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1. Introduction

Studying the relationship between a response variable and a explanatory vari-
able is one of the most important statistical analysis. Usually this relationship
is modeled with the regression function. However, it is well known, this non-
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parametric model is not efficient in some pathological situations. For instance,
the multi-modal densities case, the case where the expected value might be
nowhere near a mode or for situations in which confidence intervals are pre-
ferred to point estimates. In all these case the conditional density is a pertinent
model to explore this relationship. The main purpose of this paper is to study
this nonparametric model when the response variable is subject to censoring,
by using a kernel recursive estimation method.

Noting that the nonparametric modeling of censored data is intensively dis-
cussed in the recent statistical literature. It dates back to [5], who introduced
a class of nonparametric regression estimators for the conditional survival func-
tion in the presence of right-censoring. [8, 9] studied the asymptotic properties
of the distribution and quantiles functions estimators. [17] gave a simpler proof
in the randomly right-censoring case for kernel, nearest neighbor, least squares
and penalized least squares estimates. Further results was obtained by [15, 16].
Concerning the nonparametric conditional model, we cite for the conditional
model in both (iid and mixing case) and for conditional quantiles function. In
this vast variety of papers, the authors use the Nadaraya-Watson techniques as
estimation method which is a particular case of the recursive kernel estimator
considered in this paper. Moreover, this last has various advantages over the
kernel method. We deal with recursive kernel estimators where, by recursive
we mean that the estimator calculated from the first n observations, say fn+1,
is only a function of fn and the (n+ 1)−th observation. As is well known, the
recursive property is particularly interesting when the sample data are obtained
by mean of some observational mechanism that allows an increase in the sample
size over time. This situation is usual in many control and supervision problems
and, above all, in time series analysis. In the above cases, the recursive estimates
allow us to update the estimations as additional observations are obtained, un-
like non-recursive methods where estimates must be completely recalculated
when each additional item of data received. From a practical point of view,
this iterative procedure provides an important saving in computational time
and memory, since the updating of the estimates is independent of the previous
sample size. It is not the case for the basic kernel estimator which has to be
computed again on the whole sample. Recursive estimators show good theoreti-
cal properties, from the point of view of mean square error (small variance) and
almost sure convergence.

The first recursive modifications of the Nadaraya-Watson estimate have been
introduced by [1] and [12] say (AL) and (DW). In complete data, Kernel recur-
sive estimators have been introduced by [27] and [28]. Next [10, 11, 23, 26] have
independently studied the rates of the almost sure convergence of particular
recursive density estimates.

The law of the iterated logarithm of the recursive density estimator was
established by [25] and [23]. For other works on recursive density estimation,
the reader is referred to the papers of [1] and [6]. Recently, in a context of
α-mixing processes, [2] gave the exact asymptotic quadratic error of a general
family of kernel estimator, whose (AL) and (DW) are particular cases. The
asymptotic normality of the same family is obtained by [4].
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The recursive regression estimator for identically independent distributed
(i.i.d.) random variables has been studied by many authors among whom we
quote [1, 18] and [24] for a nonparametric approach and [21] for semi-parametric
models. In the strong mixing case, [22] derived the uniform almost sure conver-
gence for (DW), while [23] showed its asymptotic normality. [20] studied some
properties of local polynomial regression for dependent data.

Despite this great importance the recursive kernel estimation of censored
nonparametric has not yet been fully explored. The present work is the first
contribution that consider a recursive estimate in censored data. The main aim
of this contribution is to study the asymptotic properties of the recursive ker-
nel estimator of the conditional density and its derivatives, under random right
censoring. Specifically, the asymptotic properties stated are the strong conver-
gence and the asymptotic normality of these estimators. The paper is organized
as follows. We present our model in Section 2. In Section 3 we introduce nota-
tions, assumptions and we state the main results. Finally, the proofs of the main
results are relegated to Section 4 with some auxiliary results with their proofs.

2. Presentation of estimates

Consider n pairs of independent random variables (Xi, Ti) for i = 1, . . . , n that
we assume drawn from the pair (X,T ) which is valued in R

d × R. In this pa-
per we consider the problem of nonparametric estimation of the conditional
density of Y given X = x when the response variable Yi are rightly censored.
Furthermore, we denote by (Ci)i=1,...n the censoring random variables which
are supposed independent and identically distributed with a common unknown
continuous distribution function G.Thus, we construct our estimators by the
observed variables (Xi, Yi, δi)i=1,...n, where Yi = Ti ∧ Ci and δi = 1{Ti≤Ci},
where 1A denotes the indicator function of the set A.

To follow the convention in biomedical studies, we assume that (Ci)1≤i≤n and
(Ti, Xi)1≤i≤n are independent; this condition is plausible whenever the censoring
is independent of the modality of the patients.

The cumulative distribution function G, of the censoring random variables,
is estimated by [14] estimator defined as follows

Ḡn(t) =





n∏

i=1

(
1− 1− δ(i)

n− i+ 1

)1{Y(i)≤t}

if t < Y(n)

0 otherwise

,

which is known to be uniformly convergent to Ḡ.
Given i.i.d. observations (X1, Y1, δ1), . . . , (Xn, Yn, δn) of (X,Y, δ), the kernel

estimate of the conditional density φ(t|x) denoted φ̄n(t|x), is defined by

∀x ∈ R
d and ∀y ∈ R φ̄n(t|x) =

n∑

i=1

h−1
n δiḠ

−1
n (Yi)K

(
x−Xi

hn

)
L

(
t− Yi
hn

)

n∑

i=1

K

(
x−Xi

hn

) ,
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where K, L are a kernels and hn is a sequence of positive real numbers. Note
that this last estimator has been recently used by [15].

A recursive version of the previous kernel estimator is defined by

φ̂n(t|x) =

n∑

i=1

h
−(d+1)
i δiḠ

−1
n (Yi)K

(
x−Xi

hi

)
L

(
t− Yi
hi

)

n∑

i=1

h−d
i K

(
x−Xi

hi

) =:
ĝn(x, t)

ℓn(x)

where

ĝn(x, t) :=
1

n

n∑

i=1

1

hd+1
i

δiḠ
−1
n (Yi)K

(
x−Xi

hi

)
L

(
t− Yi
hi

)
, (2.1)

and

ℓn(x) :=
1

n

n∑

i=1

1

hdi
K

(
x−Xi

hi

)
, ∀x ∈ R

d.

Remark 2.1. The Kaplan-Meir estimator is not recursive and the use of such
estimator can slightly penalizes the efficiency of our estimator in term of com-
putational time.

3. Assumptions and main results

Throughout the paper, we put h−n = infi=1...n hi, h
+
n = supi=1...n hi and all

along the paper, when no confusion is possible, we denote by M and/or M ′

any generic positive constant. Further, we will denote by F (·) (resp. G(·)) the
distribution function of T (resp. of C) and by τF (resp. τG) the upper endpoints
of the survival function F̄ (resp. of Ḡ). In the following we assume that τF <∞,
Ḡ(τF ) > 0 and C is independent to (X,T ). We also assume that there exist a
compact set C ⊂ C0 = {x ∈ R

d ℓ(x) > 0} where ℓ is the density of the explicative
variable X , and Ω be a compact set such that Ω ⊂ (−∞, τ ] where τ < τF ∧ τG.

We introduce the following assumptions:

Assumption A1. The kernels K and L are Lipschitz continuous functions and
compactly supported satisfy.
∫

Rd

ulK(u)du = 0 for l = 1, . . . , dwith u = (u1, . . . , ud)
T and

∫

R

vL(v)dv = 0

Assumption A2.

(i) The marginal density ℓ(·) is twice differentiable and satisfies a Lipschitz
condition. Furthermore ℓ(x) > Γ for all x ∈ C and Γ > 0. Where C is a
compact set of R.

(ii) The joint density g(·, ·) of (X,T ) is bounded function twice differentiable.

Remark 3.1. Assumptions A1 and A2 are usually used in non censoring kernel
estimation method. The independence assumption between (Ci)i and (Xi, Ti)i,
may seem to be strong and one can think of replacing it by a classical conditional
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independence assumption between (Ci)i and (Ti)i given (Xi)i. However consid-
ering the latter demands an a priori work of deriving the rate of convergence of
the censoring variable’s conditional law (see [11]). Moreover our framework is
classical and was considered by [7] and [17], among others.

3.1. Uniform strong consistency results with rate of convergence

In order to give the rate of the uniform almost sure convergence of our estimate
we need the following additional assumptions:

Assumption C.

(i) The sequences h+n and h−n satisfy limn→∞ h+n + logn

nh−d+1
n

= 0 → ∞ as n→ ∞.

(ii) limn→∞ nβh−n = ∞ for some β > 0.

Theorem 3.2. Under Assumptions A1, A2 and C we have

sup
x∈C

sup
t∈Ω

∣∣∣φ̂n(t|x)− φ(t|x)
∣∣∣ = O

{
max

((√
logn

nh
−(d+1)
n

)
, h+

2

n

)}
a.s. as n→ ∞

(3.1)

Remark 3.3. Observe that, although the expression of the convergence rate
is not classic in nonparametric statistic data analysis, this convergence rate is
identifiable to the usual rate in the kernel method case where, for all i, we have
hi = hn = h−n = h+n .

3.1.1. Proof of Theorem 3.2

Set

g̃n(x, t) :=
1

n

n∑

i=1

1

h
(d+1)
i

δiḠ
−1(Yi)Ki(x)Li(t)

with Ki(x) = K(x−Xi

hi
), Li(t) = L( t−Yi

hi
).

Now, the proof of this Theorem is based on the following decomposition

sup
x∈C

sup
t∈Ω

∣∣∣φ̂n(t|x)− φ(t|x)
∣∣∣ ≤ sup

x∈C
sup
t∈Ω

∣∣∣∣
ĝn(x, t)

ℓn(x)
− g̃n(x, t)

ℓn(x)

∣∣∣∣+
∣∣∣∣
g̃n(x, t)

ℓn(x)
− Eg̃n(x, t)

ℓn(x)

∣∣∣∣

+

∣∣∣∣
Eg̃n(x, t)

ℓn(x)
− g(x, t)

ℓn(x)

∣∣∣∣ +
∣∣∣∣
g(x, t)

ℓn(x)
− g(x, t)

ℓ(x)

∣∣∣∣

≤ 1

infx∈C ℓn(x)

{
sup
x∈C

sup
t∈Ω

|ĝn(x, t)− g̃n(x, t)|

+ sup
x∈C

sup
t∈Ω

|g̃n(x, t) − g(x, t)|

+ sup
x∈C

sup
t∈Ω

|φ(t|x)| sup
x∈C

|ℓ(x)− ℓn(x)|
}

(3.2)

So, the proof of this Theorem is a direct consequence of Lemmas 3.4–3.6.
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Lemma 3.4. Under Assumptions C, A1 and A2(ii), we have

sup
x∈C

sup
t∈Ω

|g̃n(x, t)−g(x, t)| = O

{
max

((√
logn

nh
−(d+1)
n

)
, h+

2

n

)}
a.s. as n→ ∞.

Lemma 3.5. Under Assumptions C, A1 and A2(i), we have

sup
x∈C

|ℓ(x)− ℓn(x)| = O

{
max

((√
logn

nh−d
n

)
, h+

2

n

)}
a.s. as n→ ∞.

Lemma 3.6. Under Assumptions C, A1 and A2(ii), we have

sup
x∈C

sup
t∈Ω

|ĝn(x, t)− g̃n(x, t)| = O

{(√
log logn

n

)}
a.s. as n→ ∞.

3.2. Asymptotic normality

Now, we study the asymptotic normality of our estimate. To do that, we replace
condition C by the following assumption:

Assumption N.

(i) limn→∞
1
n

∑n
i=1(

hn

hi
)k = θk.

(ii) h
(d+1)
n log logn = o(1), limn→∞ nh

(d+1)
n h+

4

n = 0 and limn→∞ nh
(d+1)
n = ∞.

Theorem 3.7. Under Assumptions A1, A2 and N, we have, for any (x, t) ∈ A,

√
nh

(d+1)
n

(
φ̂n(t|x)− φ(t|x)

)
D−→ N

(
0, σ2(x, t)

)

where
D−→ denotes the convergence in distribution,

σ2(x, t) = θd+1
φ(t|x)
ℓ(x)Ḡ(t)

∫

Rd

∫

R

K2(z)L2(y)dzdy

and A = {(x, t) σ2(x, t) 6= 0}.

Corollary 3.8. Based on Gn(·), φ̂n(·|x) and ℓn(x) we easily get a plug-in esti-
mator σ̂2

n(x, t) for σ2(x, t) which, under the assumptions of Theorem 3.7, gives
a confidence interval of asymptotic level 1− α for φ(t|x)

[
φ̂n(t|x)−

u1−α/2σ̂n(x, t)√
nhd+1

, φ̂n(t|x) +
u1−α/2σ̂n(x, t)√

nhd+1

]

where u1−α/2 denotes the (1−α/2)-quantile of the standard normal distribution.
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3.2.1. Proof of Theorem 3.7

It is clear that

√
nh

(d+1)
n

(
φ̂n(t|x)− φ(t|x)

)
=

√
nh

(d+1)
n

ℓn(x)
[ĝn(x, t)− g̃n(x, t)]

+

√
nh

(d+1)
n

ℓn(x)
[g̃n(x, t)− E(g̃n(x, t))]

+

√
nh

(d+1)
n

ℓn(x)
[E(g̃n(x, t))− g(x, t)]

+

√
nh

(d+1)
n

g(x, t)

ℓn(x)ℓ(x)
[ℓ(x)− ℓn(x)] . (3.3)

Thus, The proof of Theorem 3.7 can be deduced directly from the following
Lemmas

Lemma 3.9. Under the Hypotheses of Theorem 3.7, we have
√
nh

(d+1)
n [ĝn(x, t)− g̃n(x, t)] → 0 a.s. as n→ ∞, (3.4)

√
nh

(d+1)
n [E(g̃n(x, t))− g(x, t)] → 0 as n→ ∞ (3.5)

and √
nh

(d+1)
n (ℓn(x)− ℓ(x)) → 0 in probability as n→ ∞. (3.6)

Lemma 3.10. Under Assumptions A1, A2 and N(i), we have

(
nh(d+1)

n

) 1
2

[g̃n(x, t) − E(g̃n(x, t))]
D−→ N

(
0, σ′2

)

where σ′2(x, t) = θ g(x,t)
Ḡ(t)

∫
Rd

∫
R
K2

i (z)L
2
i (y)dzdy.

4. Numerical study

In this short section we compare the finite-sample performance of the recur-
sive kernel method and the classical kernel via a Monte Carlo study. For this
comparison study, we consider the same models used in [16] that is

M1 Y = X2 + 1 + ǫ parabolic case,
M2 Y = sin(1.5X) + ǫ sinus case,
M3 Y = exp(X − 0.2) + ǫ exponential case

where the random variablesX and ǫ are i.i.d. and follow respectively the normal
distribution N(0, 1) and N(0, σ).

It is clear that the conditional density expression is closely related to the
distribution of ǫ. Thus, the conditional densities are respectively
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x
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C.D.F.  of Model M1

x
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z

C.D.F.  of Model M2

x

y

z

C.D.F.  of Model M3

Fig 1. The C.D.f.

In order to control the effect of the censoring in the efficiency of both estimators
we variate the percentage of censoring for each models by considering a various
censoring distributions. Precisely, we generate the censoring variables C by an
exponential distribution C(λ1) shifted by λ2 (for the exponential model), by
a normal distribution N(0, σ1) (for sinus case) and by N(0, σ2) (for parabolic
case). Thus, the behavior of both estimators is evaluated over a several param-
eters, such as the sample size n, the percentage of censoring τ controlled by
(λ1, λ2, σ1, σ2), the dimension of the regressors d and the type of model M . For
sake of shortness, we consider the unidimensional case, we fixe the sample size
n = 200, we took σ = 0.2, we consider three censoring type (τ = 10, τ = 40
and τ = 70). The test of the performance of both estimators is described by the
following averaged squared errors

MSE(KERNEL) =
1

n

n∑

i=1

(φ̄n(Yi|Xi)− φ(Yi|Xi))
2

and recursive

MSE(RECURSIV E) =
1

n

n∑

i=1

(φ̂n(Yi|Xi)− φ(Yi|Xi))
2

Now, for our practical study, we use the Gaussian kernel and we consider the
well-known smoothing parameter defined by hn,i = σ2

ni
−1/5 where

σ2
n =

1

n− 1

n∑

i=1

(Xi − X̄)2 and X̄ =
1

n

n∑

i=1

Xi

The obtained results are given in Table 1. It is clear from Table 1 that the
recursive method is slightly better than the classical kernel method. However,
the main advantage of the recursive method is that considerably faster than
the classical one for the three models. In particular, it reduces sensibly the
computation time in function of the sample size and the kind of models. Overall,
both methods give a satisfactory level of accuracy and the latter is strongly
dependent to the censoring rate.
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Table 1

MSE-Results

Model τ MSE(KERNEL) MSE(RECURSIVE)

M1 10 0.41 0.22
40 0.64 0.55
70 1.74 1.97

M2 10 0.59 0.36
40 0.33 0.30
70 1.80 1.84

M3 10 0.79 0.29
40 1.32 1.18
70 2.17 2.65

5. Proofs of the intermediates results

Proof of Lemma 3.4. We write

sup
x∈C

sup
t∈Ω

|g̃n(x, t)− g(x, t)| ≤ sup
x∈C

sup
t∈Ω

|g̃n(x, t)− Eg̃n(x, t)|

+ sup
x∈C

sup
t∈Ω

|Eg̃n(x, t)− g(x, t)| .

For the quantity supx∈C supt∈Ω |Eg̃n(x, t)− g(x, t)|, we use the fact that, for all
measurable function ϕ and for all i = 1, . . . , n.1{T1≤C1}ϕ(Y1) = 1{T1≤C1}ϕ(T1).

Then,

Eg̃n(x, t)

= n−1
n∑

i=1

1

hd+1
i

E

{
K

(
x−X1

hi

)
δiḠ

−1(Ti)L

(
t− T1
hi

)}

= n−1
n∑

i=1

1

hd+1
i

E

{
K

(
x−X1

hi

)
Ḡ−1(Ti)L

(
t− T1
hi

)
E
[1{Ti≤Ci}|Xi, Ti

]}

= n−1
n∑

i=1

1

hd+1
i

E

{
K

(
x−X1

h1

)
L

(
t− T1
h1

)}

Therefore,

|Eg̃n(x, t) − g(x, t)|

≤ n−1
n∑

i=1

∣∣∣∣
∫

Rd

∫

R

K(u)L(v)[g(x− hiu, t− hiv)− g(x, t)]dudv

∣∣∣∣

≤Mn−1
n∑

i=1

h2i ≤Mh+
2

n .



2550 S. Khardani and S. Semmar

Therefore,

sup
x∈C

sup
t∈Ω

|Eg̃n(x, t) − g(x, t)| = O(h+
2

n ).

Now, concerning the quantity supx∈C supt∈Ω |g̃n(x, t) − Eg̃n(x, t)| we use the
compactness property of the sets C and Ω to write that, for some (xk)1≤k≤λn

and (tj)1≤j≤κn
,

C ⊂
λn⋃

k=1

B(xk, an) and Ω ⊂
κn⋃

j=1

B(tj , bn)

where λn ∼ a−d
n and κn ∼ b−1

n with an = bn = n−(d+1)β−1/2.
Now, for any x ∈ C and t ∈ Ω, we set by k̃(x) = argmink ‖xk − x‖ and

j̃(t) = argminj |t− tj | Then, for any (x, t) ∈ C × Ω, we can write

sup
x∈C

sup
t∈Ω

|g̃n(x, t)− Eg̃n(x, t)| ≤ sup
x∈C

sup
t∈Ω

∣∣∣g̃n(x, t)− g̃n(x, tj̃)
∣∣∣

+ sup
x∈S

sup
t∈Ω

∣∣∣Eg̃n(x, tj̃)− Eg̃n(x, t)
∣∣∣

+max
j

sup
x∈C

∣∣g̃n(x, tj)− g̃n(xk̃, tj)
∣∣

+max
j

sup
x∈C

∣∣Eg̃n(xk̃, tj)− Eg̃n(x, tj)
∣∣

+max
k

max
j

|g̃n(xk, tj)− Eg̃n(xk, tj)|

=: T1,n + T2,n + T3,n + T4,n + T5,n. (5.1)

Concerning (T1,n): We use the Lipschitizian condition on L to get

sup
x∈C

sup
t∈Ω

∣∣∣g̃n(x, t)− g̃n(x, tj̃)
∣∣∣

≤ sup
x∈C

sup
t∈Ω

1

n

n∑

i=1

h
−(d+1)
i δiḠ

−1(Yi)Ki(x)
∣∣∣Li(t)− Li(tj̃)

∣∣∣

≤ sup
x∈C

sup
t∈Ω

C
∣∣∣t− tj̃

∣∣∣ 1
n

n∑

i=1

1

hi
h
−(d+1)
i δiḠ

−1(Yi)Ki(x)

≤Mbn
1

n

n∑

i=1

h
−(d+2)
i

≤M
bn

h−d+2
n

. (5.2)

So, under Assumption C(ii), we have

(T1,n) = O

(√
logn

nh
−(d+1)
n

)
.
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By using the same arguments as those used T1,n we obtain

(T2,n) = O

(√
logn

nh
−(d+1)
n

)
, (T3,n) = O

(√
logn

nh
−(d+1)
n

)

and (T4,n) = O

(√
logn

nh
−(d+1)
n

)
.

Finally, in order to study T5,n we use Bernstein’s inequality. To do that, we put,
for 1 ≤ i ≤ n, 1 ≤ k ≤ λn, and 1 ≤ j ≤ κn

Ui = Ui(xk, tj)

:=
{
h
−(d+1)
i δiḠ

−1(Yi)Ki(x)Li(t)− E
[
h
−(d+1)
i δiḠ

−1(Yi)Ki(x)Li(t)
]}

.

Using the fact that the kernels K and L are bounded, we get

|Ui| ≤ Ch
−(d+1)
i ≤ Ch−(d+1)

n =M.

Moreover, by a similar ideas to those used in the first part of this Lemma, we
show that

V ar(Ui) ≤ C

∫

Rd

∫

R

1

h
−(d+1)
i

K2(u)L2(v)g(xk − rh, tj − sh)dudv

≤ Ch
−(d+1)
i ≤ Ch−(d+1)

n := σ.

Hence, by Bernstein’s inequality (see [13]), it follows that for all ǫ > 0:

P

{∣∣∣∣∣n
−1

n∑

i=1

Ui

∣∣∣∣∣ > ǫ

}
≤ 2 exp

{
−
(nǫ
M

)
h

(
Mǫ

σ2

)}
(5.3)

where h(u) = 3u/(6 + 2u) for all u > 0.
Now, taking ǫ = ǫ0(

logn

nh
−(d+1)
n

)1/2, we have for any (k, j), we obtain

P

{∣∣∣∣∣n
−1

n∑

i=1

Ui

∣∣∣∣∣ > ǫ

}
≤ 2 exp

{
−3ǫ20 logn

3c+ c0

}

≤ 2n−Cǫ20

Thus,

P

{
max

k=1,...,λn

max
j=1,...,κn

∣∣∣∣∣

n∑

i=1

Ui(xk, tj)

∣∣∣∣∣ > ǫ

}
≤ Cλnκnn−Cǫ0. (5.4)

Consequently, Borel-Cantelli’s lemma and an appropriate choice of ǫ0 allows us
to write that:

T5,n = O

(√
logn

nh
−(d+1)
n

)
. (5.5)
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Proof of Lemma 3.5. Firstly, we write

sup
x∈C

|ℓn(x)− ℓ(x)| ≤ sup
x∈C

|ℓn(x) − E[ℓn(x)]| + sup
x∈C

|E[ℓn(x)]− ℓ(x)|

=: L1n + L2n.

The first term L1n is very close to the last part of Lemma 3.4. So, by a standard
analytical argument we get,

L2n = O(h+
2

n ). (5.6)

While the proof of the second term For L2n follows the same lines as in Lemma
3.4. Therefore, we get

L1n = Oa.s.

(
log n

nh−
d

n

)1/2

which completes the proof of this Lemma.

Proof of Lemma 3.6. It is clear that

|ĝn(x, t)− g̃n(x, t)| ≤
n∑

i=1

∣∣∣∣∣
1

nh
(d+1)
i

δiKi(x)Li(t)

(
1

Ḡ(Yi)
− 1

Ḡn(Yi)

)∣∣∣∣∣

≤ supt≤τF |Ḡn(t)− Ḡ(t)|
Ḡn(τ)

g̃n(x, t) (5.7)

Since Ḡn(τ) > 0, in conjunction with the SLLN and the LIL on the censor-
ing law (see formula (4.28) in [11]), the result is an immediate consequence of
Lemma 3.4.

Proof of Lemma 3.9.

• Proof of 3.4. Similarly to the previous Lemma, we have
√
nh

(d+1)
n |ĝn(x, t) − g̃n(x, t)| ≤

√
nh

(d+1)
n

supt≤τF |Ḡn(t)− Ḡ(t)|
Ḡn(τ)

g̃n(x, t).

Further, as

sup
t≤τF

|Ḡn(t)− Ḡ(t)| = Oa.s.

(√
log logn

n

)

then
√
nh

(d+1)
n

(
supt≤τF Ḡn(t)− Ḡ(t)

Ḡn(τF )Ḡ(τF )

)
= Oa.s.

(√
log lognh

(d+1)
n

)
.

From N(ii) we obtain that

√
nh

(d+1)
n

supt≤τF Ḡn(t)− Ḡ(t)

Ḡn(τF )Ḡ(τF )
= oa.s.(1)

The latter combined with the results of Lemma 3.4 allows us to complete
the proof of 3.4.
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• Proof of 3.5. It is shown in the first part of Lemma 3.4, that

[E(g̃n(x, t)) − g(x, t)] = O(h+
2

n ).

Thus, √
nh

(d+1)
n [E(g̃n(x, t)) − g(x, t)] = O(

√
nhd+1

n (h+
4

n )

which goes to zero under the second part of Assumption N(ii).

• Proof of 3.6. By a simple analytical arguments we show that

V ar (ℓn(x) − ℓ(x)) = O

(
n−1

n∑

i=1

hdi

)
and E [ℓn(x)− ℓ(x)] = O(h+

2

n ).

Now, Assumption N(ii) gives nhd+1
n (h+

4

n → 0 and Assumption N(i) implies
that

nhd+1
n V ar (ℓn(x)− ℓ(x)) = o(1).

So, √
nhd+1

n (ℓn(x) − ℓ(x)) → 0 in probability as n→ ∞.

Proof of Lemma 3.10. The proof of this Lemma is based on the version of
the central limit Theorem given in ([19], p. 275) where the main point is to
calculate the following limit

nhd+1
n V ar [g̃n(x, t)] → σ′2(x). (5.8)

Indeed, we have

nhd+1
n V ar [g̃n(x, t)]

=
nh

(d+1)
n

n2
V ar

[
n∑

i=1

h
−(d+1)
i Ḡ−1(Y )Ki(x)Li(t)1{T1≤C1}

]

=
h
(d+1)
n

n

n∑

i=1

h
−2(d+1)
i E

[
Ḡ−2(T )K2

i (x)L
2
i (t)E [1T1≤C1 |X1, T1]

]

− h
(d+1)
n

n

n∑

i=1

h
−2(d+1)
i

[
E
{
Ḡ−1(T )Ki(x)Li(t)E [1T1≤C1 |X1, T1]

}]2

:= ∇1
n +∇2

n.

Observe that
∇2

n = h(d+1)
n E

2 [g̃n(x, t)] .

Once again, we use the result of Lemma 3.4 to show that ∇2
n = o(1).

Now, concerning the first term ∇1
n, we have

∇1
n =

1

n

n∑

i=1

(
hn
hi

)(d+1) ∫

Rd

∫

R

K2(z)L2(y)

Ḡ(t− yhi)
g(x− zhi, t− yhi)dzdy.
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The continuity of the functions Ḡ and g permit to write

∇1
n =

g(x, t)

Ḡ(t)

∫

Rd

∫

R

K2(z)L2(y)

(
1

n

n∑

i=1

(
hn
hi

)(d+1)
)

+ o

(
1

n

n∑

i=1

(
hn
hi

)(d+1)
)

From Assumption A1(ii), we obtain the claimed result (5.8).
Let’s now prove our asymptotic result. To do that we put

(
nh(d+1)

n

) 1
2

[g̃n(x, t)− E(g̃n(x, t))] =

n∑

i=1

wi,n(x)

where

wi,n(x) =

(
nh

(d+1)
n

) 1
2

nhd+1
i

{
δiḠ

−1(Yi)Ki(x)Li(t)− E
(
δiḠ

−1(Yi)Ki(x)Li(t)
)}

and we prove that for some β > 2

n∑

i=1

E
[
|wi,n(x)|β

]

(
V ar

(
n∑

i=1

wi,n(x)

))(β)/2
→ 0.

Indeed, set ψβ
i,n(x) = E |wi,n(x)|β . Applying the Cr-inequality (see [19], p. 155)

ψβ
i,n(x) = E

∣∣∣∣∣∣∣

(
nh

(d+1)
n

) 1
2

nhd+1
i

[
δiḠ

−1(Yi)Ki(x)Li(t)− E
(
δiḠ

−1(Yi)Ki(x)Li(t)
)]
∣∣∣∣∣∣∣

β

≤ 2β−1

(
nh

(d+1)
n

) β

2

nβ(hd+1
i )β

E

(∣∣δiḠ−1(Yi)Ki(x)Li(t)
∣∣β
)

+ 2β−1

(
nh

(d+1)
n

)β

2

nβ(hd+1
i )β

∣∣E
(
δiḠ

−1(Yi)Ki(x)Li(t)
)∣∣β . (5.9)

Furthermore, by a standard arguments, we show that

E

(∣∣δiḠ−1(Y )Ki(x)Li(t)
∣∣β
)
= O(h

(d+1)
i )

and ∣∣E
(
δiḠ

−1(Y )Ki(x)Li(t)
)∣∣β = O(h

β(d+1)
i ).

Therefore,

ψβ
n(x) =

∑

i=1

ψβ
i,n(x) = O

(
n1−β/2h(d+1)(1−β/2)

n

)
.
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Because of 1− β/2 < 0 we have ψβ
n(x) → 0 which implies that

lim
n→∞

∑n
i=1 E |ψi,n(x)|β

(
V ar

(
n∑

i=1

wi,n(x)

))(β)/2
→ 0.

The proof of this Lemma is now complete.
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