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Abstract: A fully Bayesian approach is proposed for ultrahigh-dimensional
nonparametric additive models in which the number of additive compo-
nents may be larger than the sample size, though ideally the true model
is believed to include only a small number of components. Bayesian ap-
proaches can conduct stochastic model search and fulfill flexible parameter
estimation by stochastic draws. The theory shows that the proposed model
selection method has satisfactory properties. For instance, when the hyper-
parameter associated with the model prior is correctly specified, the true
model has posterior probability approaching one as the sample size goes
to infinity; when this hyperparameter is incorrectly specified, the selected
model is still acceptable since asymptotically it is shown to be nested in
the true model. To enhance model flexibility, two new g-priors are proposed
and their theoretical performance is investigated. We also propose an effi-
cient reversible jump MCMC algorithm to handle the computational issues.
Several simulation examples are provided to demonstrate the advantages
of our method.
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1. Introduction

Suppose the data {Yi, X1i, . . . , Xpi}ni=1 are iid copies of Y,X1, . . . , Xp generated
from the following model

Yi =

p∑

j=1

fj(Xji) + ǫi, i = 1, . . . , n, (1.1)
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where ǫi’s denote the zero-mean random errors, and for each j = 1, . . . , p, Xj

is a random variable taking values in [0, 1], fj is a function of Xj satisfying
E{fj(Xj)} = 0. The zero-expectation constraint is assumed for identifiability
issue. Model (1.1) is called the additive component model; see [26, 41] for an
excellent introduction. Suppose model (1.1) contains sn significant covariates,
and the remaining p− sn covariates are insignificant. Here we assume p/n→ ∞
as n → ∞, denoted as p ≫ n or equivalently n ≪ p, but ideally restrict
sn = o(n), i.e., the true model is sparse. Our goal is to explore an automatic fully
Bayesian procedure for selecting and estimating the significant (nonvanishing)
fj’s in model (1.1).

When each fj is linear in Xj , (1.1) reduces to a linear model. There have
been a considerable number of frequentist approaches exploring issues on model
selection in ultrahigh-dimensional situations, i.e., log p = O(nk) for some k > 0.
The representative ones include regularization-based approaches such as [24, 32,
37, 39, 48, 50, 53, 54, 56], and correlation-based approaches such as [13, 15, 51].
An insightful review is given by [14].

Model selection on the basis of a Bayesian framework is conceptually differ-
ent. Specifically, Bayesian approaches conduct stochastic search of the models
and evaluate each model by its posterior probability. Three major advantages
of Bayesian selection methods are worth mentioning: (1) Bayesian approaches
can perform model selection, parameter estimation and inference in a unified
manner through posterior samples, no additional procedures such as prescreen-
ing, thresholding or data splitting are needed; (2) the choice of the hyperpa-
rameters is flexible by fulfilling stochastic draws; and (3) Bayesian methods
allow the practitioners to incorporate prior information in the process of model
search. The last feature might be attractive in small sample problems where
prior information may be useful to address data insufficiency. There has been
an amount of literature on Bayesian model selection in linear models. For ex-
ample, when p is fixed, [1, 7, 17, 21, 34] show that, under certain regularity
conditions, the posterior probability of the true model converges to one as n
increases, in other words, posterior model consistency holds. This means that
the proposed Bayesian selection method is asymptotically valid. Later on, these
results were generalized by [30, 42] to the growing p situation with p = O(n). In
ultrahigh-dimensional situations, [44] considered a fully Bayesian hierarchical
model with a prior controlling the model size and obtained posterior model con-
sistency. A straightforward MCMC algorithm was developed for model search.
Based on an extended Bayesian information criteria, [35] established posterior
model consistency in generalized linear models.

However, in many practical applications there might be little evidence con-
firming linearity of the fj’s, for which a nonparametric assumption on the fj ’s
will largely enhance model flexibility, leading to the so-called nonparametric ad-
ditive models. Surprisingly, theoretical studies relating to model selection in non-
parametric additive models are almost all in frequentist settings. For instance,
[31, 36, 40] explored issues relating to component selection with smoothing con-
straints assumed on the nonparametric functions. [25, 38] proposed penalty-
based approaches and studied their asymptotic properties. [12] proposed a learn-
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ing approach based on independent correlation and proved selection consis-
tency. To the best of our knowledge, theoretical studies in Bayesian settings
are nonexistent, especially when p ≫ n. In terms of empirical evaluation,
[46] proposed an objective Bayesian approach using penalized splines, [8] pro-
posed a Bayesian framework based on adaptive regression trees, and [45] pro-
posed a Bayesian framework based on a spike-and-slab prior induced from
normal-mixture-inverse-gamma distributions. However, theoretical validity of
these methods in ultrahigh-dimensional scenarios has not been justified.

In this paper, we propose a fully Bayesian hierarchical model which involves
a new spike-and-slab prior on the function coefficients and a novel prior control-
ling the model size, namely, the size-control prior. The spike-and-slab prior has
two important features: first, it either removes or includes the entire block of
function coefficients, which is useful for model selection purpose; second, within
each block, suitable decay rates are assumed on the function coefficients via their
prior variances to produce smooth estimate of the nonparametric function. The
size-control prior, which involves a size-control parameter, effectively restricts
the scope of the target models, and facilitates both theoretical and comput-
ing issues. Based on the proposed Bayesian framework, we show that when the
size-control parameter is correctly specified, posterior model consistency uni-
formly holds when the hyperparameters are confined by suitable ranges; when
the size-control parameter is incorrectly specified, the selection results are still
acceptable in the sense that the selected model is asymptotically nested in the
true model, in other words, the number of false positives asymptotically van-
ishes. Interestingly, the asymptotic results are shown to be true even in the
hyper-g prior settings. Furthermore, a novel and nontrivial blockwise MCMC
procedure is proposed for computation. Our MCMC procedure allows stochas-
tic search of all critical hyperparameters including the blocks of the function
coefficients, the indicator variables representing inclusion/exclusion of the vari-
ables, the size-control parameter, and even the number of basis functions used
for model fitting. The most challenging part in computation is the so-called
trans-dimensional problem, which is successfully resolved by a novel and non-
trivial variation of the “dimension-matching” technique proposed by [19] in the
reversible jump MCMC approach. Simulation results demonstrate satisfactory
selection and estimation accuracy of the proposed method. Performance un-
der different basis structures is also examined. To the best of our knowledge,
our work is the first one establishing a both theoretically and empirically ef-
fective fully Bayesian procedure for function component selection in ultrahigh-
dimensional settings.

The rest of the paper is organized as follows. In Section 2, we carefully de-
scribe our fully Bayesian model and the prior distributions on the model param-
eters. In Section 3, asymptotic results are provided for both well specified and
misspecified model spaces. In the meantime, two new types of g-priors are con-
structed and their theoretical properties are carefully studied. Section 4 contains
the details of the MCMC algorithm. Section 5 includes the simulation exam-
ples showing the satisfactory performance of the proposed method. Section 7
summarizes the conclusions. Technical arguments are provided in Appendix.
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2. A Bayesian nonparametric size-control model

Before describing our model, we introduce some notation and assumptions that
are used frequently in this paper. We associate each fj , j = 1, . . . , p, a 0\1 vari-
able γj indicating the exclusion\inclusion of fj in the model (1.1). Specifically,
when γj = 0, fj = 0 implies that fj is not included in model (1.1); when γj = 1,
fj 6= 0 implies that fj is included in model (1.1). Define γ = (γ1, . . . , γp)

T .
For simplicity, we denote j ∈ γ to mean that γj = 1, and denote j ∈ −γ

to mean γj = 0. Throughout we use |γ| to denote the number of ones in
γ, which is called the size of γ. It is clear that there are totally 2p possi-
ble γ’s representing 2p different models, each of which determines a subset of
{fj : j = 1, . . . , p} that are included in model (1.1). In other words, under
γ, model (1.1) is equivalent to Yi =

∑
j∈γ

fj(Xji) + ǫi, i = 1, . . . , n. For any

γ = (γ1, . . . , γp)
T and γ′ = (γ′1, . . . , γ

′
p)

T , let (γ\γ′)j = I(γj = 1, γ′j = 0), and
(γ ∩ γ′)j = I(γj = 1, γ′j = 1). Thus, γ\γ′ is the 0\1 vector indicating the func-
tional components present in model γ but absent in model γ′, and γ ∩γ ′ is the
0\1 vector indicating the functional components present in both models γ and
γ′. We say that γ is nested in γ ′ (denoted by γ ⊂ γ′) if γ\γ′ is zero. We further
assume {f0

j , j = 1, . . . , p} to be the true functional components, and denote

γ0 = (γ01 , . . . , γ
0
p)

T with γ0j = I(f0
j 6= 0). That is, the data {Yi, X1i, . . . , Xpi}ni=1

are truly sampled from model Yi =
∑

j∈γ0 f0
j (Xji) + ǫi, i = 1, . . . , n. Thus, γ0

represents the true model where data are generated, and sn = |γ0| denotes the
size of the true model, i.e., the number of components fj ’s included in the true
model.

For j = 1, . . . , p, define an inner product 〈fj , f̃j〉j = E{fj(Xj)f̃j(Xj)} for any

fj, f̃j ∈ Hj , whereHj is the class of functions on [0, 1] satisfying E{|fj(Xj)|2} <
∞ and E{fj(Xj)} = 0. This inner product induces a norm denoted by ‖ · ‖j ,
that is, ‖fj‖j =

√
E{|fj(Xj)|2}. Suppose the density function dj(xj) of Xj sat-

isfies 0 < K1 ≤ dj(xj) ≤ K2 < ∞ for any xj ∈ [0, 1] and j = 1, . . . , p, where
K1,K2 are constants. Clearly, under 〈·, ·〉j , Hj is a well-defined Hilbert space.
Let {ϕjl, l = 1, 2, . . .} ⊂ Hj be the orthonormal basis functions for Hj under
〈·, ·〉j . Any function fj ∈ Hj thus admits the Fourier series fj =

∑∞
l=1 βjlϕjl,

with βjl = 〈fj, ϕjl〉j being the Fourier coefficients. It can be shown that fj = 0
if and only if all the Fourier coefficients βjl’s are zero. Therefore, to detect
whether fj vanishes or not, it is sufficient to detect whether the βjl’s are zero.
In general, fj might correspond to infinitely many Fourier coefficients. Han-
dling all the Fourier coefficients is computationally infeasible. Furthermore, it
is commonly believed that only a finite subset of the Fourier coefficients cap-
ture most of the information possessed by fj . Thus, we consider the partial
Fourier series fj ≈ ∑m

l=1 βjlϕjl with truncation parameter m, where m = mn

is a sequence increasing with n. General theory on Fourier analysis leads to
that ‖fj −

∑m
l=1 βjlϕjl‖j approaches zero as m → ∞, showing the validity of

such approximation. We introduce some additional matrix notation to simplify
the expression of our model. For j = 1, . . . , p and l = 1, . . . ,m, define βj =

(βj1, . . . , βjm)T , Φjl = (ϕjl(Xj1), . . . , ϕjl(Xjn))
T , and Zj = (Φj1, . . . ,Φjm).
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Thus, each Zj is n by m. For and γ, define Zγ = (Zj , j ∈ γ), the n by m|γ|
matrix formed by Zj ’s with j ∈ γ, and define β

γ
to be the m|γ|-vector of

Fourier coefficients formed by βj ’s with j ∈ γ. Define Y = (Y1, . . . , Yn)
T to be

the response vector.
We assume that the model errors ǫi’s are iid zero-mean Gaussian with vari-

ance σ2, therefore, model (1.1), given γ, fj ’s and σ
2, becomes

Yi ∼ N(
∑

j∈γ

fj(Xji), σ
2), i = 1, . . . , n. (2.1)

Since each fj can be well approximated by
∑m

l=1 βjlϕjl for some sufficiently large
m, the mean of Yi is approximately

∑
j∈γ

∑m
l=1 βjlϕjl(Xji). Thus, (2.1) is ap-

proximately Yi ∼ N(
∑

j∈γ

∑m
l=1 βjlϕjl(Xji), σ

2). In matrix form, this becomes

Y|γ,β
γ
, σ2 ∼ N(Zγβγ

, σ2In). (2.2)

When γj = 0, fj = 0 implies that all the Fourier coefficients βjl’s are zero. When
γj = 1, fj 6= 0, we place normal prior distributions over its Fourier coefficients.
Explicitly, for j = 1, . . . , p, we adopt the spike-and-slab prior for βjl’s, i.e,

βjl|γj , σ2 ∼ (1 − γj)δ0 + γjN(0, cjσ
2τ2l ), l = 1, . . . ,m, (2.3)

where δ0(·) is the point mass measure concentrating on zero, {τ2l , l ≥ 1} is a fixed
nonincreasing sequence, and cj ’s are temporarily assumed to be fixed. Note that
the cj’s are used to control the variance of the nonzero coefficients, and therefore
can be viewed as the variance-control parameters. In many applications we may
choose τ2l = l−(2ω+1) for l ≥ 1, where ω > 1/2 is a fixed constant characterizing
the degree of smoothness; see, e.g., [4]. The prior (2.3) can be viewed as a
direct multivariate extension of the conventional spike-and-slab prior on scalar
coefficients considered by [9]. Note that γj = 0 or 1 will exclude or include
the entire block of the coefficients βjl’s, and within the nonvanishing block, the
coefficients follow the zero-mean Gaussian priors with variances decaying at the
rates τ2l ’s, which may be useful to produce smooth estimates of the functions.
In [45], a different type of spike-and-slab prior was considered. Specifically, each
coefficient block is represented as the product of a scalar with normal-mixture-
inverse-gamma prior and a vector whose entries follow the bivariate mixture
normal priors with a constant variance.

A variety of priors can be assumed on σ2. For convenience, we consider the
inverse χ2 prior, i.e.,

1/σ2 ∼ χ2
ν , (2.4)

where ν is a fixed hyperparameter. Other priors such as the noninformative
priors or the inverse Gamma priors can also be applied. All the results developed
in this paper can be extended to such situations without substantial difficulty.

In high-dimensional inference, it is commonly believed that only a small sub-
set of covariates contribute substantially to the model. Treating this as prior
information, the models with larger sizes should be assigned with zero prior
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probabilities, and only the models with smaller sizes should be assigned with
positive weights. We call this a size-control prior on the model space. Namely,
we choose the prior on γ as

p(γ) =

{
πγ , if |γ| ≤ tn,
0, otherwise,

(2.5)

where πγ for |γ| ≤ tn are fixed positive numbers summing to one, i.e.,∑
|γ|≤tn

πγ = 1, and tn ∈ (0, n) is an integer-valued hyperparameter controlling
the sizes of the candidate models. We name the set of models whose sizes are
not exceeding tn as the target model space.

Denote Dn = {Yi, X1i, . . . , Xpi}ni=1 to be the full data variable. It can be
shown by direct calculations that, based on the above hierarchical model (2.2)–
(2.5), the joint posterior distribution of (γ,β

γ
, σ2) is

p(γ,β
γ
, σ2|Dn)

∝ p(Y|γ,β
γ
, σ2,Xj ’s)p(βγ

|γ, σ2)p(γ)p(σ2)

∝ σ−(n+ν+2) exp

(
−‖Y− Zγβγ

‖2 + 1

2σ2

)
p(γ)

×
∏

j∈γ

(√
2πcjσ

)−m
det(Tm)−1/2 exp

(
−
βT
j T

−1
m βj

2cjσ2

)
, (2.6)

where ‖ · ‖ denotes the Euclidean norm of a vector, and Tm = diag(τ21 , . . . , τ
2
m).

Integrating out β
γ
and σ2 in (2.6), it can be checked that the marginal posterior

of γ is

p(γ|Dn) ∝ det(Wγ)
−1/2p(γ)

(
1 +YT (In − ZγU

−1
γ

ZT
γ
)Y
)−(n+ν)/2

, (2.7)

where Wγ = Σ1/2
γ

UγΣ
1/2
γ

, Uγ = Σ−1
γ

+ZT
γ
Zγ , and Σγ = diag(cjTm, j ∈ γ) is

the m|γ| by m|γ| diagonal matrix with diagonal elements (cjτ
2
1 , . . . , cjτ

2
m) for

j ∈ γ. We adopt the convention Z∅ = 0 and Σ∅ = U∅ = W∅ = 1, where ∅
means the null model, i.e., the vector γ with all elements being zero. So (2.7)
is meaningful for γ = ∅. The selected model γ̂ is defined to be the one that
maximizes p(γ|Dn). Clearly, γ̂ belongs to the target model space since any
model outside the target space has zero posterior probability.

3. Main results

Suppose the data are truly drawn from the model Yi =
∑

j∈γ0 f0
j (Xji) + ǫi,

where ǫi’s
iid∼ N(0, σ2

0) are independent of Xji’s, σ
2
0 is a fixed (unknown) positive

number, and f0
j ∈ Hj for j ∈ γ0. Recall that γ0 is a p-dimensional 0\1-vector

representing the true model, and sn = |γ0| denotes its size. We only consider
sn > 0, i.e., the true model is non-null. Any f0

j for j ∈ γ0 admits the Fourier
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expansion f0
j =

∑∞
l=1 β

0
jlϕjl, where β

0
jl’s represent the “true” unknown Fourier

coefficients of f0
j . When m is sufficiently large, f0

j is approximated by its partial

Fourier series, that is, f0
j ≈ ∑m

l=1 β
0
jlϕjl. To insure that such partial Fourier

series is a valid approximation, we assume a uniform error rate on the tails of
the Fourier series. Specifically, we assume that there are some positive constants
a > 1 and Cβ such that

max
m≥1

max
j∈γ0

ma
∞∑

l=m+1

|β0
jl|2 ≤ Cβ . (3.1)

It is easy to see that (3.1) is equivalent to maxj∈γ0 ‖f0
j − ∑m

l=1 β
0
jlϕjl‖2j =

O(m−a), uniformly for m ≥ 1. That is, the errors of the partial Fourier series
of the nonzero f0

j ’s uniformly decrease to zero at rate m−a. For instance, when

f0
j ’s uniformly belong to the Sobolev’s ellipsoid of order a/2, i.e.,

maxj∈γ0

∑∞
l=1 l

a|β0
jl|2 < ∞, for some constant a > 0, it can be checked that

(3.1) holds. Namely, a measures the degree of smoothness of the nonzero func-
tions. A larger a implies that the nonzero functions are more smooth.

Define ln =
∑

j∈γ0 ‖f0
j ‖2j and θn = minj∈γ0 ‖f0

j ‖j. Define Pγ =

Zγ(Z
T
γ
Zγ)

−1ZT
γ
to be the n by n projection (or smoothing) matrix correspond-

ing to γ. We adopt the convention P∅ = 0. Let λ−(A) and λ+(A) be the
minimal and maximal eigenvalues of matrix A. Suppose the truncation param-
eter m is chosen within the range [m1,m2], where m1 = m1n, m2 = m2n with
m1 ≤ m2 are positive sequences approaching infinity as n → ∞. The variance-
control parameters cj ’s are chosen within [φ

n
, φ̄n] for some positive sequences

φ
n
, φ̄n.

3.1. Well specified target model space

In this section we present our first theorem on posterior consistency of our
model selection procedure. We consider the situation tn ≥ sn, that is, the hy-
perparameter tn is correctly specified as being no less than the size of the true
model. Thus, the true model is among our target model space, for which we say
that the target model space is well specified. We will present a set of sufficient
conditions and show that under these conditions, the posterior probability of
the true model converges to one in probability. Thus, the selection procedure
asymptotically yields the true model.

Define
S1(tn) = {γ|γ0 ⊂ γ,γ 6= γ0, |γ| ≤ tn},

and
S2(tn) = {γ|γ0 is not nested in γ, |γ| ≤ tn}.

It is clear that S1(tn) and S2(tn) are disjoint, and S(tn) defined by S(tn) =
S1(tn)

⋃
S2(tn)

⋃{γ0} is the class of all models with size not exceeding tn, i.e.,
the target model space. We first list some conditions that are used to show our
theorem.
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Assumption A.1. There exists a positive constant c0 such that, as n → ∞,
with probability approaching one

1/c0 ≤ min
m∈[m1,m2]

min
γ∈S2(tn)

λ−

(
1

n
ZT
γ0\γ(In −Pγ)Zγ0\γ

)

≤ max
m∈[m1,m2]

max
γ∈S2(tn)

λ+

(
1

n
ZT

γ0\γZγ0\γ

)
≤ c0,

and

min
m∈[m1,m2]

min
γ∈S1(tn)

λ−

(
1

n
ZT

γ\γ0(In −Pγ0)Zγ\γ0

)
≥ 1/c0.

Assumption A.2. supn maxγ∈S(tn)
p(γ)
p(γ0) <∞.

Assumption A.2 clearly holds if p(γ) is chosen to be constant for γ ∈ S(tn).
More generally, one can use the following prior

p(γ) = Cq|γ|(1− q)p−|γ|, |γ| ≤ tn; 0, otherwise, (3.2)

where C > 0 is normalizing constant such that p(γ) defines a valid probability
measure, and q = qn ∈ (0, 1). We choose q such that q

1−q = 1 + 1/an for some

positive sequence an satisfying tn = O(an). The prior (3.2) satisfies Assumption
A.2. Next we verify this argument. If tn ≥ sn, then it can be shown that for any
γ with |γ| ≤ tn,

p(γ)

p(γ0)
=

(
q

1− q

)|γ|−sn

= (1 + 1/an)
|γ|−sn ≤ (1 + 1/an)

tn = O(1),

where the O(1) term in the final equation is not depending on γ. This shows
that Assumption A.2 holds.

Assumption A.3. There exists a positive sequence {hm,m ≥ 1} such that,
as m,m1,m2 → ∞, hm → ∞, m−ahm decreasingly converges to zero, mhm
increasingly converges to ∞, and

∑
m1≤m≤m2

1/hm = o(1). Furthermore, the

sequences m1,m2, hm, sn, tn, θn, ln, φn, φ̄n satisfy

(1). m2hm2sn = o(nmin{1, θ2n}) and m−a
1 hm1s

2
n = o(min{1, n−1m1 log(φn),

θ2n, θ
4
n});

(2). tn ≥ sn and tn log p = o(n log(1 + min{1, θ2n}));
(3). ln = O(φ

n
τ2m2

) and log p = o(m1 log (nφn
τ2m2

));

(4). m2sn log(1 + nφ̄n) = o(n log(1 + min{1, θ2n})).
In the following proposition we show that Assumption A.1 holds under suit-

able dependence assumption among the predictors Xj ’s. To clearly describe
this assumption, let {Xj}∞j=1 be a stationary sequence taking values in [0, 1],
and define its ρ-mixing coefficient to be ρ(|j − j′|) = supf,g |E{f(Xj)g(Xj′)} −
E{f(Xj)}E{g(Xj′)}|, where the supremum is taken over the measurable func-
tions f and g with E{f(Xj)

2} = E{g(Xj′)
2} = 1. Ideally we assume that the

predictors X1, . . . , Xp in model (1.1) are simply the first p elements of {Xj}∞j=1.
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Proposition 3.1. Suppose

∞∑

r=1

ρ(r) < 1/2, t2nm
2
2 log p = o(n), and max

1≤j≤p
sup
l≥1

‖ϕjl‖sup <∞,

where ‖ · ‖sup denotes the supnorm. Then there is a constant c0 > 0 such that
with probability approaching one

c−1
0 ≤ min

m∈[m1,m2]
min

0<|γ|≤2tn
λ−

(
1

n
ZT

γ
Zγ

)

≤ max
m∈[m1,m2]

max
0<|γ|≤2tn

λ+

(
1

n
ZT

γ
Zγ

)
≤ c0. (3.3)

Furthermore, (3.3) implies Assumption A.1.

Assumption A.2 holds if we choose p(γ) to be constant for all |γ| ≤ tn,
i.e., we adopt an indifference prior over the target model space. To see when
Assumption A.3 holds, we look at a special example. We choose τ2l = l−5 for
l ≥ 1. Suppose log p ∝ nk for 0 < k < 1, ψn ∝ 1, and the smoothness parameter
a = 4. Choose m1 = ζn1/5 + c1n and m2 = ζn1/5 + c2n, where ζ > 0 is
constant, c1n = o((log n)r), c2n = o((log n)r), c1n ≤ c2n, and r > 0 is a constant.
Note that such choice of m1 and m2 yields minimax error rate in univariate
regression. Let hm = (logm)r for m ≥ 1. Ideally we suppose that the selected
tn is greater than sn. Choose φn

and φ̄n as log(φ
n
) ∝ nk1 and log(φ̄n) ∝ nk2

with max{0, k − 1/5} < k1 < k2 < 4/5. In this simple situation, it can be
directly verified that Assumption A.3 holds if the true model size sn satisfies
sn = o(nmin{1−k,k1/2}(logn)−r) and tn ≥ sn with tn = O(sn). Furthermore,
Proposition 3.1 says that to satisfy Assumption A.1, an additional sufficient
condition is t2nm

2
2 log p = o(n), which implies k < 3/5. Therefore, if we further

require that tn ∝ 1, then the dimension p cannot exceed the order exp(O(n3/5)),
which coincides with the finding by [40].

Theorem 3.2. Under Assumptions A.1 to A.3, as n→ ∞,

min
m∈[m1,m2]

inf
φ
n
≤c1,...,cp≤φ̄n

p(γ0|Dn) → 1, in probability. (3.4)

Theorem 3.2 says that under mild conditions the posterior probability of the
true model converges to one in probability. This means, with probability ap-
proaching one, our Bayesian method selects the true model, which guarantees
the validity of the proposed approach. Here, convergence holds uniformly over
cj ’s ∈ [φ

n
, φ̄n] and m ∈ [m1,m2]. This means, the selection result is insensitive

to the choice of cj ’s and m when they belong to suitable ranges. It is well known
that choosing the truncation parameter m is a practically difficult problem in
nonparametrics; see [12, 40]. Therefore, a method that is insensitive to the choice
of the truncation parameter within certain range will be highly useful. In The-
orem 3.2 we theoretically show that the proposed Bayesian selection method is
among the ones which provide insensitive selection results. On the other hand,
we also show that our method is insensitive to the choice of the variance-control
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parameters cj ’s. This is both theoretically and practically useful since it allows
us to place an additional prior, such as the g-priors, over the cj ’s while preserv-
ing the desired posterior model consistency; see Section 3.4. To the best of our
knowledge, Theorem 3.2 is the first theoretical result showing the validity of
the Bayesian methods in function component selection in ultrahigh-dimensional
settings.

The proof of Theorem 3.2 relies on a uniform approximation of the posterior
odds ratios. Accurate probabilistic upper bounds are built uniformly for all these
ratios so that the aggregation of the ratios tends to zero. Then the posterior
probability of the true model is proven to approach one based on these upper
bounds.

Frequentist approaches such as penalized least squares typically require se-
lection of smoothing parameters for functional estimation and selection ([25, 38,
40]), or require certain procedures to improve performance, such as finding the
initial estimators ([25]) and thresholding ([40]). In our Bayesian approach, the
parameters cj play similar role as frequentist smoothing parameter. We avoid
manual selection of cj by placing a prior on it. Selection of cj is automatically
done in MCMC sampling. Besides, our approach does not require initial estima-
tors of the functional components, and does not need thresholding procedures.
Relevant papers in (generalized) linear regressions also include [28, 29] who
obtained posterior contraction results and [35] who applied a Laplace approxi-
mation approach. Instead, our interest is a fully Bayesian method with desired
posterior selection consistency.

3.2. Misspecified target model space

In this section, we investigate the case 0 < tn < sn, that is, tn is misspecified
as being smaller than the size of the true model. Therefore, the true model is
outside the target model space, for which we say that the target model space
is misspecified. We conclude that in this false setting the selected model is still
not “bad” because it can be asymptotically nested in the true model, uniformly
for the choice of m and cj ’s.

Define T0(tn) = {γ|0 ≤ |γ| ≤ tn,γ ⊂ γ0}, T1(tn) = {γ|0 < |γ| ≤ tn,γ∩γ0 6=
∅, γ is not nested in γ0}, and T2(tn) = {γ|0 < |γ| ≤ tn,γ ∩ γ0 = ∅}. It is easy
to see that T0(tn), T1(tn), T2(tn) are disjoint and T (tn) = T0(tn)∪T1(tn)∪T2(tn)
is exactly the target model space, i.e., the class of γ with |γ| ≤ tn. Throughout
this section, we make the following assumptions.

Assumption B.1. There exist a positive constant d0 and a positive sequence
ρn such that, when n→ ∞, with probability approaching one,

d−1
0 ≤ min

m∈[m1,m2]
min

0<|γ|≤sn
λ−

(
1

n
ZT

γ
Zγ

)

≤ max
m∈[m1,m2]

max
0<|γ|≤sn

λ+

(
1

n
ZT

γ
Zγ

)
≤ d0, and (3.5)
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max
m∈[m1,m2]

max
γ∈T (sn−1)

λ+

(
ZT

γ0\γPγZγ0\γ
)
≤ ρn. (3.6)

Assumption B.2. supn maxγ,γ′∈T (tn)
p(γ)
p(γ′) <∞.

It can be shown that the prior defined as in (3.2) satisfies Assumption B.2.
To see this, if tn < sn, then it can be shown that for any γ,γ′ with |γ| ≤ tn
and |γ ′| ≤ tn,

p(γ)

p(γ′)
=

(
q

1− q

)|γ|−|γ′|
≤ (1 + 1/an)

tn = O(1),

where the O(1) term in the final equation is not depending on γ and γ ′. This
shows that Assumption B.2 holds.

Assumption B.3. There exists a positive sequence {hm,m ≥ 1} such that,
as m,m1,m2 → ∞, hm → ∞, m−ahm decreasingly converges to zero, mhm
increasingly converges to ∞, and

∑
m1≤m≤m2

1/hm = o(1). Furthermore, the
sequences m1,m2, hm, sn, θn, ln, φn satisfy

(1). m2hm2sn = o(nmin{1, θ2n}) andm−a
1 hm1s

2
n = o(min{1, n−1m1 log(φn

), θ2n});
(2). ln = O(φ

n
τ2m2

);

(3). max{ρn, s2n log p} = o(min{n,m1 log(nφnτ
2
m2

)}).
The following result presents a situation in which Assumption B.1 holds.

For technical convenience, we require the predictors to be independent. It is
conjectured that this result may hold in more general settings.

Proposition 3.3. Suppose that the predictors X1, . . . , Xp are iid random vari-
ables taking values in [0, 1], s2nm

2
2 log p = o(n), and max1≤j≤p supl≥1 ‖ϕjl‖sup <

∞. Then Assumption B.1 holds with ρn ∝ m2s
2
n log p.

Assumption B.2 holds when we place indifference prior over the models with
size not exceeding tn. To examine Assumption B.3, we again look at a special
case. For simplicity, we suppose the setting of Proposition 3.3 holds. Choose
τ2l = l−5 for l ≥ 1. Suppose log p = nk for k ∈ (0, 4/5), θn ∝ 1, ln ∝ 1, and
a = 4. Let m1 = ζn1/5 + c1n and m2 = ζn1/5 + c2n, where ζ > 0 is constant,
c1n = o((log n)r), c2n = o((log n)r), c1n ≤ c2n, and r > 0 is a constant. Let
hm = (logm)r. Choose log(φ

n
) = nk1 with k1 > k. It can be shown in this

special situation that Assumption B.3 holds if sn = o(nmin{1−k,k1/2}(logn)−r).
Furthermore, if sn = O(1), then the condition s2nm

2
2 log p = o(n) (see Propo-

sition 3.3) implies k < 3/5. So the growth rate of p is again not exceeding
exp(O(n3/5)).

Theorem 3.4. Suppose 0 < tn < sn and Assumptions B.1–B.3 are satisfied.

(i). As n → ∞, maxm∈[m1,m2] supφ
n
≤c1,...,cp≤φ̄n

maxγ∈T1(tn)∪T2(tn) p(γ|Dn)

maxγ∈T0(tn) p(γ|Dn)
→

0, in probability.
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(ii). Furthermore, suppose Assumption A.3 (4) is satisfied, and there is γ ∈
T0(tn)\{∅} and a constant b0 > 0 such that for all m ∈ [m1,m2],

∑

j∈γ0\γ
‖f0

j ‖2j ≤ b0
∑

j∈γ

‖f0
j ‖2j . (3.7)

Then, as n → ∞, maxm∈[m1,m2] supφ
n
≤c1,...,cp≤φ̄n

p(∅|Dn)
p(γ|Dn)

→ 0, in proba-

bility.

When the hyperparameter tn is incorrectly specified as being smaller than
the size of the true model, the selected model γ̂ cannot be the true model since
necessarily |γ̂| < sn. Theorem 3.4 (i) shows that in this false setting, γ̂ can
be asymptotically nested to the true model with probability approaching one.
This means, as n approaches infinity, all the selected components are the sig-
nificant ones which ought to be included in the model. Here, the result holds
uniformly for m and cj ’ s within certain ranges, showing insensitivity of the
choice of these hyperparameters. Model selection in misspecified models is an
important problem which has been considered by [33] in the parametric frame-
work, who proposed novel generalized versions of Akaike information criterion
and Bayesian information criterion, and studied their asymptotic property. To
the best of our knowledge, Theorem 3.4 is the first theoretical examination of
the (nonparametric) function selection approach when the model space is mis-
specified.

We should mention that in Theorem 3.4 (i), it is possible that γ̂ = ∅ since ∅ is
a natural subset of γ0. When γ0 is non-null, we expect γ̂ to include some signifi-
cant variables. Theorem 3.4 (ii) says that this is possible if there exists a non-null
model that can be separated from the null model. Explicitly, the condition (3.7)
says that the functions {f0

j , j ∈ γ} dominate the functions {f0
j , j ∈ γ0\γ},

in terms of the corresponding norms ‖ · ‖j ’s. This can be interpreted as that
the model γ includes a larger amount of the information from the true model
than its completion γ0\γ. Theorem 3.4 (ii) says that under this condition, with
probability approaching one, γ is more preferred than the null. Therefore, γ̂ is
asymptotically non-null.

3.3. Basis functions

The proposed approach relies on a proper set of orthonormal basis functions
{ϕjl, l ≥ 1} in Hj under the inner product 〈·, ·〉j . In this section we briefly
describe how to empirically construct such functions.

Suppose for each j = 1, . . . , p, {Bjl, l ≥ 0} form a set of basis functions in
L2[0, 1]. Without loss of generality, assume Bj0 to be the constant function. For
example, in empirical study we can choose the trigonometric polynomial basis,
i.e., Bj0 = 1, Bjl(x) =

√
2 cos(2πkx) if l = 2k − 1, and Bjl(x) =

√
2 sin(2πkx)

if l = 2k, for integer k ≥ 1. Other choices such as Legendre’s polynomial ba-
sis (see [6]) is also examined. One may even choose {Bjl, l ≥ 0} to be non-
orthogonal such as B-spline basis. However, B-spline basis requires selection of
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knots, while both trigonometric basis and Legendre basis do not have such issue.
In numerical study we only consider trigonometric basis and Legendre basis for
convenience.

We may choose a sufficiently large integer M with M < n. For j = 1, . . . , p
and 1 ≤ l ≤ M , define B̃jl to be a real-valued function whose value at Xji is

B̃jl(Xji) = Bjl(Xji) − 1
n

∑n
i=1 Bjl(Xji). Define Wji = (B̃j1(Xji), . . . ,

B̃jM (Xji))
T , and Σ̂j = 1

n

∑n
i=1 WjiW

T
ji. Let Aj be an M by M invertible

matrix such that AT
j Σ̂jAj = IM . Write Aj = (aj1, . . . , ajM ), where ajl is the

l-th column, anM -vector. Then define ϕjl as a real-valued function whose value
at Xji is ϕjl(Xji) = aT

jlWji, for j = 1, . . . , p and l = 1, . . . ,M . In the simplest
situation where Xji’s are iid uniform in [0,1], for j = 1, . . . , p, it can be seen

that Σ̂j ≈ IM , for which we can choose Aj = IM , leading to ϕjl = B̃jl for
l = 1, . . . ,M .

Next we heuristically show that the functions ϕjl’s approximately form an or-
thonormal basis. By the law of large numbers, E{ϕjl(Xj)} ≈ 1

n

∑n
i=1 ϕjl(Xji) =

1
na

T
jl

∑n
i=1 Wji = 0, and E{ϕjl(Xj)ϕjl′ (Xj)} ≈ 1

n

∑n
i=1 ϕjl(Xji)ϕjl′ (Xji) =

aTjlΣ̂ajl′ = δll′ , for l, l
′ = 1, . . . ,M , where δll′ = 1 if l = l′, and zero oth-

erwise. Thus, {ϕjl, l = 1, . . . ,M} approximately form an orthonormal sys-
tem. Furthermore, any fj ∈ Hj admits the approximate expansion fj(Xji) ≈∑M

l=0 β̃jlBjl(Xji) for some real sequence β̃jl. So

0 = E{fj(Xj)} ≈ 1

n

n∑

i=1

fj(Xji) ≈
1

n

n∑

i=1

M∑

l=0

β̃jlBjl(Xji).

Therefore, we obtain that

fj(Xji) ≈
M∑

l=0

β̃jlBjl(Xji)−
1

n

n∑

i=1

M∑

l=0

β̃jlBjl(Xji)

=

M∑

l=1

β̃jlB̃jl(Xji) = β̃
T

j Wji = (A−1
j β̃j)

T (ϕj1(Xji), . . . , ϕjM (Xji))
T ,

where β̃j = (β̃j1, . . . , β̃jM )T . This means that the function fj can be approx-
imately represented by the ϕjl’s for l = 1, . . . ,M . Consequently, {ϕjl, l =
1, . . . ,M} approximately form an orthonormal basis in Hj given that M is
large enough.

3.4. Mixtures of g-prior

The results in Sections 3.1 and 3.2 can also be extended to the g-prior setting.
Suppose cj = c for j = 1, . . . , p. We assume c to have prior density g(c), a
function of positive values over (0,∞) satisfying

∫∞
0 g(c)dc = 1, i.e., g is a

proper prior. Then (2.7) is actually p(γ|c,Dn). The posterior distribution of γ
is therefore pg(γ|Dn) =

∫∞
0 p(γ|c,Dn)g(c)dc, with the subscript g emphasizing
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the g-prior situation. Then we have the following results parallel to Theorems
3.2 and 3.4. The interpretations are similar to those for Theorems 3.2 and 3.4.
Their proofs are similar to those in [44], and thus are omitted.

Theorem 3.5. Suppose Assumptions A.1–A.3 are satisfied. Furthermore, g is

proper and, as n → ∞,
∫ φ

n

0 g(c)dc = o(1) and
∫∞
φ̄n
g(c)dc = o(1). Then as

n→ ∞, minm∈[m1,m2] pg(γ
0|Dn) → 1, in probability.

Theorem 3.6. Suppose 0 < tn < sn. Let Assumptions B.1–B.3 be satisfied,
and g be proper and supported in [φ

n
, φ̄n], i.e., g(c) = 0 if c /∈ [φ

n
, φ̄n].

(i). As n→ ∞, maxm∈[m1,m2]
maxγ∈T1(tn)∪T2(tn) pg(γ|Dn)

maxγ∈T0(tn) pg(γ|Dn)
→ 0, in probability.

(ii). If, in addition, Assumption A.3 (4) holds, and there exist a γ ∈ T0(tn)\{∅}
and a constant b0 > 0 such that for all m ∈ [m1,m2],

∑
j∈γ0\γ ‖f0

j ‖2j ≤
b0
∑

j∈γ
‖f0

j ‖2j . Then as n→ ∞, maxm∈[m1,m2]
pg(∅|Dn)
pg(γ|Dn)

→ 0, in probabil-
ity.

We propose two types of g-priors that generalize the Zellner-Siow prior by
[55] and generalize the hyper-g prior by [34]. We name them as the generalized
Zellner-Siow (GZS) prior and the generalized hyper-g (GHG) prior respectively.
Let b, µ > 0 be fixed hyperparameters. The GZS prior is defined to have the
form

g(c) =
pb

Γ(b)
c−b−1 exp(−pµ/c), (3.8)

and the GHG prior is defined to have the form

g(c) =
Γ(pµ + 1 + b)

Γ(pµ + 1)Γ(b)
· cp

µ

(1 + c)pµ+1+b
. (3.9)

We conclude that both GZS and GHG priors can yield posterior consistency.
To see this, since we assume p ≫ n, we have pµ/

√
logn → ∞ as n → ∞. Let

φ
n
= pµ/

√
logn and φ̄n = pµ(logn)2 . It can be directly examined that, as n→ ∞,

the GZS prior satisfies
∫ φ

n

0 g(c)dc = (Γ(b))−1
∫∞
pµφ−1

n

ca−1 exp(−c)dc = o(1), and
∫∞
φ̄n
g(c)dc = (Γ(b))−1

∫ pµφ̄−1
n

0 ca−1 exp(−c)dc = o(1); the GHG prior satisfies
∫ φ

n

0 g(c)dc = O((pµ + 1)b−1 exp(−(pµ + 1)/(1 + φ
n
))) = o(1) and

∫∞
φ̄n
g(c)dc =

O((pµ +1)b/(1+ φ̄n)) = o(1). Furthermore, suppose τ2l = l−5, a = 4, log p = nk

with k ∈ (0, 3/5), θn ∝ 1, sn ∝ 1, ln ∝ 1, tn ∝ 1 with tn ≥ sn, hm = (logn)r, and
m1 = ζn1/5 + o((log n)r), m2 = ζn1/5 + o((log n)r), where ζ and r are positive
constants and r ∈ (0, 1/2). It can be examined directly that the above φ

n
and

φ̄n satisfy the assumptions of Theorem 3.5, implying posterior consistency of
the g-prior methods. Clearly, the modes of the GZS and GHG priors are both
pµ/(b+1) which converges to infinity as n inflates, yielding consistent selection
results.
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4. Computational details

In this section, sampling details will be provided. Instead of fixing tn and m, we
may place priors over them to make the procedure more flexible. Let cj = c for
j = 1, . . . , p. Assume a g-prior (either GZS or GHG) g(c) for c, and denote the
priors for tn and m by p(tn) and p(m) respectively. For convenience, we consider

the priors p(γ|tn) ∝ w
|γ|
n I(|γ| ≤ tn) for some prefixed wn > 0, p(tn) = I(1 ≤

tn ≤ Tn) for some prefixed positive integer Tn, and p(m) = I(m1 ≤ m ≤ m2)
for some fixed positive integers m1 and m2. In particular, wn = 1 yields flat
prior on γ. For other choices of p(tn) and p(m), the computational details in this
section require corresponding modifications. In practice we suggestm2Tn = n/2
or n/3, which as demonstrated in the simulation studies can yield satisfactory
selection results. The specification of Tn may also depend on the prior knowledge
on model sparsity. Generally speaking, m2Tn cannot exceed n/2 to yield unique
solution; see [11, 32] as examples in sparse recovery.

It follows by (2.6) that the joint posterior distribution of (γ,β, σ2, c,m, tn) is

p(γ,β, σ2, c,m, tn|Dn)

∝ σ−(n+ν+2) exp

(
−‖Y− Zβ‖2 + 1

2σ2

)
(
√
2πcσ)−m|γ| det(Tm)−|γ|/2

exp

(
−
∑

j∈γ
βT
j T

−1
m βj

2cσ2

)
∏

j∈−γ

δ0(βj) · p(γ|tn)g(c)p(m)p(tn), (4.1)

where δ0 denotes the probability measure concentrating on the m-dimensional
zero vector. The MCMC sampling procedure is described as follows. For ini-
tial values, let γ(0) = ∅, β(0) = 0. Let σ2

(0) and c(0) be uniformly drawn from

some compact subsets of (0,∞), and m(0) and t
(0)
n be drawn from p(m) and

p(tn) respectively. Suppose at the q-th iteration, we have obtained samples

(γ(q),β(q), σ2
(q), c

(q),m(q), t
(q)
n ).

Sampling (β,m,γ). The sampling procedure proceeds in two steps. First,

one draws m(q+1) given c(q), σ2
(q), t

(q)
n . Second, one draws (β(q+1),γ(q+1)) given

m(q+1), c(q), σ2
(q), t

(q)
n . To complete the first step, by integrating out β in (4.1),

the conditional distribution of m given c(q), σ2
(q), t

(q)
n is found by

p(m|c(q), σ2
(q), t

(q)
n ,Dn)

∝ p(m)
∑

|γ|≤t
(q)
n

(c(q))−m|γ|/2w|γ|
n det(S(q)

γ,m)−1/2

exp

(
−YT (In − Zγ(U

(q)
γ,m)−1ZT

γ
)Y

2σ2
(q)

)
, (4.2)

whereU(q)
γ,m = (c(q))−1Λ−1

γ,m+ZT
γ
Zγ , S

(q)
γ,m = Λγ,mU(q)

γ,m, andΛγ,m = diag(Tm,

. . . ,Tm) with Tm therein appearing |γ| times. In principle, one can drawm(q+1)
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based on (4.2). However, (4.2) involves a computationally expensive sum which is
hard to handle in practice. To overcome this difficulty, we propose an alternative
(approximate) way of sampling m. When γ(q) = ∅, draw m(q+1) randomly from
[m1,m2]. When γ(q) 6= ∅, from (4.1) the conditional distribution of m given

γ(q), c(q), σ2
(q), t

(q)
n is found by

p(m|γ(q), c(q), σ2
(q), t

(q)
n ,Dn)

∝ p(m)(c(q))−m|γ(q)|/2 det(S(q)

γ(q),m
)−1/2

exp


−

YT (In − Zγ(q)(U
(q)

γ(q),m
)−1ZT

γ(q))Y

2σ2
(q)


 . (4.3)

In practice, one can draw m from (4.3) by an Metropolis-Hastings step given
the current value γ(q), which avoids computing the expensive sum and thus is
more efficient. Explicitly, given the current value mold, one draws mnew from
some proposal distribution Q(mnew|mold). Then accept mnew with probabil-

ity p(mnew|γ,c,σ2,tn,Dn)
p(mold|γ,c,σ2,tn,Dn)

· Q(mold|mnew)
Q(mnew|mold)

. The choice of the proposal distribution

Q(m′|m) is not unique, but can be made very simple. For instance, when
m = m1 (or m2), one draws m′ randomly from {m,m + 1} (or {m,m − 1});
when m1 < m < m2, one draws m′ randomly from {m− 1,m,m+ 1}.

To complete the second step, we apply a nontrivial variation of the con-
ventional blockwise technique (see [22, 49]) to sample βj ’s and γj ’s, given an

updated sample m(q+1). Note that the sample β
(q)
j ’s from the previous q-th

iteration have dimension m(q) which might be different from m(q+1). This phe-
nomenon of different dimensions makes the conventional blockwise sampling
approach fail since there is an underlying conflict between the current state of
m and the (conditioning) blocks from the previous iteration. Motivated from
the “dimension-matching” technique in the reversible jump MCMC approach

(see [19]), we propose to modify the β
(q)
j ’s to be of dimension m(q+1) to match

the current state of m. Specifically, if m(q+1) < m(q), define β̃
(q)

j to be an

m(q+1)-dimensional vector which consists of the first m(q+1) elements of β
(q)
j . If

m(q+1) > m(q), then define β̃
(q)

j = ((β
(q)
j )T ,0T

m(q+1)−m(q))T , where 0h denotes

the h-dimensional zero vector. That is, β̃
(q)

j is m(q+1)-dimensional with the first

m(q) elements being exactly the ones of β
(q)
j , and the remaining m(q+1) −m(q)

elements being zero. Ifm(q+1) = m(q), then set β̃
(q)

j = β
(q)
j . Repeating the above

procedure for all j = 1, . . . , p, one obtains β̃
(q)

j ’s, a “modified” set of samples
from the previous stage.

Suppose we have updated samples (β
(q+1)
1 , γ

(q+1)
1 ), . . . , (β

(q+1)
j−1 , γ

(q+1)
j−1 ), in

which all β
(q+1)
j′ , for j′ = 1, . . . , j − 1, are m(q+1)-dimensional. Define bj′ =

(β
(q+1)
j′ , γ

(q+1)
j′ ) for j′ = 1, . . . , j − 1, bj′ = (β̃

(q)

j′ , γ
(q)
j′ ) for j′ = j + 1, . . . , p, and
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bj = (βj , γj), where βj is an m(q+1)-dimensional nominal vector and both βj

and γj will be updated. For convenience, define b−j = {bj′ , j
′ = 1, . . . , p, j′ 6= j}

to be the conditioning blocks. The full conditional of bj given b−j and other

variables highly depends on the size of γ−j = (γ
(q+1)
1 , . . . , γ

(q+1)
j−1 , γ

(q)
j+1, . . . , γ

(q)
p ).

Specifically, for effective sampling, |γ−j | cannot exceed t(q)n since otherwise the

block bj will have zero posterior probability. When |γ−j | = t
(q)
n , γ

(q+1)
j has to

be zero since otherwise the conditional probability becomes zero. In this case,

one simply sets β
(q+1)
j = 0m(q+1) .

Next we suppose |γ−j | < t
(q)
n . For j′, j = 1, . . . , p, define Z

(q+1)
j′ = (Φj′1, . . . ,

Φj′m(q+1)), an n by m(q+1) matrix, and define Z
(q+1)
−j = (Z

(q+1)
j′ , j′ 6= j), an n

by m(q+1)(p − 1) matrix. Similarly, define β̃
(q)

−j to be the m(q+1)(p − 1)-vector

formed by β
(q+1)
1 , . . . ,β

(q+1)
j−1 , β̃

(q)

j+1, . . . , β̃
(q)

p . Let uj = Y − Z
(q+1)
−j β̃

(q)

−j . Note
p(γj ,γ−j) = 1. Then we have from (4.1) that

p(βj , γj = 1|b−j , σ
2
(q), c

(q), t(q)n ,m(q+1),Dn)

∝ exp

(
−
‖uj − Z

(q+1)
j βj‖2

2σ2
(q)

)
(
√

2πc(q)σ(q))
−m(q+1)

det(Tm(q+1))−1/2

exp

(
−βT

j T
−1
m(q+1)βj

2c(q)σ2
(q)

)
wn. (4.4)

Integrating out βj in (4.4), one obtains that

p(γj = 1|b−j , σ
2
(q), c

(q), t(q)n ,m(q+1),Dn)

∝ det(Q
(q)
j Tm(q+1))−1/2(c(q))−m(q+1)/2

exp

(
−
‖uj‖2 − uT

j Z
(q+1)
j (Q

(q)
j )−1(Z

(q+1)
j )Tuj

2σ2
(q)

)
wn, (4.5)

where Q
(q)
j = (c(q))−1T−1

m(q+1) + (Z
(q+1)
j )TZ

(q+1)
j . Similarly, one obtains from

(4.1) that

p(βj , γj = 0|b−j , σ
2
(q), c

(q), t(q)n ,m(q+1),Dn) ∝ exp

(
−
‖uj − Z

(q+1)
j βj‖2

2σ2
(q)

)
δ0(βj).

(4.6)
Integrating out βj in (4.6) one obtains that

p(γj = 0|b−j , σ
2
(q), c

(q), t(q)n ,m(q+1),Dn) ∝ exp

(
−‖uj‖2

2σ2
(q)

)
. (4.7)

Consequently, from (4.5) and (4.7) we draw γ
(q+1)
j from

p(γj = 1|b−j, σ
2
(q), c

(q), t(q)n ,m(q+1),Dn) =
1

1 + θj
, (4.8)
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where

θj = det(Q
(q)
j Tm(q+1))1/2(c(q))m

(q+1)/2

exp

(
−
uT
j Z

(q+1)
j (Q

(q)
j )−1(Z

(q+1)
j )Tuj

2σ2
(q)

)
w−1

n .

It can be shown from (4.4) and (4.6) that

βj |γ(q+1)
j = 1,b−j , σ

2
(q), c

(q), t(q)n ,m(q+1),Dn

∼ N
(
(Q

(q)
j )−1(Z

(q+1)
j )Tuj , σ

2
(q)(Q

(q)
j )−1

)
,

p(βj = 0|γ(q+1)
j = 0,b−j , σ

2
(q), c

(q), t(q)n ,m(q+1),Dn) = 1, (4.9)

from which β
(q+1)
j is drawn. In the above procedure, finding the matrix prod-

uct Z
(q+1)
−j β̃

(q)

−j is a time-consuming step. It is possible to avoid computing this
matrix product by iteratively using the following relation

Z
(q+1)
−(j+1)β̃

(q)

−(j+1) = Z
(q+1)
−j β̃

(q)

−j + Z
(q+1)
j β

(q+1)
j − Z

(q+1)
j+1 β̃

(q)

j+1. (4.10)

In practice, one only needs to compute Z
(q+1)
−1 β̃

(q)

−1 since the subsequent products
can be iteratively updated through (4.10).

The proposed blockwise sampling scheme (4.8) and (4.9) can be viewed as
a generalization of [22] from m = 1 (without group structure) to general m
(with group structure). This generalization is nontrivial because we allow m,
the dimension of βj , to change across the consecutive iterations. When updat-
ing bj given the blocks from the previous iteration whose dimensions might
be different from the current value of m, we have to apply the “dimension-
matching” technique to the previous samples of βj ’s so that they have the same
dimension as the current m. By doing so, one can apply the conventional block-
wise techniques to update the blocks consecutively. Note that when m does not
change across the iterations, there is no need to use such “dimension-matching”
procedure. Furthermore, the proposed blockwise technique can only be used for

the constrained situation, i.e., when |γ−j | ≤ t
(q)
n , which is essentially a con-

strained version (with group structure) of the conventional blockwise sampling
approaches.

Sampling σ2. From (4.1), it can be easily seen that the full conditional of σ2

is

σ2|γ(q+1),β(q+1),m(q+1), c(q), t(q)n ,Dn

∼ IG

(
n+ ν +m(q+1)|γ(q+1)|

2
,

‖Y− Z(q+1)β
(q+1)‖2 + (β

(q+1)

γ(q+1))
TΛ−1

γ(q+1),m(q+1)β
(q+1)

γ(q+1)(c
(q))−1 + 1

2

)
,
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where IG(a, b) denotes the inverse Gamma distribution. Denote σ2
(q+1) as the

updated sample.
Sampling c. When g(c) is chosen to be the GZS prior specified as (3.8), we

can use a Gibbs sampling step to draw c(q+1). Indeed, the full conditional of c
is found to be

IG
(
m(q+1)|γ(q+1)|/2 + b, pµ + (β

(q+1)

γ(q+1))
TΛ−1

γ(q+1),m(q+1)β
(q+1)

γ(q+1)/(2σ
2
(q+1))

)
.

When g(c) is chosen to be the GHG prior specified as (3.9), we need an
Metropolis-Hastings step. Explicitly, the full conditional of c is

p(c|γ(q+1),β(q+1), σ2
(q+1),m

(q+1), t(q)n ,Dn)

∝ c−m(q+1)|γ(q+1)|/2 exp
(
−(β

(q+1)

γ(q+1))
TΛ−1

γ(q+1),m(q+1)β
(q+1)

γ(q+1)/(2cσ
2
(q+1))

)
g(c).

Write c = exp(κ), then the full conditional of κ is

p(κ|γ(q+1),β(q+1), σ2
(q+1),m

(q+1), t(q)n ,Dn)

∝ exp

(
−
(
m(q+1)|γ(q+1)|/2− 1

)
κ

− (β
(q+1)

γ(q+1))
TΛ−1

γ(q+1),m(q+1)β
(q+1)

γ(q+1)/(2 exp(κ)σ
2
(q+1))

)
g(exp(κ)).

Given an old value κold, draw κnew ∼ N(κold, σ
2
κ) for some fixed σ2

κ. Then accept
κnew with probability

p(κnew|γ(q+1),β(q+1), σ2
(q+1),m

(q+1), t
(q)
n ,Dn)

p(κold|γ(q+1),β(q+1), σ2
(q+1),m

(q+1), t
(q)
n ,Dn)

.

Sampling tn. It is easy to see that the full conditional of tn is uniform over

[|γ(q+1)|, Tn], from which we obtain t
(q+1)
n .

5. Simulation study

In this section we demonstrate the performance of the proposed method through
simulated data. Specifically, we compare our Bayesian method based on GZS
and GHG priors, denoted as BGZS and BGHG respectively, with the itera-
tive nonparametric independence screening combined with penGAM, denoted as
INIS-penGAM, and its greedy modification, denoted as g-INIS-penGAM, both
proposed by [12]. Other well-known approaches include the penalized method
for additive model (penGAM) proposed by [38], and the iterative sure indepen-
dence screening (ISIS) combined with SCAD proposed by [13, 16]; see [12] for
numerical details.

We adopted two simulation settings considered by [12, 25] in the following
examples in which p = 1000 and n = 400. We chose somewhat arbitrarily the
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hyperparameter ν = 6 in the prior (2.4). In both the GZS and GHG priors
defined by (3.8) and (3.9), we chose b = 0. To see how sensitive the results are
with respect to the choice of µ, we considered difference values of µ. The test
functions are defined by

f1(x) = x, f2(x) = (2x− 1)2, f3(x) =
sin(2πx)

2− sin(2πx)
, and

f4(x) = 0.1 sin(2πx)+0.2 cos(2πx)+0.3 sin(2πx)2+0.4 cos(2πx)3+0.5 sin(2πx)3.

Example 5.1. We adopted the simulation setting of Example 3 in [12]. Specifi-
cally, the data were generated from the additive model Y = 5f1(X1)+3f2(X2)+
4f3(X3) + 6f4(X4) +

√
1.74ǫ, where ǫ ∼ N(0, 1). The covariates were simulated

by Xj = (Wj + ρU)/(1+ ρ), j = 1, . . . , p, where Wj ’s and U are iid draws from
uniform distribution over [0, 1]. ρ = 0 yields independent Xj ’s and ρ = 1 yields
dependent covariates with pairwise correlation 0.5.

Example 5.2. We adopted the simulation setting of Example 4 in [12]. This ex-
ample is more challenging in that it contains more true functions than Example
5.1. Specifically, the data were generated from the following model

Y = f1(X1) + f2(X2) + f3(X3) + f4(X4)

+ 1.5f1(X5) + 1.5f2(X6) + 1.5f3(X7) + 1.5f4(X8)

+ 2f1(X9) + 2f2(X10) + 2f3(X11) + 2f4(X12) +
√
0.5184ǫ,

where ǫ ∼ N(0, 1). The covariatesXj ’s were generated according to Example 5.1.

Example 5.3. We reconsidered the model of Example 5.1 by adopting a dif-
ferent signal-to-noise ratio. Specifically, the data were generated from Y =
5f1(X1) + 3f2(X2) + 4f3(X3) + 6f4(X4) +

√
3ǫ, where Xj ’s and ǫ were gen-

erated based on the same scheme as Example 5.1.

In Examples 5.1 and 5.2, [12] used five spline basis functions to represent
the nonparametric functions. In the present paper we considered both Legendre
polynomial basis and trigonometric polynomial basis. In both cases, we chose
m1 = 4 and m2 = 6 so that the number of basis functions m varies around 5 to
enhance flexibility. We used µ = 0.5, 0.6, 0.8 and 0.8, 0.9, 1.1 for the above two
bases, respectively, to demonstrate the insensitivity of the results. The MCMC
algorithm introduced in Section 4 was implemented for posterior sampling. Re-
sults were based on 100 replicated data sets. Based on each data, we generated
Markov chains with length 4000 for each model parameter. The prior for tn
was chosen as uniform in {1, . . . , Tn}. Note in model (2.2) there are at most
m|γ| nonzero Fourier coefficients. In the present setup, this quantity is upper
bounded by mTn. We chose Tn = [n/(3m)] so that the maximum number of
nonzero coefficients does not exceed n/3. In [11, 32] it was shown that the num-
ber of nonzero coefficients cannot exceed n/2 for uniqueness of the solution in
sparse recovery. Here we reduced the upper bound to n/3 to gain more sparse so-
lutions. For GHG prior, we chose σ2

κ = 0.2 for the MH update of κ in sampling c;
see Section 4 for detailed description.



2824 Z. Shang and P. Li

Recall that the Fourier coefficient vector βj may change dimension across it-
erations, i.e., the so-called trans-dimensional problem. The resulting chains may
include varying-dimension components. It is well known in the literature that the
classic approaches for convergence diagnostics may fail. Following [20], we used
the chains of MSE, a natural scalar statistics, to monitor MCMC convergence of
the Fourier coefficients, which successfully resolves the trans-dimensional prob-
lem. Although we are aware that such scalar statistics cannot guarantee conver-
gence of the full chains, its computational convenience is attractive. Moreover,
the scope of the current paper focuses more about the selection and estimation
issues, for which monitoring convergence of the MSE chains is believed to be a
reasonable strategy. In our study we used Gelman-Rubin’s statistics (see [18])
to monitor convergence of the chains relating to MSE and the remaining param-
eters. Confirming chain convergence, we dropped the first half of the posterior
samples as burnings and only used the second half to conduct statistical proce-
dures.

We reported the average number of true positives (TP), the average number
of false positives (FP), the prediction errors (PE) based on BGZS and BGHG,
and compared them with INIS and g-INIS. Marginal inclusion rule is adopted
to select the model. That is, the jth variable is selected if its posterior exclusion
probability Pj = 1 − p(γj = 1|Dn) ≤ p̂ for some quantity p̂ ∈ (0, 1). We
chose p̂ = 0.5 to yield median probability models; see [1]. The TP/FP is the
number of true/false inclusions in the selected model. The PE was calculated

as
∑Q

q=1 ‖Y− Ŷ
(q)‖2/(nQ), where Ŷ

(q)
= Z(q)β(q) is the fitted response value

obtained from the qth iteration. In other words, PE is the average value of the
mean square errors (MSE) along with the iterations.

Results on TP, FP and PE using BGZS and BGHG were summarized in Ta-
bles 1–2 and Tables 3–4, based on Legendre polynomial basis and trigonometric
polynomial basis, respectively. Results on INIS and g-INIS were directly sum-
marized from [12]. In Example 5.1, we observed that, for both bases, BGZS and
BGHG perform equally well as INIS and g-INIS in terms of TP, but perform
better in terms of FP and PE.

In Example 5.2 where Legendre polynomial basis was used, both Bayesian
approaches perform better than INIS and g-INIS. Specifically, when ρ = 1 and
µ = 0.6, both BGZS and BGHG yield larger TP, smaller PE, and comparable
FP; when µ = 0.8, both BGZS and BGHG yield smaller FP and PE, and
comparable TP.

In Example 5.2 where trigonometric basis was used, the performance is not
as good as using Legendre polynomial basis, but is still satisfactory. Specifi-
cally, when ρ = 1 and µ = 0.8, both BGZS and BGHG yield slightly larger
TP and FP than INIS and g-INIS (implying less conservative selection results),
and when µ = 1.1, both methods yield slightly smaller TP and FP (imply-
ing more conservative selection results); when ρ = 0, µ = 0.8 or 0.9, both
BGZS and BGHG can select all the significant variables though they yield
slightly larger FP. In all the cases, the proposed Bayesian methods yield smaller
PE.
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Table 1

Simulation results of Example 5.1 using Legendre polynomial basis

ρ Method TP FP PE
0 INIS 4.00 (0.00) 2.58 (2.24) 3.02 (0.34)

g-INIS 4.00 (0.00) 0.67 (0.75) 2.92 (0.30)
BGZS µ = 0.5 4.00 (0.00) 0.03 (0.17) 2.25 (0.20)

µ = 0.6 4.00 (0.00) 0.02 (0.14) 2.25 (0.16)
µ = 0.8 4.00 (0.00) 0.03 (0.17) 2.23 (0.17)

BGHG µ = 0.5 4.00 (0.00) 0.03 (0.17) 2.25 (0.20)
µ = 0.6 4.00 (0.00) 0.02 (0.14) 2.25 (0.16)
µ = 0.8 4.00 (0.00) 0.03 (0.17) 2.24 (0.17)

1 INIS 3.98 (0.00) 15.76 (6.72) 2.97 (0.39)
g-INIS 4.00 (0.00) 0.98 (1.49) 2.61 (0.26)

BGZS µ = 0.5 3.99 (0.10) 0.06 (0.28) 2.02 (0.16)
µ = 0.6 3.99 (0.10) 0.05 (0.22) 2.00 (0.15)
µ = 0.8 3.99 (0.10) 0.05 (0.22) 2.04 (0.15)

BGHG µ = 0.5 3.98 (0.14) 0.08 (0.30) 2.02 (0.16)
µ = 0.6 3.99 (0.10) 0.06 (0.24) 2.00 (0.15)
µ = 0.8 3.99 (0.10) 0.05 (0.22) 2.04 (0.15)

Table 2

Simulation results of Example 5.2 using Legendre polynomial basis

ρ Method TP FP PE
0 INIS 11.97 (0.00) 3.22 (1.49) 0.97 (0.11)

g-INIS 12.00 (0.00) 0.73 (0.75) 0.91 (0.10)
BGZS µ = 0.5 11.98 (0.14) 0.74 (1.00) 0.60 (0.05)

µ = 0.6 11.98 (0.14) 0.54 (0.86) 0.59 (0.05)
µ = 0.8 11.98 (0.14) 0.41 (0.65) 0.60 (0.05)

BGHG µ = 0.5 11.98 (0.14) 0.70 (0.93) 0.60 (0.05)
µ = 0.6 11.98 (0.14) 0.58 (0.90) 0.59 (0.05)
µ = 0.8 11.98 (0.14) 0.44 (0.67) 0.60 (0.05)

1 INIS 10.01 (1.49) 15.56 (0.93) 1.03 (0.13)
g-INIS 10.78 (0.75) 1.08 (1.49) 0.87 (0.11)

BGZS µ = 0.5 10.75 (0.80) 1.25 (1.30) 0.54 (0.05)
µ = 0.6 10.92 (0.69) 1.08 (1.29) 0.54 (0.05)
µ = 0.8 10.76 (0.79) 0.88 (1.27) 0.54 (0.05)

BGHG µ = 0.5 10.74 (0.75) 1.13 (1.20) 0.54 (0.05)
µ = 0.6 10.86 (0.72) 1.10 (1.18) 0.54 (0.05)
µ = 0.8 10.72 (0.80) 0.82 (1.13) 0.54 (0.05)

The above results are not sensitive to the choice of µ, though certain µ may
yield slightly better performance. Due to the essentially different basis struc-
tures, the feasible ranges of µ should be slightly different. We found that, at
least in the above examples, µ ∈ [0.5, 0.8] and µ ∈ [0.8, 1.1] are feasible ranges
for Legendre polynomial basis and trigonometric polynomial basis. Any choice
of µ within these ranges can provide satisfactory results. Values outside the
ranges may slightly lower the level of accuracy.

In Example 5.3, the values of m1,m2, µ and the prior for tn were chosen
to be the same as in Example 5.1. Results are summarized in Tables 5 and 6,
showing that when signal-to-noise ratio becomes smaller, our method still yields
satisfactory performance in terms of model selection and estimation, although
the results are slightly worse than the stronger signal-to-noise ratio situation as
summarized in Tables 1 and 3.
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Table 3

Simulation results of Example 5.1 using trigonometric polynomial basis

ρ Method TP FP PE
0 INIS 4.00 (0.00) 2.58 (2.24) 3.02 (0.34)

g-INIS 4.00 (0.00) 0.67 (0.75) 2.92 (0.30)
BGZS µ = 0.8 4.00 (0.00) 0.04 (0.19) 2.07 (0.14)

µ = 0.9 4.00 (0.00) 0.06 (0.24) 2.07 (0.15)
µ = 1.1 4.00 (0.00) 0.02 (0.14) 2.09 (0.17)

BGHG µ = 0.8 4.00 (0.00) 0.04 (0.19) 2.07 (0.14)
µ = 0.9 4.00 (0.00) 0.06 (0.24) 2.07 (0.15)
µ = 1.1 4.00 (0.00) 0.02 (0.14) 2.09 (0.17)

1 INIS 3.98 (0.00) 15.76 (6.72) 2.97 (0.39)
g-INIS 4.00 (0.00) 0.98 (1.49) 2.61 (0.26)

BGZS µ = 0.8 4.00 (0.00) 0.08 (0.44) 1.76 (0.15)
µ = 0.9 4.00 (0.00) 0.04 (0.20) 1.78 (0.12)
µ = 1.1 4.00 (0.00) 0.00 (0.00) 1.76 (0.13)

BGHG µ = 0.8 4.00 (0.00) 0.10 (0.46) 1.76 (0.15)
µ = 0.9 4.00 (0.00) 0.04 (0.20) 1.78 (0.12)
µ = 1.1 4.00 (0.00) 0.00 (0.00) 1.76 (0.13)

Table 4

Simulation results of Example 5.2 using trigonometric polynomial basis

ρ Method TP FP PE
0 INIS 11.97 (0.00) 3.22 (1.49) 0.97 (0.11)

g-INIS 12.00 (0.00) 0.73 (0.75) 0.91 (0.10)
BGZS µ = 0.8 12.00 (0.00) 1.22 (1.34) 0.54 (0.05)

µ = 0.9 12.00 (0.00) 1.24 (1.27) 0.54 (0.06)
µ = 1.1 11.88 (0.32) 0.34 (0.77) 0.58 (0.05)

BGHG µ = 0.8 12.00 (0.00) 1.16 (1.40) 0.54 (0.05)
µ = 0.9 12.00 (0.00) 1.10 (1.01) 0.54 (0.05)
µ = 1.1 11.88 (0.33) 0.30 (0.68) 0.58 (0.05)

1 INIS 10.01 (1.49) 15.56 (0.93) 1.03 (0.13)
g-INIS 10.78 (0.75) 1.08 (1.49) 0.87 (0.11)

BGZS µ = 0.8 10.86 (0.67) 2.18 (1.81) 0.44 (0.05)
µ = 0.9 10.76 (0.82) 1.34 (1.56) 0.47 (0.05)
µ = 1.1 10.46 (0.86) 0.50 (0.81) 0.53 (0.05)

BGHG µ = 0.8 10.88 (0.69) 2.06 (1.81) 0.44 (0.05)
µ = 0.9 10.68 (0.82) 1.58 (1.75) 0.47 (0.05)
µ = 1.1 10.44 (0.84) 0.48 (0.76) 0.53 (0.05)

6. A real data example

We apply our method to Near Infrared (NIR) data from the R package “chemo-
metrics.” The NIR data contains n = 166 alcoholic fermentation mashes of
different feedstock (rye, wheat and corn). There are p = 235 predictor vari-
ables containing the first derivatives of near infrared spectroscopy (NIR) ab-
sorbance values at 1115–2285 nm and two response variables containing glu-
cose and ethanol concentrations (in g/L) respectively. This data was recently
considered by [10] who used an approximated posterior likelihood approach.
Each of the 235 variables is believed to be nonlinearly associated with the re-
sponse variable, and hence, a nonparametric model with additive components
was fitted. In our Bayesian selection method we chose m1 = 4 and m2 = 6,
Tn = [n/(3 ∗ m2)] = 9, i.e., the dimension of the target models does not ex-
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Table 5

Simulation results of Example 5.3 using Legendre polynomial basis

ρ Method TP FP PE
0 BGZS µ = 0.5 4.00 (0.00) 0.10 (0.36) 3.50 (0.31)

µ = 0.6 4.00 (0.00) 0.16 (0.42) 3.47 (0.23)
µ = 0.8 4.00 (0.00) 0.16 (0.55) 3.49 (0.31)

BGHG µ = 0.5 4.00 (0.00) 0.10 (0.36) 3.50 (0.31)
µ = 0.6 4.00 (0.00) 0.16 (0.42) 3.47 (0.23)
µ = 0.8 4.00 (0.00) 0.14 (0.54) 3.49 (0.31)

1 BGZS µ = 0.5 3.84 (0.37) 0.92 (1.96) 3.16 (0.36)
µ = 0.6 3.94 (0.24) 0.34 (1.04) 3.15 (0.27)
µ = 0.8 3.78 (0.42) 0.06 (0.31) 3.31 (0.28)

BGHG µ = 0.5 3.84 (0.37) 0.98 (2.16) 3.17 (0.35)
µ = 0.6 3.94 (0.24) 0.46 (1.64) 3.14 (0.29)
µ = 0.8 3.78 (0.42) 0.06 (0.24) 3.31 (0.28)

Table 6

Simulation results of Example 5.3 using Fourier basis

ρ Method TP FP PE
0 BGZS µ = 0.5 4.00 (0.00) 0.96 (1.49) 3.12 (0.32)

µ = 0.6 4.00 (0.00) 0.70 (1.56) 3.20 (0.34)
µ = 0.8 4.00 (0.00) 0.10 (0.30) 3.30 (0.23)

BGHG µ = 0.5 4.00 (0.00) 0.96 (1.60) 3.11 (0.34)
µ = 0.6 4.00 (0.00) 1.00 (2.10) 3.17 (0.34)
µ = 0.8 4.00 (0.00) 0.10 (0.30) 3.32 (0.25)

1 BGZS µ = 0.5 3.96 (0.20) 2.66 (2.70) 2.49 (0.32)
µ = 0.6 3.92 (0.27) 1.16 (2.02) 2.66 (0.31)
µ = 0.8 3.96 (0.20) 0.16 (0.54) 2.99 (0.28)

BGHG µ = 0.5 3.94 (0.24) 3.04 (2.79) 2.45 (0.31)
µ = 0.6 3.92 (0.27) 1.24 (2.08) 2.66 (0.33)
µ = 0.8 3.96 (0.20) 0.14 (0.45) 2.99 (0.27)

ceed 9. All the hyperparameters were chosen to be the same as the simulation
setup in Section 5. Our BGHG and BGZS approaches both select five variables.
Interestingly, we found that our selected model includes the model selected by
[10] using an approximation method. Thus, our method yields a bit more con-
servative selection results.

7. Conclusions

A fully Bayesian approach is proposed to handle the ultrahigh-dimensional non-
parametric additive models, and the theoretical properties are carefully studied.
The numerical results demonstrate satisfactory performance of the method, in
terms of selection and estimation accuracy. The method can achieve high level
accuracy in both Legendre polynomial basis and trigonometric polynomial ba-
sis. Therefore, basis selection is not a critically important issue for the proposed
approach, though, to make the approach highly accurate, the choice of the hy-
perparameter µ in the proposed g-priors should be slightly different in using
different bases. The numerical findings suggest us to use µ ∈ [0.5, 0.8] and
µ ∈ [0.8, 1.1] for Legendre polynomial basis and trigonometric polynomial basis,
respectively. The values outside these ranges are found to merely slightly lower
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the accuracy within an acceptable range. Besides, the choice of m may affect
selection accuracy which needs to be done carefully in practical applications.

The theory and algorithm proposed in this paper can be adapted for the usual
group selection problems where the model is linear and the model coefficients
are grouped. The proposed method in this paper can be adapted without much
difficulty to this setting.

Based on Laplace type approximations, [10] proposed an MCMC free selec-
tion approach in high-dimensional additive models. The method of [10] approxi-
mates the posterior likelihood while our approach directly handles the posterior
likelihood. And hence the difference between the two approaches is mainly due
to the approximation error, though it is believed that the approximation error
asymptotically vanishes.

As an alternative method, [1] proposed median probability selection method.
The median probability selection procedure is essentially a marginal selection
method in the sense that it marginally determines whether or not a variable is in-
cluded based on its marginal posterior probability. The variable is included if its
marginal posterior probability is greater than half. Posterior model consistency
says that the true model has posterior probability tending to one. Therefore,
the variables included in the true model all have posterior probabilities greater
than half. This means that posterior model selection is a stronger result than
median probability selection. In many situations, as a stronger result, posterior
consistency requires stronger conditions than median probability selection. And
hence, it might be more realistic to explore the latter, which is another future
extension of the current paper.
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Appendix: Proofs

To prove Theorem 3.2, we need the following preliminary lemma. The proof is
similar to that of Lemma 1 in [44] and thus is omitted.

Lemma 1. Suppose ǫ ∼ N(0, σ2
0In) is independent of Zj’s. Furthermore,

m2 ≤ n = o(p).

(i). Let νγ,m be an n-dimensional vector indexed by γ ∈ S, a subset of
the model space, and integer 1 ≤ m ≤ m2. Adopt the convention that
νT
γ,mǫ/‖νγ,m‖ = 0 when νγ,m = 0. Let #S denote the cardinality of S

with #S ≥ 2. Then

max
1≤m≤m2

max
γ∈S

|νT
γ,mǫ|

‖νγ,m‖ = OP

(√
log(m2#S)

)
. (8.1)
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In particular, let νγ,m = (In −Pγ)Zγ0\γβ
0
γ0\γ for γ ∈ S2(tn), we have

max
1≤m≤m2

max
γ∈S2(tn)

|νT
γ,mǫ|

‖νγ,m‖ = OP (
√
logm2 + tn log p) = OP (

√
tn log p).

(8.2)
(ii). For any fixed α > 4,

lim
n→∞

P

(
max

1≤m≤m2

max
γ∈S1(tn)

ǫT (Pγ −Pγ0)ǫ/(|γ| − sn) ≤ ασ2
0 log p

)
= 1.

(iii). Adopt the convention that ǫTPγǫ/|γ| = 0 when γ is null. Then for any
fixed α > 4,

lim
n→∞

P

(
max

1≤m≤m2

max
γ∈S2(tn)

ǫTPγǫ/|γ| ≤ ασ2
0 log p

)
= 1.

Proof of Proposition 3.1

Let Cϕ = max1≤j≤p supl≥1 ‖ϕjl‖sup. We first show that (3.3) holds with 1
nZ

T
γ
Zγ

therein replaced with E{ 1
nZ

T
γ
Zγ}. Then we show (3.3) by using concentra-

tion inequalities which establish sharp approximations between 1
nZ

T
γ
Zγ and

E{ 1
nZ

T
γ
Zγ}.

For any aj = (aj1, . . . , ajm)T , j = 1, . . . , p, note Zjaj =
∑m

l=1 ajlΦjl. Define
aγ to be the m|γ|-vector formed by aj ’s with j ∈ γ. Therefore, we obtain that

aT
γ
E{ZT

γ
Zγ}aγ = E







∑

j∈γ

Zjaj




T 

∑

j∈γ

Zjaj








=
∑

j∈γ

E{aTj ZT
j Zjaj}+

∑

j,j′∈γ

j 6=j′

E{aTj ZT
j Zj′aj′}.

Since ϕjl’s are orthonormal inHj , E{aTj ZT
j Zjaj} = nE{(∑m

l=1 ajlϕjl(Xji))
2} =

n
∑m

l=1 a
2
jl. On the other hand, for any j, j′ ∈ γ, j 6= j′, |E{aTj ZT

j Zj′aj′}| =
n|E{∑m

l=1 ajlϕjl(Xji)
∑m

l=1 aj′lϕj′l(Xj′i)}| ≤ nρ(|j−j′|)
√∑m

l=1 a
2
jl

√∑m
l=1 a

2
j′l.

Therefore, by Cauchy’s inequality

∣∣∣∣
∑

j,j′∈γ

j 6=j′

E{aTj ZT
j Zj′aj′}

∣∣∣∣

≤ n
∑

j,j′∈γ

j 6=j′

ρ(|j − j′|)

√√√√
m∑

l=1

a2jl

√√√√
m∑

l=1

a2j′l
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= n

∞∑

r=1

ρ(r)
∑

j∈γ

√√√√
m∑

l=1

a2jl

∑

j′∈γ,|j−j′|=r

√√√√
m∑

l=1

a2j′l

≤ n

∞∑

r=1

ρ(r)

√√√√
∑

j∈γ

m∑

l=1

a2jl

√√√√√
∑

j∈γ




∑

j′∈γ,|j−j′|=r

√√√√
m∑

l=1

a2j′l




2

≤ n

∞∑

r=1

ρ(r)

√√√√∑

j∈γ

m∑

l=1

a2jl

√√√√2
∑

j∈γ

∑

j′∈γ,|j−j′|=r

m∑

l=1

a2j′l

≤ 2n

∞∑

r=1

ρ(r)
∑

j∈γ

m∑

l=1

a2jl.

Therefore, for any m ∈ [m1,m2] and γ 6= ∅,

1−2
∞∑

r=1

ρ(r) ≤ λ−

(
E{ 1

n
ZT
γ
Zγ}

)
≤ λ+

(
E{ 1

n
ZT
γ
Zγ}

)
≤ 1+2

∞∑

r=1

ρ(r). (8.3)

Next we look at the difference∆ = 1
n (Z

T
γ
Zγ−E{ZT

γ
Zγ}). The representative

entry is

1

n

n∑

i=1

[ϕjl(Xji)ϕj′l′(Xj′i)− E{ϕjl(Xji)ϕj′l′(Xj′i)}],

for j, j′ ∈ γ, and l, l′ = 1, . . . ,m. Since ϕjl’s are uniformly bounded by Cϕ,
fixing C > 0 such that C2 > 8C4

ϕ, by Hoeffding’s inequality,

P

(
max

j,j′=1,...,p
l,l′=1,...,m2

∣∣∣∣
n∑

i=1

[ϕjl(Xji)ϕj′l′(Xj′i)− E{ϕjl(Xji)ϕj′l′(Xj′i)}]
∣∣∣∣

≥ C
√
n log p

)

≤ 2

p∑

j,j′=1

m2∑

l,l′=1

2 exp

(
−2C2n log p

4nC4
ϕ

)
≤ 2p4−C2/(2C4

ϕ) → 0, as n→ ∞.

Therefore,

max
j,j′=1,...,p
l,l′=1,...,m2

∣∣∣∣∣

n∑

i=1

[ϕjl(Xji)ϕj′l′(Xj′i)− E{ϕjl(Xji)ϕj′l′(Xj′i)}]
∣∣∣∣∣ = OP (

√
n log p).

Denote ∆j,l;j′,l′ to be the (j, l; j′, l′)-th entry of ∆. By [23], with probability
approaching one, for any γ with |γ| ≤ 2tn, and m ∈ [m1,m2], the spectral norm
of ∆ is upper bounded by

‖∆‖spectral ≤ max
j′,l′

∑

j∈γ,1≤l≤m

|∆j,l;j′,l′ | ≤ C′ t
2
nm

2
2 log p

n
,
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for some fixed large C′ > 0. That is, when n, p→ ∞,

max
|γ|≤2tn

max
m∈[m1,m2]

‖∆‖spectral ≤ C′ t
2
nm

2
2 log p

n
= o(1).

By Weyl’s inequality on eigenvalues (see [23]) and by (8.3), one can properly
choose a small c0 > 0 to satisfy (3.3), which completes the proof. Using similar
proofs of Proposition 2.1 in [42], it can be shown that (3.3) implies Assump-
tion A.1. The details are straightforward and thus are omitted.

Proof of Theorem 3.2

Denote β0
j = (β0

j1, . . . , β
0
jm)T for j = 1, . . . , p. Define kn =

∑
j∈γ0 ‖β0

j‖2 and

ψn = minj∈γ0 ‖β0
j‖. Before giving the proof of Theorem 3.2, we should mention

that Assumption A.3 is actually equivalent to the following Assumption A.4
which assumes the growing rates on terms involving the Fourier coefficients of
the partial Fourier series, i.e., kn and ψn. The difference between Assumptions
A.3 and A.4 is that ln and θn in the former are replaced with kn and ψn in
the latter, respectively. This modified assumption is easier to use in technical
proofs.

Assumption A.4. There exists a positive sequence {hm,m ≥ 1} such that,
as m,m1,m2 → ∞, hm → ∞, m−ahm decreasingly converges to zero, mhm
increasingly converges to ∞, and

∑
m1≤m≤m2

1/hm = o(1). Furthermore, the

sequences m1,m2, hm, sn, tn, ψn, kn, φn
, φ̄n satisfy

(1). m2hm2sn = o(nmin{1, ψ2
n}) and m−a

1 hm1s
2
n = o(min{1, n−1m1 log(φn),

ψ2
n, ψ

4
n});

(2). tn ≥ sn and tn log p = o(n log(1 + min{1, ψ2
n}));

(3). kn = O(φ
n
τ2m2

) and log p = o(m1 log (nφnτ
2
m2

));

(4). m2sn log(1 + nφ̄n) = o(n log(1 + min{1, ψ2
n})).

To see the equivalence, it can be directly shown by (3.1) that uniformly for
m ∈ [m1,m2]

ln − kn =
∑

j∈γ0

∑

l≥m+1

|β0
jl|2 ≤ Cβsnm

−a
1 . (8.4)

On the other hand, for any j ∈ γ0 and any m ∈ [m1,m2], we have ‖f0
j ‖2j =∑m

l=1 |β0
jl|2 +

∑∞
l=m+1 |β0

jl|2 ≤ ∑m
l=1 |β0

jl|2 + Cβm
−a
1 and, obviously, ‖f0

j ‖2j ≥∑m
l=1 |β0

jl|2, which lead to ψ2
n ≤ θ2n ≤ ψ2

n + Cβm
−a
1 . Therefore,

0 ≤ θ2n − ψ2
n ≤ Cβm

−a
1 . (8.5)

By (8.4) and (8.5) and direct examinations, it can be verified that Assumption
A.4 is equivalent to Assumption A.3. We will prove the desired theorem based
on the equivalent Assumptions A.1, A.2 and A.4.
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Throughout the entire section of proof, we use “w.p.a.1” to mean “with prob-
ability approaching one”. Using the trivial fact

p(γ0|Dn) =
1

1 +
∑

γ 6=γ0
p(γ|Dn)
p(γ0|Dn)

,

to obtain the desired result it is sufficient to show
∑

γ 6=γ0
p(γ|Dn)
p(γ0|Dn)

approaches

zero in probability. For any γ with |γ| ≤ tn, consider the following decomposition

− log

(
p(γ|Dn)

p(γ0|Dn)

)

= log

(
p(γ)

p(γ0)

)
+

1

2
log

(
det(Wγ)

det(Wγ0)

)

+
n+ ν

2
log

(
1 +YT (In − ZγU

−1
γ

ZT
γ
)Y

1 +YT (In −Pγ)

)

− n+ ν

2
log

(
1 +YT (In − Zγ0U−1

γ0 Z
T
γ0)Y

1 +YT (In −Pγ0)Y

)

+
n+ ν

2
log

(
1 +YT (In −Pγ)Y

1 +YT (In −Pγ0)Y

)
.

Denote the five terms by J1, J2, J3, J4, J5. It follows by Assumption A.2 that J1
is bounded below uniformly for γ ∈ S(tn). It is also easy to see that J3 ≥ 0
almost surely. To prove J4 is lower bounded, by Sherman-Morrison-Woodbury
(see [47]),

(ZT
γ0Zγ0+Σ−1

γ0 )
−1 =(ZT

γ0Zγ0)−1−(ZT
γ0Zγ0)−1(Σγ0+(ZT

γ0Zγ0)−1)−1(ZT
γ0Zγ0)−1,

and by Σγ0 ≥ φ
n
τ2mImsn and similar calculations in the proof of Theorem 2.2

in [42], it can be shown that

1 +YT (In − Zγ0U−1
γ0 Z

T
γ0)Y

1 +YT (In −Pγ0)Y
≤ 1 + φ−1

n
τ−2
m

YTZγ0(ZT
γ0Zγ0)−2ZT

γ0Y

1 +YT (In −Pγ0)Y
.

Note Y = Zγ0β0
γ0 + η̃, where η̃ = η + ǫ, η =

∑
j∈γ0

∑∞
l=m+1 β

0
jlΦjl, Φjl =

(ϕjl(Xj1), . . . , ϕjl(Xjn))
T , and ǫ = (ǫ1, . . . , ǫn)

T . Since for any m,

E{ǫTPγ0ǫ} = msnσ
2
0 , and

E{‖η‖2} = nE{(
∑

j∈γ0

∞∑

l=m+1

β0
jlϕjl(Xji))

2}

≤ nsn
∑

j∈γ0

E{(
∞∑

l=m+1

β0
jlϕjl(Xji))

2}
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= nsn
∑

j∈γ0

∞∑

l=m+1

|β0
jl|2 ≤ Cβns

2
nm

−a,

where the last inequality follows by assumption (3.1), it can be shown by Bon-
ferroni inequality that as n→ ∞,

P

(
max

m1≤m≤m2

m−1h−1
m ǫTPγ0ǫ ≤ snσ

2
0

)
→ 1, and

P

(
max

m1≤m≤m2

mah−1
m ‖η‖2 ≤ Cβns

2
n

)
→ 1. (8.6)

(8.6) will be frequently used in the proof of the main results in this paper. Since
ηTPγ0η ≤ ‖η‖2, we have, w.p.a.1, for m ∈ [m1,m2],

YTZγ0(ZT
γ0Zγ0)−2ZT

γ0Y

≤ 2
(
‖β0

γ0‖2 + η̃TZγ0(ZT
γ0Zγ0)−2ZT

γ0 η̃
)

≤ 2
(
‖β0

γ0‖2 + c0n
−1η̃TZγ0(ZT

γ0Zγ0)−1ZT
γ0 η̃

)

≤ 2
(
‖β0

γ0‖2 + 2c0n
−1ηTPγ0η + 2c0n

−1ǫTPγ0ǫ
)

≤ 2
(
‖β0

γ0‖2 + 2c0Cβs
2
nm

−ahm + 2c0σ
2
0n

−1mhmsn
)

≤ 2
(
‖β0

γ0‖2 + 2c0Cβs
2
nm

−a
1 hm1 + 2c0σ

2
0n

−1m2hm2sn
)
.

Since kn ≥ snψ
2
n ≫ s2nm

−a
1 hm1 + n−1m2hm2sn, w.p.a.1, for m ∈ [m1,m2],

YTZγ0(ZT
γ0Zγ0)−2ZT

γ0Y ≤ 2kn(1 + o(1)). On the other hand, w.p.a.1, for m ∈
[m1,m2],

YT (In −Pγ0)Y

= η̃T (In −Pγ0)η̃ = ηT (In −Pγ0)η + 2ηT (In −Pγ0)ǫ− ǫTPγ0ǫ+ ǫT ǫ

= O

(
ns2nm

−a
1 hm1 + n

√
s2nm

−a
1 hm1 +m2hm2sn

)
+ ǫT ǫ

= ǫT ǫ+O

(
n

√
s2nm

−a
1 hm1 +m2hm2sn

)
. (8.7)

By (1) in Assumption A.4, (8.7) implies YT (In − Pγ0)Y = nσ2
0(1 + oP (1)).

Therefore, w.p.a.1., for m ∈ [m1,m2],

−J4 ≤ n+ ν

2
log

(
1 +

2kn(1 + o(1))

nφ
n
τ2m2

σ2
0

)
= O(1),

where the last upper bound follows by kn = O(φ
n
τ2m2

), i.e., Assumption A.4
(3). This shows that, w.p.a.1, J4 is lower bounded uniformly for m ∈ [m1,m2]
and cj ’s ∈ [φ

n
, φ̄n].
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Next we approximate J5 in two situations. First, for γ ∈ S2(tn), a direct
calculation leads to

YT (In −Pγ)Y = ‖νγ,m‖2 + 2νT
γ,mη̃ + η̃T (In −Pγ)η̃,

where νγ,m = (In −Pγ)Zγ0\γβγ0\γ . Since w.p.a.1., for m ∈ [m1,m2], η
T (In −

Pγ)η ≤ ‖η‖2 ≤ Cβns
2
nm

−a
1 hm1 , and ǫT (In −Pγ)ǫ ≤ ǫT ǫ ≤ 2nσ2

0 , by Lemma 1
(iii), for a prefixed α > 4

η̃T (In −Pγ)η̃ ≥ ǫT ǫ− ασ2
0tn log p−

√
2Cβσ2

0n
2s2nm

−a
1 hm1 .

Meanwhile, by Lemma 1 (i), for some large constant C′ > 0 and w.p.a.1.,
uniformly for m ∈ [m1,m2], |νT

γ,mǫ| ≤ C′√tn log p‖νγ,m‖ and |νT
γ,mη| ≤√

Cβns2nm
−a
1 hm1‖νγ,m‖. By Assumption A.1, ‖νγ,m‖2 ≥ c−1

0 nψ2
n, therefore

we obtain that

YT (In −Pγ)Y

≥ c−1
0 nψ2

n


1 +OP



√
tn log p

nψ2
n

+

√
ns2nm

−a
1 hm1

nψ2
n




+OP

(
tn log p+ ns2nm

−a
1 hm1

nψ2
n

))
+ ǫT ǫ

= c−1
0 nψ2

n(1 + oP (1)) + ǫT ǫ.

Note Assumption A.4 (1) leads to n
√
s2nm

−a
1 hm1 + m2hm2sn = o(nψ2

n) and

n
√
s2nm

−a
1 hm1 + m2hm2sn = o(n). By (8.7), we have, w.p.a.1., uniformly for

m ∈ [m1,m2],

J5 ≥ n+ ν

2
log

(
1 +

c−1
0 ψ2

n(1 + o(1))

σ2
0

)
≥ n+ ν

2
log
(
1 + C′ψ2

n

)
,

for some large constant C′ > 0.
Next we consider γ ∈ S1(tn). It can be checked by (8.7), Lemma 1 and

straightforward calculations that for a fixed α > 4, w.p.a.1., uniformly for m ∈
[m1,m2],

J5 =
n+ ν

2
log

(
1− η̃T (Pγ −Pγ0)η̃

1 + η̃T (In −Pγ0)η̃

)

≥ n+ ν

2
log

(
1− 2‖η‖2 + 2ǫT (Pγ −Pγ0)ǫ

1 + η̃T (In −Pγ0)η̃

)

≥ n+ ν

2
log


1− 2Cβns

2
nm

−a
1 hm1 + 2(|γ| − sn)ασ

2
0 log p

1 + ǫT ǫ+O

(
n
√
s2nm

−a
1 hm1 +m2hm2sn

)



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≥ n+ ν

2
log

(
1− 2Cβns

2
nm

−a
1 hm1 + 2(|γ| − sn)ασ

2
0 log p

nσ2
0(1 + o(1))

)

≥ −(3Cβσ
−2
0 ns2nm

−a
1 hm1 + 2(|γ| − sn)α0 log p),

where the last inequality follows by tn log p = o(n), i.e., Assumption A.4 (2),
the inequality that log(1 − x) ≥ −2x when x ∈ (0, 1/2), and a suitably fixed
α0 ∈ (4, α).

In the end we analyze the term J2. Using the proof of Lemma A.2 in [42], it
can be shown that for any cj ’s ∈ [φ

n
, φ̄n] and m ∈ [m1,m2],

J2 ≥ 1

2
m1(|γ| − sn) log

(
1 + c−1

0 nφ
n
τ2m2

)
for any γ ∈ S1(tn), and

J2 ≥ −m2sn
2

log
(
1 + c0nφ̄nτ

2
1

)
for any γ ∈ S2(tn). (8.8)

To make the proofs more readable, we give the brief proof of (8.8). When
γ ∈ S1(tn), by Sylvester’s determinant formula (see [47]), Assumption A.1 and
straightforward calculations we have

det(Uγ) = det(Uγ0) det
(
Σ−1

γ\γ0 + ZT
γ\γ0(In − Zγ0U−1

γ0 Z
T
γ0)Zγ\γ0

)

≥ det(Uγ0) det
(
Σ−1

γ\γ0 + ZT
γ\γ0(In −Pγ0)Zγ\γ0

)

≥ det(Uγ0) det
(
Σ−1

γ\γ0 + c−1
0 nIm|γ\γ0|

)
.

Therefore,

det(Wγ)

det(Wγ0)
=

det(Σγ)

det(Σγ0)
· det(Uγ)

det(Uγ0)

≥
(
1 + c−1

0 nφ
n
τ2m

)m(|γ|−sn)

≥
(
1 + c−1

0 nφ
n
τ2m2

)m1(|γ|−sn)

.

Taking logarithm on both sides, we obtain the first inequality in (8.8). When
γ ∈ S2(tn), since det(Wγ) ≥ 1, the second inequality in (8.8) follows by

J2 ≥ −1

2
log(det(Wγ0)) = −1

2
log
(
det
(
Imsn +Σ

1/2
γ0 ZT

γ0Zγ0Σ
1/2
γ0

))

≥ −msn
2

log
(
1 + c0nφ̄nτ

2
1

)
≥ −m2sn

2
log
(
1 + c0nφ̄nτ

2
1

)
.

To the end of the proof, we notice that based on the above approximations
of J1 to J5, there exist some large positive constants C̃ and N such that when
n ≥ N , w.p.a.1., for any cj’s ∈ [φ

n
, φ̄n] and m ∈ [m1,m2],

∑

γ∈S1(tn)

p(γ|Dn)

p(γ0|Dn)

≤ C̃
∑

γ∈S1(tn)

exp
(
3Cβσ

−2
0 ns2nm

−a
1 hm1 + 2α0(|γ| − sn) log p
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− m1(|γ| − sn)

2
log(1 + c−1

0 nφ
n
τ2m2

)

)

= C̃

tn∑

v=sn+1

(
p− sn
v − sn

)(
p2α0 exp(3Cβσ

−2
0 ns2nm

−a
1 hm1)

(1 + c−1
0 nφ

n
τ2m2

)m1/2

)v−sn

= C̃

tn−sn∑

v=1

(
p− sn
v

)(
p2α0 exp(3Cβσ

−2
0 ns2nm

−a
1 hm1)

(1 + c−1
0 nφ

n
τ2m2

)m1/2

)v

≤ C̃

tn−sn∑

v=1

pv

v!

(
p2α0 exp(3Cβσ

−2
0 ns2nm

−a
1 hm1)

(1 + c−1
0 nφ

n
τ2m2

)m1/2

)v

≤ C̃

(
exp

(
p2α0+1 exp(3Cβσ

−2
0 ns2nm

−a
1 hm1)

(1 + c−1
0 nφ

n
τ2m2

)m1/2

)
− 1

)
→ 0, as n→ ∞,

where the last limit follows by Assumption A.4 (1) & (3), and by Assumption A.4
(4) we can make N large enough so that m2sn log(1 + c0nφ̄nτ

2
1 ) ≤ n+ν

2 log(1 +
C′ψ2

n) for n ≥ N , which leads to

∑

γ∈S2(tn)

p(γ|Dn)

p(γ0|Dn)

≤ C̃
∑

γ∈S2(tn)

exp

(
1

2
m2sn log(1 + c0nφ̄nτ

2
1 )−

n+ ν

2
log(1 + C′ψ2

n)

)

≤ C̃
∑

γ∈S2(tn)

exp

(
−n+ ν

4
log(1 + C′ψ2

n)

)

≤ C̃ ·#S2(tn) · (1 + C′ψ2
n)

−(n+ν)/4

≤ C̃ · ptn · (1 + C′ψ2
n)

−(n+ν)/4 → 0, as n→ ∞,

where the last limit follows by Assumption A.4 (2). This completes the proof of
Theorem 3.2.

Before proving Theorem 3.4, we need the following lemma. The proof is sim-
ilar to that of Lemma 2 in [44] and thus is omitted.

Lemma 2. Suppose ǫ ∼ N(0, σ2
0In). Adopt the convention that νT

γ
ǫ/‖νγ‖ =

0 when νγ = 0, and ǫTPγǫ/|γ| = 0 when γ is null. Furthermore, m2 ≤ n =
o(p).

(i). For γ ∈ T0(tn), define νγ = (In −Pγ)Zγ0\γβ
0
γ0\γ . Then

max
1≤m≤m2

max
γ∈T0(tn)

|νT
γ
ǫ|

‖νγ‖
= OP (

√
sn + logm2).

(ii). For γ ∈ T1(tn), denote γ∗ = γ ∩ γ0 which is non-null. For any fixed
α > 6,

lim
n→∞

P

(
max

1≤m≤m2

max
γ∈T1(tn)

ǫT (Pγ −Pγ∗)ǫ

|γ| − |γ∗| ≤ ασ2
0sn log p

)
= 1.
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(iii). Then for any fixed α > 4,

lim
n→∞

P

(
max

1≤m≤m2

max
γ∈T2(tn)

ǫTPγǫ/|γ| ≤ ασ2
0 log p

)
= 1.

Proof of Proposition 3.3

Let Cϕ = max1≤j≤p supl≥1 ‖ϕjl‖sup. By Proposition 3.1, we obtain that (3.5)
holds. Next we show that (3.6) holds with ρn ∝ m2s

2
n log p. Define ∆ =

ZT
γ0\γPγZγ0\γ . The diagonal entry of ∆ is ∆j,l = ΦT

jlPγΦjl for j ∈ γ0\γ,
and l = 1, . . . ,m. By [5], any random variable ξ almost surely bounded by
a number b > 0 satisfies E{exp(aξ)} ≤ exp(a2b2/2), i.e., ξ is sub-Gaussian.
Since ϕjl(Xji), i = 1, . . . , n, are independent and uniformly bounded by Cϕ, for
any n-vector a = (a1, . . . , an)

T , E{exp(aTΦjl)} =
∏n

i=1 E{exp(aiϕjl(Xji))} ≤∏n
i=1 exp(a

2
iC

2
ϕ/2) = exp(‖a‖2C2

ϕ/2), that is, Φjl is sub-Gaussian. By Theorem

2.1 of [27], for some C > 2 which implies 5CC2
ϕ|γ| log p > C2

ϕ(|γ|+2
√
|γ|t+2t)

with t = C|γ| log p, we have

P


 max

m∈[m1,m2]
max

0<|γ|<sn
max

j∈γ
0\γ

l=1,...,m

ΦT
jlPγΦjl/|γ| ≥ CC2

ϕ log p




≤
∑

1≤m≤m2

∑

0<|γ|<sn

∑

j∈γ
0\γ

l=1,...,m

P
(
ΦT

jlPγΦjl ≥ CC2
ϕ|γ| log p

)

≤
∑

1≤m≤m2

∑

0<|γ|<sn

∑

j∈γ
0\γ

l=1,...,m

E

{
P

(
ΦT

jlPγΦjl ≥ CC2
ϕ|γ| log p

∣∣∣∣Pγ

)}

≤
∑

1≤m≤m2

∑

0<|γ|<sn

∑

j∈γ
0\γ

l=1,...,m

exp(−C|γ| log p)

≤ m2
2sn

sn−1∑

r=1

(
p

r

)
p−Cr ≤ m2

2sn

sn−1∑

r=1

pr

r!
p−Cr ≤ m2

2sn(exp(p
1−C)− 1)

= O(m2
2sn/p) = o(1),

therefore,

max
m∈[m1,m2]

max
0<|γ|<sn

max
j∈γ

0\γ
l=1,...,m

ΦT
jlPγΦjl/|γ| = OP (log p).

So with probability approaching one, for any m ∈ [m1,m2] and γ ∈ T (sn −
1)\{∅}, λ+(ZT

γ
PγZγ) ≤ trace(ZT

γ
PγZγ) ≤ C′m2s

2
n log p, for some large con-

stant C′ > 0. This completes the proof.
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Proof of Theorem 3.4 (i)

Like in Assumption A.4, one can replace θn and ln in Assumption B.3 by ψn

and kn while preserving an equivalent condition. Specifically, by the statements
in the beginning of Theorem 3.2, it can be shown that the following assumption
is an equivalent version of Assumption B.3.

Assumption B.4. There exists a positive sequence {hm,m ≥ 1} such that,
as m,m1,m2 → ∞, hm → ∞, m−ahm decreasingly converges to zero, mhm
increasingly converges to ∞, and

∑
m1≤m≤m2

1/hm = o(1). Furthermore, the
sequences m1,m2, hm, sn, ψn, kn, φn satisfy

(1). m2hm2sn = o(nmin{1, ψ2
n}) andm−a

1 hm1s
2
n = o(min{1, n−1m1 log(φn

), ψ2
n});

(2). kn = O(φ
n
τ2m2

);

(3). max{ρn, s2n log p} = o(min{n,m1 log(nφnτ
2
m2

)}).
Next we will prove the theorem based on Assumptions B.1, B.2 and B.4. We

first show that w.p.a.1, for m ∈ [m1,m2], maxγ∈T1(tn) p(γ|Dn)/p(γ ∩ γ0|Dn)
converges to zero. Since the denominator is bounded by maxγ∈T0(tn) p(γ|Dn),
it follows that maxγ∈T1(tn) p(γ|Dn)/maxγ∈T0(tn) p(γ|Dn) → 0 in probability.
Second, we show, w.p.a.1, for m ∈ [m1,m2], maxγ∈T2(tn) p(γ|Dn)/p(∅|Dn) → 0.
This will complete the proof. Next we proceed in two steps.

Step 1: Consider the following decomposition for γ ∈ T1(tn),

− log

(
p(γ|Dn)

p(γ∗|Dn)

)

= − log

(
p(γ)

p(γ∗)

)
+

1

2
log

(
det(Wγ)

det(Wγ∗)

)

+
n+ ν

2
log

(
1 +YT (In − ZγU

−1
γ

ZT
γ
)Y

1 +YT (In −Pγ)Y

)

− n+ ν

2
log

(
1 +YT (In − Zγ∗U−1

γ∗ ZT
γ∗)Y

1 +YT (In −Pγ∗)Y

)

+
n+ ν

2
log

(
1 +YT (In −Pγ)Y

1 +YT (In −Pγ∗)Y

)
,

where γ∗ = γ ∩ γ0 6= ∅. Denote the five items by J1, J2, J3, J4, J5. We use the
methods in the proof of Theorem 3.2 to analyze the five terms. Note that J1
is bounded below by Assumption B.2, and J3 ≥ 0 almost surely. To handle J4,
using Sherman-Morrison-Woodbury matrix identity,

1 +YT (In − Zγ∗U−1
γ∗ZT

γ∗)Y

1 +YT (In −Pγ∗)Y

= 1+
YTZγ∗((ZT

γ∗Zγ∗)−1 −U−1
γ∗ )ZT

γ∗Y

1 +YT (In −Pγ∗)Y
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= 1 +
YTZγ∗(ZT

γ∗Zγ∗)−1(Σγ∗ + (ZT
γ∗Zγ∗)−1)−1(ZT

γ∗Zγ∗)−1ZT
γ∗Y

1 +YT (In −Pγ∗)Y

≤ 1 + φ−1

n
τ−2
m

YTZγ∗(ZT
γ∗Zγ∗)−2ZT

γ∗Y

1 +YT (In −Pγ∗)Y

≤ 1+2φ−1

n
τ−2
m

(β0
γ0)TZT

γ0Zγ∗(ZT
γ∗Zγ∗)−2ZT

γ∗Zγ0β0
γ0 + η̃TZγ∗(ZT

γ∗Zγ∗)−2ZT
γ∗ η̃

1 +YT (In −Pγ∗)Y
.

Without loss of generality, assume Zγ0 = (Zγ∗ ,Zγ0\γ∗) and β0
γ0 = ((β0

γ∗)T ,

(β0
γ0\γ∗)T )T . By a direct calculation it can be examined that

ZT
γ0Zγ∗(ZT

γ∗Zγ∗)−2ZT
γ∗Zγ0

=

(
I|γ∗| (ZT

γ∗Zγ∗)−1ZT
γ∗Zγ0\γ∗

ZT
γ0\γ∗Zγ∗(ZT

γ∗Zγ∗)−1 ZT
γ0\γ∗Zγ∗(ZT

γ∗Zγ∗)−2ZT
γ∗Zγ0\γ∗

)
.

By Assumption B.1, w.p.a.1, for γ ∈ T2(tn) and m ∈ [m1,m2],

λ+

(
ZT
γ0\γ∗Zγ∗(ZT

γ∗Zγ∗)−2ZT
γ∗Zγ0\γ∗

)
≤ d0

n
λ+
(
Zγ0\γ∗Pγ∗Zγ0\γ∗

)
≤ d0ρn

n
,

which implies, w.l.p., λ+(Z
T
γ0Zγ∗(ZT

γ∗Zγ∗)−2ZT
γ∗Zγ0) ≤ 1 + d0ρn

n . Therefore, it
can be shown that

(β0
γ0)TZT

γ0Zγ∗(ZT
γ∗Zγ∗)−2ZT

γ∗Zγ0β0
γ0 ≤ (1 +

d0ρn
n

)kn.

On the other hand, by (8.6) in the proof of Theorem 3.2, it can be shown that,
w.p.a.1, for m ∈ [m1,m2], η̃

TZγ∗(ZT
γ∗Zγ∗)−2ZT

γ∗ η̃ ≤ 2d0

n (‖η‖2 + ǫTPγ0ǫ) ≤
2d0

n (σ2
0snm2hm2 + Cβm

−a
1 hm1ns

2
n). Meanwhile, by (8.7), YT (In − Pγ∗)Y ≥

YT (In−Pγ0)Y = ǫT ǫ+O(n
√
s2nm

−a
1 hm1+m2hm2sn). So form ∈ [m1,m2], and

cj’s ∈ [φ
n
, φ̄n], we have 0 ≤ −J4 ≤ n+ν

2 log(1 + 2(1+d0ρn/n)kn(1+oP (1))
nφ

n
τ2
m2

σ2
0

) = OP (1)

since kn = O(φ
n
τ2m2

) (see Assumption B.4).
To approximate J5, without loss of generality, we may assume Zγ0 = (Zγ∗ ,

Zγ0\γ∗) and β
0
γ0 = ((β0

γ∗)T , (β0
γ0\γ∗)T )T . It can be shown by Assumption B.1,

B.4 (1), (8.6), and Lemma 2 (ii) that

YT (Pγ −Pγ∗)Y

≤ 2(β0
γ0\γ∗)TZT

γ0\γ∗(Pγ −Pγ∗)Zγ0\γ∗β0
γ0\γ∗ + 4ηT (Pγ −Pγ∗)η

+ 4ǫT (Pγ −Pγ∗)ǫ

≤ 2ρn‖β0
γ0\γ∗‖2 + 4(Cβns

2
nm

−a
1 hm1 + ασ2

0s
2
n log p)

≤ 2gn(‖β0
γ0\γ∗‖2 + α1),

where gn = max{ρn, ns2nm−a
1 hm1 , s

2
n log p}, α > 4 and α1 are fixed positive

constants. On the other hand, define νγ∗,m = (In − Pγ∗)Zγ0\γ∗β0
γ0\γ∗ . Then
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by Assumption B.1, ‖νγ∗,m‖2 ≥ (d−1
0 n−ρn)‖β0

γ0\γ∗‖2. By Lemma 2 (i), w.p.a.1,
for any m ∈ [m1,m2] and γ ∈ T1(tn),

YT (In −Pγ∗)Y

= ‖νγ∗,m‖2 + 2νT
γ∗,mη̃ + η̃T (In −Pγ∗)η̃

≥ ‖νγ∗,m‖2

1 +O



√
sn + logm2 +

√
ns2nm

−a
1 hm1√

nψ2
n






+ ǫT ǫ− ǫTPγ0ǫ− 2‖η‖ · ‖ǫ‖

= ‖νγ∗,m‖2

1 +O



√
sn + logm2 +

√
ns2nm

−a
1 hm1√

nψ2
n






+ ǫT ǫ− σ2
0snm2hm2 − 2C′

√
Cβn2s2nm

−a
1 hm1

= ((d−1
0 n− ρn)‖β0

γ0\γ∗‖2 + nσ2
0)(1 + o(1)),

for some constant C′ > 0. Therefore, for some large positive constant C′′,
w.p.a.1, for any m ∈ [m1,m2] and γ ∈ T1(tn),

J5 =
n+ ν

2
log

(
1− YT (Pγ −Pγ∗)Y

YT (In −Pγ∗)Y

)

≥ n+ ν

2
log

(
1−

2gn(‖β0
γ0\γ∗‖2 + α1)

((d−1
0 n− ρn)‖β0

γ0\γ∗‖2 + nσ2
0)(1 + o(1))

)
≥ −C′′gn.

By similar arguments in the proof of Theorem 3.2, it can be shown that for
any m ∈ [m1,m2], cj’s ∈ [φ

n
, φ̄n], and γ ∈ T1(tn), J2 ≥ m1

2 log(1 + (d−1
0 n −

ρn)φn
τ2m2

). So, w.p.a.1, for any m ∈ [m1,m2] and γ ∈ T1(tn), for some constant

C̃ > 0

p(γ|Dn)

p(γ∗|Dn)
≤ C̃ exp

(
−m1

2
log
(
1 + (nd−1

0 − ρn)φn
τ2m2

)
+ C′′gn

)
→ 0.

Thus, maxm∈[m1,m2]maxcj∈[φ
n
,φ̄n]

maxγ∈T1(tn) p(γ|Dn)

maxγ∈T0(tn) p(γ|Dn)
= oP (1).

Step 2: Next we consider the following decomposition for γ ∈ T2(tn),

− log

(
p(γ|Dn)

p(∅|Dn)

)

= − log

(
p(γ)

p(∅)

)
+

1

2
log

(
det(Wγ)

det(W∅)

)

+
n+ ν

2
log

(
1 +YT (In − ZγU

−1
γ

ZT
γ
)Y

1 +YT (In −Pγ)Y

)

+
n+ ν

2
log

(
1 +YT (In −Pγ)Y

1 +YTY

)
.
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Denote the above four terms by J1, J2, J3, J4. It is clear that J1 is lower bounded,
and J3 ≥ 0. We approximate J4. For γ ∈ T2(tn), let νγ,m = PγZγ0β0

γ0 . By
Assumption B.1, ‖νγ,m‖2 ≤ ρnkn. Thus, by Lemma 2, for some fixed α > 4, for
any m ∈ [m1,m2],

YTPγY ≤ 2
(
‖νγ,m‖2 + 2ηTPγη + 2ǫTPγǫ

)

≤ 2(ρnkn + 2Cβns
2
nm

−a
1 hm1 + 2ασ2

0sn log p) ≤ 2gn(kn + α2),

where gn = max{ρn, ns2nm−a
1 hm1 , sn log p}, and α2 is some fixed positive con-

stant. On the other hand, since E{|(Zγ0β0
γ0)T ǫ|2/‖Zγ0β0

γ0‖2} = σ2
0 we have

|(Zγ0β0
γ0)T ǫ|/‖Zγ0β0

γ0‖ = OP (1). Thus, |(Zγ0β0
γ0)T η̃| ≤ ‖Zγ0β0

γ0‖ · (‖η‖ +

OP (1)). Since
√
s2nm

−a
1 hm1 = o(ψ2

n) = o(kn), we have

YTY = ‖Zγ0β0
γ0‖2 + 2(Zγ0β0

γ0)T η̃ + η̃T η̃

= ‖Xγ0β
0
γ0‖2


1 +OP



√

1 + ns2nm
−a
1 hm1

nkn




+ nσ2

0(1 + oP (1))

+OP

(√
n2s2nm

−a
1 hm1

)

= ‖Xγ0β0
γ0‖2 (1 + oP (1)) + nσ2

0(1 + oP (1))

≥ (d−1
0 nkn + nσ2

0) · (1 + oP (1)).

Therefore, w.p.a.1, for γ ∈ T2(tn) and m ∈ [m1,m2],

J4 ≥ n+ ν

2
log

(
1− 2gn(kn + α2)

(d−1
0 nkn + nσ2

0)

)
≥ −C′gn,

for some large constant C′ > 0.
Meanwhile, by similar proof in Step 1, it can be verified that for γ ∈ T2(tn)

and m ∈ [m1,m2], J2 ≥ m1

2 log(1 + nd−1
0 φ

n
τ2m2

) which holds for cj ’s ∈ [φ
n
, φ̄n].

Then w.p.a.1, for γ ∈ T2(tn), cj ’s ∈ [φ
n
, φ̄n] and m ∈ [m1,m2],

p(γ|Dn)

p(∅|Dn)
≤ C̃ exp

(
−m1

2
log(1 + nd−1

0 φ
n
τ2m2

) + C′gn
)
= oP (1),

where C̃ is some large positive constant. This shows

max
m∈[m1,m2]

max
cj∈[φ

n
,φ̄n]

maxγ∈T2(tn) p(γ|Dn)

maxγ∈T0(tn) p(γ|Dn)
= oP (1).

This shows the desired result.

Proof of Theorem 3.4 (ii)

Under Assumption B.4, it can be shown using similar arguments in the begin-
ning of the proof of Theorem 3.2 that Assumption A.3 (4) is equivalent to the
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following assumption, i.e., Assumption A.4 (4),

m2sn log(1 + nφ̄n) = o(n log(1 + min{1, ψ2
n})). (8.9)

Similarly, (3.7) can be shown to be equivalent to

‖β0
γ0\γ‖2 ≤ b′0‖β0

γ
‖2, (8.10)

where b′0 > 0 is constant. To see this, using (3.1) and ψ2
n ≫ m−a

1 (see As-
sumption B.4 (1)), it can be shown that

∑
j∈γ

‖f0
j ‖2j = ‖β0

γ
‖2(1 + o(1)) and∑

j∈γ0\γ ‖f0
j ‖2j = ‖β0

γ0\γ‖2(1 + o(1)), uniformly for m ∈ [m1,m2]. Then it can

be seen that (8.10) is equivalent to (3.7). Next we will prove the theorem based
on Assumptions B.1, B.2, B.4, (8.9) and (8.10).

For the γ specified in the theorem, we consider the following decomposition

− log

(
p(∅|Z)
p(γ|Z)

)

= − log

(
p(∅)
p(γ)

)
+

1

2
log

(
1

det(Wγ)

)

− n+ ν

2
log

(
1 +YT (In − ZγU

−1
γ

ZT
γ
)Y

1 +YT (In −Pγ)Y

)

+
n+ ν

2
log

(
1 +YTY

1 +YT (In −Pγ)Y

)
.

Denote the above four terms by J1, J2, J3, J4. Again, J1 has finite lower bound.
By similar proof in Step 1 of Theorem 3.4, one can show that w.p.a.1, for
m ∈ [m1,m2] and cj ’s ∈ [φ

n
, φ̄n], 0 ≤ −J3 = OP (1).

To analyze J4, note J4 = n+ν
2 log(1+

Y
T
PγY

1+YT (In−Pγ)Y
). Let νγ,m = PγZγ0β0

γ0 .

It can be directly examined by property ofPγ that νγ,m =Zγβ
0
γ
+PγZγ0\γβ

0
γ0\γ .

By Assumption B.1 and ‖β0
γ0\γ‖2 ≤ b′0‖β0

γ
‖2, i.e., (8.10), we have

|(β0
γ
)TZT

γ
PγZγ0\γβ

0
γ0\γ | ≤ ‖Zγβ

0
γ
‖ ·
√
ρnb′0‖β0

γ
‖.

Meanwhile, ‖Zγβ
0
γ
‖2 ≥ nd−1

0 ‖β0
γ
‖2. Therefore, by ρn = o(n), it can be shown

that

‖νγ,m‖2 = ‖Zγβ
0
γ
‖2
(
1 +

2(β0
γ
)TZT

γ
PγZγ0\γβ

0
γ0\γ

‖Zγβ
0
γ
‖2

+
‖PγZγ0\γβ

0
γ0\γ‖2

‖Zγβ
0
γ
‖2

)

= ‖Zγβ
0
γ
‖2(1 + o(1)),

for all m ∈ [m1,m2]. Since for each m ∈ [m1,m2], ν
T
γ,mǫ/‖νγ,m‖ ∼ N(0, σ2

0),

we obtain maxm∈[m1,m2] |νT
γ,mǫ|/‖νγ,m‖ = OP (

√
logm2). Also note, w.p.a.1,
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for m ∈ [m1,m2], |νT
γ,mη| ≤ ‖νγ,m‖ · ‖η‖ ≤

√
Cβns2nm

−a
1 hm1‖νγ,m‖, thus we

obtain that

YTPγY ≥ ‖νγ,m‖2 + 2νT
γ,mη̃

= ‖νγ,m‖2

1 +OP



√
ns2nm

−a
1 hm1 + logm2

nψ2
n






≥ nd−1
0 ‖β0

γ
‖2(1 + oP (1)).

To approximate YT (In −Pγ)Y, let ν̃γ,m = (In −Pγ)Zγ0\γβ
0
γ0\γ . It can be

verified that maxm∈[m1,m2] |ν̃T
γ,mǫ|/‖ν̃γ,m‖ = OP (

√
logm2), and, by Assump-

tion B.1, we have ‖ν̃γ,m‖2 ≥ (nd−1
0 − ρn)‖β0

γ0\γ‖2, and ‖ν̃γ,m‖2 ≤
nd0‖β0

γ0\γ‖2 ≤ nd0b
′
0‖β0

γ
‖2. Therefore, it can be shown by direct calculation

that w.p.a.1, for m ∈ [m1,m2],

YT (In−Pγ)Y ≤ (‖ν̃γ,m‖2+nσ2
0)(1+oP (1)) ≤ (nd0b

′
0‖β0

γ
‖2+nσ2

0)(1+oP (1)).

Therefore, w.p.a.1, for m ∈ [m1,m2],

J4 ≥ n+ ν

2
log

(
1 +

nd−1
0 ‖β0

γ
‖2(1 + o(1))

(nd0b′0‖β0
γ
‖2 + nσ2

0)

)

≥ n+ ν

2
log

(
1 +

1 + o(1)

d20b
′
0

· ψ2
n

ψ2
n + ζ0

)
,

where ζ0 = σ2
0/(d0b

′
0) and the last inequality follows by ‖β0

γ
‖2 ≥ ψ2

n. Therefore,

we can obtain that J4 ≥ n+ν
2 log(1 + 1+o(1)

d2
0b

′

0
·min{1/2, ψ2

n/(2ζ0)}).
Finally, by the proof of (8.8), it can be shown that w.p.a.1, for m ∈ [m1,m2],

J2 ≥ −m2sn
2 log(1+d0nφ̄nτ

2
1 ). So by (8.9), w.p.a.1, for m ∈ [m1,m2], as n→ ∞,

p(∅|Dn)

p(γ|Dn)

≤ C̃ exp
(m2sn

2
log(1 + d0nφ̄nτ

2
1 )

− n+ ν

2
log

(
1 +

1 + o(1)

d20b
′
0

·min{1/2, ψ2
n/(2ζ0)}

))
→ 0,

where C̃ is a large positive constant. This completes the proof.
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