows us to not specify rates
of convergence since they are mechanically reached. This procedure enables us
to treat the problem of adaptive estimation in repeated observation model which
is completely new. The estimation procedure relies on the independence of the
estimators of the characteristic functions of f∗

Y and f∗
ε . Its advantage is to be

very general under weak assumptions. Indeed, that procedure takes into account
cases where there can be small number of replications which matches realistic
applications as in medicine or economics. Besides of its theoretical properties,
our procedure has showed good performances in simulation.

At last we think that our procedure can be extended to density estimation of
a random effect in linear mixed-effects model. Indeed we are aware of the work
of [15] who proposed an adaptive procedure based on deconvolution methods
in the unknown-error case which is not optimal and [19] who used a Lepski’s
method in the known-error case. In that model, the noise can also be recovered
by successive difference similarly to the repeated model but the characteristic
function of the noise would be raised to a greater power. We may then propose
in the same spirit an adaptive procedure for the random effect in linear mixed-
effects model.
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6. Proofs

6.1. Preliminaries

We start by restating, for the reader’s convenience, the following version of
Talagrand’s inequality:

Lemma 6.1. Let I be some countable index set. For each i ∈ I, let Z
(i)
1 , . . . , Z

(i)
n

be independent and identically distributed random variables with values in [−1, 1],

defined on the same probability space. Let v2 := supi∈I Var[Z
(i)
1 ] and S

(i)
n :=

1/n
∑n

j=1 Z
(i)
j . Then there are universal positive constants c1 and c2 such that

for any κ > 0,

P

[{
sup
i∈I

|S(i)
n | ≤ 3

2
E

[
sup
i∈I

|S(i)
n |
]
+ κ

}]
≤ 2 exp

(
−
(

nκ2

c1v2 + c2κ

))
.

A proof of this result is given in [26], see page 170. It follows from the argu-
ments presented therein that for any r, s > 0 with 1

s +
1
r = 1, the constants can

be chosen c1 = 2s2 and c2 = 6r.

The following result will be essential for the theoretical justification of the
adaptive procedure. The proof was given in [24]. It uses a fundamental Lemma
shown in [29], combined with Lemma 6.1.

Lemma 6.2. Let Z1, . . . , Zn be i.i.d. random variables. Assume that E|Z1| ≤
mZ for some mZ > 0. Let f̂∗

Z denote the empirical characteristic function. For
some δ > 0, let

w(u) = (log(e+ |u|))−1/2−δ.

Assume that τ > 2
√
p. Then there exists a positive constant C depending on

mZ and the choice of γ and δ such that for arbitrary n ∈ N:

P

[
∃u ∈ R : |f̃∗

Z(u)− f∗
Z(u)| > τ (log(n))

1/2
w(u)−1n−1/2

]
≤ Cn−p. (18)

Remark 3. In the situation of the preceding Lemma: if the Zj are assumed
to have a symmetric distribution and the empirical characteristic function is
defined to be f̂∗

Z(u) = 1/n
∑n

j=1 cos(uZj), it is enough to assume τ >
√
2p to

obtain (18).

The next result has been formulated and proved in [30].

Lemma 6.3. Let Z1, . . . , Zn be i.i.d. random variables. Let f∗
Z be the true and

f̂∗
Z the empirical characteristic function. Moreover let 1/f̃∗

Z(u) = 1{|f̂∗
Z(u)| ≥

n−1/2}/f̂∗
Z(u). Then for arbitrary p ∈ N, there exists a positive constant C

depending only on p such that

E

[∣∣∣∣∣
1

f̃∗
Z(u)

− 1

f∗
Z(u)

∣∣∣∣∣

p]
≤ C

(
1

|f∗
Z(u)|p

∧ n− p
2

|f∗
Z(u)|2p

)
. (19)
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Remark 4. In the preceding lemma, one should keep in mind that in the rd-
model, Yj,1 − Yj,2 = εj,1 − εj,2 plays the role of Zj.

Lemma 6.3 yields the following useful corollary, which allows to compare the
stochastic penalty terms to their deterministic counterparts.

Corollary 6.4. Let the penalty terms be defined according to Equations (10)
and (11). Then for some C > 0,

E [p̂enns(m)] ≤ Cpenns(m) and E [p̂enrd(m)] ≤ Cpenrd(m).

Proof. It is enough to consider p̂enrd. Equation (19) gives immediately for some
C > 0,

E

[∫ πm

−πm

τ2Y k
2
n(u)

|f̃∗
ε,rd(u)|2

du

]
≤ C

∫ πm

−πm

τ2Y k
2
n(u)

|f∗
ε (u)|2

du.

The Cauchy-Schwarz inequality and the estimate 1/|f̃∗
ε,rd(u)|2 ≤ n1/2 imply

E

[∫ πm

−πm

|f̂∗
Y,rd(u)|2

τ2ε k
2
n(u)

|f̃∗
ε,rd(u)|6

du

]

≤ 2

∫ πm

−πm

E1/2

[∣∣∣f̂∗
Y,rd(u)− f∗

Y,rd(u)
∣∣∣
4
]
E1/2


 τ2ε k

2
n(u)∣∣∣f̃∗

ε,rd(u)
∣∣∣
12


 du

+ 2

∫ πm

−πm

E

[
τ2ε k

2
n(u) |f∗

Y (u)|
2

|f̃∗
ε,rd(u)|6

]
du

≤ 2

∫ πm

−πm

τ2ε k
2
n(u)

|f∗
ε (u)|2

du+ 2

∫ πm

−πm

τ2ε k
2
n(u)|f∗(u)|2

|f∗
ε (u)|2

(
|f∗

ε (u)|2 ∨ n−1/2
) du.

This completes the proof for the rd-model. The arguments for the ns-model are
the same, line for line, so we omit the details. The only difference lies in the fact
that, in the definition of f̂∗

ε,ns and f̃
∗
ε,ns, M plays now the role of n as defined in

Lemma 6.3.

6.2. A technical auxiliary result

In the sequel, for arbitrary k > m, we use the notation

p̂enns(m, k) := p̂enns(k)−p̂enns(m) and p̂enrd(m, k) := p̂enrd(k)−p̂enrd(m),

as well as

p̂enℓ,ns(m, k) := p̂enℓ,ns(k)− p̂enℓ,ns(m)

p̂enℓ,rd(m, k) := p̂enℓ,rd(k)− p̂enℓ,rd(m), ℓ = 1, 2.

Moreover,
A(m, k) := {u ∈ R : m ≤ |u| ≤ k}.
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The proof of Theorem 3.1 relies on the following auxiliary result which is, in
turn, a consequence of Lemma 6.2.

Proposition 6.5.
(i) In the model of repeated measurements, there exists an universal positive con-
stant C such that

E


 sup

k≥m
k,m∈M

{∥∥∥f̂k,rd − f̂m,rd

∥∥∥
2

− 6 ‖fk − fm‖2 − 3

4
p̂enrd(m, k)

}

+


 ≤ C

n
.

(ii) If an additional sample of the pure noise is available, for some universal
positive constant C,

E


 sup

k≥m
k,m∈M

{∥∥∥f̂k,ns − f̂m,ns

∥∥∥
2

− 6 ‖fk − fm‖2 − 3

4
p̂enns(m, k)

}

+


 ≤ C

n ∧M .

Proof.
(i) Let us introduce the favorable events

EY,rd :=
{
∀u ∈ R : |f̂∗

Y,rd(u)− f∗
Y (u)| ≤ τY kn(u)

}
.

Eε,rd :=
{
∀u ∈ R : |f̂∗2

ε,rd(u)− f∗2
ε (u)| ≤ τεkn(u)

}
.

Applying Parseval’s equality we can estimate

‖f̂k,rd − f̂m,rd‖2 =
1

2π
‖f̂∗

k,rd − f̂∗
m,rd‖2 =

1

2π

∫

A(m,k)

|f̂∗
Y,rd(u)|2

|f̃∗
ε,rd(u)|2

du

≤ 1

π

∫

A(m,k)

|f̂∗
Y,rd(u)− f∗

Y (u)|2

|f̃∗
ε,rd(u)|2

du+
1

π

∫

A(m,k)

|f∗
Y (u)|2

|f̃∗
ε,rd(u)|2

du.

(20)

We start by dealing with the first summand appearing in the last line of (20).
The definition of EY,rd and the fact that

1

π

∫

A(m,k)

τ2Y k
2
n(u)

|f̃∗
ε,rd(u)|2

du ≤ 3

8
p̂en1,rd(m, k)

immediately imply the following inequality

sup
k≥m

k,m∈M

{
1

π

∫

A(m,k)

|f̂∗
Y,rd(u)− f∗

Y (u)|2

|f̃∗
ε,rd(u)|2

du− 3

8
p̂en1,rd(m, k))

}

+

1EY,rd

≤ sup
k≥m

k,m∈M

{
1

π

∫

A(m,k)

τ2Y k
2
n(u)

|f̃∗
ε,rd(u)|2

du− 3

8
p̂en1,rd(m, k)

}

+

1EY,rd
= 0.
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Consider now the second summand in the last line of (20). Recall that f∗
ε

and f̂∗2
ε,rd are real valued and (formally, with c/∞ := 0),

|f̃ε,rd(u)|2 =

{
f̂∗2
ε,rd(u), if f̂∗2

ε,rd(u) ≥ n−1/2

∞, else.

This entails the series of inequalities

1

π

∫

A(m,k)

|f∗
Y (u)|2

|f̃∗
ε,rd(u)|2

du− 6‖fk − fm‖2

=
1

π

∫

A(m,k)

|f∗
Y (u)|2

|f̃∗
ε,rd(u)|2

du − 3

π
‖f∗

k − f∗
m‖2

=
1

π

∫

A(m,k)

|f∗
Y (u)|2

(
1

|f̃∗
ε,rd(u)|2

− 3

|f∗
ε (u)|2

)
du

≤ 1

π

∫

A(m,k)

|f∗
Y (u)|2

(
1

|f̃∗
ε,rd(u)|2

− 3

|f∗
ε (u)|2

)
1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} du

≤ 2

3π

∫

A(m,k)

|f̂∗
Y,rd(u)|2

f∗2
ε (u)− 3f̂∗2

ε,rd(u)

|f̃∗
ε,rd(u)|4

1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} du

+
2

π

∫

A(m,k)

|f∗
Y (u)− f̂∗

Y,rd(u)|2
f∗2
ε (u)− 3f̂∗2

ε,rd(u)

|f̃∗
ε,rd(u)|2|f∗

ε (u)|2
1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} du.

(21)

For the expression appearing in the last line of formula (21), we observe that

2

π

∫

A(m,k)

|f∗
Y (u)− f̂∗

Y,rd(u)|2
f∗2
ε (u)− 3f̂∗2

ε,rd(u)

|f̃∗
ε,rd(u)|2|f∗

ε (u)|2
1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} du

≤ 2

π

∫

A(m,k)

|f∗
Y (u)− f̂∗

Y,rd(u)|2
∣∣f∗

ε (u)
∣∣2

|f̃∗
ε,rd(u)|2|f∗

ε (u)|2
1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} du

=
2

π

∫

A(m,k)

|f∗
Y (u)− f̂∗

Y,rd(u)|2

|f̃∗
ε,rd(u)|2

du.

The definition of p̂en1,rd and EY,rd readily imply that

sup
k≥m

k,m∈M

{
2

π

∫

A(m,k)

|f∗
Y (u)− f̂∗

Y,rd(u)|2

|f̃∗
ε,rd(u)|2

du− 3

8
p̂en1,rd(m, k)

}

+

1EY,rd
= 0.

Consider now the second to last line in Equation (21). We observe that

3|f̃∗
ε,rd(u)|2 ≤ |f∗

ε (u)|2 implies |f̃∗
ε,rd(u)|2 = f̂∗2

ε,rd(u) ≤ (1/2)|f∗
ε (u)

2 − f̂∗2
ε,rd(u)|.
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From this, we derive that

f∗
ε (u)− 3f̂∗2

ε,rd(u)

|f̃∗
ε,rd(u)|4

1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} ≤ 1

2

∣∣f∗
ε (u)

2 − f̃∗
ε,rd(u)

2|2

|f̃∗
ε,rd(u)|6

.

Using this and the definition of Eε,rd and p̂en2,rd, we arrive at

sup
k≥m

k,m∈M

{∫

A(m,k)

|f̂∗
Y,rd(u)|2|f∗

ε (u)
2 − f̃∗

ε,rd(u)
2|

3/2π|f̃∗
ε,rd(u)|4

1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} du

−3

4
p̂en2,rd(m, k)

}

+

1Eε,rd

≤ sup
k≥m

k,m∈M

{∫

A(m,k)

|f̂∗
Y,rd(u)|2

|f∗
ε (u)

2 − f̃∗
ε,rd(u)

2|2

3π|f̃∗
ε,rd(u)|6

du− 3

4
p̂en2,rd(m, k)

}

+

1Eε,rd

≤ sup
k≥m

k,m∈M

{∫

A(m,k)

|f̂∗
Y,rd(u)|2

τ2ε k
2
n(u)

3π
∣∣f̃∗

ε,rd(u)|6
du− 3

4
p̂en2,rd(m, k)

}

+

1Eε,rd
= 0.

Putting the above together, we have shown

E


 sup

k≥m
k,m∈M

{
‖f̂k,rd − f̂m,rd‖2 − 6‖fk − fm‖2 − 3

4
p̂enrd(m, k)

}

+

1EY,rd∩Eε,rd


= 0.

There remains to consider the exceptional set Ec
Y,rd ∪ Ec

ε,rd. Using the fact

that for arbitrary m, the absolute value of f̂∗
m,rd is, by definition, bounded by

1, as well as the fact that maxM ≤ √
n, we can estimate

E


 sup

k≥m
k,m∈M

{
‖f̂∗

k,rd − f̂∗
m,rd‖2 − 6‖f∗

k − f∗
m‖2 − 3

4
p̂enrd(m, k)

}

+

1(Eε,rd∩EY,rd)c




≤ E


 sup

k≥m
k,m∈M

‖f̂∗
k,rd − f̂∗

m,rd‖21(Eε,rd∩EY,rd)c




≤
√
nP ((Eε,rd ∩ EY,rd)c) ≤

√
n
(
P
(
Ec
Y,rd

)
+ P

(
Ec
ε,rd

))
.

Thanks to Lemma 6.2, it holds that

√
n
(
P
(
Ec
Y,rd

)
+ P

(
Ec
ε,rd

))
≤ C

n
. (22)

This completes the proof of part (i).
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(ii) The proof of the second part uses essentially the same arguments as the
proof of the first part, so we content ourselves with sketching the important
steps.

EY,ns :=
{
∀u ∈ R : |f̂∗

Y,ns(u)− f∗
Y (u)| ≤ τY kn(u)

}

Eε,ns :=
{
∀u ∈ R : |f̂∗

ε,ns(u)− f∗
ε (u)| ≤ τεkM (u)

}
.

In analogy with (20) and (21), we find that

‖f̂∗
k,ns − f̂∗

m,ns‖2 − 6‖f∗
k − f∗

m‖2

≤ 2

π

∫

A(m,k)

|f̂∗
Y,ns(u)− f∗

Y (u)|2

|f̃∗
ε,ns(u)|2

du

+
1

3π

∫

A(m,k)

|f̂∗
Y,rd(u)|2

|f∗
ε (u)|2 − 3|f̂∗

ε,ns(u)|2

|f̃∗
ε,ns(u)|4

du.

Again, on EY,ns,

sup
k≥m

k,m∈M

{
2

π

∫

A(m,k)

|f̂∗
Y,ns(u)− f∗

Y (u)|2

|f̃∗
ε,ns(u)|2

du− 3

4
p̂en1,ns(m, k)

}

+

= 0.

Using the fact that for a > 0, x, y ∈ C, |x + y|2 ≤ (1 + a)|x|2 + (1 + 1/a)|y|2
holds, we find that

1

3π

∫

A(m,k)

|f̂∗
Y,rd(u)|2

|f∗
ε (u)|2 − 3|f̂∗

ε,ns(u)|2

|f̃∗
ε,ns(u)|4

du

≤ 1

2π

∫

A(m,k)

|f̂∗
Y,rd(u)|2

|f∗
ε (u)− f̂∗

ε,ns(u)|2

|f̃∗
ε,ns(u)|4

du.

Consequently, on Eε,ns,

sup
k≥m

k,m∈M

{
1

3π

∫

A(m,k)

|f̂∗
Y,rd(u)|2

|f∗
ε (u)|2 − 3|f̂∗

ε,ns(u)|2

|f̃∗
ε,ns(u)|4

du− 3

4
p̂en2,ns(m, k)

}

+

≤ sup
k≥m

k,m∈M

{
1

2π

∫

A(m,k)

|f̂∗
Y,rd(u)|2

τ2ε k
2
M (u)

|f̃∗
ε,ns(u)|4

du − 3

4
p̂en2,ns(m, k)

}

+

= 0.

Finally, we find that

P
[
Ec
Y,ns ∪ Ec

ε,ns

]
≤ C(n−3/2 +M−3/2),

leading to the desired bound on the complement set.
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6.3. Proof of the oracle bounds

Proposition 6.5 was the essential technical step towards proving the oracle
bounds. It shows how the penalty terms control the fluctuation of ‖f̂∗

m‖2 around
its target, be it in the model of repeated measurements or in the deconvolution
model with additional noise sample. Once this result is fixed, the considera-
tions for both models run exactly along the same line. For this reason, we may
henceforth drop all subscripts relative to one particular model.

Proof of Theorem 3.1

We denote by m⋆ the oracle cutoff,

m⋆ = argmin
m∈M

{
−‖f̂m‖2 + pen(m)

}
.

We have
‖f − f̂m̂‖2 ≤ 2‖f − f̂m⋆‖2 + 2‖f̂m⋆ − f̂m̂‖2. (23)

Taking expectation and applying Proposition 2.1 gives for the first summand
on the right hand side

E

[
‖f − f̂m⋆‖2

]
≤ 2‖f − fm⋆‖2 + pen(m⋆),

since the variance term is a fortiori bounded from above by the penalty term. So
there remains to consider the second summand on the right hand side of (23).

• Consider first the set G = {m̂ ≤ m⋆}. Let us notice that on G
∥∥∥f̂m⋆ − f̂m̂

∥∥∥
2

1G =

(∥∥∥f̂m⋆

∥∥∥
2

−
∥∥∥f̂m̂

∥∥∥
2
)
1G .

Besides according to the definition of m̂, one has the following inequality:

−
∥∥∥f̂m̂

∥∥∥
2

+ p̂en(m̂) ≤ −
∥∥∥f̂m⋆

∥∥∥
2

+ p̂en(m⋆), (24)

which implies

−
∥∥∥f̂m̂

∥∥∥
2

≤ −
∥∥∥f̂m⋆

∥∥∥
2

+ p̂en(m⋆).

Thus ∥∥∥f̂m⋆ − f̂m̂

∥∥∥
2

1G =

(∥∥∥f̂m⋆

∥∥∥
2

−
∥∥∥f̂m̂

∥∥∥
2
)
1G ≤ p̂en(m⋆).

Taking expectation and applying Corollary 6.4 yields for some positive con-
stant C,

E

[∥∥∥f − f̂m̂

∥∥∥
2

1G

]
≤ 2E

∥∥∥f − f̂m⋆

∥∥∥
2

+ 2E [p̂en(m⋆)]

≤ 2 ‖f − fm⋆‖2 + 2Cpen(m⋆).
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We have thus proved the desired result on G:

E

[
‖f − f̂m̂‖21G

]
≤ C inf

m∈M

{
‖f − fm‖2 + pen(m)

}
. (25)

• Next, we consider the set Gc = {m̂ > m⋆}. It holds that
∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2

1Gc = 4
(∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2

− 3

4

∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2)

1Gc .

We realize that, by definition of f̂m̂, see (24), on Gc,

−3

4

∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2

=
3

4

(∥∥∥f̂m⋆

∥∥∥
2

−
∥∥∥f̂m̂

∥∥∥
2
)

≤ 3

4

(∥∥∥f̂m⋆

∥∥∥
2

−
∥∥∥f̂m⋆

∥∥∥
2

+ p̂en(m⋆)− p̂en(m̂)

)

= −3

4
p̂en(m⋆, m̂).

It follows from there that
(∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2

− 3

4

∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2)

1Gc

≤ sup
k≥m⋆

k∈M

{∥∥∥f̂k − f̂m⋆

∥∥∥
2

− 6
∥∥∥fk − fm⋆

∥∥∥
2

− 3

4
p̂en(m⋆, k)

}

+

+ 6 sup
k≥m⋆

‖fk − fm⋆‖2.

Taking expectation and applying Proposition 6.5, as well as the monotonicity
of the bias term, we conclude that

E

[
‖f − f̂m̂‖21Gc

]
≤ 2E

[∥∥∥f − f̂m⋆

∥∥∥
2
]
+ 2E

[∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2

1Gc

]

≤ CE

[∥∥∥f − f̂m⋆

∥∥∥
2
]
+
C

N
,

with N = n in the rd-model and N =M ∧ n in the ns-model.
This is the desired oracle bound for Gc. �
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observed at low frequency. Stochastic Processes and Their Applications,
124:730–758. MR3131312

[25] Li, T. and Vuong, Q. (1998). Nonparametric estimation of the mea-
surement error model using multiple indicators. Journal of Multivariate
Analysis, 65:139–165. MR1625869

[26] Massart, P. (2003). Concentration Inequalities and Model Selection.
Number 1896 in Lecture Notes in Mathematics. Springer. MR2319879

[27] Meister, A. (2009). Deconvolution Problems in Nonparametric Statistics.
Lecture Notes in Statistics. Springer. MR2768576

[28] Neumann, M. (2007). Deconvolution from panel data with unknown
error distribution. Journal of Multivariate Analysis, 98(10):1955–1968.
MR2396948

[29] Neumann, M. and Reiß, M. (2009). Nonparametric estimation for
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